Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * drivers/acpi/power.c - ACPI Power Resources management.
0004  *
0005  * Copyright (C) 2001 - 2015 Intel Corp.
0006  * Author: Andy Grover <andrew.grover@intel.com>
0007  * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
0008  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
0009  */
0010 
0011 /*
0012  * ACPI power-managed devices may be controlled in two ways:
0013  * 1. via "Device Specific (D-State) Control"
0014  * 2. via "Power Resource Control".
0015  * The code below deals with ACPI Power Resources control.
0016  *
0017  * An ACPI "power resource object" represents a software controllable power
0018  * plane, clock plane, or other resource depended on by a device.
0019  *
0020  * A device may rely on multiple power resources, and a power resource
0021  * may be shared by multiple devices.
0022  */
0023 
0024 #define pr_fmt(fmt) "ACPI: PM: " fmt
0025 
0026 #include <linux/kernel.h>
0027 #include <linux/module.h>
0028 #include <linux/init.h>
0029 #include <linux/types.h>
0030 #include <linux/slab.h>
0031 #include <linux/pm_runtime.h>
0032 #include <linux/sysfs.h>
0033 #include <linux/acpi.h>
0034 #include "sleep.h"
0035 #include "internal.h"
0036 
0037 #define ACPI_POWER_CLASS        "power_resource"
0038 #define ACPI_POWER_DEVICE_NAME      "Power Resource"
0039 #define ACPI_POWER_RESOURCE_STATE_OFF   0x00
0040 #define ACPI_POWER_RESOURCE_STATE_ON    0x01
0041 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
0042 
0043 struct acpi_power_dependent_device {
0044     struct device *dev;
0045     struct list_head node;
0046 };
0047 
0048 struct acpi_power_resource {
0049     struct acpi_device device;
0050     struct list_head list_node;
0051     u32 system_level;
0052     u32 order;
0053     unsigned int ref_count;
0054     u8 state;
0055     struct mutex resource_lock;
0056     struct list_head dependents;
0057 };
0058 
0059 struct acpi_power_resource_entry {
0060     struct list_head node;
0061     struct acpi_power_resource *resource;
0062 };
0063 
0064 static LIST_HEAD(acpi_power_resource_list);
0065 static DEFINE_MUTEX(power_resource_list_lock);
0066 
0067 /* --------------------------------------------------------------------------
0068                              Power Resource Management
0069    -------------------------------------------------------------------------- */
0070 
0071 static inline const char *resource_dev_name(struct acpi_power_resource *pr)
0072 {
0073     return dev_name(&pr->device.dev);
0074 }
0075 
0076 static inline
0077 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
0078 {
0079     return container_of(device, struct acpi_power_resource, device);
0080 }
0081 
0082 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
0083 {
0084     struct acpi_device *device = acpi_fetch_acpi_dev(handle);
0085 
0086     if (!device)
0087         return NULL;
0088 
0089     return to_power_resource(device);
0090 }
0091 
0092 static int acpi_power_resources_list_add(acpi_handle handle,
0093                      struct list_head *list)
0094 {
0095     struct acpi_power_resource *resource = acpi_power_get_context(handle);
0096     struct acpi_power_resource_entry *entry;
0097 
0098     if (!resource || !list)
0099         return -EINVAL;
0100 
0101     entry = kzalloc(sizeof(*entry), GFP_KERNEL);
0102     if (!entry)
0103         return -ENOMEM;
0104 
0105     entry->resource = resource;
0106     if (!list_empty(list)) {
0107         struct acpi_power_resource_entry *e;
0108 
0109         list_for_each_entry(e, list, node)
0110             if (e->resource->order > resource->order) {
0111                 list_add_tail(&entry->node, &e->node);
0112                 return 0;
0113             }
0114     }
0115     list_add_tail(&entry->node, list);
0116     return 0;
0117 }
0118 
0119 void acpi_power_resources_list_free(struct list_head *list)
0120 {
0121     struct acpi_power_resource_entry *entry, *e;
0122 
0123     list_for_each_entry_safe(entry, e, list, node) {
0124         list_del(&entry->node);
0125         kfree(entry);
0126     }
0127 }
0128 
0129 static bool acpi_power_resource_is_dup(union acpi_object *package,
0130                        unsigned int start, unsigned int i)
0131 {
0132     acpi_handle rhandle, dup;
0133     unsigned int j;
0134 
0135     /* The caller is expected to check the package element types */
0136     rhandle = package->package.elements[i].reference.handle;
0137     for (j = start; j < i; j++) {
0138         dup = package->package.elements[j].reference.handle;
0139         if (dup == rhandle)
0140             return true;
0141     }
0142 
0143     return false;
0144 }
0145 
0146 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
0147                  struct list_head *list)
0148 {
0149     unsigned int i;
0150     int err = 0;
0151 
0152     for (i = start; i < package->package.count; i++) {
0153         union acpi_object *element = &package->package.elements[i];
0154         struct acpi_device *rdev;
0155         acpi_handle rhandle;
0156 
0157         if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
0158             err = -ENODATA;
0159             break;
0160         }
0161         rhandle = element->reference.handle;
0162         if (!rhandle) {
0163             err = -ENODEV;
0164             break;
0165         }
0166 
0167         /* Some ACPI tables contain duplicate power resource references */
0168         if (acpi_power_resource_is_dup(package, start, i))
0169             continue;
0170 
0171         rdev = acpi_add_power_resource(rhandle);
0172         if (!rdev) {
0173             err = -ENODEV;
0174             break;
0175         }
0176         err = acpi_power_resources_list_add(rhandle, list);
0177         if (err)
0178             break;
0179     }
0180     if (err)
0181         acpi_power_resources_list_free(list);
0182 
0183     return err;
0184 }
0185 
0186 static int __get_state(acpi_handle handle, u8 *state)
0187 {
0188     acpi_status status = AE_OK;
0189     unsigned long long sta = 0;
0190     u8 cur_state;
0191 
0192     status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
0193     if (ACPI_FAILURE(status))
0194         return -ENODEV;
0195 
0196     cur_state = sta & ACPI_POWER_RESOURCE_STATE_ON;
0197 
0198     acpi_handle_debug(handle, "Power resource is %s\n",
0199               cur_state ? "on" : "off");
0200 
0201     *state = cur_state;
0202     return 0;
0203 }
0204 
0205 static int acpi_power_get_state(struct acpi_power_resource *resource, u8 *state)
0206 {
0207     if (resource->state == ACPI_POWER_RESOURCE_STATE_UNKNOWN) {
0208         int ret;
0209 
0210         ret = __get_state(resource->device.handle, &resource->state);
0211         if (ret)
0212             return ret;
0213     }
0214 
0215     *state = resource->state;
0216     return 0;
0217 }
0218 
0219 static int acpi_power_get_list_state(struct list_head *list, u8 *state)
0220 {
0221     struct acpi_power_resource_entry *entry;
0222     u8 cur_state = ACPI_POWER_RESOURCE_STATE_OFF;
0223 
0224     if (!list || !state)
0225         return -EINVAL;
0226 
0227     /* The state of the list is 'on' IFF all resources are 'on'. */
0228     list_for_each_entry(entry, list, node) {
0229         struct acpi_power_resource *resource = entry->resource;
0230         int result;
0231 
0232         mutex_lock(&resource->resource_lock);
0233         result = acpi_power_get_state(resource, &cur_state);
0234         mutex_unlock(&resource->resource_lock);
0235         if (result)
0236             return result;
0237 
0238         if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
0239             break;
0240     }
0241 
0242     pr_debug("Power resource list is %s\n", cur_state ? "on" : "off");
0243 
0244     *state = cur_state;
0245     return 0;
0246 }
0247 
0248 static int
0249 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
0250                   struct device *dev)
0251 {
0252     struct acpi_power_dependent_device *dep;
0253     int ret = 0;
0254 
0255     mutex_lock(&resource->resource_lock);
0256     list_for_each_entry(dep, &resource->dependents, node) {
0257         /* Only add it once */
0258         if (dep->dev == dev)
0259             goto unlock;
0260     }
0261 
0262     dep = kzalloc(sizeof(*dep), GFP_KERNEL);
0263     if (!dep) {
0264         ret = -ENOMEM;
0265         goto unlock;
0266     }
0267 
0268     dep->dev = dev;
0269     list_add_tail(&dep->node, &resource->dependents);
0270     dev_dbg(dev, "added power dependency to [%s]\n",
0271         resource_dev_name(resource));
0272 
0273 unlock:
0274     mutex_unlock(&resource->resource_lock);
0275     return ret;
0276 }
0277 
0278 static void
0279 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
0280                      struct device *dev)
0281 {
0282     struct acpi_power_dependent_device *dep;
0283 
0284     mutex_lock(&resource->resource_lock);
0285     list_for_each_entry(dep, &resource->dependents, node) {
0286         if (dep->dev == dev) {
0287             list_del(&dep->node);
0288             kfree(dep);
0289             dev_dbg(dev, "removed power dependency to [%s]\n",
0290                 resource_dev_name(resource));
0291             break;
0292         }
0293     }
0294     mutex_unlock(&resource->resource_lock);
0295 }
0296 
0297 /**
0298  * acpi_device_power_add_dependent - Add dependent device of this ACPI device
0299  * @adev: ACPI device pointer
0300  * @dev: Dependent device
0301  *
0302  * If @adev has non-empty _PR0 the @dev is added as dependent device to all
0303  * power resources returned by it. This means that whenever these power
0304  * resources are turned _ON the dependent devices get runtime resumed. This
0305  * is needed for devices such as PCI to allow its driver to re-initialize
0306  * it after it went to D0uninitialized.
0307  *
0308  * If @adev does not have _PR0 this does nothing.
0309  *
0310  * Returns %0 in case of success and negative errno otherwise.
0311  */
0312 int acpi_device_power_add_dependent(struct acpi_device *adev,
0313                     struct device *dev)
0314 {
0315     struct acpi_power_resource_entry *entry;
0316     struct list_head *resources;
0317     int ret;
0318 
0319     if (!adev->flags.power_manageable)
0320         return 0;
0321 
0322     resources = &adev->power.states[ACPI_STATE_D0].resources;
0323     list_for_each_entry(entry, resources, node) {
0324         ret = acpi_power_resource_add_dependent(entry->resource, dev);
0325         if (ret)
0326             goto err;
0327     }
0328 
0329     return 0;
0330 
0331 err:
0332     list_for_each_entry(entry, resources, node)
0333         acpi_power_resource_remove_dependent(entry->resource, dev);
0334 
0335     return ret;
0336 }
0337 
0338 /**
0339  * acpi_device_power_remove_dependent - Remove dependent device
0340  * @adev: ACPI device pointer
0341  * @dev: Dependent device
0342  *
0343  * Does the opposite of acpi_device_power_add_dependent() and removes the
0344  * dependent device if it is found. Can be called to @adev that does not
0345  * have _PR0 as well.
0346  */
0347 void acpi_device_power_remove_dependent(struct acpi_device *adev,
0348                     struct device *dev)
0349 {
0350     struct acpi_power_resource_entry *entry;
0351     struct list_head *resources;
0352 
0353     if (!adev->flags.power_manageable)
0354         return;
0355 
0356     resources = &adev->power.states[ACPI_STATE_D0].resources;
0357     list_for_each_entry_reverse(entry, resources, node)
0358         acpi_power_resource_remove_dependent(entry->resource, dev);
0359 }
0360 
0361 static int __acpi_power_on(struct acpi_power_resource *resource)
0362 {
0363     acpi_handle handle = resource->device.handle;
0364     struct acpi_power_dependent_device *dep;
0365     acpi_status status = AE_OK;
0366 
0367     status = acpi_evaluate_object(handle, "_ON", NULL, NULL);
0368     if (ACPI_FAILURE(status)) {
0369         resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
0370         return -ENODEV;
0371     }
0372 
0373     resource->state = ACPI_POWER_RESOURCE_STATE_ON;
0374 
0375     acpi_handle_debug(handle, "Power resource turned on\n");
0376 
0377     /*
0378      * If there are other dependents on this power resource we need to
0379      * resume them now so that their drivers can re-initialize the
0380      * hardware properly after it went back to D0.
0381      */
0382     if (list_empty(&resource->dependents) ||
0383         list_is_singular(&resource->dependents))
0384         return 0;
0385 
0386     list_for_each_entry(dep, &resource->dependents, node) {
0387         dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
0388             resource_dev_name(resource));
0389         pm_request_resume(dep->dev);
0390     }
0391 
0392     return 0;
0393 }
0394 
0395 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
0396 {
0397     int result = 0;
0398 
0399     if (resource->ref_count++) {
0400         acpi_handle_debug(resource->device.handle,
0401                   "Power resource already on\n");
0402     } else {
0403         result = __acpi_power_on(resource);
0404         if (result)
0405             resource->ref_count--;
0406     }
0407     return result;
0408 }
0409 
0410 static int acpi_power_on(struct acpi_power_resource *resource)
0411 {
0412     int result;
0413 
0414     mutex_lock(&resource->resource_lock);
0415     result = acpi_power_on_unlocked(resource);
0416     mutex_unlock(&resource->resource_lock);
0417     return result;
0418 }
0419 
0420 static int __acpi_power_off(struct acpi_power_resource *resource)
0421 {
0422     acpi_handle handle = resource->device.handle;
0423     acpi_status status;
0424 
0425     status = acpi_evaluate_object(handle, "_OFF", NULL, NULL);
0426     if (ACPI_FAILURE(status)) {
0427         resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
0428         return -ENODEV;
0429     }
0430 
0431     resource->state = ACPI_POWER_RESOURCE_STATE_OFF;
0432 
0433     acpi_handle_debug(handle, "Power resource turned off\n");
0434 
0435     return 0;
0436 }
0437 
0438 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
0439 {
0440     int result = 0;
0441 
0442     if (!resource->ref_count) {
0443         acpi_handle_debug(resource->device.handle,
0444                   "Power resource already off\n");
0445         return 0;
0446     }
0447 
0448     if (--resource->ref_count) {
0449         acpi_handle_debug(resource->device.handle,
0450                   "Power resource still in use\n");
0451     } else {
0452         result = __acpi_power_off(resource);
0453         if (result)
0454             resource->ref_count++;
0455     }
0456     return result;
0457 }
0458 
0459 static int acpi_power_off(struct acpi_power_resource *resource)
0460 {
0461     int result;
0462 
0463     mutex_lock(&resource->resource_lock);
0464     result = acpi_power_off_unlocked(resource);
0465     mutex_unlock(&resource->resource_lock);
0466     return result;
0467 }
0468 
0469 static int acpi_power_off_list(struct list_head *list)
0470 {
0471     struct acpi_power_resource_entry *entry;
0472     int result = 0;
0473 
0474     list_for_each_entry_reverse(entry, list, node) {
0475         result = acpi_power_off(entry->resource);
0476         if (result)
0477             goto err;
0478     }
0479     return 0;
0480 
0481  err:
0482     list_for_each_entry_continue(entry, list, node)
0483         acpi_power_on(entry->resource);
0484 
0485     return result;
0486 }
0487 
0488 static int acpi_power_on_list(struct list_head *list)
0489 {
0490     struct acpi_power_resource_entry *entry;
0491     int result = 0;
0492 
0493     list_for_each_entry(entry, list, node) {
0494         result = acpi_power_on(entry->resource);
0495         if (result)
0496             goto err;
0497     }
0498     return 0;
0499 
0500  err:
0501     list_for_each_entry_continue_reverse(entry, list, node)
0502         acpi_power_off(entry->resource);
0503 
0504     return result;
0505 }
0506 
0507 static struct attribute *attrs[] = {
0508     NULL,
0509 };
0510 
0511 static const struct attribute_group attr_groups[] = {
0512     [ACPI_STATE_D0] = {
0513         .name = "power_resources_D0",
0514         .attrs = attrs,
0515     },
0516     [ACPI_STATE_D1] = {
0517         .name = "power_resources_D1",
0518         .attrs = attrs,
0519     },
0520     [ACPI_STATE_D2] = {
0521         .name = "power_resources_D2",
0522         .attrs = attrs,
0523     },
0524     [ACPI_STATE_D3_HOT] = {
0525         .name = "power_resources_D3hot",
0526         .attrs = attrs,
0527     },
0528 };
0529 
0530 static const struct attribute_group wakeup_attr_group = {
0531     .name = "power_resources_wakeup",
0532     .attrs = attrs,
0533 };
0534 
0535 static void acpi_power_hide_list(struct acpi_device *adev,
0536                  struct list_head *resources,
0537                  const struct attribute_group *attr_group)
0538 {
0539     struct acpi_power_resource_entry *entry;
0540 
0541     if (list_empty(resources))
0542         return;
0543 
0544     list_for_each_entry_reverse(entry, resources, node) {
0545         struct acpi_device *res_dev = &entry->resource->device;
0546 
0547         sysfs_remove_link_from_group(&adev->dev.kobj,
0548                          attr_group->name,
0549                          dev_name(&res_dev->dev));
0550     }
0551     sysfs_remove_group(&adev->dev.kobj, attr_group);
0552 }
0553 
0554 static void acpi_power_expose_list(struct acpi_device *adev,
0555                    struct list_head *resources,
0556                    const struct attribute_group *attr_group)
0557 {
0558     struct acpi_power_resource_entry *entry;
0559     int ret;
0560 
0561     if (list_empty(resources))
0562         return;
0563 
0564     ret = sysfs_create_group(&adev->dev.kobj, attr_group);
0565     if (ret)
0566         return;
0567 
0568     list_for_each_entry(entry, resources, node) {
0569         struct acpi_device *res_dev = &entry->resource->device;
0570 
0571         ret = sysfs_add_link_to_group(&adev->dev.kobj,
0572                           attr_group->name,
0573                           &res_dev->dev.kobj,
0574                           dev_name(&res_dev->dev));
0575         if (ret) {
0576             acpi_power_hide_list(adev, resources, attr_group);
0577             break;
0578         }
0579     }
0580 }
0581 
0582 static void acpi_power_expose_hide(struct acpi_device *adev,
0583                    struct list_head *resources,
0584                    const struct attribute_group *attr_group,
0585                    bool expose)
0586 {
0587     if (expose)
0588         acpi_power_expose_list(adev, resources, attr_group);
0589     else
0590         acpi_power_hide_list(adev, resources, attr_group);
0591 }
0592 
0593 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
0594 {
0595     int state;
0596 
0597     if (adev->wakeup.flags.valid)
0598         acpi_power_expose_hide(adev, &adev->wakeup.resources,
0599                        &wakeup_attr_group, add);
0600 
0601     if (!adev->power.flags.power_resources)
0602         return;
0603 
0604     for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
0605         acpi_power_expose_hide(adev,
0606                        &adev->power.states[state].resources,
0607                        &attr_groups[state], add);
0608 }
0609 
0610 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
0611 {
0612     struct acpi_power_resource_entry *entry;
0613     int system_level = 5;
0614 
0615     list_for_each_entry(entry, list, node) {
0616         struct acpi_power_resource *resource = entry->resource;
0617         u8 state;
0618 
0619         mutex_lock(&resource->resource_lock);
0620 
0621         /*
0622          * Make sure that the power resource state and its reference
0623          * counter value are consistent with each other.
0624          */
0625         if (!resource->ref_count &&
0626             !acpi_power_get_state(resource, &state) &&
0627             state == ACPI_POWER_RESOURCE_STATE_ON)
0628             __acpi_power_off(resource);
0629 
0630         if (system_level > resource->system_level)
0631             system_level = resource->system_level;
0632 
0633         mutex_unlock(&resource->resource_lock);
0634     }
0635     *system_level_p = system_level;
0636     return 0;
0637 }
0638 
0639 /* --------------------------------------------------------------------------
0640                              Device Power Management
0641    -------------------------------------------------------------------------- */
0642 
0643 /**
0644  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
0645  *                          ACPI 3.0) _PSW (Power State Wake)
0646  * @dev: Device to handle.
0647  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
0648  * @sleep_state: Target sleep state of the system.
0649  * @dev_state: Target power state of the device.
0650  *
0651  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
0652  * State Wake) for the device, if present.  On failure reset the device's
0653  * wakeup.flags.valid flag.
0654  *
0655  * RETURN VALUE:
0656  * 0 if either _DSW or _PSW has been successfully executed
0657  * 0 if neither _DSW nor _PSW has been found
0658  * -ENODEV if the execution of either _DSW or _PSW has failed
0659  */
0660 int acpi_device_sleep_wake(struct acpi_device *dev,
0661                int enable, int sleep_state, int dev_state)
0662 {
0663     union acpi_object in_arg[3];
0664     struct acpi_object_list arg_list = { 3, in_arg };
0665     acpi_status status = AE_OK;
0666 
0667     /*
0668      * Try to execute _DSW first.
0669      *
0670      * Three arguments are needed for the _DSW object:
0671      * Argument 0: enable/disable the wake capabilities
0672      * Argument 1: target system state
0673      * Argument 2: target device state
0674      * When _DSW object is called to disable the wake capabilities, maybe
0675      * the first argument is filled. The values of the other two arguments
0676      * are meaningless.
0677      */
0678     in_arg[0].type = ACPI_TYPE_INTEGER;
0679     in_arg[0].integer.value = enable;
0680     in_arg[1].type = ACPI_TYPE_INTEGER;
0681     in_arg[1].integer.value = sleep_state;
0682     in_arg[2].type = ACPI_TYPE_INTEGER;
0683     in_arg[2].integer.value = dev_state;
0684     status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
0685     if (ACPI_SUCCESS(status)) {
0686         return 0;
0687     } else if (status != AE_NOT_FOUND) {
0688         acpi_handle_info(dev->handle, "_DSW execution failed\n");
0689         dev->wakeup.flags.valid = 0;
0690         return -ENODEV;
0691     }
0692 
0693     /* Execute _PSW */
0694     status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
0695     if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
0696         acpi_handle_info(dev->handle, "_PSW execution failed\n");
0697         dev->wakeup.flags.valid = 0;
0698         return -ENODEV;
0699     }
0700 
0701     return 0;
0702 }
0703 
0704 /*
0705  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
0706  * 1. Power on the power resources required for the wakeup device
0707  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
0708  *    State Wake) for the device, if present
0709  */
0710 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
0711 {
0712     int err = 0;
0713 
0714     if (!dev || !dev->wakeup.flags.valid)
0715         return -EINVAL;
0716 
0717     mutex_lock(&acpi_device_lock);
0718 
0719     dev_dbg(&dev->dev, "Enabling wakeup power (count %d)\n",
0720         dev->wakeup.prepare_count);
0721 
0722     if (dev->wakeup.prepare_count++)
0723         goto out;
0724 
0725     err = acpi_power_on_list(&dev->wakeup.resources);
0726     if (err) {
0727         dev_err(&dev->dev, "Cannot turn on wakeup power resources\n");
0728         dev->wakeup.flags.valid = 0;
0729         goto out;
0730     }
0731 
0732     /*
0733      * Passing 3 as the third argument below means the device may be
0734      * put into arbitrary power state afterward.
0735      */
0736     err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
0737     if (err) {
0738         acpi_power_off_list(&dev->wakeup.resources);
0739         dev->wakeup.prepare_count = 0;
0740         goto out;
0741     }
0742 
0743     dev_dbg(&dev->dev, "Wakeup power enabled\n");
0744 
0745  out:
0746     mutex_unlock(&acpi_device_lock);
0747     return err;
0748 }
0749 
0750 /*
0751  * Shutdown a wakeup device, counterpart of above method
0752  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
0753  *    State Wake) for the device, if present
0754  * 2. Shutdown down the power resources
0755  */
0756 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
0757 {
0758     struct acpi_power_resource_entry *entry;
0759     int err = 0;
0760 
0761     if (!dev || !dev->wakeup.flags.valid)
0762         return -EINVAL;
0763 
0764     mutex_lock(&acpi_device_lock);
0765 
0766     dev_dbg(&dev->dev, "Disabling wakeup power (count %d)\n",
0767         dev->wakeup.prepare_count);
0768 
0769     /* Do nothing if wakeup power has not been enabled for this device. */
0770     if (dev->wakeup.prepare_count <= 0)
0771         goto out;
0772 
0773     if (--dev->wakeup.prepare_count > 0)
0774         goto out;
0775 
0776     err = acpi_device_sleep_wake(dev, 0, 0, 0);
0777     if (err)
0778         goto out;
0779 
0780     /*
0781      * All of the power resources in the list need to be turned off even if
0782      * there are errors.
0783      */
0784     list_for_each_entry(entry, &dev->wakeup.resources, node) {
0785         int ret;
0786 
0787         ret = acpi_power_off(entry->resource);
0788         if (ret && !err)
0789             err = ret;
0790     }
0791     if (err) {
0792         dev_err(&dev->dev, "Cannot turn off wakeup power resources\n");
0793         dev->wakeup.flags.valid = 0;
0794         goto out;
0795     }
0796 
0797     dev_dbg(&dev->dev, "Wakeup power disabled\n");
0798 
0799  out:
0800     mutex_unlock(&acpi_device_lock);
0801     return err;
0802 }
0803 
0804 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
0805 {
0806     u8 list_state = ACPI_POWER_RESOURCE_STATE_OFF;
0807     int result = 0;
0808     int i = 0;
0809 
0810     if (!device || !state)
0811         return -EINVAL;
0812 
0813     /*
0814      * We know a device's inferred power state when all the resources
0815      * required for a given D-state are 'on'.
0816      */
0817     for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
0818         struct list_head *list = &device->power.states[i].resources;
0819 
0820         if (list_empty(list))
0821             continue;
0822 
0823         result = acpi_power_get_list_state(list, &list_state);
0824         if (result)
0825             return result;
0826 
0827         if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
0828             *state = i;
0829             return 0;
0830         }
0831     }
0832 
0833     *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
0834         ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
0835     return 0;
0836 }
0837 
0838 int acpi_power_on_resources(struct acpi_device *device, int state)
0839 {
0840     if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
0841         return -EINVAL;
0842 
0843     return acpi_power_on_list(&device->power.states[state].resources);
0844 }
0845 
0846 int acpi_power_transition(struct acpi_device *device, int state)
0847 {
0848     int result = 0;
0849 
0850     if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
0851         return -EINVAL;
0852 
0853     if (device->power.state == state || !device->flags.power_manageable)
0854         return 0;
0855 
0856     if ((device->power.state < ACPI_STATE_D0)
0857         || (device->power.state > ACPI_STATE_D3_COLD))
0858         return -ENODEV;
0859 
0860     /*
0861      * First we reference all power resources required in the target list
0862      * (e.g. so the device doesn't lose power while transitioning).  Then,
0863      * we dereference all power resources used in the current list.
0864      */
0865     if (state < ACPI_STATE_D3_COLD)
0866         result = acpi_power_on_list(
0867             &device->power.states[state].resources);
0868 
0869     if (!result && device->power.state < ACPI_STATE_D3_COLD)
0870         acpi_power_off_list(
0871             &device->power.states[device->power.state].resources);
0872 
0873     /* We shouldn't change the state unless the above operations succeed. */
0874     device->power.state = result ? ACPI_STATE_UNKNOWN : state;
0875 
0876     return result;
0877 }
0878 
0879 static void acpi_release_power_resource(struct device *dev)
0880 {
0881     struct acpi_device *device = to_acpi_device(dev);
0882     struct acpi_power_resource *resource;
0883 
0884     resource = container_of(device, struct acpi_power_resource, device);
0885 
0886     mutex_lock(&power_resource_list_lock);
0887     list_del(&resource->list_node);
0888     mutex_unlock(&power_resource_list_lock);
0889 
0890     acpi_free_pnp_ids(&device->pnp);
0891     kfree(resource);
0892 }
0893 
0894 static ssize_t resource_in_use_show(struct device *dev,
0895                     struct device_attribute *attr,
0896                     char *buf)
0897 {
0898     struct acpi_power_resource *resource;
0899 
0900     resource = to_power_resource(to_acpi_device(dev));
0901     return sprintf(buf, "%u\n", !!resource->ref_count);
0902 }
0903 static DEVICE_ATTR_RO(resource_in_use);
0904 
0905 static void acpi_power_sysfs_remove(struct acpi_device *device)
0906 {
0907     device_remove_file(&device->dev, &dev_attr_resource_in_use);
0908 }
0909 
0910 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
0911 {
0912     mutex_lock(&power_resource_list_lock);
0913 
0914     if (!list_empty(&acpi_power_resource_list)) {
0915         struct acpi_power_resource *r;
0916 
0917         list_for_each_entry(r, &acpi_power_resource_list, list_node)
0918             if (r->order > resource->order) {
0919                 list_add_tail(&resource->list_node, &r->list_node);
0920                 goto out;
0921             }
0922     }
0923     list_add_tail(&resource->list_node, &acpi_power_resource_list);
0924 
0925  out:
0926     mutex_unlock(&power_resource_list_lock);
0927 }
0928 
0929 struct acpi_device *acpi_add_power_resource(acpi_handle handle)
0930 {
0931     struct acpi_device *device = acpi_fetch_acpi_dev(handle);
0932     struct acpi_power_resource *resource;
0933     union acpi_object acpi_object;
0934     struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
0935     acpi_status status;
0936     u8 state_dummy;
0937     int result;
0938 
0939     if (device)
0940         return device;
0941 
0942     resource = kzalloc(sizeof(*resource), GFP_KERNEL);
0943     if (!resource)
0944         return NULL;
0945 
0946     device = &resource->device;
0947     acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER);
0948     mutex_init(&resource->resource_lock);
0949     INIT_LIST_HEAD(&resource->list_node);
0950     INIT_LIST_HEAD(&resource->dependents);
0951     strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
0952     strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
0953     device->power.state = ACPI_STATE_UNKNOWN;
0954 
0955     /* Evaluate the object to get the system level and resource order. */
0956     status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
0957     if (ACPI_FAILURE(status))
0958         goto err;
0959 
0960     resource->system_level = acpi_object.power_resource.system_level;
0961     resource->order = acpi_object.power_resource.resource_order;
0962     resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
0963 
0964     /* Get the initial state or just flip it on if that fails. */
0965     if (acpi_power_get_state(resource, &state_dummy))
0966         __acpi_power_on(resource);
0967 
0968     pr_info("%s [%s]\n", acpi_device_name(device), acpi_device_bid(device));
0969 
0970     device->flags.match_driver = true;
0971     result = acpi_device_add(device, acpi_release_power_resource);
0972     if (result)
0973         goto err;
0974 
0975     if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
0976         device->remove = acpi_power_sysfs_remove;
0977 
0978     acpi_power_add_resource_to_list(resource);
0979     acpi_device_add_finalize(device);
0980     return device;
0981 
0982  err:
0983     acpi_release_power_resource(&device->dev);
0984     return NULL;
0985 }
0986 
0987 #ifdef CONFIG_ACPI_SLEEP
0988 void acpi_resume_power_resources(void)
0989 {
0990     struct acpi_power_resource *resource;
0991 
0992     mutex_lock(&power_resource_list_lock);
0993 
0994     list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
0995         int result;
0996         u8 state;
0997 
0998         mutex_lock(&resource->resource_lock);
0999 
1000         resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
1001         result = acpi_power_get_state(resource, &state);
1002         if (result) {
1003             mutex_unlock(&resource->resource_lock);
1004             continue;
1005         }
1006 
1007         if (state == ACPI_POWER_RESOURCE_STATE_OFF
1008             && resource->ref_count) {
1009             acpi_handle_debug(resource->device.handle, "Turning ON\n");
1010             __acpi_power_on(resource);
1011         }
1012 
1013         mutex_unlock(&resource->resource_lock);
1014     }
1015 
1016     mutex_unlock(&power_resource_list_lock);
1017 }
1018 #endif
1019 
1020 /**
1021  * acpi_turn_off_unused_power_resources - Turn off power resources not in use.
1022  */
1023 void acpi_turn_off_unused_power_resources(void)
1024 {
1025     struct acpi_power_resource *resource;
1026 
1027     mutex_lock(&power_resource_list_lock);
1028 
1029     list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1030         mutex_lock(&resource->resource_lock);
1031 
1032         if (!resource->ref_count &&
1033             resource->state == ACPI_POWER_RESOURCE_STATE_ON) {
1034             acpi_handle_debug(resource->device.handle, "Turning OFF\n");
1035             __acpi_power_off(resource);
1036         }
1037 
1038         mutex_unlock(&resource->resource_lock);
1039     }
1040 
1041     mutex_unlock(&power_resource_list_lock);
1042 }