0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/export.h>
0009 #include <linux/acpi.h>
0010 #include <linux/mfd/intel_soc_pmic.h>
0011 #include <linux/regmap.h>
0012 #include <acpi/acpi_lpat.h>
0013 #include "intel_pmic.h"
0014
0015 #define PMIC_POWER_OPREGION_ID 0x8d
0016 #define PMIC_THERMAL_OPREGION_ID 0x8c
0017 #define PMIC_REGS_OPREGION_ID 0x8f
0018
0019 struct intel_pmic_regs_handler_ctx {
0020 unsigned int val;
0021 u16 addr;
0022 };
0023
0024 struct intel_pmic_opregion {
0025 struct mutex lock;
0026 struct acpi_lpat_conversion_table *lpat_table;
0027 struct regmap *regmap;
0028 const struct intel_pmic_opregion_data *data;
0029 struct intel_pmic_regs_handler_ctx ctx;
0030 };
0031
0032 static struct intel_pmic_opregion *intel_pmic_opregion;
0033
0034 static int pmic_get_reg_bit(int address, struct pmic_table *table,
0035 int count, int *reg, int *bit)
0036 {
0037 int i;
0038
0039 for (i = 0; i < count; i++) {
0040 if (table[i].address == address) {
0041 *reg = table[i].reg;
0042 if (bit)
0043 *bit = table[i].bit;
0044 return 0;
0045 }
0046 }
0047 return -ENOENT;
0048 }
0049
0050 static acpi_status intel_pmic_power_handler(u32 function,
0051 acpi_physical_address address, u32 bits, u64 *value64,
0052 void *handler_context, void *region_context)
0053 {
0054 struct intel_pmic_opregion *opregion = region_context;
0055 struct regmap *regmap = opregion->regmap;
0056 const struct intel_pmic_opregion_data *d = opregion->data;
0057 int reg, bit, result;
0058
0059 if (bits != 32 || !value64)
0060 return AE_BAD_PARAMETER;
0061
0062 if (function == ACPI_WRITE && !(*value64 == 0 || *value64 == 1))
0063 return AE_BAD_PARAMETER;
0064
0065 result = pmic_get_reg_bit(address, d->power_table,
0066 d->power_table_count, ®, &bit);
0067 if (result == -ENOENT)
0068 return AE_BAD_PARAMETER;
0069
0070 mutex_lock(&opregion->lock);
0071
0072 result = function == ACPI_READ ?
0073 d->get_power(regmap, reg, bit, value64) :
0074 d->update_power(regmap, reg, bit, *value64 == 1);
0075
0076 mutex_unlock(&opregion->lock);
0077
0078 return result ? AE_ERROR : AE_OK;
0079 }
0080
0081 static int pmic_read_temp(struct intel_pmic_opregion *opregion,
0082 int reg, u64 *value)
0083 {
0084 int raw_temp, temp;
0085
0086 if (!opregion->data->get_raw_temp)
0087 return -ENXIO;
0088
0089 raw_temp = opregion->data->get_raw_temp(opregion->regmap, reg);
0090 if (raw_temp < 0)
0091 return raw_temp;
0092
0093 if (!opregion->lpat_table) {
0094 *value = raw_temp;
0095 return 0;
0096 }
0097
0098 temp = opregion->data->lpat_raw_to_temp(opregion->lpat_table, raw_temp);
0099 if (temp < 0)
0100 return temp;
0101
0102 *value = temp;
0103 return 0;
0104 }
0105
0106 static int pmic_thermal_temp(struct intel_pmic_opregion *opregion, int reg,
0107 u32 function, u64 *value)
0108 {
0109 return function == ACPI_READ ?
0110 pmic_read_temp(opregion, reg, value) : -EINVAL;
0111 }
0112
0113 static int pmic_thermal_aux(struct intel_pmic_opregion *opregion, int reg,
0114 u32 function, u64 *value)
0115 {
0116 int raw_temp;
0117
0118 if (function == ACPI_READ)
0119 return pmic_read_temp(opregion, reg, value);
0120
0121 if (!opregion->data->update_aux)
0122 return -ENXIO;
0123
0124 if (opregion->lpat_table) {
0125 raw_temp = acpi_lpat_temp_to_raw(opregion->lpat_table, *value);
0126 if (raw_temp < 0)
0127 return raw_temp;
0128 } else {
0129 raw_temp = *value;
0130 }
0131
0132 return opregion->data->update_aux(opregion->regmap, reg, raw_temp);
0133 }
0134
0135 static int pmic_thermal_pen(struct intel_pmic_opregion *opregion, int reg,
0136 int bit, u32 function, u64 *value)
0137 {
0138 const struct intel_pmic_opregion_data *d = opregion->data;
0139 struct regmap *regmap = opregion->regmap;
0140
0141 if (!d->get_policy || !d->update_policy)
0142 return -ENXIO;
0143
0144 if (function == ACPI_READ)
0145 return d->get_policy(regmap, reg, bit, value);
0146
0147 if (*value != 0 && *value != 1)
0148 return -EINVAL;
0149
0150 return d->update_policy(regmap, reg, bit, *value);
0151 }
0152
0153 static bool pmic_thermal_is_temp(int address)
0154 {
0155 return (address <= 0x3c) && !(address % 12);
0156 }
0157
0158 static bool pmic_thermal_is_aux(int address)
0159 {
0160 return (address >= 4 && address <= 0x40 && !((address - 4) % 12)) ||
0161 (address >= 8 && address <= 0x44 && !((address - 8) % 12));
0162 }
0163
0164 static bool pmic_thermal_is_pen(int address)
0165 {
0166 return address >= 0x48 && address <= 0x5c;
0167 }
0168
0169 static acpi_status intel_pmic_thermal_handler(u32 function,
0170 acpi_physical_address address, u32 bits, u64 *value64,
0171 void *handler_context, void *region_context)
0172 {
0173 struct intel_pmic_opregion *opregion = region_context;
0174 const struct intel_pmic_opregion_data *d = opregion->data;
0175 int reg, bit, result;
0176
0177 if (bits != 32 || !value64)
0178 return AE_BAD_PARAMETER;
0179
0180 result = pmic_get_reg_bit(address, d->thermal_table,
0181 d->thermal_table_count, ®, &bit);
0182 if (result == -ENOENT)
0183 return AE_BAD_PARAMETER;
0184
0185 mutex_lock(&opregion->lock);
0186
0187 if (pmic_thermal_is_temp(address))
0188 result = pmic_thermal_temp(opregion, reg, function, value64);
0189 else if (pmic_thermal_is_aux(address))
0190 result = pmic_thermal_aux(opregion, reg, function, value64);
0191 else if (pmic_thermal_is_pen(address))
0192 result = pmic_thermal_pen(opregion, reg, bit,
0193 function, value64);
0194 else
0195 result = -EINVAL;
0196
0197 mutex_unlock(&opregion->lock);
0198
0199 if (result < 0) {
0200 if (result == -EINVAL)
0201 return AE_BAD_PARAMETER;
0202 else
0203 return AE_ERROR;
0204 }
0205
0206 return AE_OK;
0207 }
0208
0209 static acpi_status intel_pmic_regs_handler(u32 function,
0210 acpi_physical_address address, u32 bits, u64 *value64,
0211 void *handler_context, void *region_context)
0212 {
0213 struct intel_pmic_opregion *opregion = region_context;
0214 int result = -EINVAL;
0215
0216 if (function == ACPI_WRITE) {
0217 switch (address) {
0218 case 0:
0219 return AE_OK;
0220 case 1:
0221 opregion->ctx.addr |= (*value64 & 0xff) << 8;
0222 return AE_OK;
0223 case 2:
0224 opregion->ctx.addr |= *value64 & 0xff;
0225 return AE_OK;
0226 case 3:
0227 opregion->ctx.val = *value64 & 0xff;
0228 return AE_OK;
0229 case 4:
0230 if (*value64) {
0231 result = regmap_write(opregion->regmap, opregion->ctx.addr,
0232 opregion->ctx.val);
0233 } else {
0234 result = regmap_read(opregion->regmap, opregion->ctx.addr,
0235 &opregion->ctx.val);
0236 }
0237 opregion->ctx.addr = 0;
0238 }
0239 }
0240
0241 if (function == ACPI_READ && address == 3) {
0242 *value64 = opregion->ctx.val;
0243 return AE_OK;
0244 }
0245
0246 if (result < 0) {
0247 if (result == -EINVAL)
0248 return AE_BAD_PARAMETER;
0249 else
0250 return AE_ERROR;
0251 }
0252
0253 return AE_OK;
0254 }
0255
0256 int intel_pmic_install_opregion_handler(struct device *dev, acpi_handle handle,
0257 struct regmap *regmap,
0258 const struct intel_pmic_opregion_data *d)
0259 {
0260 acpi_status status = AE_OK;
0261 struct intel_pmic_opregion *opregion;
0262 int ret;
0263
0264 if (!dev || !regmap || !d)
0265 return -EINVAL;
0266
0267 if (!handle)
0268 return -ENODEV;
0269
0270 opregion = devm_kzalloc(dev, sizeof(*opregion), GFP_KERNEL);
0271 if (!opregion)
0272 return -ENOMEM;
0273
0274 mutex_init(&opregion->lock);
0275 opregion->regmap = regmap;
0276 opregion->lpat_table = acpi_lpat_get_conversion_table(handle);
0277
0278 if (d->power_table_count)
0279 status = acpi_install_address_space_handler(handle,
0280 PMIC_POWER_OPREGION_ID,
0281 intel_pmic_power_handler,
0282 NULL, opregion);
0283 if (ACPI_FAILURE(status)) {
0284 ret = -ENODEV;
0285 goto out_error;
0286 }
0287
0288 if (d->thermal_table_count)
0289 status = acpi_install_address_space_handler(handle,
0290 PMIC_THERMAL_OPREGION_ID,
0291 intel_pmic_thermal_handler,
0292 NULL, opregion);
0293 if (ACPI_FAILURE(status)) {
0294 ret = -ENODEV;
0295 goto out_remove_power_handler;
0296 }
0297
0298 status = acpi_install_address_space_handler(handle,
0299 PMIC_REGS_OPREGION_ID, intel_pmic_regs_handler, NULL,
0300 opregion);
0301 if (ACPI_FAILURE(status)) {
0302 ret = -ENODEV;
0303 goto out_remove_thermal_handler;
0304 }
0305
0306 opregion->data = d;
0307 intel_pmic_opregion = opregion;
0308 return 0;
0309
0310 out_remove_thermal_handler:
0311 if (d->thermal_table_count)
0312 acpi_remove_address_space_handler(handle,
0313 PMIC_THERMAL_OPREGION_ID,
0314 intel_pmic_thermal_handler);
0315
0316 out_remove_power_handler:
0317 if (d->power_table_count)
0318 acpi_remove_address_space_handler(handle,
0319 PMIC_POWER_OPREGION_ID,
0320 intel_pmic_power_handler);
0321
0322 out_error:
0323 acpi_lpat_free_conversion_table(opregion->lpat_table);
0324 return ret;
0325 }
0326 EXPORT_SYMBOL_GPL(intel_pmic_install_opregion_handler);
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344 int intel_soc_pmic_exec_mipi_pmic_seq_element(u16 i2c_address, u32 reg_address,
0345 u32 value, u32 mask)
0346 {
0347 const struct intel_pmic_opregion_data *d;
0348 int ret;
0349
0350 if (!intel_pmic_opregion) {
0351 pr_warn("%s: No PMIC registered\n", __func__);
0352 return -ENXIO;
0353 }
0354
0355 d = intel_pmic_opregion->data;
0356
0357 mutex_lock(&intel_pmic_opregion->lock);
0358
0359 if (d->exec_mipi_pmic_seq_element) {
0360 ret = d->exec_mipi_pmic_seq_element(intel_pmic_opregion->regmap,
0361 i2c_address, reg_address,
0362 value, mask);
0363 } else if (d->pmic_i2c_address) {
0364 if (i2c_address == d->pmic_i2c_address) {
0365 ret = regmap_update_bits(intel_pmic_opregion->regmap,
0366 reg_address, mask, value);
0367 } else {
0368 pr_err("%s: Unexpected i2c-addr: 0x%02x (reg-addr 0x%x value 0x%x mask 0x%x)\n",
0369 __func__, i2c_address, reg_address, value, mask);
0370 ret = -ENXIO;
0371 }
0372 } else {
0373 pr_warn("%s: Not implemented\n", __func__);
0374 pr_warn("%s: i2c-addr: 0x%x reg-addr 0x%x value 0x%x mask 0x%x\n",
0375 __func__, i2c_address, reg_address, value, mask);
0376 ret = -EOPNOTSUPP;
0377 }
0378
0379 mutex_unlock(&intel_pmic_opregion->lock);
0380
0381 return ret;
0382 }
0383 EXPORT_SYMBOL_GPL(intel_soc_pmic_exec_mipi_pmic_seq_element);