Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * drivers/acpi/device_pm.c - ACPI device power management routines.
0004  *
0005  * Copyright (C) 2012, Intel Corp.
0006  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
0007  *
0008  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0009  *
0010  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0011  */
0012 
0013 #define pr_fmt(fmt) "PM: " fmt
0014 
0015 #include <linux/acpi.h>
0016 #include <linux/export.h>
0017 #include <linux/mutex.h>
0018 #include <linux/pm_qos.h>
0019 #include <linux/pm_domain.h>
0020 #include <linux/pm_runtime.h>
0021 #include <linux/suspend.h>
0022 
0023 #include "fan.h"
0024 #include "internal.h"
0025 
0026 /**
0027  * acpi_power_state_string - String representation of ACPI device power state.
0028  * @state: ACPI device power state to return the string representation of.
0029  */
0030 const char *acpi_power_state_string(int state)
0031 {
0032     switch (state) {
0033     case ACPI_STATE_D0:
0034         return "D0";
0035     case ACPI_STATE_D1:
0036         return "D1";
0037     case ACPI_STATE_D2:
0038         return "D2";
0039     case ACPI_STATE_D3_HOT:
0040         return "D3hot";
0041     case ACPI_STATE_D3_COLD:
0042         return "D3cold";
0043     default:
0044         return "(unknown)";
0045     }
0046 }
0047 
0048 static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state)
0049 {
0050     unsigned long long psc;
0051     acpi_status status;
0052 
0053     status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc);
0054     if (ACPI_FAILURE(status))
0055         return -ENODEV;
0056 
0057     *state = psc;
0058     return 0;
0059 }
0060 
0061 /**
0062  * acpi_device_get_power - Get power state of an ACPI device.
0063  * @device: Device to get the power state of.
0064  * @state: Place to store the power state of the device.
0065  *
0066  * This function does not update the device's power.state field, but it may
0067  * update its parent's power.state field (when the parent's power state is
0068  * unknown and the device's power state turns out to be D0).
0069  *
0070  * Also, it does not update power resource reference counters to ensure that
0071  * the power state returned by it will be persistent and it may return a power
0072  * state shallower than previously set by acpi_device_set_power() for @device
0073  * (if that power state depends on any power resources).
0074  */
0075 int acpi_device_get_power(struct acpi_device *device, int *state)
0076 {
0077     int result = ACPI_STATE_UNKNOWN;
0078     int error;
0079 
0080     if (!device || !state)
0081         return -EINVAL;
0082 
0083     if (!device->flags.power_manageable) {
0084         /* TBD: Non-recursive algorithm for walking up hierarchy. */
0085         *state = device->parent ?
0086             device->parent->power.state : ACPI_STATE_D0;
0087         goto out;
0088     }
0089 
0090     /*
0091      * Get the device's power state from power resources settings and _PSC,
0092      * if available.
0093      */
0094     if (device->power.flags.power_resources) {
0095         error = acpi_power_get_inferred_state(device, &result);
0096         if (error)
0097             return error;
0098     }
0099     if (device->power.flags.explicit_get) {
0100         int psc;
0101 
0102         error = acpi_dev_pm_explicit_get(device, &psc);
0103         if (error)
0104             return error;
0105 
0106         /*
0107          * The power resources settings may indicate a power state
0108          * shallower than the actual power state of the device, because
0109          * the same power resources may be referenced by other devices.
0110          *
0111          * For systems predating ACPI 4.0 we assume that D3hot is the
0112          * deepest state that can be supported.
0113          */
0114         if (psc > result && psc < ACPI_STATE_D3_COLD)
0115             result = psc;
0116         else if (result == ACPI_STATE_UNKNOWN)
0117             result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
0118     }
0119 
0120     /*
0121      * If we were unsure about the device parent's power state up to this
0122      * point, the fact that the device is in D0 implies that the parent has
0123      * to be in D0 too, except if ignore_parent is set.
0124      */
0125     if (!device->power.flags.ignore_parent && device->parent
0126         && device->parent->power.state == ACPI_STATE_UNKNOWN
0127         && result == ACPI_STATE_D0)
0128         device->parent->power.state = ACPI_STATE_D0;
0129 
0130     *state = result;
0131 
0132  out:
0133     acpi_handle_debug(device->handle, "Power state: %s\n",
0134               acpi_power_state_string(*state));
0135 
0136     return 0;
0137 }
0138 
0139 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
0140 {
0141     if (adev->power.states[state].flags.explicit_set) {
0142         char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
0143         acpi_status status;
0144 
0145         status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
0146         if (ACPI_FAILURE(status))
0147             return -ENODEV;
0148     }
0149     return 0;
0150 }
0151 
0152 /**
0153  * acpi_device_set_power - Set power state of an ACPI device.
0154  * @device: Device to set the power state of.
0155  * @state: New power state to set.
0156  *
0157  * Callers must ensure that the device is power manageable before using this
0158  * function.
0159  */
0160 int acpi_device_set_power(struct acpi_device *device, int state)
0161 {
0162     int target_state = state;
0163     int result = 0;
0164 
0165     if (!device || !device->flags.power_manageable
0166         || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
0167         return -EINVAL;
0168 
0169     acpi_handle_debug(device->handle, "Power state change: %s -> %s\n",
0170               acpi_power_state_string(device->power.state),
0171               acpi_power_state_string(state));
0172 
0173     /* Make sure this is a valid target state */
0174 
0175     /* There is a special case for D0 addressed below. */
0176     if (state > ACPI_STATE_D0 && state == device->power.state)
0177         goto no_change;
0178 
0179     if (state == ACPI_STATE_D3_COLD) {
0180         /*
0181          * For transitions to D3cold we need to execute _PS3 and then
0182          * possibly drop references to the power resources in use.
0183          */
0184         state = ACPI_STATE_D3_HOT;
0185         /* If D3cold is not supported, use D3hot as the target state. */
0186         if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
0187             target_state = state;
0188     } else if (!device->power.states[state].flags.valid) {
0189         acpi_handle_debug(device->handle, "Power state %s not supported\n",
0190                   acpi_power_state_string(state));
0191         return -ENODEV;
0192     }
0193 
0194     if (!device->power.flags.ignore_parent && device->parent &&
0195         state < device->parent->power.state) {
0196         acpi_handle_debug(device->handle,
0197                   "Cannot transition to %s for parent in %s\n",
0198                   acpi_power_state_string(state),
0199                   acpi_power_state_string(device->parent->power.state));
0200         return -ENODEV;
0201     }
0202 
0203     /*
0204      * Transition Power
0205      * ----------------
0206      * In accordance with ACPI 6, _PSx is executed before manipulating power
0207      * resources, unless the target state is D0, in which case _PS0 is
0208      * supposed to be executed after turning the power resources on.
0209      */
0210     if (state > ACPI_STATE_D0) {
0211         /*
0212          * According to ACPI 6, devices cannot go from lower-power
0213          * (deeper) states to higher-power (shallower) states.
0214          */
0215         if (state < device->power.state) {
0216             acpi_handle_debug(device->handle,
0217                       "Cannot transition from %s to %s\n",
0218                       acpi_power_state_string(device->power.state),
0219                       acpi_power_state_string(state));
0220             return -ENODEV;
0221         }
0222 
0223         /*
0224          * If the device goes from D3hot to D3cold, _PS3 has been
0225          * evaluated for it already, so skip it in that case.
0226          */
0227         if (device->power.state < ACPI_STATE_D3_HOT) {
0228             result = acpi_dev_pm_explicit_set(device, state);
0229             if (result)
0230                 goto end;
0231         }
0232 
0233         if (device->power.flags.power_resources)
0234             result = acpi_power_transition(device, target_state);
0235     } else {
0236         int cur_state = device->power.state;
0237 
0238         if (device->power.flags.power_resources) {
0239             result = acpi_power_transition(device, ACPI_STATE_D0);
0240             if (result)
0241                 goto end;
0242         }
0243 
0244         if (cur_state == ACPI_STATE_D0) {
0245             int psc;
0246 
0247             /* Nothing to do here if _PSC is not present. */
0248             if (!device->power.flags.explicit_get)
0249                 goto no_change;
0250 
0251             /*
0252              * The power state of the device was set to D0 last
0253              * time, but that might have happened before a
0254              * system-wide transition involving the platform
0255              * firmware, so it may be necessary to evaluate _PS0
0256              * for the device here.  However, use extra care here
0257              * and evaluate _PSC to check the device's current power
0258              * state, and only invoke _PS0 if the evaluation of _PSC
0259              * is successful and it returns a power state different
0260              * from D0.
0261              */
0262             result = acpi_dev_pm_explicit_get(device, &psc);
0263             if (result || psc == ACPI_STATE_D0)
0264                 goto no_change;
0265         }
0266 
0267         result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
0268     }
0269 
0270 end:
0271     if (result) {
0272         acpi_handle_debug(device->handle,
0273                   "Failed to change power state to %s\n",
0274                   acpi_power_state_string(target_state));
0275     } else {
0276         device->power.state = target_state;
0277         acpi_handle_debug(device->handle, "Power state changed to %s\n",
0278                   acpi_power_state_string(target_state));
0279     }
0280 
0281     return result;
0282 
0283 no_change:
0284     acpi_handle_debug(device->handle, "Already in %s\n",
0285               acpi_power_state_string(state));
0286     return 0;
0287 }
0288 EXPORT_SYMBOL(acpi_device_set_power);
0289 
0290 int acpi_bus_set_power(acpi_handle handle, int state)
0291 {
0292     struct acpi_device *device = acpi_fetch_acpi_dev(handle);
0293 
0294     if (device)
0295         return acpi_device_set_power(device, state);
0296 
0297     return -ENODEV;
0298 }
0299 EXPORT_SYMBOL(acpi_bus_set_power);
0300 
0301 int acpi_bus_init_power(struct acpi_device *device)
0302 {
0303     int state;
0304     int result;
0305 
0306     if (!device)
0307         return -EINVAL;
0308 
0309     device->power.state = ACPI_STATE_UNKNOWN;
0310     if (!acpi_device_is_present(device)) {
0311         device->flags.initialized = false;
0312         return -ENXIO;
0313     }
0314 
0315     result = acpi_device_get_power(device, &state);
0316     if (result)
0317         return result;
0318 
0319     if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
0320         /* Reference count the power resources. */
0321         result = acpi_power_on_resources(device, state);
0322         if (result)
0323             return result;
0324 
0325         if (state == ACPI_STATE_D0) {
0326             /*
0327              * If _PSC is not present and the state inferred from
0328              * power resources appears to be D0, it still may be
0329              * necessary to execute _PS0 at this point, because
0330              * another device using the same power resources may
0331              * have been put into D0 previously and that's why we
0332              * see D0 here.
0333              */
0334             result = acpi_dev_pm_explicit_set(device, state);
0335             if (result)
0336                 return result;
0337         }
0338     } else if (state == ACPI_STATE_UNKNOWN) {
0339         /*
0340          * No power resources and missing _PSC?  Cross fingers and make
0341          * it D0 in hope that this is what the BIOS put the device into.
0342          * [We tried to force D0 here by executing _PS0, but that broke
0343          * Toshiba P870-303 in a nasty way.]
0344          */
0345         state = ACPI_STATE_D0;
0346     }
0347     device->power.state = state;
0348     return 0;
0349 }
0350 
0351 /**
0352  * acpi_device_fix_up_power - Force device with missing _PSC into D0.
0353  * @device: Device object whose power state is to be fixed up.
0354  *
0355  * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
0356  * are assumed to be put into D0 by the BIOS.  However, in some cases that may
0357  * not be the case and this function should be used then.
0358  */
0359 int acpi_device_fix_up_power(struct acpi_device *device)
0360 {
0361     int ret = 0;
0362 
0363     if (!device->power.flags.power_resources
0364         && !device->power.flags.explicit_get
0365         && device->power.state == ACPI_STATE_D0)
0366         ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
0367 
0368     return ret;
0369 }
0370 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
0371 
0372 static int fix_up_power_if_applicable(struct acpi_device *adev, void *not_used)
0373 {
0374     if (adev->status.present && adev->status.enabled)
0375         acpi_device_fix_up_power(adev);
0376 
0377     return 0;
0378 }
0379 
0380 /**
0381  * acpi_device_fix_up_power_extended - Force device and its children into D0.
0382  * @adev: Parent device object whose power state is to be fixed up.
0383  *
0384  * Call acpi_device_fix_up_power() for @adev and its children so long as they
0385  * are reported as present and enabled.
0386  */
0387 void acpi_device_fix_up_power_extended(struct acpi_device *adev)
0388 {
0389     acpi_device_fix_up_power(adev);
0390     acpi_dev_for_each_child(adev, fix_up_power_if_applicable, NULL);
0391 }
0392 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power_extended);
0393 
0394 int acpi_device_update_power(struct acpi_device *device, int *state_p)
0395 {
0396     int state;
0397     int result;
0398 
0399     if (device->power.state == ACPI_STATE_UNKNOWN) {
0400         result = acpi_bus_init_power(device);
0401         if (!result && state_p)
0402             *state_p = device->power.state;
0403 
0404         return result;
0405     }
0406 
0407     result = acpi_device_get_power(device, &state);
0408     if (result)
0409         return result;
0410 
0411     if (state == ACPI_STATE_UNKNOWN) {
0412         state = ACPI_STATE_D0;
0413         result = acpi_device_set_power(device, state);
0414         if (result)
0415             return result;
0416     } else {
0417         if (device->power.flags.power_resources) {
0418             /*
0419              * We don't need to really switch the state, bu we need
0420              * to update the power resources' reference counters.
0421              */
0422             result = acpi_power_transition(device, state);
0423             if (result)
0424                 return result;
0425         }
0426         device->power.state = state;
0427     }
0428     if (state_p)
0429         *state_p = state;
0430 
0431     return 0;
0432 }
0433 EXPORT_SYMBOL_GPL(acpi_device_update_power);
0434 
0435 int acpi_bus_update_power(acpi_handle handle, int *state_p)
0436 {
0437     struct acpi_device *device = acpi_fetch_acpi_dev(handle);
0438 
0439     if (device)
0440         return acpi_device_update_power(device, state_p);
0441 
0442     return -ENODEV;
0443 }
0444 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
0445 
0446 bool acpi_bus_power_manageable(acpi_handle handle)
0447 {
0448     struct acpi_device *device = acpi_fetch_acpi_dev(handle);
0449 
0450     return device && device->flags.power_manageable;
0451 }
0452 EXPORT_SYMBOL(acpi_bus_power_manageable);
0453 
0454 static int acpi_power_up_if_adr_present(struct acpi_device *adev, void *not_used)
0455 {
0456     if (!(adev->flags.power_manageable && adev->pnp.type.bus_address))
0457         return 0;
0458 
0459     acpi_handle_debug(adev->handle, "Power state: %s\n",
0460               acpi_power_state_string(adev->power.state));
0461 
0462     if (adev->power.state == ACPI_STATE_D3_COLD)
0463         return acpi_device_set_power(adev, ACPI_STATE_D0);
0464 
0465     return 0;
0466 }
0467 
0468 /**
0469  * acpi_dev_power_up_children_with_adr - Power up childres with valid _ADR
0470  * @adev: Parent ACPI device object.
0471  *
0472  * Change the power states of the direct children of @adev that are in D3cold
0473  * and hold valid _ADR objects to D0 in order to allow bus (e.g. PCI)
0474  * enumeration code to access them.
0475  */
0476 void acpi_dev_power_up_children_with_adr(struct acpi_device *adev)
0477 {
0478     acpi_dev_for_each_child(adev, acpi_power_up_if_adr_present, NULL);
0479 }
0480 
0481 #ifdef CONFIG_PM
0482 static DEFINE_MUTEX(acpi_pm_notifier_lock);
0483 static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
0484 
0485 void acpi_pm_wakeup_event(struct device *dev)
0486 {
0487     pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
0488 }
0489 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
0490 
0491 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
0492 {
0493     struct acpi_device *adev;
0494 
0495     if (val != ACPI_NOTIFY_DEVICE_WAKE)
0496         return;
0497 
0498     acpi_handle_debug(handle, "Wake notify\n");
0499 
0500     adev = acpi_bus_get_acpi_device(handle);
0501     if (!adev)
0502         return;
0503 
0504     mutex_lock(&acpi_pm_notifier_lock);
0505 
0506     if (adev->wakeup.flags.notifier_present) {
0507         pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
0508         if (adev->wakeup.context.func) {
0509             acpi_handle_debug(handle, "Running %pS for %s\n",
0510                       adev->wakeup.context.func,
0511                       dev_name(adev->wakeup.context.dev));
0512             adev->wakeup.context.func(&adev->wakeup.context);
0513         }
0514     }
0515 
0516     mutex_unlock(&acpi_pm_notifier_lock);
0517 
0518     acpi_bus_put_acpi_device(adev);
0519 }
0520 
0521 /**
0522  * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
0523  * @adev: ACPI device to add the notify handler for.
0524  * @dev: Device to generate a wakeup event for while handling the notification.
0525  * @func: Work function to execute when handling the notification.
0526  *
0527  * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
0528  * PM wakeup events.  For example, wakeup events may be generated for bridges
0529  * if one of the devices below the bridge is signaling wakeup, even if the
0530  * bridge itself doesn't have a wakeup GPE associated with it.
0531  */
0532 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
0533             void (*func)(struct acpi_device_wakeup_context *context))
0534 {
0535     acpi_status status = AE_ALREADY_EXISTS;
0536 
0537     if (!dev && !func)
0538         return AE_BAD_PARAMETER;
0539 
0540     mutex_lock(&acpi_pm_notifier_install_lock);
0541 
0542     if (adev->wakeup.flags.notifier_present)
0543         goto out;
0544 
0545     status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
0546                          acpi_pm_notify_handler, NULL);
0547     if (ACPI_FAILURE(status))
0548         goto out;
0549 
0550     mutex_lock(&acpi_pm_notifier_lock);
0551     adev->wakeup.ws = wakeup_source_register(&adev->dev,
0552                          dev_name(&adev->dev));
0553     adev->wakeup.context.dev = dev;
0554     adev->wakeup.context.func = func;
0555     adev->wakeup.flags.notifier_present = true;
0556     mutex_unlock(&acpi_pm_notifier_lock);
0557 
0558  out:
0559     mutex_unlock(&acpi_pm_notifier_install_lock);
0560     return status;
0561 }
0562 
0563 /**
0564  * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
0565  * @adev: ACPI device to remove the notifier from.
0566  */
0567 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
0568 {
0569     acpi_status status = AE_BAD_PARAMETER;
0570 
0571     mutex_lock(&acpi_pm_notifier_install_lock);
0572 
0573     if (!adev->wakeup.flags.notifier_present)
0574         goto out;
0575 
0576     status = acpi_remove_notify_handler(adev->handle,
0577                         ACPI_SYSTEM_NOTIFY,
0578                         acpi_pm_notify_handler);
0579     if (ACPI_FAILURE(status))
0580         goto out;
0581 
0582     mutex_lock(&acpi_pm_notifier_lock);
0583     adev->wakeup.context.func = NULL;
0584     adev->wakeup.context.dev = NULL;
0585     wakeup_source_unregister(adev->wakeup.ws);
0586     adev->wakeup.flags.notifier_present = false;
0587     mutex_unlock(&acpi_pm_notifier_lock);
0588 
0589  out:
0590     mutex_unlock(&acpi_pm_notifier_install_lock);
0591     return status;
0592 }
0593 
0594 bool acpi_bus_can_wakeup(acpi_handle handle)
0595 {
0596     struct acpi_device *device = acpi_fetch_acpi_dev(handle);
0597 
0598     return device && device->wakeup.flags.valid;
0599 }
0600 EXPORT_SYMBOL(acpi_bus_can_wakeup);
0601 
0602 bool acpi_pm_device_can_wakeup(struct device *dev)
0603 {
0604     struct acpi_device *adev = ACPI_COMPANION(dev);
0605 
0606     return adev ? acpi_device_can_wakeup(adev) : false;
0607 }
0608 
0609 /**
0610  * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
0611  * @dev: Device whose preferred target power state to return.
0612  * @adev: ACPI device node corresponding to @dev.
0613  * @target_state: System state to match the resultant device state.
0614  * @d_min_p: Location to store the highest power state available to the device.
0615  * @d_max_p: Location to store the lowest power state available to the device.
0616  *
0617  * Find the lowest power (highest number) and highest power (lowest number) ACPI
0618  * device power states that the device can be in while the system is in the
0619  * state represented by @target_state.  Store the integer numbers representing
0620  * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
0621  * respectively.
0622  *
0623  * Callers must ensure that @dev and @adev are valid pointers and that @adev
0624  * actually corresponds to @dev before using this function.
0625  *
0626  * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
0627  * returns a value that doesn't make sense.  The memory locations pointed to by
0628  * @d_max_p and @d_min_p are only modified on success.
0629  */
0630 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
0631                  u32 target_state, int *d_min_p, int *d_max_p)
0632 {
0633     char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
0634     acpi_handle handle = adev->handle;
0635     unsigned long long ret;
0636     int d_min, d_max;
0637     bool wakeup = false;
0638     bool has_sxd = false;
0639     acpi_status status;
0640 
0641     /*
0642      * If the system state is S0, the lowest power state the device can be
0643      * in is D3cold, unless the device has _S0W and is supposed to signal
0644      * wakeup, in which case the return value of _S0W has to be used as the
0645      * lowest power state available to the device.
0646      */
0647     d_min = ACPI_STATE_D0;
0648     d_max = ACPI_STATE_D3_COLD;
0649 
0650     /*
0651      * If present, _SxD methods return the minimum D-state (highest power
0652      * state) we can use for the corresponding S-states.  Otherwise, the
0653      * minimum D-state is D0 (ACPI 3.x).
0654      */
0655     if (target_state > ACPI_STATE_S0) {
0656         /*
0657          * We rely on acpi_evaluate_integer() not clobbering the integer
0658          * provided if AE_NOT_FOUND is returned.
0659          */
0660         ret = d_min;
0661         status = acpi_evaluate_integer(handle, method, NULL, &ret);
0662         if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
0663             || ret > ACPI_STATE_D3_COLD)
0664             return -ENODATA;
0665 
0666         /*
0667          * We need to handle legacy systems where D3hot and D3cold are
0668          * the same and 3 is returned in both cases, so fall back to
0669          * D3cold if D3hot is not a valid state.
0670          */
0671         if (!adev->power.states[ret].flags.valid) {
0672             if (ret == ACPI_STATE_D3_HOT)
0673                 ret = ACPI_STATE_D3_COLD;
0674             else
0675                 return -ENODATA;
0676         }
0677 
0678         if (status == AE_OK)
0679             has_sxd = true;
0680 
0681         d_min = ret;
0682         wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
0683             && adev->wakeup.sleep_state >= target_state;
0684     } else {
0685         wakeup = adev->wakeup.flags.valid;
0686     }
0687 
0688     /*
0689      * If _PRW says we can wake up the system from the target sleep state,
0690      * the D-state returned by _SxD is sufficient for that (we assume a
0691      * wakeup-aware driver if wake is set).  Still, if _SxW exists
0692      * (ACPI 3.x), it should return the maximum (lowest power) D-state that
0693      * can wake the system.  _S0W may be valid, too.
0694      */
0695     if (wakeup) {
0696         method[3] = 'W';
0697         status = acpi_evaluate_integer(handle, method, NULL, &ret);
0698         if (status == AE_NOT_FOUND) {
0699             /* No _SxW. In this case, the ACPI spec says that we
0700              * must not go into any power state deeper than the
0701              * value returned from _SxD.
0702              */
0703             if (has_sxd && target_state > ACPI_STATE_S0)
0704                 d_max = d_min;
0705         } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
0706             /* Fall back to D3cold if ret is not a valid state. */
0707             if (!adev->power.states[ret].flags.valid)
0708                 ret = ACPI_STATE_D3_COLD;
0709 
0710             d_max = ret > d_min ? ret : d_min;
0711         } else {
0712             return -ENODATA;
0713         }
0714     }
0715 
0716     if (d_min_p)
0717         *d_min_p = d_min;
0718 
0719     if (d_max_p)
0720         *d_max_p = d_max;
0721 
0722     return 0;
0723 }
0724 
0725 /**
0726  * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
0727  * @dev: Device whose preferred target power state to return.
0728  * @d_min_p: Location to store the upper limit of the allowed states range.
0729  * @d_max_in: Deepest low-power state to take into consideration.
0730  * Return value: Preferred power state of the device on success, -ENODEV
0731  * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
0732  * incorrect, or -ENODATA on ACPI method failure.
0733  *
0734  * The caller must ensure that @dev is valid before using this function.
0735  */
0736 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
0737 {
0738     struct acpi_device *adev;
0739     int ret, d_min, d_max;
0740 
0741     if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
0742         return -EINVAL;
0743 
0744     if (d_max_in > ACPI_STATE_D2) {
0745         enum pm_qos_flags_status stat;
0746 
0747         stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
0748         if (stat == PM_QOS_FLAGS_ALL)
0749             d_max_in = ACPI_STATE_D2;
0750     }
0751 
0752     adev = ACPI_COMPANION(dev);
0753     if (!adev) {
0754         dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
0755         return -ENODEV;
0756     }
0757 
0758     ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
0759                     &d_min, &d_max);
0760     if (ret)
0761         return ret;
0762 
0763     if (d_max_in < d_min)
0764         return -EINVAL;
0765 
0766     if (d_max > d_max_in) {
0767         for (d_max = d_max_in; d_max > d_min; d_max--) {
0768             if (adev->power.states[d_max].flags.valid)
0769                 break;
0770         }
0771     }
0772 
0773     if (d_min_p)
0774         *d_min_p = d_min;
0775 
0776     return d_max;
0777 }
0778 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
0779 
0780 /**
0781  * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
0782  * @context: Device wakeup context.
0783  */
0784 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
0785 {
0786     struct device *dev = context->dev;
0787 
0788     if (dev) {
0789         pm_wakeup_event(dev, 0);
0790         pm_request_resume(dev);
0791     }
0792 }
0793 
0794 static DEFINE_MUTEX(acpi_wakeup_lock);
0795 
0796 static int __acpi_device_wakeup_enable(struct acpi_device *adev,
0797                        u32 target_state)
0798 {
0799     struct acpi_device_wakeup *wakeup = &adev->wakeup;
0800     acpi_status status;
0801     int error = 0;
0802 
0803     mutex_lock(&acpi_wakeup_lock);
0804 
0805     /*
0806      * If the device wakeup power is already enabled, disable it and enable
0807      * it again in case it depends on the configuration of subordinate
0808      * devices and the conditions have changed since it was enabled last
0809      * time.
0810      */
0811     if (wakeup->enable_count > 0)
0812         acpi_disable_wakeup_device_power(adev);
0813 
0814     error = acpi_enable_wakeup_device_power(adev, target_state);
0815     if (error) {
0816         if (wakeup->enable_count > 0) {
0817             acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
0818             wakeup->enable_count = 0;
0819         }
0820         goto out;
0821     }
0822 
0823     if (wakeup->enable_count > 0)
0824         goto inc;
0825 
0826     status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
0827     if (ACPI_FAILURE(status)) {
0828         acpi_disable_wakeup_device_power(adev);
0829         error = -EIO;
0830         goto out;
0831     }
0832 
0833     acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n",
0834               (unsigned int)wakeup->gpe_number);
0835 
0836 inc:
0837     if (wakeup->enable_count < INT_MAX)
0838         wakeup->enable_count++;
0839     else
0840         acpi_handle_info(adev->handle, "Wakeup enable count out of bounds!\n");
0841 
0842 out:
0843     mutex_unlock(&acpi_wakeup_lock);
0844     return error;
0845 }
0846 
0847 /**
0848  * acpi_device_wakeup_enable - Enable wakeup functionality for device.
0849  * @adev: ACPI device to enable wakeup functionality for.
0850  * @target_state: State the system is transitioning into.
0851  *
0852  * Enable the GPE associated with @adev so that it can generate wakeup signals
0853  * for the device in response to external (remote) events and enable wakeup
0854  * power for it.
0855  *
0856  * Callers must ensure that @adev is a valid ACPI device node before executing
0857  * this function.
0858  */
0859 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
0860 {
0861     return __acpi_device_wakeup_enable(adev, target_state);
0862 }
0863 
0864 /**
0865  * acpi_device_wakeup_disable - Disable wakeup functionality for device.
0866  * @adev: ACPI device to disable wakeup functionality for.
0867  *
0868  * Disable the GPE associated with @adev and disable wakeup power for it.
0869  *
0870  * Callers must ensure that @adev is a valid ACPI device node before executing
0871  * this function.
0872  */
0873 static void acpi_device_wakeup_disable(struct acpi_device *adev)
0874 {
0875     struct acpi_device_wakeup *wakeup = &adev->wakeup;
0876 
0877     mutex_lock(&acpi_wakeup_lock);
0878 
0879     if (!wakeup->enable_count)
0880         goto out;
0881 
0882     acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
0883     acpi_disable_wakeup_device_power(adev);
0884 
0885     wakeup->enable_count--;
0886 
0887 out:
0888     mutex_unlock(&acpi_wakeup_lock);
0889 }
0890 
0891 /**
0892  * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
0893  * @dev: Device to enable/disable to generate wakeup events.
0894  * @enable: Whether to enable or disable the wakeup functionality.
0895  */
0896 int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
0897 {
0898     struct acpi_device *adev;
0899     int error;
0900 
0901     adev = ACPI_COMPANION(dev);
0902     if (!adev) {
0903         dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
0904         return -ENODEV;
0905     }
0906 
0907     if (!acpi_device_can_wakeup(adev))
0908         return -EINVAL;
0909 
0910     if (!enable) {
0911         acpi_device_wakeup_disable(adev);
0912         dev_dbg(dev, "Wakeup disabled by ACPI\n");
0913         return 0;
0914     }
0915 
0916     error = __acpi_device_wakeup_enable(adev, acpi_target_system_state());
0917     if (!error)
0918         dev_dbg(dev, "Wakeup enabled by ACPI\n");
0919 
0920     return error;
0921 }
0922 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
0923 
0924 /**
0925  * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
0926  * @dev: Device to put into a low-power state.
0927  * @adev: ACPI device node corresponding to @dev.
0928  * @system_state: System state to choose the device state for.
0929  */
0930 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
0931                  u32 system_state)
0932 {
0933     int ret, state;
0934 
0935     if (!acpi_device_power_manageable(adev))
0936         return 0;
0937 
0938     ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
0939     return ret ? ret : acpi_device_set_power(adev, state);
0940 }
0941 
0942 /**
0943  * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
0944  * @adev: ACPI device node to put into the full-power state.
0945  */
0946 static int acpi_dev_pm_full_power(struct acpi_device *adev)
0947 {
0948     return acpi_device_power_manageable(adev) ?
0949         acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
0950 }
0951 
0952 /**
0953  * acpi_dev_suspend - Put device into a low-power state using ACPI.
0954  * @dev: Device to put into a low-power state.
0955  * @wakeup: Whether or not to enable wakeup for the device.
0956  *
0957  * Put the given device into a low-power state using the standard ACPI
0958  * mechanism.  Set up remote wakeup if desired, choose the state to put the
0959  * device into (this checks if remote wakeup is expected to work too), and set
0960  * the power state of the device.
0961  */
0962 int acpi_dev_suspend(struct device *dev, bool wakeup)
0963 {
0964     struct acpi_device *adev = ACPI_COMPANION(dev);
0965     u32 target_state = acpi_target_system_state();
0966     int error;
0967 
0968     if (!adev)
0969         return 0;
0970 
0971     if (wakeup && acpi_device_can_wakeup(adev)) {
0972         error = acpi_device_wakeup_enable(adev, target_state);
0973         if (error)
0974             return -EAGAIN;
0975     } else {
0976         wakeup = false;
0977     }
0978 
0979     error = acpi_dev_pm_low_power(dev, adev, target_state);
0980     if (error && wakeup)
0981         acpi_device_wakeup_disable(adev);
0982 
0983     return error;
0984 }
0985 EXPORT_SYMBOL_GPL(acpi_dev_suspend);
0986 
0987 /**
0988  * acpi_dev_resume - Put device into the full-power state using ACPI.
0989  * @dev: Device to put into the full-power state.
0990  *
0991  * Put the given device into the full-power state using the standard ACPI
0992  * mechanism.  Set the power state of the device to ACPI D0 and disable wakeup.
0993  */
0994 int acpi_dev_resume(struct device *dev)
0995 {
0996     struct acpi_device *adev = ACPI_COMPANION(dev);
0997     int error;
0998 
0999     if (!adev)
1000         return 0;
1001 
1002     error = acpi_dev_pm_full_power(adev);
1003     acpi_device_wakeup_disable(adev);
1004     return error;
1005 }
1006 EXPORT_SYMBOL_GPL(acpi_dev_resume);
1007 
1008 /**
1009  * acpi_subsys_runtime_suspend - Suspend device using ACPI.
1010  * @dev: Device to suspend.
1011  *
1012  * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
1013  * it into a runtime low-power state.
1014  */
1015 int acpi_subsys_runtime_suspend(struct device *dev)
1016 {
1017     int ret = pm_generic_runtime_suspend(dev);
1018 
1019     return ret ? ret : acpi_dev_suspend(dev, true);
1020 }
1021 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
1022 
1023 /**
1024  * acpi_subsys_runtime_resume - Resume device using ACPI.
1025  * @dev: Device to Resume.
1026  *
1027  * Use ACPI to put the given device into the full-power state and carry out the
1028  * generic runtime resume procedure for it.
1029  */
1030 int acpi_subsys_runtime_resume(struct device *dev)
1031 {
1032     int ret = acpi_dev_resume(dev);
1033 
1034     return ret ? ret : pm_generic_runtime_resume(dev);
1035 }
1036 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
1037 
1038 #ifdef CONFIG_PM_SLEEP
1039 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
1040 {
1041     u32 sys_target = acpi_target_system_state();
1042     int ret, state;
1043 
1044     if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid &&
1045         device_may_wakeup(dev) != !!adev->wakeup.prepare_count))
1046         return true;
1047 
1048     if (sys_target == ACPI_STATE_S0)
1049         return false;
1050 
1051     if (adev->power.flags.dsw_present)
1052         return true;
1053 
1054     ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
1055     if (ret)
1056         return true;
1057 
1058     return state != adev->power.state;
1059 }
1060 
1061 /**
1062  * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
1063  * @dev: Device to prepare.
1064  */
1065 int acpi_subsys_prepare(struct device *dev)
1066 {
1067     struct acpi_device *adev = ACPI_COMPANION(dev);
1068 
1069     if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
1070         int ret = dev->driver->pm->prepare(dev);
1071 
1072         if (ret < 0)
1073             return ret;
1074 
1075         if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
1076             return 0;
1077     }
1078 
1079     return !acpi_dev_needs_resume(dev, adev);
1080 }
1081 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
1082 
1083 /**
1084  * acpi_subsys_complete - Finalize device's resume during system resume.
1085  * @dev: Device to handle.
1086  */
1087 void acpi_subsys_complete(struct device *dev)
1088 {
1089     pm_generic_complete(dev);
1090     /*
1091      * If the device had been runtime-suspended before the system went into
1092      * the sleep state it is going out of and it has never been resumed till
1093      * now, resume it in case the firmware powered it up.
1094      */
1095     if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
1096         pm_request_resume(dev);
1097 }
1098 EXPORT_SYMBOL_GPL(acpi_subsys_complete);
1099 
1100 /**
1101  * acpi_subsys_suspend - Run the device driver's suspend callback.
1102  * @dev: Device to handle.
1103  *
1104  * Follow PCI and resume devices from runtime suspend before running their
1105  * system suspend callbacks, unless the driver can cope with runtime-suspended
1106  * devices during system suspend and there are no ACPI-specific reasons for
1107  * resuming them.
1108  */
1109 int acpi_subsys_suspend(struct device *dev)
1110 {
1111     if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1112         acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1113         pm_runtime_resume(dev);
1114 
1115     return pm_generic_suspend(dev);
1116 }
1117 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1118 
1119 /**
1120  * acpi_subsys_suspend_late - Suspend device using ACPI.
1121  * @dev: Device to suspend.
1122  *
1123  * Carry out the generic late suspend procedure for @dev and use ACPI to put
1124  * it into a low-power state during system transition into a sleep state.
1125  */
1126 int acpi_subsys_suspend_late(struct device *dev)
1127 {
1128     int ret;
1129 
1130     if (dev_pm_skip_suspend(dev))
1131         return 0;
1132 
1133     ret = pm_generic_suspend_late(dev);
1134     return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1135 }
1136 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1137 
1138 /**
1139  * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1140  * @dev: Device to suspend.
1141  */
1142 int acpi_subsys_suspend_noirq(struct device *dev)
1143 {
1144     int ret;
1145 
1146     if (dev_pm_skip_suspend(dev))
1147         return 0;
1148 
1149     ret = pm_generic_suspend_noirq(dev);
1150     if (ret)
1151         return ret;
1152 
1153     /*
1154      * If the target system sleep state is suspend-to-idle, it is sufficient
1155      * to check whether or not the device's wakeup settings are good for
1156      * runtime PM.  Otherwise, the pm_resume_via_firmware() check will cause
1157      * acpi_subsys_complete() to take care of fixing up the device's state
1158      * anyway, if need be.
1159      */
1160     if (device_can_wakeup(dev) && !device_may_wakeup(dev))
1161         dev->power.may_skip_resume = false;
1162 
1163     return 0;
1164 }
1165 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1166 
1167 /**
1168  * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1169  * @dev: Device to handle.
1170  */
1171 static int acpi_subsys_resume_noirq(struct device *dev)
1172 {
1173     if (dev_pm_skip_resume(dev))
1174         return 0;
1175 
1176     return pm_generic_resume_noirq(dev);
1177 }
1178 
1179 /**
1180  * acpi_subsys_resume_early - Resume device using ACPI.
1181  * @dev: Device to Resume.
1182  *
1183  * Use ACPI to put the given device into the full-power state and carry out the
1184  * generic early resume procedure for it during system transition into the
1185  * working state, but only do that if device either defines early resume
1186  * handler, or does not define power operations at all. Otherwise powering up
1187  * of the device is postponed to the normal resume phase.
1188  */
1189 static int acpi_subsys_resume_early(struct device *dev)
1190 {
1191     const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1192     int ret;
1193 
1194     if (dev_pm_skip_resume(dev))
1195         return 0;
1196 
1197     if (pm && !pm->resume_early) {
1198         dev_dbg(dev, "postponing D0 transition to normal resume stage\n");
1199         return 0;
1200     }
1201 
1202     ret = acpi_dev_resume(dev);
1203     return ret ? ret : pm_generic_resume_early(dev);
1204 }
1205 
1206 /**
1207  * acpi_subsys_resume - Resume device using ACPI.
1208  * @dev: Device to Resume.
1209  *
1210  * Use ACPI to put the given device into the full-power state if it has not been
1211  * powered up during early resume phase, and carry out the generic resume
1212  * procedure for it during system transition into the working state.
1213  */
1214 static int acpi_subsys_resume(struct device *dev)
1215 {
1216     const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1217     int ret = 0;
1218 
1219     if (!dev_pm_skip_resume(dev) && pm && !pm->resume_early) {
1220         dev_dbg(dev, "executing postponed D0 transition\n");
1221         ret = acpi_dev_resume(dev);
1222     }
1223 
1224     return ret ? ret : pm_generic_resume(dev);
1225 }
1226 
1227 /**
1228  * acpi_subsys_freeze - Run the device driver's freeze callback.
1229  * @dev: Device to handle.
1230  */
1231 int acpi_subsys_freeze(struct device *dev)
1232 {
1233     /*
1234      * Resume all runtime-suspended devices before creating a snapshot
1235      * image of system memory, because the restore kernel generally cannot
1236      * be expected to always handle them consistently and they need to be
1237      * put into the runtime-active metastate during system resume anyway,
1238      * so it is better to ensure that the state saved in the image will be
1239      * always consistent with that.
1240      */
1241     pm_runtime_resume(dev);
1242 
1243     return pm_generic_freeze(dev);
1244 }
1245 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1246 
1247 /**
1248  * acpi_subsys_restore_early - Restore device using ACPI.
1249  * @dev: Device to restore.
1250  */
1251 int acpi_subsys_restore_early(struct device *dev)
1252 {
1253     int ret = acpi_dev_resume(dev);
1254 
1255     return ret ? ret : pm_generic_restore_early(dev);
1256 }
1257 EXPORT_SYMBOL_GPL(acpi_subsys_restore_early);
1258 
1259 /**
1260  * acpi_subsys_poweroff - Run the device driver's poweroff callback.
1261  * @dev: Device to handle.
1262  *
1263  * Follow PCI and resume devices from runtime suspend before running their
1264  * system poweroff callbacks, unless the driver can cope with runtime-suspended
1265  * devices during system suspend and there are no ACPI-specific reasons for
1266  * resuming them.
1267  */
1268 int acpi_subsys_poweroff(struct device *dev)
1269 {
1270     if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1271         acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1272         pm_runtime_resume(dev);
1273 
1274     return pm_generic_poweroff(dev);
1275 }
1276 EXPORT_SYMBOL_GPL(acpi_subsys_poweroff);
1277 
1278 /**
1279  * acpi_subsys_poweroff_late - Run the device driver's poweroff callback.
1280  * @dev: Device to handle.
1281  *
1282  * Carry out the generic late poweroff procedure for @dev and use ACPI to put
1283  * it into a low-power state during system transition into a sleep state.
1284  */
1285 static int acpi_subsys_poweroff_late(struct device *dev)
1286 {
1287     int ret;
1288 
1289     if (dev_pm_skip_suspend(dev))
1290         return 0;
1291 
1292     ret = pm_generic_poweroff_late(dev);
1293     if (ret)
1294         return ret;
1295 
1296     return acpi_dev_suspend(dev, device_may_wakeup(dev));
1297 }
1298 
1299 /**
1300  * acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback.
1301  * @dev: Device to suspend.
1302  */
1303 static int acpi_subsys_poweroff_noirq(struct device *dev)
1304 {
1305     if (dev_pm_skip_suspend(dev))
1306         return 0;
1307 
1308     return pm_generic_poweroff_noirq(dev);
1309 }
1310 #endif /* CONFIG_PM_SLEEP */
1311 
1312 static struct dev_pm_domain acpi_general_pm_domain = {
1313     .ops = {
1314         .runtime_suspend = acpi_subsys_runtime_suspend,
1315         .runtime_resume = acpi_subsys_runtime_resume,
1316 #ifdef CONFIG_PM_SLEEP
1317         .prepare = acpi_subsys_prepare,
1318         .complete = acpi_subsys_complete,
1319         .suspend = acpi_subsys_suspend,
1320         .resume = acpi_subsys_resume,
1321         .suspend_late = acpi_subsys_suspend_late,
1322         .suspend_noirq = acpi_subsys_suspend_noirq,
1323         .resume_noirq = acpi_subsys_resume_noirq,
1324         .resume_early = acpi_subsys_resume_early,
1325         .freeze = acpi_subsys_freeze,
1326         .poweroff = acpi_subsys_poweroff,
1327         .poweroff_late = acpi_subsys_poweroff_late,
1328         .poweroff_noirq = acpi_subsys_poweroff_noirq,
1329         .restore_early = acpi_subsys_restore_early,
1330 #endif
1331     },
1332 };
1333 
1334 /**
1335  * acpi_dev_pm_detach - Remove ACPI power management from the device.
1336  * @dev: Device to take care of.
1337  * @power_off: Whether or not to try to remove power from the device.
1338  *
1339  * Remove the device from the general ACPI PM domain and remove its wakeup
1340  * notifier.  If @power_off is set, additionally remove power from the device if
1341  * possible.
1342  *
1343  * Callers must ensure proper synchronization of this function with power
1344  * management callbacks.
1345  */
1346 static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1347 {
1348     struct acpi_device *adev = ACPI_COMPANION(dev);
1349 
1350     if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1351         dev_pm_domain_set(dev, NULL);
1352         acpi_remove_pm_notifier(adev);
1353         if (power_off) {
1354             /*
1355              * If the device's PM QoS resume latency limit or flags
1356              * have been exposed to user space, they have to be
1357              * hidden at this point, so that they don't affect the
1358              * choice of the low-power state to put the device into.
1359              */
1360             dev_pm_qos_hide_latency_limit(dev);
1361             dev_pm_qos_hide_flags(dev);
1362             acpi_device_wakeup_disable(adev);
1363             acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1364         }
1365     }
1366 }
1367 
1368 /**
1369  * acpi_dev_pm_attach - Prepare device for ACPI power management.
1370  * @dev: Device to prepare.
1371  * @power_on: Whether or not to power on the device.
1372  *
1373  * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1374  * attached to it, install a wakeup notification handler for the device and
1375  * add it to the general ACPI PM domain.  If @power_on is set, the device will
1376  * be put into the ACPI D0 state before the function returns.
1377  *
1378  * This assumes that the @dev's bus type uses generic power management callbacks
1379  * (or doesn't use any power management callbacks at all).
1380  *
1381  * Callers must ensure proper synchronization of this function with power
1382  * management callbacks.
1383  */
1384 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1385 {
1386     /*
1387      * Skip devices whose ACPI companions match the device IDs below,
1388      * because they require special power management handling incompatible
1389      * with the generic ACPI PM domain.
1390      */
1391     static const struct acpi_device_id special_pm_ids[] = {
1392         ACPI_FAN_DEVICE_IDS,
1393         {}
1394     };
1395     struct acpi_device *adev = ACPI_COMPANION(dev);
1396 
1397     if (!adev || !acpi_match_device_ids(adev, special_pm_ids))
1398         return 0;
1399 
1400     /*
1401      * Only attach the power domain to the first device if the
1402      * companion is shared by multiple. This is to prevent doing power
1403      * management twice.
1404      */
1405     if (!acpi_device_is_first_physical_node(adev, dev))
1406         return 0;
1407 
1408     acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1409     dev_pm_domain_set(dev, &acpi_general_pm_domain);
1410     if (power_on) {
1411         acpi_dev_pm_full_power(adev);
1412         acpi_device_wakeup_disable(adev);
1413     }
1414 
1415     dev->pm_domain->detach = acpi_dev_pm_detach;
1416     return 1;
1417 }
1418 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1419 
1420 /**
1421  * acpi_storage_d3 - Check if D3 should be used in the suspend path
1422  * @dev: Device to check
1423  *
1424  * Return %true if the platform firmware wants @dev to be programmed
1425  * into D3hot or D3cold (if supported) in the suspend path, or %false
1426  * when there is no specific preference. On some platforms, if this
1427  * hint is ignored, @dev may remain unresponsive after suspending the
1428  * platform as a whole.
1429  *
1430  * Although the property has storage in the name it actually is
1431  * applied to the PCIe slot and plugging in a non-storage device the
1432  * same platform restrictions will likely apply.
1433  */
1434 bool acpi_storage_d3(struct device *dev)
1435 {
1436     struct acpi_device *adev = ACPI_COMPANION(dev);
1437     u8 val;
1438 
1439     if (force_storage_d3())
1440         return true;
1441 
1442     if (!adev)
1443         return false;
1444     if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
1445             &val))
1446         return false;
1447     return val == 1;
1448 }
1449 EXPORT_SYMBOL_GPL(acpi_storage_d3);
1450 
1451 /**
1452  * acpi_dev_state_d0 - Tell if the device is in D0 power state
1453  * @dev: Physical device the ACPI power state of which to check
1454  *
1455  * On a system without ACPI, return true. On a system with ACPI, return true if
1456  * the current ACPI power state of the device is D0, or false otherwise.
1457  *
1458  * Note that the power state of a device is not well-defined after it has been
1459  * passed to acpi_device_set_power() and before that function returns, so it is
1460  * not valid to ask for the ACPI power state of the device in that time frame.
1461  *
1462  * This function is intended to be used in a driver's probe or remove
1463  * function. See Documentation/firmware-guide/acpi/low-power-probe.rst for
1464  * more information.
1465  */
1466 bool acpi_dev_state_d0(struct device *dev)
1467 {
1468     struct acpi_device *adev = ACPI_COMPANION(dev);
1469 
1470     if (!adev)
1471         return true;
1472 
1473     return adev->power.state == ACPI_STATE_D0;
1474 }
1475 EXPORT_SYMBOL_GPL(acpi_dev_state_d0);
1476 
1477 #endif /* CONFIG_PM */