Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
0004  *
0005  * (C) Copyright 2014, 2015 Linaro Ltd.
0006  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
0007  *
0008  * CPPC describes a few methods for controlling CPU performance using
0009  * information from a per CPU table called CPC. This table is described in
0010  * the ACPI v5.0+ specification. The table consists of a list of
0011  * registers which may be memory mapped or hardware registers and also may
0012  * include some static integer values.
0013  *
0014  * CPU performance is on an abstract continuous scale as against a discretized
0015  * P-state scale which is tied to CPU frequency only. In brief, the basic
0016  * operation involves:
0017  *
0018  * - OS makes a CPU performance request. (Can provide min and max bounds)
0019  *
0020  * - Platform (such as BMC) is free to optimize request within requested bounds
0021  *   depending on power/thermal budgets etc.
0022  *
0023  * - Platform conveys its decision back to OS
0024  *
0025  * The communication between OS and platform occurs through another medium
0026  * called (PCC) Platform Communication Channel. This is a generic mailbox like
0027  * mechanism which includes doorbell semantics to indicate register updates.
0028  * See drivers/mailbox/pcc.c for details on PCC.
0029  *
0030  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
0031  * above specifications.
0032  */
0033 
0034 #define pr_fmt(fmt) "ACPI CPPC: " fmt
0035 
0036 #include <linux/delay.h>
0037 #include <linux/iopoll.h>
0038 #include <linux/ktime.h>
0039 #include <linux/rwsem.h>
0040 #include <linux/wait.h>
0041 #include <linux/topology.h>
0042 
0043 #include <acpi/cppc_acpi.h>
0044 
0045 struct cppc_pcc_data {
0046     struct pcc_mbox_chan *pcc_channel;
0047     void __iomem *pcc_comm_addr;
0048     bool pcc_channel_acquired;
0049     unsigned int deadline_us;
0050     unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
0051 
0052     bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
0053     bool platform_owns_pcc;     /* Ownership of PCC subspace */
0054     unsigned int pcc_write_cnt; /* Running count of PCC write commands */
0055 
0056     /*
0057      * Lock to provide controlled access to the PCC channel.
0058      *
0059      * For performance critical usecases(currently cppc_set_perf)
0060      *  We need to take read_lock and check if channel belongs to OSPM
0061      * before reading or writing to PCC subspace
0062      *  We need to take write_lock before transferring the channel
0063      * ownership to the platform via a Doorbell
0064      *  This allows us to batch a number of CPPC requests if they happen
0065      * to originate in about the same time
0066      *
0067      * For non-performance critical usecases(init)
0068      *  Take write_lock for all purposes which gives exclusive access
0069      */
0070     struct rw_semaphore pcc_lock;
0071 
0072     /* Wait queue for CPUs whose requests were batched */
0073     wait_queue_head_t pcc_write_wait_q;
0074     ktime_t last_cmd_cmpl_time;
0075     ktime_t last_mpar_reset;
0076     int mpar_count;
0077     int refcount;
0078 };
0079 
0080 /* Array to represent the PCC channel per subspace ID */
0081 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
0082 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
0083 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
0084 
0085 /*
0086  * The cpc_desc structure contains the ACPI register details
0087  * as described in the per CPU _CPC tables. The details
0088  * include the type of register (e.g. PCC, System IO, FFH etc.)
0089  * and destination addresses which lets us READ/WRITE CPU performance
0090  * information using the appropriate I/O methods.
0091  */
0092 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
0093 
0094 /* pcc mapped address + header size + offset within PCC subspace */
0095 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
0096                         0x8 + (offs))
0097 
0098 /* Check if a CPC register is in PCC */
0099 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&     \
0100                 (cpc)->cpc_entry.reg.space_id ==    \
0101                 ACPI_ADR_SPACE_PLATFORM_COMM)
0102 
0103 /* Check if a CPC register is in SystemMemory */
0104 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&   \
0105                 (cpc)->cpc_entry.reg.space_id ==    \
0106                 ACPI_ADR_SPACE_SYSTEM_MEMORY)
0107 
0108 /* Check if a CPC register is in SystemIo */
0109 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&   \
0110                 (cpc)->cpc_entry.reg.space_id ==    \
0111                 ACPI_ADR_SPACE_SYSTEM_IO)
0112 
0113 /* Evaluates to True if reg is a NULL register descriptor */
0114 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
0115                 (reg)->address == 0 &&          \
0116                 (reg)->bit_width == 0 &&        \
0117                 (reg)->bit_offset == 0 &&       \
0118                 (reg)->access_width == 0)
0119 
0120 /* Evaluates to True if an optional cpc field is supported */
0121 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?      \
0122                 !!(cpc)->cpc_entry.int_value :      \
0123                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
0124 /*
0125  * Arbitrary Retries in case the remote processor is slow to respond
0126  * to PCC commands. Keeping it high enough to cover emulators where
0127  * the processors run painfully slow.
0128  */
0129 #define NUM_RETRIES 500ULL
0130 
0131 #define OVER_16BTS_MASK ~0xFFFFULL
0132 
0133 #define define_one_cppc_ro(_name)       \
0134 static struct kobj_attribute _name =        \
0135 __ATTR(_name, 0444, show_##_name, NULL)
0136 
0137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
0138 
0139 #define show_cppc_data(access_fn, struct_name, member_name)     \
0140     static ssize_t show_##member_name(struct kobject *kobj,     \
0141                 struct kobj_attribute *attr, char *buf) \
0142     {                               \
0143         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);       \
0144         struct struct_name st_name = {0};           \
0145         int ret;                        \
0146                                     \
0147         ret = access_fn(cpc_ptr->cpu_id, &st_name);     \
0148         if (ret)                        \
0149             return ret;                 \
0150                                     \
0151         return scnprintf(buf, PAGE_SIZE, "%llu\n",      \
0152                 (u64)st_name.member_name);      \
0153     }                               \
0154     define_one_cppc_ro(member_name)
0155 
0156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
0157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
0158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
0159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
0160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
0161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
0162 
0163 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
0164 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
0165 
0166 static ssize_t show_feedback_ctrs(struct kobject *kobj,
0167         struct kobj_attribute *attr, char *buf)
0168 {
0169     struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
0170     struct cppc_perf_fb_ctrs fb_ctrs = {0};
0171     int ret;
0172 
0173     ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
0174     if (ret)
0175         return ret;
0176 
0177     return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
0178             fb_ctrs.reference, fb_ctrs.delivered);
0179 }
0180 define_one_cppc_ro(feedback_ctrs);
0181 
0182 static struct attribute *cppc_attrs[] = {
0183     &feedback_ctrs.attr,
0184     &reference_perf.attr,
0185     &wraparound_time.attr,
0186     &highest_perf.attr,
0187     &lowest_perf.attr,
0188     &lowest_nonlinear_perf.attr,
0189     &nominal_perf.attr,
0190     &nominal_freq.attr,
0191     &lowest_freq.attr,
0192     NULL
0193 };
0194 ATTRIBUTE_GROUPS(cppc);
0195 
0196 static struct kobj_type cppc_ktype = {
0197     .sysfs_ops = &kobj_sysfs_ops,
0198     .default_groups = cppc_groups,
0199 };
0200 
0201 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
0202 {
0203     int ret, status;
0204     struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
0205     struct acpi_pcct_shared_memory __iomem *generic_comm_base =
0206         pcc_ss_data->pcc_comm_addr;
0207 
0208     if (!pcc_ss_data->platform_owns_pcc)
0209         return 0;
0210 
0211     /*
0212      * Poll PCC status register every 3us(delay_us) for maximum of
0213      * deadline_us(timeout_us) until PCC command complete bit is set(cond)
0214      */
0215     ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
0216                     status & PCC_CMD_COMPLETE_MASK, 3,
0217                     pcc_ss_data->deadline_us);
0218 
0219     if (likely(!ret)) {
0220         pcc_ss_data->platform_owns_pcc = false;
0221         if (chk_err_bit && (status & PCC_ERROR_MASK))
0222             ret = -EIO;
0223     }
0224 
0225     if (unlikely(ret))
0226         pr_err("PCC check channel failed for ss: %d. ret=%d\n",
0227                pcc_ss_id, ret);
0228 
0229     return ret;
0230 }
0231 
0232 /*
0233  * This function transfers the ownership of the PCC to the platform
0234  * So it must be called while holding write_lock(pcc_lock)
0235  */
0236 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
0237 {
0238     int ret = -EIO, i;
0239     struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
0240     struct acpi_pcct_shared_memory __iomem *generic_comm_base =
0241         pcc_ss_data->pcc_comm_addr;
0242     unsigned int time_delta;
0243 
0244     /*
0245      * For CMD_WRITE we know for a fact the caller should have checked
0246      * the channel before writing to PCC space
0247      */
0248     if (cmd == CMD_READ) {
0249         /*
0250          * If there are pending cpc_writes, then we stole the channel
0251          * before write completion, so first send a WRITE command to
0252          * platform
0253          */
0254         if (pcc_ss_data->pending_pcc_write_cmd)
0255             send_pcc_cmd(pcc_ss_id, CMD_WRITE);
0256 
0257         ret = check_pcc_chan(pcc_ss_id, false);
0258         if (ret)
0259             goto end;
0260     } else /* CMD_WRITE */
0261         pcc_ss_data->pending_pcc_write_cmd = FALSE;
0262 
0263     /*
0264      * Handle the Minimum Request Turnaround Time(MRTT)
0265      * "The minimum amount of time that OSPM must wait after the completion
0266      * of a command before issuing the next command, in microseconds"
0267      */
0268     if (pcc_ss_data->pcc_mrtt) {
0269         time_delta = ktime_us_delta(ktime_get(),
0270                         pcc_ss_data->last_cmd_cmpl_time);
0271         if (pcc_ss_data->pcc_mrtt > time_delta)
0272             udelay(pcc_ss_data->pcc_mrtt - time_delta);
0273     }
0274 
0275     /*
0276      * Handle the non-zero Maximum Periodic Access Rate(MPAR)
0277      * "The maximum number of periodic requests that the subspace channel can
0278      * support, reported in commands per minute. 0 indicates no limitation."
0279      *
0280      * This parameter should be ideally zero or large enough so that it can
0281      * handle maximum number of requests that all the cores in the system can
0282      * collectively generate. If it is not, we will follow the spec and just
0283      * not send the request to the platform after hitting the MPAR limit in
0284      * any 60s window
0285      */
0286     if (pcc_ss_data->pcc_mpar) {
0287         if (pcc_ss_data->mpar_count == 0) {
0288             time_delta = ktime_ms_delta(ktime_get(),
0289                             pcc_ss_data->last_mpar_reset);
0290             if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
0291                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
0292                      pcc_ss_id);
0293                 ret = -EIO;
0294                 goto end;
0295             }
0296             pcc_ss_data->last_mpar_reset = ktime_get();
0297             pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
0298         }
0299         pcc_ss_data->mpar_count--;
0300     }
0301 
0302     /* Write to the shared comm region. */
0303     writew_relaxed(cmd, &generic_comm_base->command);
0304 
0305     /* Flip CMD COMPLETE bit */
0306     writew_relaxed(0, &generic_comm_base->status);
0307 
0308     pcc_ss_data->platform_owns_pcc = true;
0309 
0310     /* Ring doorbell */
0311     ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
0312     if (ret < 0) {
0313         pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
0314                pcc_ss_id, cmd, ret);
0315         goto end;
0316     }
0317 
0318     /* wait for completion and check for PCC error bit */
0319     ret = check_pcc_chan(pcc_ss_id, true);
0320 
0321     if (pcc_ss_data->pcc_mrtt)
0322         pcc_ss_data->last_cmd_cmpl_time = ktime_get();
0323 
0324     if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
0325         mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
0326     else
0327         mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
0328 
0329 end:
0330     if (cmd == CMD_WRITE) {
0331         if (unlikely(ret)) {
0332             for_each_possible_cpu(i) {
0333                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
0334 
0335                 if (!desc)
0336                     continue;
0337 
0338                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
0339                     desc->write_cmd_status = ret;
0340             }
0341         }
0342         pcc_ss_data->pcc_write_cnt++;
0343         wake_up_all(&pcc_ss_data->pcc_write_wait_q);
0344     }
0345 
0346     return ret;
0347 }
0348 
0349 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
0350 {
0351     if (ret < 0)
0352         pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
0353                 *(u16 *)msg, ret);
0354     else
0355         pr_debug("TX completed. CMD sent:%x, ret:%d\n",
0356                 *(u16 *)msg, ret);
0357 }
0358 
0359 static struct mbox_client cppc_mbox_cl = {
0360     .tx_done = cppc_chan_tx_done,
0361     .knows_txdone = true,
0362 };
0363 
0364 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
0365 {
0366     int result = -EFAULT;
0367     acpi_status status = AE_OK;
0368     struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
0369     struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
0370     struct acpi_buffer state = {0, NULL};
0371     union acpi_object  *psd = NULL;
0372     struct acpi_psd_package *pdomain;
0373 
0374     status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
0375                         &buffer, ACPI_TYPE_PACKAGE);
0376     if (status == AE_NOT_FOUND) /* _PSD is optional */
0377         return 0;
0378     if (ACPI_FAILURE(status))
0379         return -ENODEV;
0380 
0381     psd = buffer.pointer;
0382     if (!psd || psd->package.count != 1) {
0383         pr_debug("Invalid _PSD data\n");
0384         goto end;
0385     }
0386 
0387     pdomain = &(cpc_ptr->domain_info);
0388 
0389     state.length = sizeof(struct acpi_psd_package);
0390     state.pointer = pdomain;
0391 
0392     status = acpi_extract_package(&(psd->package.elements[0]),
0393         &format, &state);
0394     if (ACPI_FAILURE(status)) {
0395         pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
0396         goto end;
0397     }
0398 
0399     if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
0400         pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
0401         goto end;
0402     }
0403 
0404     if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
0405         pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
0406         goto end;
0407     }
0408 
0409     if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
0410         pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
0411         pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
0412         pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
0413         goto end;
0414     }
0415 
0416     result = 0;
0417 end:
0418     kfree(buffer.pointer);
0419     return result;
0420 }
0421 
0422 bool acpi_cpc_valid(void)
0423 {
0424     struct cpc_desc *cpc_ptr;
0425     int cpu;
0426 
0427     for_each_present_cpu(cpu) {
0428         cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
0429         if (!cpc_ptr)
0430             return false;
0431     }
0432 
0433     return true;
0434 }
0435 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
0436 
0437 bool cppc_allow_fast_switch(void)
0438 {
0439     struct cpc_register_resource *desired_reg;
0440     struct cpc_desc *cpc_ptr;
0441     int cpu;
0442 
0443     for_each_possible_cpu(cpu) {
0444         cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
0445         desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
0446         if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
0447                 !CPC_IN_SYSTEM_IO(desired_reg))
0448             return false;
0449     }
0450 
0451     return true;
0452 }
0453 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
0454 
0455 /**
0456  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
0457  * @cpu: Find all CPUs that share a domain with cpu.
0458  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
0459  *
0460  *  Return: 0 for success or negative value for err.
0461  */
0462 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
0463 {
0464     struct cpc_desc *cpc_ptr, *match_cpc_ptr;
0465     struct acpi_psd_package *match_pdomain;
0466     struct acpi_psd_package *pdomain;
0467     int count_target, i;
0468 
0469     /*
0470      * Now that we have _PSD data from all CPUs, let's setup P-state
0471      * domain info.
0472      */
0473     cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
0474     if (!cpc_ptr)
0475         return -EFAULT;
0476 
0477     pdomain = &(cpc_ptr->domain_info);
0478     cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
0479     if (pdomain->num_processors <= 1)
0480         return 0;
0481 
0482     /* Validate the Domain info */
0483     count_target = pdomain->num_processors;
0484     if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
0485         cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
0486     else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
0487         cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
0488     else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
0489         cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
0490 
0491     for_each_possible_cpu(i) {
0492         if (i == cpu)
0493             continue;
0494 
0495         match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
0496         if (!match_cpc_ptr)
0497             goto err_fault;
0498 
0499         match_pdomain = &(match_cpc_ptr->domain_info);
0500         if (match_pdomain->domain != pdomain->domain)
0501             continue;
0502 
0503         /* Here i and cpu are in the same domain */
0504         if (match_pdomain->num_processors != count_target)
0505             goto err_fault;
0506 
0507         if (pdomain->coord_type != match_pdomain->coord_type)
0508             goto err_fault;
0509 
0510         cpumask_set_cpu(i, cpu_data->shared_cpu_map);
0511     }
0512 
0513     return 0;
0514 
0515 err_fault:
0516     /* Assume no coordination on any error parsing domain info */
0517     cpumask_clear(cpu_data->shared_cpu_map);
0518     cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
0519     cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
0520 
0521     return -EFAULT;
0522 }
0523 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
0524 
0525 static int register_pcc_channel(int pcc_ss_idx)
0526 {
0527     struct pcc_mbox_chan *pcc_chan;
0528     u64 usecs_lat;
0529 
0530     if (pcc_ss_idx >= 0) {
0531         pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
0532 
0533         if (IS_ERR(pcc_chan)) {
0534             pr_err("Failed to find PCC channel for subspace %d\n",
0535                    pcc_ss_idx);
0536             return -ENODEV;
0537         }
0538 
0539         pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
0540         /*
0541          * cppc_ss->latency is just a Nominal value. In reality
0542          * the remote processor could be much slower to reply.
0543          * So add an arbitrary amount of wait on top of Nominal.
0544          */
0545         usecs_lat = NUM_RETRIES * pcc_chan->latency;
0546         pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
0547         pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
0548         pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
0549         pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
0550 
0551         pcc_data[pcc_ss_idx]->pcc_comm_addr =
0552             acpi_os_ioremap(pcc_chan->shmem_base_addr,
0553                     pcc_chan->shmem_size);
0554         if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
0555             pr_err("Failed to ioremap PCC comm region mem for %d\n",
0556                    pcc_ss_idx);
0557             return -ENOMEM;
0558         }
0559 
0560         /* Set flag so that we don't come here for each CPU. */
0561         pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
0562     }
0563 
0564     return 0;
0565 }
0566 
0567 /**
0568  * cpc_ffh_supported() - check if FFH reading supported
0569  *
0570  * Check if the architecture has support for functional fixed hardware
0571  * read/write capability.
0572  *
0573  * Return: true for supported, false for not supported
0574  */
0575 bool __weak cpc_ffh_supported(void)
0576 {
0577     return false;
0578 }
0579 
0580 /**
0581  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
0582  *
0583  * Check if the architectural support for CPPC is present even
0584  * if the _OSC hasn't prescribed it
0585  *
0586  * Return: true for supported, false for not supported
0587  */
0588 bool __weak cpc_supported_by_cpu(void)
0589 {
0590     return false;
0591 }
0592 
0593 /**
0594  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
0595  *
0596  * Check and allocate the cppc_pcc_data memory.
0597  * In some processor configurations it is possible that same subspace
0598  * is shared between multiple CPUs. This is seen especially in CPUs
0599  * with hardware multi-threading support.
0600  *
0601  * Return: 0 for success, errno for failure
0602  */
0603 static int pcc_data_alloc(int pcc_ss_id)
0604 {
0605     if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
0606         return -EINVAL;
0607 
0608     if (pcc_data[pcc_ss_id]) {
0609         pcc_data[pcc_ss_id]->refcount++;
0610     } else {
0611         pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
0612                           GFP_KERNEL);
0613         if (!pcc_data[pcc_ss_id])
0614             return -ENOMEM;
0615         pcc_data[pcc_ss_id]->refcount++;
0616     }
0617 
0618     return 0;
0619 }
0620 
0621 /*
0622  * An example CPC table looks like the following.
0623  *
0624  *  Name (_CPC, Package() {
0625  *      17,                         // NumEntries
0626  *      1,                          // Revision
0627  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},    // Highest Performance
0628  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},    // Nominal Performance
0629  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},    // Lowest Nonlinear Performance
0630  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},    // Lowest Performance
0631  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},    // Guaranteed Performance Register
0632  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},    // Desired Performance Register
0633  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
0634  *      ...
0635  *      ...
0636  *      ...
0637  *  }
0638  * Each Register() encodes how to access that specific register.
0639  * e.g. a sample PCC entry has the following encoding:
0640  *
0641  *  Register (
0642  *      PCC,    // AddressSpaceKeyword
0643  *      8,  // RegisterBitWidth
0644  *      8,  // RegisterBitOffset
0645  *      0x30,   // RegisterAddress
0646  *      9,  // AccessSize (subspace ID)
0647  *  )
0648  */
0649 
0650 #ifndef arch_init_invariance_cppc
0651 static inline void arch_init_invariance_cppc(void) { }
0652 #endif
0653 
0654 /**
0655  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
0656  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
0657  *
0658  *  Return: 0 for success or negative value for err.
0659  */
0660 int acpi_cppc_processor_probe(struct acpi_processor *pr)
0661 {
0662     struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
0663     union acpi_object *out_obj, *cpc_obj;
0664     struct cpc_desc *cpc_ptr;
0665     struct cpc_reg *gas_t;
0666     struct device *cpu_dev;
0667     acpi_handle handle = pr->handle;
0668     unsigned int num_ent, i, cpc_rev;
0669     int pcc_subspace_id = -1;
0670     acpi_status status;
0671     int ret = -ENODATA;
0672 
0673     if (!osc_sb_cppc2_support_acked) {
0674         pr_debug("CPPC v2 _OSC not acked\n");
0675         if (!cpc_supported_by_cpu())
0676             return -ENODEV;
0677     }
0678 
0679     /* Parse the ACPI _CPC table for this CPU. */
0680     status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
0681             ACPI_TYPE_PACKAGE);
0682     if (ACPI_FAILURE(status)) {
0683         ret = -ENODEV;
0684         goto out_buf_free;
0685     }
0686 
0687     out_obj = (union acpi_object *) output.pointer;
0688 
0689     cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
0690     if (!cpc_ptr) {
0691         ret = -ENOMEM;
0692         goto out_buf_free;
0693     }
0694 
0695     /* First entry is NumEntries. */
0696     cpc_obj = &out_obj->package.elements[0];
0697     if (cpc_obj->type == ACPI_TYPE_INTEGER) {
0698         num_ent = cpc_obj->integer.value;
0699         if (num_ent <= 1) {
0700             pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
0701                  num_ent, pr->id);
0702             goto out_free;
0703         }
0704     } else {
0705         pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
0706              cpc_obj->type, pr->id);
0707         goto out_free;
0708     }
0709 
0710     /* Second entry should be revision. */
0711     cpc_obj = &out_obj->package.elements[1];
0712     if (cpc_obj->type == ACPI_TYPE_INTEGER) {
0713         cpc_rev = cpc_obj->integer.value;
0714     } else {
0715         pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
0716              cpc_obj->type, pr->id);
0717         goto out_free;
0718     }
0719 
0720     if (cpc_rev < CPPC_V2_REV) {
0721         pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
0722              pr->id);
0723         goto out_free;
0724     }
0725 
0726     /*
0727      * Disregard _CPC if the number of entries in the return pachage is not
0728      * as expected, but support future revisions being proper supersets of
0729      * the v3 and only causing more entries to be returned by _CPC.
0730      */
0731     if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
0732         (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
0733         (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
0734         pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
0735              num_ent, pr->id);
0736         goto out_free;
0737     }
0738     if (cpc_rev > CPPC_V3_REV) {
0739         num_ent = CPPC_V3_NUM_ENT;
0740         cpc_rev = CPPC_V3_REV;
0741     }
0742 
0743     cpc_ptr->num_entries = num_ent;
0744     cpc_ptr->version = cpc_rev;
0745 
0746     /* Iterate through remaining entries in _CPC */
0747     for (i = 2; i < num_ent; i++) {
0748         cpc_obj = &out_obj->package.elements[i];
0749 
0750         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
0751             cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
0752             cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
0753         } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
0754             gas_t = (struct cpc_reg *)
0755                 cpc_obj->buffer.pointer;
0756 
0757             /*
0758              * The PCC Subspace index is encoded inside
0759              * the CPC table entries. The same PCC index
0760              * will be used for all the PCC entries,
0761              * so extract it only once.
0762              */
0763             if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
0764                 if (pcc_subspace_id < 0) {
0765                     pcc_subspace_id = gas_t->access_width;
0766                     if (pcc_data_alloc(pcc_subspace_id))
0767                         goto out_free;
0768                 } else if (pcc_subspace_id != gas_t->access_width) {
0769                     pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
0770                          pr->id);
0771                     goto out_free;
0772                 }
0773             } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
0774                 if (gas_t->address) {
0775                     void __iomem *addr;
0776 
0777                     if (!osc_cpc_flexible_adr_space_confirmed) {
0778                         pr_debug("Flexible address space capability not supported\n");
0779                         if (!cpc_supported_by_cpu())
0780                             goto out_free;
0781                     }
0782 
0783                     addr = ioremap(gas_t->address, gas_t->bit_width/8);
0784                     if (!addr)
0785                         goto out_free;
0786                     cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
0787                 }
0788             } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
0789                 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
0790                     /*
0791                      * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
0792                      * SystemIO doesn't implement 64-bit
0793                      * registers.
0794                      */
0795                     pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
0796                          gas_t->access_width);
0797                     goto out_free;
0798                 }
0799                 if (gas_t->address & OVER_16BTS_MASK) {
0800                     /* SystemIO registers use 16-bit integer addresses */
0801                     pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
0802                          gas_t->address);
0803                     goto out_free;
0804                 }
0805                 if (!osc_cpc_flexible_adr_space_confirmed) {
0806                     pr_debug("Flexible address space capability not supported\n");
0807                     if (!cpc_supported_by_cpu())
0808                         goto out_free;
0809                 }
0810             } else {
0811                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
0812                     /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
0813                     pr_debug("Unsupported register type (%d) in _CPC\n",
0814                          gas_t->space_id);
0815                     goto out_free;
0816                 }
0817             }
0818 
0819             cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
0820             memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
0821         } else {
0822             pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
0823                  i, pr->id);
0824             goto out_free;
0825         }
0826     }
0827     per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
0828 
0829     /*
0830      * Initialize the remaining cpc_regs as unsupported.
0831      * Example: In case FW exposes CPPC v2, the below loop will initialize
0832      * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
0833      */
0834     for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
0835         cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
0836         cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
0837     }
0838 
0839 
0840     /* Store CPU Logical ID */
0841     cpc_ptr->cpu_id = pr->id;
0842 
0843     /* Parse PSD data for this CPU */
0844     ret = acpi_get_psd(cpc_ptr, handle);
0845     if (ret)
0846         goto out_free;
0847 
0848     /* Register PCC channel once for all PCC subspace ID. */
0849     if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
0850         ret = register_pcc_channel(pcc_subspace_id);
0851         if (ret)
0852             goto out_free;
0853 
0854         init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
0855         init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
0856     }
0857 
0858     /* Everything looks okay */
0859     pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
0860 
0861     /* Add per logical CPU nodes for reading its feedback counters. */
0862     cpu_dev = get_cpu_device(pr->id);
0863     if (!cpu_dev) {
0864         ret = -EINVAL;
0865         goto out_free;
0866     }
0867 
0868     /* Plug PSD data into this CPU's CPC descriptor. */
0869     per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
0870 
0871     ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
0872             "acpi_cppc");
0873     if (ret) {
0874         per_cpu(cpc_desc_ptr, pr->id) = NULL;
0875         kobject_put(&cpc_ptr->kobj);
0876         goto out_free;
0877     }
0878 
0879     arch_init_invariance_cppc();
0880 
0881     kfree(output.pointer);
0882     return 0;
0883 
0884 out_free:
0885     /* Free all the mapped sys mem areas for this CPU */
0886     for (i = 2; i < cpc_ptr->num_entries; i++) {
0887         void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
0888 
0889         if (addr)
0890             iounmap(addr);
0891     }
0892     kfree(cpc_ptr);
0893 
0894 out_buf_free:
0895     kfree(output.pointer);
0896     return ret;
0897 }
0898 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
0899 
0900 /**
0901  * acpi_cppc_processor_exit - Cleanup CPC structs.
0902  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
0903  *
0904  * Return: Void
0905  */
0906 void acpi_cppc_processor_exit(struct acpi_processor *pr)
0907 {
0908     struct cpc_desc *cpc_ptr;
0909     unsigned int i;
0910     void __iomem *addr;
0911     int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
0912 
0913     if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
0914         if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
0915             pcc_data[pcc_ss_id]->refcount--;
0916             if (!pcc_data[pcc_ss_id]->refcount) {
0917                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
0918                 kfree(pcc_data[pcc_ss_id]);
0919                 pcc_data[pcc_ss_id] = NULL;
0920             }
0921         }
0922     }
0923 
0924     cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
0925     if (!cpc_ptr)
0926         return;
0927 
0928     /* Free all the mapped sys mem areas for this CPU */
0929     for (i = 2; i < cpc_ptr->num_entries; i++) {
0930         addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
0931         if (addr)
0932             iounmap(addr);
0933     }
0934 
0935     kobject_put(&cpc_ptr->kobj);
0936     kfree(cpc_ptr);
0937 }
0938 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
0939 
0940 /**
0941  * cpc_read_ffh() - Read FFH register
0942  * @cpunum: CPU number to read
0943  * @reg:    cppc register information
0944  * @val:    place holder for return value
0945  *
0946  * Read bit_width bits from a specified address and bit_offset
0947  *
0948  * Return: 0 for success and error code
0949  */
0950 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
0951 {
0952     return -ENOTSUPP;
0953 }
0954 
0955 /**
0956  * cpc_write_ffh() - Write FFH register
0957  * @cpunum: CPU number to write
0958  * @reg:    cppc register information
0959  * @val:    value to write
0960  *
0961  * Write value of bit_width bits to a specified address and bit_offset
0962  *
0963  * Return: 0 for success and error code
0964  */
0965 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
0966 {
0967     return -ENOTSUPP;
0968 }
0969 
0970 /*
0971  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
0972  * as fast as possible. We have already mapped the PCC subspace during init, so
0973  * we can directly write to it.
0974  */
0975 
0976 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
0977 {
0978     void __iomem *vaddr = NULL;
0979     int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
0980     struct cpc_reg *reg = &reg_res->cpc_entry.reg;
0981 
0982     if (reg_res->type == ACPI_TYPE_INTEGER) {
0983         *val = reg_res->cpc_entry.int_value;
0984         return 0;
0985     }
0986 
0987     *val = 0;
0988 
0989     if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
0990         u32 width = 8 << (reg->access_width - 1);
0991         u32 val_u32;
0992         acpi_status status;
0993 
0994         status = acpi_os_read_port((acpi_io_address)reg->address,
0995                        &val_u32, width);
0996         if (ACPI_FAILURE(status)) {
0997             pr_debug("Error: Failed to read SystemIO port %llx\n",
0998                  reg->address);
0999             return -EFAULT;
1000         }
1001 
1002         *val = val_u32;
1003         return 0;
1004     } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1005         vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1006     else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1007         vaddr = reg_res->sys_mem_vaddr;
1008     else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1009         return cpc_read_ffh(cpu, reg, val);
1010     else
1011         return acpi_os_read_memory((acpi_physical_address)reg->address,
1012                 val, reg->bit_width);
1013 
1014     switch (reg->bit_width) {
1015     case 8:
1016         *val = readb_relaxed(vaddr);
1017         break;
1018     case 16:
1019         *val = readw_relaxed(vaddr);
1020         break;
1021     case 32:
1022         *val = readl_relaxed(vaddr);
1023         break;
1024     case 64:
1025         *val = readq_relaxed(vaddr);
1026         break;
1027     default:
1028         pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1029              reg->bit_width, pcc_ss_id);
1030         return -EFAULT;
1031     }
1032 
1033     return 0;
1034 }
1035 
1036 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1037 {
1038     int ret_val = 0;
1039     void __iomem *vaddr = NULL;
1040     int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1041     struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1042 
1043     if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1044         u32 width = 8 << (reg->access_width - 1);
1045         acpi_status status;
1046 
1047         status = acpi_os_write_port((acpi_io_address)reg->address,
1048                         (u32)val, width);
1049         if (ACPI_FAILURE(status)) {
1050             pr_debug("Error: Failed to write SystemIO port %llx\n",
1051                  reg->address);
1052             return -EFAULT;
1053         }
1054 
1055         return 0;
1056     } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1057         vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1058     else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1059         vaddr = reg_res->sys_mem_vaddr;
1060     else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1061         return cpc_write_ffh(cpu, reg, val);
1062     else
1063         return acpi_os_write_memory((acpi_physical_address)reg->address,
1064                 val, reg->bit_width);
1065 
1066     switch (reg->bit_width) {
1067     case 8:
1068         writeb_relaxed(val, vaddr);
1069         break;
1070     case 16:
1071         writew_relaxed(val, vaddr);
1072         break;
1073     case 32:
1074         writel_relaxed(val, vaddr);
1075         break;
1076     case 64:
1077         writeq_relaxed(val, vaddr);
1078         break;
1079     default:
1080         pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1081              reg->bit_width, pcc_ss_id);
1082         ret_val = -EFAULT;
1083         break;
1084     }
1085 
1086     return ret_val;
1087 }
1088 
1089 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1090 {
1091     struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1092     struct cpc_register_resource *reg;
1093 
1094     if (!cpc_desc) {
1095         pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1096         return -ENODEV;
1097     }
1098 
1099     reg = &cpc_desc->cpc_regs[reg_idx];
1100 
1101     if (CPC_IN_PCC(reg)) {
1102         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1103         struct cppc_pcc_data *pcc_ss_data = NULL;
1104         int ret = 0;
1105 
1106         if (pcc_ss_id < 0)
1107             return -EIO;
1108 
1109         pcc_ss_data = pcc_data[pcc_ss_id];
1110 
1111         down_write(&pcc_ss_data->pcc_lock);
1112 
1113         if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1114             cpc_read(cpunum, reg, perf);
1115         else
1116             ret = -EIO;
1117 
1118         up_write(&pcc_ss_data->pcc_lock);
1119 
1120         return ret;
1121     }
1122 
1123     cpc_read(cpunum, reg, perf);
1124 
1125     return 0;
1126 }
1127 
1128 /**
1129  * cppc_get_desired_perf - Get the desired performance register value.
1130  * @cpunum: CPU from which to get desired performance.
1131  * @desired_perf: Return address.
1132  *
1133  * Return: 0 for success, -EIO otherwise.
1134  */
1135 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1136 {
1137     return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1138 }
1139 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1140 
1141 /**
1142  * cppc_get_nominal_perf - Get the nominal performance register value.
1143  * @cpunum: CPU from which to get nominal performance.
1144  * @nominal_perf: Return address.
1145  *
1146  * Return: 0 for success, -EIO otherwise.
1147  */
1148 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1149 {
1150     return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1151 }
1152 
1153 /**
1154  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1155  * @cpunum: CPU from which to get capabilities info.
1156  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1157  *
1158  * Return: 0 for success with perf_caps populated else -ERRNO.
1159  */
1160 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1161 {
1162     struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1163     struct cpc_register_resource *highest_reg, *lowest_reg,
1164         *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1165         *low_freq_reg = NULL, *nom_freq_reg = NULL;
1166     u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1167     int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1168     struct cppc_pcc_data *pcc_ss_data = NULL;
1169     int ret = 0, regs_in_pcc = 0;
1170 
1171     if (!cpc_desc) {
1172         pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1173         return -ENODEV;
1174     }
1175 
1176     highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1177     lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1178     lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1179     nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1180     low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1181     nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1182     guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1183 
1184     /* Are any of the regs PCC ?*/
1185     if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1186         CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1187         CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1188         if (pcc_ss_id < 0) {
1189             pr_debug("Invalid pcc_ss_id\n");
1190             return -ENODEV;
1191         }
1192         pcc_ss_data = pcc_data[pcc_ss_id];
1193         regs_in_pcc = 1;
1194         down_write(&pcc_ss_data->pcc_lock);
1195         /* Ring doorbell once to update PCC subspace */
1196         if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1197             ret = -EIO;
1198             goto out_err;
1199         }
1200     }
1201 
1202     cpc_read(cpunum, highest_reg, &high);
1203     perf_caps->highest_perf = high;
1204 
1205     cpc_read(cpunum, lowest_reg, &low);
1206     perf_caps->lowest_perf = low;
1207 
1208     cpc_read(cpunum, nominal_reg, &nom);
1209     perf_caps->nominal_perf = nom;
1210 
1211     if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1212         IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1213         perf_caps->guaranteed_perf = 0;
1214     } else {
1215         cpc_read(cpunum, guaranteed_reg, &guaranteed);
1216         perf_caps->guaranteed_perf = guaranteed;
1217     }
1218 
1219     cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1220     perf_caps->lowest_nonlinear_perf = min_nonlinear;
1221 
1222     if (!high || !low || !nom || !min_nonlinear)
1223         ret = -EFAULT;
1224 
1225     /* Read optional lowest and nominal frequencies if present */
1226     if (CPC_SUPPORTED(low_freq_reg))
1227         cpc_read(cpunum, low_freq_reg, &low_f);
1228 
1229     if (CPC_SUPPORTED(nom_freq_reg))
1230         cpc_read(cpunum, nom_freq_reg, &nom_f);
1231 
1232     perf_caps->lowest_freq = low_f;
1233     perf_caps->nominal_freq = nom_f;
1234 
1235 
1236 out_err:
1237     if (regs_in_pcc)
1238         up_write(&pcc_ss_data->pcc_lock);
1239     return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1242 
1243 /**
1244  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1245  * @cpunum: CPU from which to read counters.
1246  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1247  *
1248  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1249  */
1250 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1251 {
1252     struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1253     struct cpc_register_resource *delivered_reg, *reference_reg,
1254         *ref_perf_reg, *ctr_wrap_reg;
1255     int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1256     struct cppc_pcc_data *pcc_ss_data = NULL;
1257     u64 delivered, reference, ref_perf, ctr_wrap_time;
1258     int ret = 0, regs_in_pcc = 0;
1259 
1260     if (!cpc_desc) {
1261         pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1262         return -ENODEV;
1263     }
1264 
1265     delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1266     reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1267     ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1268     ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1269 
1270     /*
1271      * If reference perf register is not supported then we should
1272      * use the nominal perf value
1273      */
1274     if (!CPC_SUPPORTED(ref_perf_reg))
1275         ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1276 
1277     /* Are any of the regs PCC ?*/
1278     if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1279         CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1280         if (pcc_ss_id < 0) {
1281             pr_debug("Invalid pcc_ss_id\n");
1282             return -ENODEV;
1283         }
1284         pcc_ss_data = pcc_data[pcc_ss_id];
1285         down_write(&pcc_ss_data->pcc_lock);
1286         regs_in_pcc = 1;
1287         /* Ring doorbell once to update PCC subspace */
1288         if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1289             ret = -EIO;
1290             goto out_err;
1291         }
1292     }
1293 
1294     cpc_read(cpunum, delivered_reg, &delivered);
1295     cpc_read(cpunum, reference_reg, &reference);
1296     cpc_read(cpunum, ref_perf_reg, &ref_perf);
1297 
1298     /*
1299      * Per spec, if ctr_wrap_time optional register is unsupported, then the
1300      * performance counters are assumed to never wrap during the lifetime of
1301      * platform
1302      */
1303     ctr_wrap_time = (u64)(~((u64)0));
1304     if (CPC_SUPPORTED(ctr_wrap_reg))
1305         cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1306 
1307     if (!delivered || !reference || !ref_perf) {
1308         ret = -EFAULT;
1309         goto out_err;
1310     }
1311 
1312     perf_fb_ctrs->delivered = delivered;
1313     perf_fb_ctrs->reference = reference;
1314     perf_fb_ctrs->reference_perf = ref_perf;
1315     perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1316 out_err:
1317     if (regs_in_pcc)
1318         up_write(&pcc_ss_data->pcc_lock);
1319     return ret;
1320 }
1321 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1322 
1323 /**
1324  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1325  * Continuous Performance Control package EnableRegister field.
1326  * @cpu: CPU for which to enable CPPC register.
1327  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1328  *
1329  * Return: 0 for success, -ERRNO or -EIO otherwise.
1330  */
1331 int cppc_set_enable(int cpu, bool enable)
1332 {
1333     int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1334     struct cpc_register_resource *enable_reg;
1335     struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1336     struct cppc_pcc_data *pcc_ss_data = NULL;
1337     int ret = -EINVAL;
1338 
1339     if (!cpc_desc) {
1340         pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1341         return -EINVAL;
1342     }
1343 
1344     enable_reg = &cpc_desc->cpc_regs[ENABLE];
1345 
1346     if (CPC_IN_PCC(enable_reg)) {
1347 
1348         if (pcc_ss_id < 0)
1349             return -EIO;
1350 
1351         ret = cpc_write(cpu, enable_reg, enable);
1352         if (ret)
1353             return ret;
1354 
1355         pcc_ss_data = pcc_data[pcc_ss_id];
1356 
1357         down_write(&pcc_ss_data->pcc_lock);
1358         /* after writing CPC, transfer the ownership of PCC to platfrom */
1359         ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1360         up_write(&pcc_ss_data->pcc_lock);
1361         return ret;
1362     }
1363 
1364     return cpc_write(cpu, enable_reg, enable);
1365 }
1366 EXPORT_SYMBOL_GPL(cppc_set_enable);
1367 
1368 /**
1369  * cppc_set_perf - Set a CPU's performance controls.
1370  * @cpu: CPU for which to set performance controls.
1371  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1372  *
1373  * Return: 0 for success, -ERRNO otherwise.
1374  */
1375 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1376 {
1377     struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1378     struct cpc_register_resource *desired_reg;
1379     int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1380     struct cppc_pcc_data *pcc_ss_data = NULL;
1381     int ret = 0;
1382 
1383     if (!cpc_desc) {
1384         pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1385         return -ENODEV;
1386     }
1387 
1388     desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1389 
1390     /*
1391      * This is Phase-I where we want to write to CPC registers
1392      * -> We want all CPUs to be able to execute this phase in parallel
1393      *
1394      * Since read_lock can be acquired by multiple CPUs simultaneously we
1395      * achieve that goal here
1396      */
1397     if (CPC_IN_PCC(desired_reg)) {
1398         if (pcc_ss_id < 0) {
1399             pr_debug("Invalid pcc_ss_id\n");
1400             return -ENODEV;
1401         }
1402         pcc_ss_data = pcc_data[pcc_ss_id];
1403         down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1404         if (pcc_ss_data->platform_owns_pcc) {
1405             ret = check_pcc_chan(pcc_ss_id, false);
1406             if (ret) {
1407                 up_read(&pcc_ss_data->pcc_lock);
1408                 return ret;
1409             }
1410         }
1411         /*
1412          * Update the pending_write to make sure a PCC CMD_READ will not
1413          * arrive and steal the channel during the switch to write lock
1414          */
1415         pcc_ss_data->pending_pcc_write_cmd = true;
1416         cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1417         cpc_desc->write_cmd_status = 0;
1418     }
1419 
1420     /*
1421      * Skip writing MIN/MAX until Linux knows how to come up with
1422      * useful values.
1423      */
1424     cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1425 
1426     if (CPC_IN_PCC(desired_reg))
1427         up_read(&pcc_ss_data->pcc_lock);    /* END Phase-I */
1428     /*
1429      * This is Phase-II where we transfer the ownership of PCC to Platform
1430      *
1431      * Short Summary: Basically if we think of a group of cppc_set_perf
1432      * requests that happened in short overlapping interval. The last CPU to
1433      * come out of Phase-I will enter Phase-II and ring the doorbell.
1434      *
1435      * We have the following requirements for Phase-II:
1436      *     1. We want to execute Phase-II only when there are no CPUs
1437      * currently executing in Phase-I
1438      *     2. Once we start Phase-II we want to avoid all other CPUs from
1439      * entering Phase-I.
1440      *     3. We want only one CPU among all those who went through Phase-I
1441      * to run phase-II
1442      *
1443      * If write_trylock fails to get the lock and doesn't transfer the
1444      * PCC ownership to the platform, then one of the following will be TRUE
1445      *     1. There is at-least one CPU in Phase-I which will later execute
1446      * write_trylock, so the CPUs in Phase-I will be responsible for
1447      * executing the Phase-II.
1448      *     2. Some other CPU has beaten this CPU to successfully execute the
1449      * write_trylock and has already acquired the write_lock. We know for a
1450      * fact it (other CPU acquiring the write_lock) couldn't have happened
1451      * before this CPU's Phase-I as we held the read_lock.
1452      *     3. Some other CPU executing pcc CMD_READ has stolen the
1453      * down_write, in which case, send_pcc_cmd will check for pending
1454      * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1455      * So this CPU can be certain that its request will be delivered
1456      *    So in all cases, this CPU knows that its request will be delivered
1457      * by another CPU and can return
1458      *
1459      * After getting the down_write we still need to check for
1460      * pending_pcc_write_cmd to take care of the following scenario
1461      *    The thread running this code could be scheduled out between
1462      * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1463      * could have delivered the request to Platform by triggering the
1464      * doorbell and transferred the ownership of PCC to platform. So this
1465      * avoids triggering an unnecessary doorbell and more importantly before
1466      * triggering the doorbell it makes sure that the PCC channel ownership
1467      * is still with OSPM.
1468      *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1469      * there was a pcc CMD_READ waiting on down_write and it steals the lock
1470      * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1471      * case during a CMD_READ and if there are pending writes it delivers
1472      * the write command before servicing the read command
1473      */
1474     if (CPC_IN_PCC(desired_reg)) {
1475         if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1476             /* Update only if there are pending write commands */
1477             if (pcc_ss_data->pending_pcc_write_cmd)
1478                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1479             up_write(&pcc_ss_data->pcc_lock);   /* END Phase-II */
1480         } else
1481             /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1482             wait_event(pcc_ss_data->pcc_write_wait_q,
1483                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1484 
1485         /* send_pcc_cmd updates the status in case of failure */
1486         ret = cpc_desc->write_cmd_status;
1487     }
1488     return ret;
1489 }
1490 EXPORT_SYMBOL_GPL(cppc_set_perf);
1491 
1492 /**
1493  * cppc_get_transition_latency - returns frequency transition latency in ns
1494  *
1495  * ACPI CPPC does not explicitly specify how a platform can specify the
1496  * transition latency for performance change requests. The closest we have
1497  * is the timing information from the PCCT tables which provides the info
1498  * on the number and frequency of PCC commands the platform can handle.
1499  *
1500  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1501  * then assume there is no latency.
1502  */
1503 unsigned int cppc_get_transition_latency(int cpu_num)
1504 {
1505     /*
1506      * Expected transition latency is based on the PCCT timing values
1507      * Below are definition from ACPI spec:
1508      * pcc_nominal- Expected latency to process a command, in microseconds
1509      * pcc_mpar   - The maximum number of periodic requests that the subspace
1510      *              channel can support, reported in commands per minute. 0
1511      *              indicates no limitation.
1512      * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1513      *              completion of a command before issuing the next command,
1514      *              in microseconds.
1515      */
1516     unsigned int latency_ns = 0;
1517     struct cpc_desc *cpc_desc;
1518     struct cpc_register_resource *desired_reg;
1519     int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1520     struct cppc_pcc_data *pcc_ss_data;
1521 
1522     cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1523     if (!cpc_desc)
1524         return CPUFREQ_ETERNAL;
1525 
1526     desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1527     if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1528         return 0;
1529     else if (!CPC_IN_PCC(desired_reg))
1530         return CPUFREQ_ETERNAL;
1531 
1532     if (pcc_ss_id < 0)
1533         return CPUFREQ_ETERNAL;
1534 
1535     pcc_ss_data = pcc_data[pcc_ss_id];
1536     if (pcc_ss_data->pcc_mpar)
1537         latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1538 
1539     latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1540     latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1541 
1542     return latency_ns;
1543 }
1544 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);