Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
0003  * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
0004  *
0005  * Redistribution and use in source and binary forms, with or without
0006  * modification, are permitted provided that the following conditions are
0007  * met:
0008  *  * Redistributions of source code must retain the above copyright
0009  *   notice, this list of conditions and the following disclaimer.
0010  *  * Redistributions in binary form must reproduce the above copyright
0011  *    notice, this list of conditions and the following disclaimer in the
0012  *    documentation and/or other materials provided with the distribution.
0013  *
0014  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
0015  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
0016  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
0017  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
0018  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
0019  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
0020  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
0021  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
0022  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
0023  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
0024  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0025  */
0026 
0027 #include <crypto/ecc_curve.h>
0028 #include <linux/module.h>
0029 #include <linux/random.h>
0030 #include <linux/slab.h>
0031 #include <linux/swab.h>
0032 #include <linux/fips.h>
0033 #include <crypto/ecdh.h>
0034 #include <crypto/rng.h>
0035 #include <crypto/internal/ecc.h>
0036 #include <asm/unaligned.h>
0037 #include <linux/ratelimit.h>
0038 
0039 #include "ecc_curve_defs.h"
0040 
0041 typedef struct {
0042     u64 m_low;
0043     u64 m_high;
0044 } uint128_t;
0045 
0046 /* Returns curv25519 curve param */
0047 const struct ecc_curve *ecc_get_curve25519(void)
0048 {
0049     return &ecc_25519;
0050 }
0051 EXPORT_SYMBOL(ecc_get_curve25519);
0052 
0053 const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
0054 {
0055     switch (curve_id) {
0056     /* In FIPS mode only allow P256 and higher */
0057     case ECC_CURVE_NIST_P192:
0058         return fips_enabled ? NULL : &nist_p192;
0059     case ECC_CURVE_NIST_P256:
0060         return &nist_p256;
0061     case ECC_CURVE_NIST_P384:
0062         return &nist_p384;
0063     default:
0064         return NULL;
0065     }
0066 }
0067 EXPORT_SYMBOL(ecc_get_curve);
0068 
0069 static u64 *ecc_alloc_digits_space(unsigned int ndigits)
0070 {
0071     size_t len = ndigits * sizeof(u64);
0072 
0073     if (!len)
0074         return NULL;
0075 
0076     return kmalloc(len, GFP_KERNEL);
0077 }
0078 
0079 static void ecc_free_digits_space(u64 *space)
0080 {
0081     kfree_sensitive(space);
0082 }
0083 
0084 struct ecc_point *ecc_alloc_point(unsigned int ndigits)
0085 {
0086     struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
0087 
0088     if (!p)
0089         return NULL;
0090 
0091     p->x = ecc_alloc_digits_space(ndigits);
0092     if (!p->x)
0093         goto err_alloc_x;
0094 
0095     p->y = ecc_alloc_digits_space(ndigits);
0096     if (!p->y)
0097         goto err_alloc_y;
0098 
0099     p->ndigits = ndigits;
0100 
0101     return p;
0102 
0103 err_alloc_y:
0104     ecc_free_digits_space(p->x);
0105 err_alloc_x:
0106     kfree(p);
0107     return NULL;
0108 }
0109 EXPORT_SYMBOL(ecc_alloc_point);
0110 
0111 void ecc_free_point(struct ecc_point *p)
0112 {
0113     if (!p)
0114         return;
0115 
0116     kfree_sensitive(p->x);
0117     kfree_sensitive(p->y);
0118     kfree_sensitive(p);
0119 }
0120 EXPORT_SYMBOL(ecc_free_point);
0121 
0122 static void vli_clear(u64 *vli, unsigned int ndigits)
0123 {
0124     int i;
0125 
0126     for (i = 0; i < ndigits; i++)
0127         vli[i] = 0;
0128 }
0129 
0130 /* Returns true if vli == 0, false otherwise. */
0131 bool vli_is_zero(const u64 *vli, unsigned int ndigits)
0132 {
0133     int i;
0134 
0135     for (i = 0; i < ndigits; i++) {
0136         if (vli[i])
0137             return false;
0138     }
0139 
0140     return true;
0141 }
0142 EXPORT_SYMBOL(vli_is_zero);
0143 
0144 /* Returns nonzero if bit of vli is set. */
0145 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
0146 {
0147     return (vli[bit / 64] & ((u64)1 << (bit % 64)));
0148 }
0149 
0150 static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
0151 {
0152     return vli_test_bit(vli, ndigits * 64 - 1);
0153 }
0154 
0155 /* Counts the number of 64-bit "digits" in vli. */
0156 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
0157 {
0158     int i;
0159 
0160     /* Search from the end until we find a non-zero digit.
0161      * We do it in reverse because we expect that most digits will
0162      * be nonzero.
0163      */
0164     for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
0165 
0166     return (i + 1);
0167 }
0168 
0169 /* Counts the number of bits required for vli. */
0170 unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
0171 {
0172     unsigned int i, num_digits;
0173     u64 digit;
0174 
0175     num_digits = vli_num_digits(vli, ndigits);
0176     if (num_digits == 0)
0177         return 0;
0178 
0179     digit = vli[num_digits - 1];
0180     for (i = 0; digit; i++)
0181         digit >>= 1;
0182 
0183     return ((num_digits - 1) * 64 + i);
0184 }
0185 EXPORT_SYMBOL(vli_num_bits);
0186 
0187 /* Set dest from unaligned bit string src. */
0188 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
0189 {
0190     int i;
0191     const u64 *from = src;
0192 
0193     for (i = 0; i < ndigits; i++)
0194         dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
0195 }
0196 EXPORT_SYMBOL(vli_from_be64);
0197 
0198 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
0199 {
0200     int i;
0201     const u64 *from = src;
0202 
0203     for (i = 0; i < ndigits; i++)
0204         dest[i] = get_unaligned_le64(&from[i]);
0205 }
0206 EXPORT_SYMBOL(vli_from_le64);
0207 
0208 /* Sets dest = src. */
0209 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
0210 {
0211     int i;
0212 
0213     for (i = 0; i < ndigits; i++)
0214         dest[i] = src[i];
0215 }
0216 
0217 /* Returns sign of left - right. */
0218 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
0219 {
0220     int i;
0221 
0222     for (i = ndigits - 1; i >= 0; i--) {
0223         if (left[i] > right[i])
0224             return 1;
0225         else if (left[i] < right[i])
0226             return -1;
0227     }
0228 
0229     return 0;
0230 }
0231 EXPORT_SYMBOL(vli_cmp);
0232 
0233 /* Computes result = in << c, returning carry. Can modify in place
0234  * (if result == in). 0 < shift < 64.
0235  */
0236 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
0237               unsigned int ndigits)
0238 {
0239     u64 carry = 0;
0240     int i;
0241 
0242     for (i = 0; i < ndigits; i++) {
0243         u64 temp = in[i];
0244 
0245         result[i] = (temp << shift) | carry;
0246         carry = temp >> (64 - shift);
0247     }
0248 
0249     return carry;
0250 }
0251 
0252 /* Computes vli = vli >> 1. */
0253 static void vli_rshift1(u64 *vli, unsigned int ndigits)
0254 {
0255     u64 *end = vli;
0256     u64 carry = 0;
0257 
0258     vli += ndigits;
0259 
0260     while (vli-- > end) {
0261         u64 temp = *vli;
0262         *vli = (temp >> 1) | carry;
0263         carry = temp << 63;
0264     }
0265 }
0266 
0267 /* Computes result = left + right, returning carry. Can modify in place. */
0268 static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
0269            unsigned int ndigits)
0270 {
0271     u64 carry = 0;
0272     int i;
0273 
0274     for (i = 0; i < ndigits; i++) {
0275         u64 sum;
0276 
0277         sum = left[i] + right[i] + carry;
0278         if (sum != left[i])
0279             carry = (sum < left[i]);
0280 
0281         result[i] = sum;
0282     }
0283 
0284     return carry;
0285 }
0286 
0287 /* Computes result = left + right, returning carry. Can modify in place. */
0288 static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
0289             unsigned int ndigits)
0290 {
0291     u64 carry = right;
0292     int i;
0293 
0294     for (i = 0; i < ndigits; i++) {
0295         u64 sum;
0296 
0297         sum = left[i] + carry;
0298         if (sum != left[i])
0299             carry = (sum < left[i]);
0300         else
0301             carry = !!carry;
0302 
0303         result[i] = sum;
0304     }
0305 
0306     return carry;
0307 }
0308 
0309 /* Computes result = left - right, returning borrow. Can modify in place. */
0310 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
0311            unsigned int ndigits)
0312 {
0313     u64 borrow = 0;
0314     int i;
0315 
0316     for (i = 0; i < ndigits; i++) {
0317         u64 diff;
0318 
0319         diff = left[i] - right[i] - borrow;
0320         if (diff != left[i])
0321             borrow = (diff > left[i]);
0322 
0323         result[i] = diff;
0324     }
0325 
0326     return borrow;
0327 }
0328 EXPORT_SYMBOL(vli_sub);
0329 
0330 /* Computes result = left - right, returning borrow. Can modify in place. */
0331 static u64 vli_usub(u64 *result, const u64 *left, u64 right,
0332          unsigned int ndigits)
0333 {
0334     u64 borrow = right;
0335     int i;
0336 
0337     for (i = 0; i < ndigits; i++) {
0338         u64 diff;
0339 
0340         diff = left[i] - borrow;
0341         if (diff != left[i])
0342             borrow = (diff > left[i]);
0343 
0344         result[i] = diff;
0345     }
0346 
0347     return borrow;
0348 }
0349 
0350 static uint128_t mul_64_64(u64 left, u64 right)
0351 {
0352     uint128_t result;
0353 #if defined(CONFIG_ARCH_SUPPORTS_INT128)
0354     unsigned __int128 m = (unsigned __int128)left * right;
0355 
0356     result.m_low  = m;
0357     result.m_high = m >> 64;
0358 #else
0359     u64 a0 = left & 0xffffffffull;
0360     u64 a1 = left >> 32;
0361     u64 b0 = right & 0xffffffffull;
0362     u64 b1 = right >> 32;
0363     u64 m0 = a0 * b0;
0364     u64 m1 = a0 * b1;
0365     u64 m2 = a1 * b0;
0366     u64 m3 = a1 * b1;
0367 
0368     m2 += (m0 >> 32);
0369     m2 += m1;
0370 
0371     /* Overflow */
0372     if (m2 < m1)
0373         m3 += 0x100000000ull;
0374 
0375     result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
0376     result.m_high = m3 + (m2 >> 32);
0377 #endif
0378     return result;
0379 }
0380 
0381 static uint128_t add_128_128(uint128_t a, uint128_t b)
0382 {
0383     uint128_t result;
0384 
0385     result.m_low = a.m_low + b.m_low;
0386     result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
0387 
0388     return result;
0389 }
0390 
0391 static void vli_mult(u64 *result, const u64 *left, const u64 *right,
0392              unsigned int ndigits)
0393 {
0394     uint128_t r01 = { 0, 0 };
0395     u64 r2 = 0;
0396     unsigned int i, k;
0397 
0398     /* Compute each digit of result in sequence, maintaining the
0399      * carries.
0400      */
0401     for (k = 0; k < ndigits * 2 - 1; k++) {
0402         unsigned int min;
0403 
0404         if (k < ndigits)
0405             min = 0;
0406         else
0407             min = (k + 1) - ndigits;
0408 
0409         for (i = min; i <= k && i < ndigits; i++) {
0410             uint128_t product;
0411 
0412             product = mul_64_64(left[i], right[k - i]);
0413 
0414             r01 = add_128_128(r01, product);
0415             r2 += (r01.m_high < product.m_high);
0416         }
0417 
0418         result[k] = r01.m_low;
0419         r01.m_low = r01.m_high;
0420         r01.m_high = r2;
0421         r2 = 0;
0422     }
0423 
0424     result[ndigits * 2 - 1] = r01.m_low;
0425 }
0426 
0427 /* Compute product = left * right, for a small right value. */
0428 static void vli_umult(u64 *result, const u64 *left, u32 right,
0429               unsigned int ndigits)
0430 {
0431     uint128_t r01 = { 0 };
0432     unsigned int k;
0433 
0434     for (k = 0; k < ndigits; k++) {
0435         uint128_t product;
0436 
0437         product = mul_64_64(left[k], right);
0438         r01 = add_128_128(r01, product);
0439         /* no carry */
0440         result[k] = r01.m_low;
0441         r01.m_low = r01.m_high;
0442         r01.m_high = 0;
0443     }
0444     result[k] = r01.m_low;
0445     for (++k; k < ndigits * 2; k++)
0446         result[k] = 0;
0447 }
0448 
0449 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
0450 {
0451     uint128_t r01 = { 0, 0 };
0452     u64 r2 = 0;
0453     int i, k;
0454 
0455     for (k = 0; k < ndigits * 2 - 1; k++) {
0456         unsigned int min;
0457 
0458         if (k < ndigits)
0459             min = 0;
0460         else
0461             min = (k + 1) - ndigits;
0462 
0463         for (i = min; i <= k && i <= k - i; i++) {
0464             uint128_t product;
0465 
0466             product = mul_64_64(left[i], left[k - i]);
0467 
0468             if (i < k - i) {
0469                 r2 += product.m_high >> 63;
0470                 product.m_high = (product.m_high << 1) |
0471                          (product.m_low >> 63);
0472                 product.m_low <<= 1;
0473             }
0474 
0475             r01 = add_128_128(r01, product);
0476             r2 += (r01.m_high < product.m_high);
0477         }
0478 
0479         result[k] = r01.m_low;
0480         r01.m_low = r01.m_high;
0481         r01.m_high = r2;
0482         r2 = 0;
0483     }
0484 
0485     result[ndigits * 2 - 1] = r01.m_low;
0486 }
0487 
0488 /* Computes result = (left + right) % mod.
0489  * Assumes that left < mod and right < mod, result != mod.
0490  */
0491 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
0492             const u64 *mod, unsigned int ndigits)
0493 {
0494     u64 carry;
0495 
0496     carry = vli_add(result, left, right, ndigits);
0497 
0498     /* result > mod (result = mod + remainder), so subtract mod to
0499      * get remainder.
0500      */
0501     if (carry || vli_cmp(result, mod, ndigits) >= 0)
0502         vli_sub(result, result, mod, ndigits);
0503 }
0504 
0505 /* Computes result = (left - right) % mod.
0506  * Assumes that left < mod and right < mod, result != mod.
0507  */
0508 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
0509             const u64 *mod, unsigned int ndigits)
0510 {
0511     u64 borrow = vli_sub(result, left, right, ndigits);
0512 
0513     /* In this case, p_result == -diff == (max int) - diff.
0514      * Since -x % d == d - x, we can get the correct result from
0515      * result + mod (with overflow).
0516      */
0517     if (borrow)
0518         vli_add(result, result, mod, ndigits);
0519 }
0520 
0521 /*
0522  * Computes result = product % mod
0523  * for special form moduli: p = 2^k-c, for small c (note the minus sign)
0524  *
0525  * References:
0526  * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
0527  * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
0528  * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
0529  */
0530 static void vli_mmod_special(u64 *result, const u64 *product,
0531                   const u64 *mod, unsigned int ndigits)
0532 {
0533     u64 c = -mod[0];
0534     u64 t[ECC_MAX_DIGITS * 2];
0535     u64 r[ECC_MAX_DIGITS * 2];
0536 
0537     vli_set(r, product, ndigits * 2);
0538     while (!vli_is_zero(r + ndigits, ndigits)) {
0539         vli_umult(t, r + ndigits, c, ndigits);
0540         vli_clear(r + ndigits, ndigits);
0541         vli_add(r, r, t, ndigits * 2);
0542     }
0543     vli_set(t, mod, ndigits);
0544     vli_clear(t + ndigits, ndigits);
0545     while (vli_cmp(r, t, ndigits * 2) >= 0)
0546         vli_sub(r, r, t, ndigits * 2);
0547     vli_set(result, r, ndigits);
0548 }
0549 
0550 /*
0551  * Computes result = product % mod
0552  * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
0553  * where k-1 does not fit into qword boundary by -1 bit (such as 255).
0554 
0555  * References (loosely based on):
0556  * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
0557  * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
0558  * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
0559  *
0560  * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
0561  * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
0562  * Algorithm 10.25 Fast reduction for special form moduli
0563  */
0564 static void vli_mmod_special2(u64 *result, const u64 *product,
0565                    const u64 *mod, unsigned int ndigits)
0566 {
0567     u64 c2 = mod[0] * 2;
0568     u64 q[ECC_MAX_DIGITS];
0569     u64 r[ECC_MAX_DIGITS * 2];
0570     u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
0571     int carry; /* last bit that doesn't fit into q */
0572     int i;
0573 
0574     vli_set(m, mod, ndigits);
0575     vli_clear(m + ndigits, ndigits);
0576 
0577     vli_set(r, product, ndigits);
0578     /* q and carry are top bits */
0579     vli_set(q, product + ndigits, ndigits);
0580     vli_clear(r + ndigits, ndigits);
0581     carry = vli_is_negative(r, ndigits);
0582     if (carry)
0583         r[ndigits - 1] &= (1ull << 63) - 1;
0584     for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
0585         u64 qc[ECC_MAX_DIGITS * 2];
0586 
0587         vli_umult(qc, q, c2, ndigits);
0588         if (carry)
0589             vli_uadd(qc, qc, mod[0], ndigits * 2);
0590         vli_set(q, qc + ndigits, ndigits);
0591         vli_clear(qc + ndigits, ndigits);
0592         carry = vli_is_negative(qc, ndigits);
0593         if (carry)
0594             qc[ndigits - 1] &= (1ull << 63) - 1;
0595         if (i & 1)
0596             vli_sub(r, r, qc, ndigits * 2);
0597         else
0598             vli_add(r, r, qc, ndigits * 2);
0599     }
0600     while (vli_is_negative(r, ndigits * 2))
0601         vli_add(r, r, m, ndigits * 2);
0602     while (vli_cmp(r, m, ndigits * 2) >= 0)
0603         vli_sub(r, r, m, ndigits * 2);
0604 
0605     vli_set(result, r, ndigits);
0606 }
0607 
0608 /*
0609  * Computes result = product % mod, where product is 2N words long.
0610  * Reference: Ken MacKay's micro-ecc.
0611  * Currently only designed to work for curve_p or curve_n.
0612  */
0613 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
0614               unsigned int ndigits)
0615 {
0616     u64 mod_m[2 * ECC_MAX_DIGITS];
0617     u64 tmp[2 * ECC_MAX_DIGITS];
0618     u64 *v[2] = { tmp, product };
0619     u64 carry = 0;
0620     unsigned int i;
0621     /* Shift mod so its highest set bit is at the maximum position. */
0622     int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
0623     int word_shift = shift / 64;
0624     int bit_shift = shift % 64;
0625 
0626     vli_clear(mod_m, word_shift);
0627     if (bit_shift > 0) {
0628         for (i = 0; i < ndigits; ++i) {
0629             mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
0630             carry = mod[i] >> (64 - bit_shift);
0631         }
0632     } else
0633         vli_set(mod_m + word_shift, mod, ndigits);
0634 
0635     for (i = 1; shift >= 0; --shift) {
0636         u64 borrow = 0;
0637         unsigned int j;
0638 
0639         for (j = 0; j < ndigits * 2; ++j) {
0640             u64 diff = v[i][j] - mod_m[j] - borrow;
0641 
0642             if (diff != v[i][j])
0643                 borrow = (diff > v[i][j]);
0644             v[1 - i][j] = diff;
0645         }
0646         i = !(i ^ borrow); /* Swap the index if there was no borrow */
0647         vli_rshift1(mod_m, ndigits);
0648         mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
0649         vli_rshift1(mod_m + ndigits, ndigits);
0650     }
0651     vli_set(result, v[i], ndigits);
0652 }
0653 
0654 /* Computes result = product % mod using Barrett's reduction with precomputed
0655  * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
0656  * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
0657  * boundary.
0658  *
0659  * Reference:
0660  * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
0661  * 2.4.1 Barrett's algorithm. Algorithm 2.5.
0662  */
0663 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
0664                  unsigned int ndigits)
0665 {
0666     u64 q[ECC_MAX_DIGITS * 2];
0667     u64 r[ECC_MAX_DIGITS * 2];
0668     const u64 *mu = mod + ndigits;
0669 
0670     vli_mult(q, product + ndigits, mu, ndigits);
0671     if (mu[ndigits])
0672         vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
0673     vli_mult(r, mod, q + ndigits, ndigits);
0674     vli_sub(r, product, r, ndigits * 2);
0675     while (!vli_is_zero(r + ndigits, ndigits) ||
0676            vli_cmp(r, mod, ndigits) != -1) {
0677         u64 carry;
0678 
0679         carry = vli_sub(r, r, mod, ndigits);
0680         vli_usub(r + ndigits, r + ndigits, carry, ndigits);
0681     }
0682     vli_set(result, r, ndigits);
0683 }
0684 
0685 /* Computes p_result = p_product % curve_p.
0686  * See algorithm 5 and 6 from
0687  * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
0688  */
0689 static void vli_mmod_fast_192(u64 *result, const u64 *product,
0690                   const u64 *curve_prime, u64 *tmp)
0691 {
0692     const unsigned int ndigits = 3;
0693     int carry;
0694 
0695     vli_set(result, product, ndigits);
0696 
0697     vli_set(tmp, &product[3], ndigits);
0698     carry = vli_add(result, result, tmp, ndigits);
0699 
0700     tmp[0] = 0;
0701     tmp[1] = product[3];
0702     tmp[2] = product[4];
0703     carry += vli_add(result, result, tmp, ndigits);
0704 
0705     tmp[0] = tmp[1] = product[5];
0706     tmp[2] = 0;
0707     carry += vli_add(result, result, tmp, ndigits);
0708 
0709     while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
0710         carry -= vli_sub(result, result, curve_prime, ndigits);
0711 }
0712 
0713 /* Computes result = product % curve_prime
0714  * from http://www.nsa.gov/ia/_files/nist-routines.pdf
0715  */
0716 static void vli_mmod_fast_256(u64 *result, const u64 *product,
0717                   const u64 *curve_prime, u64 *tmp)
0718 {
0719     int carry;
0720     const unsigned int ndigits = 4;
0721 
0722     /* t */
0723     vli_set(result, product, ndigits);
0724 
0725     /* s1 */
0726     tmp[0] = 0;
0727     tmp[1] = product[5] & 0xffffffff00000000ull;
0728     tmp[2] = product[6];
0729     tmp[3] = product[7];
0730     carry = vli_lshift(tmp, tmp, 1, ndigits);
0731     carry += vli_add(result, result, tmp, ndigits);
0732 
0733     /* s2 */
0734     tmp[1] = product[6] << 32;
0735     tmp[2] = (product[6] >> 32) | (product[7] << 32);
0736     tmp[3] = product[7] >> 32;
0737     carry += vli_lshift(tmp, tmp, 1, ndigits);
0738     carry += vli_add(result, result, tmp, ndigits);
0739 
0740     /* s3 */
0741     tmp[0] = product[4];
0742     tmp[1] = product[5] & 0xffffffff;
0743     tmp[2] = 0;
0744     tmp[3] = product[7];
0745     carry += vli_add(result, result, tmp, ndigits);
0746 
0747     /* s4 */
0748     tmp[0] = (product[4] >> 32) | (product[5] << 32);
0749     tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
0750     tmp[2] = product[7];
0751     tmp[3] = (product[6] >> 32) | (product[4] << 32);
0752     carry += vli_add(result, result, tmp, ndigits);
0753 
0754     /* d1 */
0755     tmp[0] = (product[5] >> 32) | (product[6] << 32);
0756     tmp[1] = (product[6] >> 32);
0757     tmp[2] = 0;
0758     tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
0759     carry -= vli_sub(result, result, tmp, ndigits);
0760 
0761     /* d2 */
0762     tmp[0] = product[6];
0763     tmp[1] = product[7];
0764     tmp[2] = 0;
0765     tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
0766     carry -= vli_sub(result, result, tmp, ndigits);
0767 
0768     /* d3 */
0769     tmp[0] = (product[6] >> 32) | (product[7] << 32);
0770     tmp[1] = (product[7] >> 32) | (product[4] << 32);
0771     tmp[2] = (product[4] >> 32) | (product[5] << 32);
0772     tmp[3] = (product[6] << 32);
0773     carry -= vli_sub(result, result, tmp, ndigits);
0774 
0775     /* d4 */
0776     tmp[0] = product[7];
0777     tmp[1] = product[4] & 0xffffffff00000000ull;
0778     tmp[2] = product[5];
0779     tmp[3] = product[6] & 0xffffffff00000000ull;
0780     carry -= vli_sub(result, result, tmp, ndigits);
0781 
0782     if (carry < 0) {
0783         do {
0784             carry += vli_add(result, result, curve_prime, ndigits);
0785         } while (carry < 0);
0786     } else {
0787         while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
0788             carry -= vli_sub(result, result, curve_prime, ndigits);
0789     }
0790 }
0791 
0792 #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
0793 #define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
0794 #define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
0795 
0796 /* Computes result = product % curve_prime
0797  * from "Mathematical routines for the NIST prime elliptic curves"
0798  */
0799 static void vli_mmod_fast_384(u64 *result, const u64 *product,
0800                 const u64 *curve_prime, u64 *tmp)
0801 {
0802     int carry;
0803     const unsigned int ndigits = 6;
0804 
0805     /* t */
0806     vli_set(result, product, ndigits);
0807 
0808     /* s1 */
0809     tmp[0] = 0;     // 0 || 0
0810     tmp[1] = 0;     // 0 || 0
0811     tmp[2] = SL32OR32(product[11], (product[10]>>32));  //a22||a21
0812     tmp[3] = product[11]>>32;   // 0 ||a23
0813     tmp[4] = 0;     // 0 || 0
0814     tmp[5] = 0;     // 0 || 0
0815     carry = vli_lshift(tmp, tmp, 1, ndigits);
0816     carry += vli_add(result, result, tmp, ndigits);
0817 
0818     /* s2 */
0819     tmp[0] = product[6];    //a13||a12
0820     tmp[1] = product[7];    //a15||a14
0821     tmp[2] = product[8];    //a17||a16
0822     tmp[3] = product[9];    //a19||a18
0823     tmp[4] = product[10];   //a21||a20
0824     tmp[5] = product[11];   //a23||a22
0825     carry += vli_add(result, result, tmp, ndigits);
0826 
0827     /* s3 */
0828     tmp[0] = SL32OR32(product[11], (product[10]>>32));  //a22||a21
0829     tmp[1] = SL32OR32(product[6], (product[11]>>32));   //a12||a23
0830     tmp[2] = SL32OR32(product[7], (product[6])>>32);    //a14||a13
0831     tmp[3] = SL32OR32(product[8], (product[7]>>32));    //a16||a15
0832     tmp[4] = SL32OR32(product[9], (product[8]>>32));    //a18||a17
0833     tmp[5] = SL32OR32(product[10], (product[9]>>32));   //a20||a19
0834     carry += vli_add(result, result, tmp, ndigits);
0835 
0836     /* s4 */
0837     tmp[0] = AND64H(product[11]);   //a23|| 0
0838     tmp[1] = (product[10]<<32); //a20|| 0
0839     tmp[2] = product[6];    //a13||a12
0840     tmp[3] = product[7];    //a15||a14
0841     tmp[4] = product[8];    //a17||a16
0842     tmp[5] = product[9];    //a19||a18
0843     carry += vli_add(result, result, tmp, ndigits);
0844 
0845     /* s5 */
0846     tmp[0] = 0;     //  0|| 0
0847     tmp[1] = 0;     //  0|| 0
0848     tmp[2] = product[10];   //a21||a20
0849     tmp[3] = product[11];   //a23||a22
0850     tmp[4] = 0;     //  0|| 0
0851     tmp[5] = 0;     //  0|| 0
0852     carry += vli_add(result, result, tmp, ndigits);
0853 
0854     /* s6 */
0855     tmp[0] = AND64L(product[10]);   // 0 ||a20
0856     tmp[1] = AND64H(product[10]);   //a21|| 0
0857     tmp[2] = product[11];   //a23||a22
0858     tmp[3] = 0;     // 0 || 0
0859     tmp[4] = 0;     // 0 || 0
0860     tmp[5] = 0;     // 0 || 0
0861     carry += vli_add(result, result, tmp, ndigits);
0862 
0863     /* d1 */
0864     tmp[0] = SL32OR32(product[6], (product[11]>>32));   //a12||a23
0865     tmp[1] = SL32OR32(product[7], (product[6]>>32));    //a14||a13
0866     tmp[2] = SL32OR32(product[8], (product[7]>>32));    //a16||a15
0867     tmp[3] = SL32OR32(product[9], (product[8]>>32));    //a18||a17
0868     tmp[4] = SL32OR32(product[10], (product[9]>>32));   //a20||a19
0869     tmp[5] = SL32OR32(product[11], (product[10]>>32));  //a22||a21
0870     carry -= vli_sub(result, result, tmp, ndigits);
0871 
0872     /* d2 */
0873     tmp[0] = (product[10]<<32); //a20|| 0
0874     tmp[1] = SL32OR32(product[11], (product[10]>>32));  //a22||a21
0875     tmp[2] = (product[11]>>32); // 0 ||a23
0876     tmp[3] = 0;     // 0 || 0
0877     tmp[4] = 0;     // 0 || 0
0878     tmp[5] = 0;     // 0 || 0
0879     carry -= vli_sub(result, result, tmp, ndigits);
0880 
0881     /* d3 */
0882     tmp[0] = 0;     // 0 || 0
0883     tmp[1] = AND64H(product[11]);   //a23|| 0
0884     tmp[2] = product[11]>>32;   // 0 ||a23
0885     tmp[3] = 0;     // 0 || 0
0886     tmp[4] = 0;     // 0 || 0
0887     tmp[5] = 0;     // 0 || 0
0888     carry -= vli_sub(result, result, tmp, ndigits);
0889 
0890     if (carry < 0) {
0891         do {
0892             carry += vli_add(result, result, curve_prime, ndigits);
0893         } while (carry < 0);
0894     } else {
0895         while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
0896             carry -= vli_sub(result, result, curve_prime, ndigits);
0897     }
0898 
0899 }
0900 
0901 #undef SL32OR32
0902 #undef AND64H
0903 #undef AND64L
0904 
0905 /* Computes result = product % curve_prime for different curve_primes.
0906  *
0907  * Note that curve_primes are distinguished just by heuristic check and
0908  * not by complete conformance check.
0909  */
0910 static bool vli_mmod_fast(u64 *result, u64 *product,
0911               const struct ecc_curve *curve)
0912 {
0913     u64 tmp[2 * ECC_MAX_DIGITS];
0914     const u64 *curve_prime = curve->p;
0915     const unsigned int ndigits = curve->g.ndigits;
0916 
0917     /* All NIST curves have name prefix 'nist_' */
0918     if (strncmp(curve->name, "nist_", 5) != 0) {
0919         /* Try to handle Pseudo-Marsenne primes. */
0920         if (curve_prime[ndigits - 1] == -1ull) {
0921             vli_mmod_special(result, product, curve_prime,
0922                      ndigits);
0923             return true;
0924         } else if (curve_prime[ndigits - 1] == 1ull << 63 &&
0925                curve_prime[ndigits - 2] == 0) {
0926             vli_mmod_special2(result, product, curve_prime,
0927                       ndigits);
0928             return true;
0929         }
0930         vli_mmod_barrett(result, product, curve_prime, ndigits);
0931         return true;
0932     }
0933 
0934     switch (ndigits) {
0935     case 3:
0936         vli_mmod_fast_192(result, product, curve_prime, tmp);
0937         break;
0938     case 4:
0939         vli_mmod_fast_256(result, product, curve_prime, tmp);
0940         break;
0941     case 6:
0942         vli_mmod_fast_384(result, product, curve_prime, tmp);
0943         break;
0944     default:
0945         pr_err_ratelimited("ecc: unsupported digits size!\n");
0946         return false;
0947     }
0948 
0949     return true;
0950 }
0951 
0952 /* Computes result = (left * right) % mod.
0953  * Assumes that mod is big enough curve order.
0954  */
0955 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
0956                const u64 *mod, unsigned int ndigits)
0957 {
0958     u64 product[ECC_MAX_DIGITS * 2];
0959 
0960     vli_mult(product, left, right, ndigits);
0961     vli_mmod_slow(result, product, mod, ndigits);
0962 }
0963 EXPORT_SYMBOL(vli_mod_mult_slow);
0964 
0965 /* Computes result = (left * right) % curve_prime. */
0966 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
0967                   const struct ecc_curve *curve)
0968 {
0969     u64 product[2 * ECC_MAX_DIGITS];
0970 
0971     vli_mult(product, left, right, curve->g.ndigits);
0972     vli_mmod_fast(result, product, curve);
0973 }
0974 
0975 /* Computes result = left^2 % curve_prime. */
0976 static void vli_mod_square_fast(u64 *result, const u64 *left,
0977                 const struct ecc_curve *curve)
0978 {
0979     u64 product[2 * ECC_MAX_DIGITS];
0980 
0981     vli_square(product, left, curve->g.ndigits);
0982     vli_mmod_fast(result, product, curve);
0983 }
0984 
0985 #define EVEN(vli) (!(vli[0] & 1))
0986 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
0987  * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
0988  * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
0989  */
0990 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
0991             unsigned int ndigits)
0992 {
0993     u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
0994     u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
0995     u64 carry;
0996     int cmp_result;
0997 
0998     if (vli_is_zero(input, ndigits)) {
0999         vli_clear(result, ndigits);
1000         return;
1001     }
1002 
1003     vli_set(a, input, ndigits);
1004     vli_set(b, mod, ndigits);
1005     vli_clear(u, ndigits);
1006     u[0] = 1;
1007     vli_clear(v, ndigits);
1008 
1009     while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1010         carry = 0;
1011 
1012         if (EVEN(a)) {
1013             vli_rshift1(a, ndigits);
1014 
1015             if (!EVEN(u))
1016                 carry = vli_add(u, u, mod, ndigits);
1017 
1018             vli_rshift1(u, ndigits);
1019             if (carry)
1020                 u[ndigits - 1] |= 0x8000000000000000ull;
1021         } else if (EVEN(b)) {
1022             vli_rshift1(b, ndigits);
1023 
1024             if (!EVEN(v))
1025                 carry = vli_add(v, v, mod, ndigits);
1026 
1027             vli_rshift1(v, ndigits);
1028             if (carry)
1029                 v[ndigits - 1] |= 0x8000000000000000ull;
1030         } else if (cmp_result > 0) {
1031             vli_sub(a, a, b, ndigits);
1032             vli_rshift1(a, ndigits);
1033 
1034             if (vli_cmp(u, v, ndigits) < 0)
1035                 vli_add(u, u, mod, ndigits);
1036 
1037             vli_sub(u, u, v, ndigits);
1038             if (!EVEN(u))
1039                 carry = vli_add(u, u, mod, ndigits);
1040 
1041             vli_rshift1(u, ndigits);
1042             if (carry)
1043                 u[ndigits - 1] |= 0x8000000000000000ull;
1044         } else {
1045             vli_sub(b, b, a, ndigits);
1046             vli_rshift1(b, ndigits);
1047 
1048             if (vli_cmp(v, u, ndigits) < 0)
1049                 vli_add(v, v, mod, ndigits);
1050 
1051             vli_sub(v, v, u, ndigits);
1052             if (!EVEN(v))
1053                 carry = vli_add(v, v, mod, ndigits);
1054 
1055             vli_rshift1(v, ndigits);
1056             if (carry)
1057                 v[ndigits - 1] |= 0x8000000000000000ull;
1058         }
1059     }
1060 
1061     vli_set(result, u, ndigits);
1062 }
1063 EXPORT_SYMBOL(vli_mod_inv);
1064 
1065 /* ------ Point operations ------ */
1066 
1067 /* Returns true if p_point is the point at infinity, false otherwise. */
1068 bool ecc_point_is_zero(const struct ecc_point *point)
1069 {
1070     return (vli_is_zero(point->x, point->ndigits) &&
1071         vli_is_zero(point->y, point->ndigits));
1072 }
1073 EXPORT_SYMBOL(ecc_point_is_zero);
1074 
1075 /* Point multiplication algorithm using Montgomery's ladder with co-Z
1076  * coordinates. From https://eprint.iacr.org/2011/338.pdf
1077  */
1078 
1079 /* Double in place */
1080 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1081                     const struct ecc_curve *curve)
1082 {
1083     /* t1 = x, t2 = y, t3 = z */
1084     u64 t4[ECC_MAX_DIGITS];
1085     u64 t5[ECC_MAX_DIGITS];
1086     const u64 *curve_prime = curve->p;
1087     const unsigned int ndigits = curve->g.ndigits;
1088 
1089     if (vli_is_zero(z1, ndigits))
1090         return;
1091 
1092     /* t4 = y1^2 */
1093     vli_mod_square_fast(t4, y1, curve);
1094     /* t5 = x1*y1^2 = A */
1095     vli_mod_mult_fast(t5, x1, t4, curve);
1096     /* t4 = y1^4 */
1097     vli_mod_square_fast(t4, t4, curve);
1098     /* t2 = y1*z1 = z3 */
1099     vli_mod_mult_fast(y1, y1, z1, curve);
1100     /* t3 = z1^2 */
1101     vli_mod_square_fast(z1, z1, curve);
1102 
1103     /* t1 = x1 + z1^2 */
1104     vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1105     /* t3 = 2*z1^2 */
1106     vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1107     /* t3 = x1 - z1^2 */
1108     vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1109     /* t1 = x1^2 - z1^4 */
1110     vli_mod_mult_fast(x1, x1, z1, curve);
1111 
1112     /* t3 = 2*(x1^2 - z1^4) */
1113     vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1114     /* t1 = 3*(x1^2 - z1^4) */
1115     vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1116     if (vli_test_bit(x1, 0)) {
1117         u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1118 
1119         vli_rshift1(x1, ndigits);
1120         x1[ndigits - 1] |= carry << 63;
1121     } else {
1122         vli_rshift1(x1, ndigits);
1123     }
1124     /* t1 = 3/2*(x1^2 - z1^4) = B */
1125 
1126     /* t3 = B^2 */
1127     vli_mod_square_fast(z1, x1, curve);
1128     /* t3 = B^2 - A */
1129     vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1130     /* t3 = B^2 - 2A = x3 */
1131     vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1132     /* t5 = A - x3 */
1133     vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1134     /* t1 = B * (A - x3) */
1135     vli_mod_mult_fast(x1, x1, t5, curve);
1136     /* t4 = B * (A - x3) - y1^4 = y3 */
1137     vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1138 
1139     vli_set(x1, z1, ndigits);
1140     vli_set(z1, y1, ndigits);
1141     vli_set(y1, t4, ndigits);
1142 }
1143 
1144 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
1145 static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
1146 {
1147     u64 t1[ECC_MAX_DIGITS];
1148 
1149     vli_mod_square_fast(t1, z, curve);      /* z^2 */
1150     vli_mod_mult_fast(x1, x1, t1, curve);   /* x1 * z^2 */
1151     vli_mod_mult_fast(t1, t1, z, curve);    /* z^3 */
1152     vli_mod_mult_fast(y1, y1, t1, curve);   /* y1 * z^3 */
1153 }
1154 
1155 /* P = (x1, y1) => 2P, (x2, y2) => P' */
1156 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1157                 u64 *p_initial_z, const struct ecc_curve *curve)
1158 {
1159     u64 z[ECC_MAX_DIGITS];
1160     const unsigned int ndigits = curve->g.ndigits;
1161 
1162     vli_set(x2, x1, ndigits);
1163     vli_set(y2, y1, ndigits);
1164 
1165     vli_clear(z, ndigits);
1166     z[0] = 1;
1167 
1168     if (p_initial_z)
1169         vli_set(z, p_initial_z, ndigits);
1170 
1171     apply_z(x1, y1, z, curve);
1172 
1173     ecc_point_double_jacobian(x1, y1, z, curve);
1174 
1175     apply_z(x2, y2, z, curve);
1176 }
1177 
1178 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1179  * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1180  * or P => P', Q => P + Q
1181  */
1182 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1183             const struct ecc_curve *curve)
1184 {
1185     /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1186     u64 t5[ECC_MAX_DIGITS];
1187     const u64 *curve_prime = curve->p;
1188     const unsigned int ndigits = curve->g.ndigits;
1189 
1190     /* t5 = x2 - x1 */
1191     vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1192     /* t5 = (x2 - x1)^2 = A */
1193     vli_mod_square_fast(t5, t5, curve);
1194     /* t1 = x1*A = B */
1195     vli_mod_mult_fast(x1, x1, t5, curve);
1196     /* t3 = x2*A = C */
1197     vli_mod_mult_fast(x2, x2, t5, curve);
1198     /* t4 = y2 - y1 */
1199     vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1200     /* t5 = (y2 - y1)^2 = D */
1201     vli_mod_square_fast(t5, y2, curve);
1202 
1203     /* t5 = D - B */
1204     vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1205     /* t5 = D - B - C = x3 */
1206     vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1207     /* t3 = C - B */
1208     vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1209     /* t2 = y1*(C - B) */
1210     vli_mod_mult_fast(y1, y1, x2, curve);
1211     /* t3 = B - x3 */
1212     vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1213     /* t4 = (y2 - y1)*(B - x3) */
1214     vli_mod_mult_fast(y2, y2, x2, curve);
1215     /* t4 = y3 */
1216     vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1217 
1218     vli_set(x2, t5, ndigits);
1219 }
1220 
1221 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1222  * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1223  * or P => P - Q, Q => P + Q
1224  */
1225 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1226             const struct ecc_curve *curve)
1227 {
1228     /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1229     u64 t5[ECC_MAX_DIGITS];
1230     u64 t6[ECC_MAX_DIGITS];
1231     u64 t7[ECC_MAX_DIGITS];
1232     const u64 *curve_prime = curve->p;
1233     const unsigned int ndigits = curve->g.ndigits;
1234 
1235     /* t5 = x2 - x1 */
1236     vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1237     /* t5 = (x2 - x1)^2 = A */
1238     vli_mod_square_fast(t5, t5, curve);
1239     /* t1 = x1*A = B */
1240     vli_mod_mult_fast(x1, x1, t5, curve);
1241     /* t3 = x2*A = C */
1242     vli_mod_mult_fast(x2, x2, t5, curve);
1243     /* t4 = y2 + y1 */
1244     vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1245     /* t4 = y2 - y1 */
1246     vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1247 
1248     /* t6 = C - B */
1249     vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1250     /* t2 = y1 * (C - B) */
1251     vli_mod_mult_fast(y1, y1, t6, curve);
1252     /* t6 = B + C */
1253     vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1254     /* t3 = (y2 - y1)^2 */
1255     vli_mod_square_fast(x2, y2, curve);
1256     /* t3 = x3 */
1257     vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1258 
1259     /* t7 = B - x3 */
1260     vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1261     /* t4 = (y2 - y1)*(B - x3) */
1262     vli_mod_mult_fast(y2, y2, t7, curve);
1263     /* t4 = y3 */
1264     vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1265 
1266     /* t7 = (y2 + y1)^2 = F */
1267     vli_mod_square_fast(t7, t5, curve);
1268     /* t7 = x3' */
1269     vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1270     /* t6 = x3' - B */
1271     vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1272     /* t6 = (y2 + y1)*(x3' - B) */
1273     vli_mod_mult_fast(t6, t6, t5, curve);
1274     /* t2 = y3' */
1275     vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1276 
1277     vli_set(x1, t7, ndigits);
1278 }
1279 
1280 static void ecc_point_mult(struct ecc_point *result,
1281                const struct ecc_point *point, const u64 *scalar,
1282                u64 *initial_z, const struct ecc_curve *curve,
1283                unsigned int ndigits)
1284 {
1285     /* R0 and R1 */
1286     u64 rx[2][ECC_MAX_DIGITS];
1287     u64 ry[2][ECC_MAX_DIGITS];
1288     u64 z[ECC_MAX_DIGITS];
1289     u64 sk[2][ECC_MAX_DIGITS];
1290     u64 *curve_prime = curve->p;
1291     int i, nb;
1292     int num_bits;
1293     int carry;
1294 
1295     carry = vli_add(sk[0], scalar, curve->n, ndigits);
1296     vli_add(sk[1], sk[0], curve->n, ndigits);
1297     scalar = sk[!carry];
1298     num_bits = sizeof(u64) * ndigits * 8 + 1;
1299 
1300     vli_set(rx[1], point->x, ndigits);
1301     vli_set(ry[1], point->y, ndigits);
1302 
1303     xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
1304 
1305     for (i = num_bits - 2; i > 0; i--) {
1306         nb = !vli_test_bit(scalar, i);
1307         xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1308         xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1309     }
1310 
1311     nb = !vli_test_bit(scalar, 0);
1312     xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1313 
1314     /* Find final 1/Z value. */
1315     /* X1 - X0 */
1316     vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1317     /* Yb * (X1 - X0) */
1318     vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1319     /* xP * Yb * (X1 - X0) */
1320     vli_mod_mult_fast(z, z, point->x, curve);
1321 
1322     /* 1 / (xP * Yb * (X1 - X0)) */
1323     vli_mod_inv(z, z, curve_prime, point->ndigits);
1324 
1325     /* yP / (xP * Yb * (X1 - X0)) */
1326     vli_mod_mult_fast(z, z, point->y, curve);
1327     /* Xb * yP / (xP * Yb * (X1 - X0)) */
1328     vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1329     /* End 1/Z calculation */
1330 
1331     xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1332 
1333     apply_z(rx[0], ry[0], z, curve);
1334 
1335     vli_set(result->x, rx[0], ndigits);
1336     vli_set(result->y, ry[0], ndigits);
1337 }
1338 
1339 /* Computes R = P + Q mod p */
1340 static void ecc_point_add(const struct ecc_point *result,
1341            const struct ecc_point *p, const struct ecc_point *q,
1342            const struct ecc_curve *curve)
1343 {
1344     u64 z[ECC_MAX_DIGITS];
1345     u64 px[ECC_MAX_DIGITS];
1346     u64 py[ECC_MAX_DIGITS];
1347     unsigned int ndigits = curve->g.ndigits;
1348 
1349     vli_set(result->x, q->x, ndigits);
1350     vli_set(result->y, q->y, ndigits);
1351     vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1352     vli_set(px, p->x, ndigits);
1353     vli_set(py, p->y, ndigits);
1354     xycz_add(px, py, result->x, result->y, curve);
1355     vli_mod_inv(z, z, curve->p, ndigits);
1356     apply_z(result->x, result->y, z, curve);
1357 }
1358 
1359 /* Computes R = u1P + u2Q mod p using Shamir's trick.
1360  * Based on: Kenneth MacKay's micro-ecc (2014).
1361  */
1362 void ecc_point_mult_shamir(const struct ecc_point *result,
1363                const u64 *u1, const struct ecc_point *p,
1364                const u64 *u2, const struct ecc_point *q,
1365                const struct ecc_curve *curve)
1366 {
1367     u64 z[ECC_MAX_DIGITS];
1368     u64 sump[2][ECC_MAX_DIGITS];
1369     u64 *rx = result->x;
1370     u64 *ry = result->y;
1371     unsigned int ndigits = curve->g.ndigits;
1372     unsigned int num_bits;
1373     struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1374     const struct ecc_point *points[4];
1375     const struct ecc_point *point;
1376     unsigned int idx;
1377     int i;
1378 
1379     ecc_point_add(&sum, p, q, curve);
1380     points[0] = NULL;
1381     points[1] = p;
1382     points[2] = q;
1383     points[3] = &sum;
1384 
1385     num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1386     i = num_bits - 1;
1387     idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1388     point = points[idx];
1389 
1390     vli_set(rx, point->x, ndigits);
1391     vli_set(ry, point->y, ndigits);
1392     vli_clear(z + 1, ndigits - 1);
1393     z[0] = 1;
1394 
1395     for (--i; i >= 0; i--) {
1396         ecc_point_double_jacobian(rx, ry, z, curve);
1397         idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1398         point = points[idx];
1399         if (point) {
1400             u64 tx[ECC_MAX_DIGITS];
1401             u64 ty[ECC_MAX_DIGITS];
1402             u64 tz[ECC_MAX_DIGITS];
1403 
1404             vli_set(tx, point->x, ndigits);
1405             vli_set(ty, point->y, ndigits);
1406             apply_z(tx, ty, z, curve);
1407             vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1408             xycz_add(tx, ty, rx, ry, curve);
1409             vli_mod_mult_fast(z, z, tz, curve);
1410         }
1411     }
1412     vli_mod_inv(z, z, curve->p, ndigits);
1413     apply_z(rx, ry, z, curve);
1414 }
1415 EXPORT_SYMBOL(ecc_point_mult_shamir);
1416 
1417 static int __ecc_is_key_valid(const struct ecc_curve *curve,
1418                   const u64 *private_key, unsigned int ndigits)
1419 {
1420     u64 one[ECC_MAX_DIGITS] = { 1, };
1421     u64 res[ECC_MAX_DIGITS];
1422 
1423     if (!private_key)
1424         return -EINVAL;
1425 
1426     if (curve->g.ndigits != ndigits)
1427         return -EINVAL;
1428 
1429     /* Make sure the private key is in the range [2, n-3]. */
1430     if (vli_cmp(one, private_key, ndigits) != -1)
1431         return -EINVAL;
1432     vli_sub(res, curve->n, one, ndigits);
1433     vli_sub(res, res, one, ndigits);
1434     if (vli_cmp(res, private_key, ndigits) != 1)
1435         return -EINVAL;
1436 
1437     return 0;
1438 }
1439 
1440 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1441              const u64 *private_key, unsigned int private_key_len)
1442 {
1443     int nbytes;
1444     const struct ecc_curve *curve = ecc_get_curve(curve_id);
1445 
1446     nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1447 
1448     if (private_key_len != nbytes)
1449         return -EINVAL;
1450 
1451     return __ecc_is_key_valid(curve, private_key, ndigits);
1452 }
1453 EXPORT_SYMBOL(ecc_is_key_valid);
1454 
1455 /*
1456  * ECC private keys are generated using the method of extra random bits,
1457  * equivalent to that described in FIPS 186-4, Appendix B.4.1.
1458  *
1459  * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
1460  *                         than requested
1461  * 0 <= c mod(n-1) <= n-2  and implies that
1462  * 1 <= d <= n-1
1463  *
1464  * This method generates a private key uniformly distributed in the range
1465  * [1, n-1].
1466  */
1467 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
1468 {
1469     const struct ecc_curve *curve = ecc_get_curve(curve_id);
1470     u64 priv[ECC_MAX_DIGITS];
1471     unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1472     unsigned int nbits = vli_num_bits(curve->n, ndigits);
1473     int err;
1474 
1475     /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
1476     if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
1477         return -EINVAL;
1478 
1479     /*
1480      * FIPS 186-4 recommends that the private key should be obtained from a
1481      * RBG with a security strength equal to or greater than the security
1482      * strength associated with N.
1483      *
1484      * The maximum security strength identified by NIST SP800-57pt1r4 for
1485      * ECC is 256 (N >= 512).
1486      *
1487      * This condition is met by the default RNG because it selects a favored
1488      * DRBG with a security strength of 256.
1489      */
1490     if (crypto_get_default_rng())
1491         return -EFAULT;
1492 
1493     err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
1494     crypto_put_default_rng();
1495     if (err)
1496         return err;
1497 
1498     /* Make sure the private key is in the valid range. */
1499     if (__ecc_is_key_valid(curve, priv, ndigits))
1500         return -EINVAL;
1501 
1502     ecc_swap_digits(priv, privkey, ndigits);
1503 
1504     return 0;
1505 }
1506 EXPORT_SYMBOL(ecc_gen_privkey);
1507 
1508 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1509              const u64 *private_key, u64 *public_key)
1510 {
1511     int ret = 0;
1512     struct ecc_point *pk;
1513     u64 priv[ECC_MAX_DIGITS];
1514     const struct ecc_curve *curve = ecc_get_curve(curve_id);
1515 
1516     if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1517         ret = -EINVAL;
1518         goto out;
1519     }
1520 
1521     ecc_swap_digits(private_key, priv, ndigits);
1522 
1523     pk = ecc_alloc_point(ndigits);
1524     if (!pk) {
1525         ret = -ENOMEM;
1526         goto out;
1527     }
1528 
1529     ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1530 
1531     /* SP800-56A rev 3 5.6.2.1.3 key check */
1532     if (ecc_is_pubkey_valid_full(curve, pk)) {
1533         ret = -EAGAIN;
1534         goto err_free_point;
1535     }
1536 
1537     ecc_swap_digits(pk->x, public_key, ndigits);
1538     ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1539 
1540 err_free_point:
1541     ecc_free_point(pk);
1542 out:
1543     return ret;
1544 }
1545 EXPORT_SYMBOL(ecc_make_pub_key);
1546 
1547 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
1548 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1549                 struct ecc_point *pk)
1550 {
1551     u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1552 
1553     if (WARN_ON(pk->ndigits != curve->g.ndigits))
1554         return -EINVAL;
1555 
1556     /* Check 1: Verify key is not the zero point. */
1557     if (ecc_point_is_zero(pk))
1558         return -EINVAL;
1559 
1560     /* Check 2: Verify key is in the range [1, p-1]. */
1561     if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1562         return -EINVAL;
1563     if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1564         return -EINVAL;
1565 
1566     /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1567     vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1568     vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1569     vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1570     vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1571     vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1572     vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1573     if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1574         return -EINVAL;
1575 
1576     return 0;
1577 }
1578 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1579 
1580 /* SP800-56A section 5.6.2.3.3 full verification */
1581 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1582                  struct ecc_point *pk)
1583 {
1584     struct ecc_point *nQ;
1585 
1586     /* Checks 1 through 3 */
1587     int ret = ecc_is_pubkey_valid_partial(curve, pk);
1588 
1589     if (ret)
1590         return ret;
1591 
1592     /* Check 4: Verify that nQ is the zero point. */
1593     nQ = ecc_alloc_point(pk->ndigits);
1594     if (!nQ)
1595         return -ENOMEM;
1596 
1597     ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1598     if (!ecc_point_is_zero(nQ))
1599         ret = -EINVAL;
1600 
1601     ecc_free_point(nQ);
1602 
1603     return ret;
1604 }
1605 EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1606 
1607 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1608                   const u64 *private_key, const u64 *public_key,
1609                   u64 *secret)
1610 {
1611     int ret = 0;
1612     struct ecc_point *product, *pk;
1613     u64 priv[ECC_MAX_DIGITS];
1614     u64 rand_z[ECC_MAX_DIGITS];
1615     unsigned int nbytes;
1616     const struct ecc_curve *curve = ecc_get_curve(curve_id);
1617 
1618     if (!private_key || !public_key || !curve ||
1619         ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1620         ret = -EINVAL;
1621         goto out;
1622     }
1623 
1624     nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1625 
1626     get_random_bytes(rand_z, nbytes);
1627 
1628     pk = ecc_alloc_point(ndigits);
1629     if (!pk) {
1630         ret = -ENOMEM;
1631         goto out;
1632     }
1633 
1634     ecc_swap_digits(public_key, pk->x, ndigits);
1635     ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1636     ret = ecc_is_pubkey_valid_partial(curve, pk);
1637     if (ret)
1638         goto err_alloc_product;
1639 
1640     ecc_swap_digits(private_key, priv, ndigits);
1641 
1642     product = ecc_alloc_point(ndigits);
1643     if (!product) {
1644         ret = -ENOMEM;
1645         goto err_alloc_product;
1646     }
1647 
1648     ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
1649 
1650     if (ecc_point_is_zero(product)) {
1651         ret = -EFAULT;
1652         goto err_validity;
1653     }
1654 
1655     ecc_swap_digits(product->x, secret, ndigits);
1656 
1657 err_validity:
1658     memzero_explicit(priv, sizeof(priv));
1659     memzero_explicit(rand_z, sizeof(rand_z));
1660     ecc_free_point(product);
1661 err_alloc_product:
1662     ecc_free_point(pk);
1663 out:
1664     return ret;
1665 }
1666 EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1667 
1668 MODULE_LICENSE("Dual BSD/GPL");