Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Interface for controlling IO bandwidth on a request queue
0004  *
0005  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
0006  */
0007 
0008 #include <linux/module.h>
0009 #include <linux/slab.h>
0010 #include <linux/blkdev.h>
0011 #include <linux/bio.h>
0012 #include <linux/blktrace_api.h>
0013 #include "blk.h"
0014 #include "blk-cgroup-rwstat.h"
0015 #include "blk-stat.h"
0016 #include "blk-throttle.h"
0017 
0018 /* Max dispatch from a group in 1 round */
0019 #define THROTL_GRP_QUANTUM 8
0020 
0021 /* Total max dispatch from all groups in one round */
0022 #define THROTL_QUANTUM 32
0023 
0024 /* Throttling is performed over a slice and after that slice is renewed */
0025 #define DFL_THROTL_SLICE_HD (HZ / 10)
0026 #define DFL_THROTL_SLICE_SSD (HZ / 50)
0027 #define MAX_THROTL_SLICE (HZ)
0028 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
0029 #define MIN_THROTL_BPS (320 * 1024)
0030 #define MIN_THROTL_IOPS (10)
0031 #define DFL_LATENCY_TARGET (-1L)
0032 #define DFL_IDLE_THRESHOLD (0)
0033 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
0034 #define LATENCY_FILTERED_SSD (0)
0035 /*
0036  * For HD, very small latency comes from sequential IO. Such IO is helpless to
0037  * help determine if its IO is impacted by others, hence we ignore the IO
0038  */
0039 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
0040 
0041 /* A workqueue to queue throttle related work */
0042 static struct workqueue_struct *kthrotld_workqueue;
0043 
0044 #define rb_entry_tg(node)   rb_entry((node), struct throtl_grp, rb_node)
0045 
0046 /* We measure latency for request size from <= 4k to >= 1M */
0047 #define LATENCY_BUCKET_SIZE 9
0048 
0049 struct latency_bucket {
0050     unsigned long total_latency; /* ns / 1024 */
0051     int samples;
0052 };
0053 
0054 struct avg_latency_bucket {
0055     unsigned long latency; /* ns / 1024 */
0056     bool valid;
0057 };
0058 
0059 struct throtl_data
0060 {
0061     /* service tree for active throtl groups */
0062     struct throtl_service_queue service_queue;
0063 
0064     struct request_queue *queue;
0065 
0066     /* Total Number of queued bios on READ and WRITE lists */
0067     unsigned int nr_queued[2];
0068 
0069     unsigned int throtl_slice;
0070 
0071     /* Work for dispatching throttled bios */
0072     struct work_struct dispatch_work;
0073     unsigned int limit_index;
0074     bool limit_valid[LIMIT_CNT];
0075 
0076     unsigned long low_upgrade_time;
0077     unsigned long low_downgrade_time;
0078 
0079     unsigned int scale;
0080 
0081     struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
0082     struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
0083     struct latency_bucket __percpu *latency_buckets[2];
0084     unsigned long last_calculate_time;
0085     unsigned long filtered_latency;
0086 
0087     bool track_bio_latency;
0088 };
0089 
0090 static void throtl_pending_timer_fn(struct timer_list *t);
0091 
0092 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0093 {
0094     return pd_to_blkg(&tg->pd);
0095 }
0096 
0097 /**
0098  * sq_to_tg - return the throl_grp the specified service queue belongs to
0099  * @sq: the throtl_service_queue of interest
0100  *
0101  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
0102  * embedded in throtl_data, %NULL is returned.
0103  */
0104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
0105 {
0106     if (sq && sq->parent_sq)
0107         return container_of(sq, struct throtl_grp, service_queue);
0108     else
0109         return NULL;
0110 }
0111 
0112 /**
0113  * sq_to_td - return throtl_data the specified service queue belongs to
0114  * @sq: the throtl_service_queue of interest
0115  *
0116  * A service_queue can be embedded in either a throtl_grp or throtl_data.
0117  * Determine the associated throtl_data accordingly and return it.
0118  */
0119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
0120 {
0121     struct throtl_grp *tg = sq_to_tg(sq);
0122 
0123     if (tg)
0124         return tg->td;
0125     else
0126         return container_of(sq, struct throtl_data, service_queue);
0127 }
0128 
0129 /*
0130  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
0131  * make the IO dispatch more smooth.
0132  * Scale up: linearly scale up according to lapsed time since upgrade. For
0133  *           every throtl_slice, the limit scales up 1/2 .low limit till the
0134  *           limit hits .max limit
0135  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
0136  */
0137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
0138 {
0139     /* arbitrary value to avoid too big scale */
0140     if (td->scale < 4096 && time_after_eq(jiffies,
0141         td->low_upgrade_time + td->scale * td->throtl_slice))
0142         td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
0143 
0144     return low + (low >> 1) * td->scale;
0145 }
0146 
0147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
0148 {
0149     struct blkcg_gq *blkg = tg_to_blkg(tg);
0150     struct throtl_data *td;
0151     uint64_t ret;
0152 
0153     if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
0154         return U64_MAX;
0155 
0156     td = tg->td;
0157     ret = tg->bps[rw][td->limit_index];
0158     if (ret == 0 && td->limit_index == LIMIT_LOW) {
0159         /* intermediate node or iops isn't 0 */
0160         if (!list_empty(&blkg->blkcg->css.children) ||
0161             tg->iops[rw][td->limit_index])
0162             return U64_MAX;
0163         else
0164             return MIN_THROTL_BPS;
0165     }
0166 
0167     if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
0168         tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
0169         uint64_t adjusted;
0170 
0171         adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
0172         ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
0173     }
0174     return ret;
0175 }
0176 
0177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
0178 {
0179     struct blkcg_gq *blkg = tg_to_blkg(tg);
0180     struct throtl_data *td;
0181     unsigned int ret;
0182 
0183     if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
0184         return UINT_MAX;
0185 
0186     td = tg->td;
0187     ret = tg->iops[rw][td->limit_index];
0188     if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
0189         /* intermediate node or bps isn't 0 */
0190         if (!list_empty(&blkg->blkcg->css.children) ||
0191             tg->bps[rw][td->limit_index])
0192             return UINT_MAX;
0193         else
0194             return MIN_THROTL_IOPS;
0195     }
0196 
0197     if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
0198         tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
0199         uint64_t adjusted;
0200 
0201         adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
0202         if (adjusted > UINT_MAX)
0203             adjusted = UINT_MAX;
0204         ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
0205     }
0206     return ret;
0207 }
0208 
0209 #define request_bucket_index(sectors) \
0210     clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
0211 
0212 /**
0213  * throtl_log - log debug message via blktrace
0214  * @sq: the service_queue being reported
0215  * @fmt: printf format string
0216  * @args: printf args
0217  *
0218  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
0219  * throtl_grp; otherwise, just "throtl".
0220  */
0221 #define throtl_log(sq, fmt, args...)    do {                \
0222     struct throtl_grp *__tg = sq_to_tg((sq));           \
0223     struct throtl_data *__td = sq_to_td((sq));          \
0224                                     \
0225     (void)__td;                         \
0226     if (likely(!blk_trace_note_message_enabled(__td->queue)))   \
0227         break;                          \
0228     if ((__tg)) {                           \
0229         blk_add_cgroup_trace_msg(__td->queue,           \
0230             &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
0231     } else {                            \
0232         blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
0233     }                               \
0234 } while (0)
0235 
0236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
0237 {
0238     /* assume it's one sector */
0239     if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
0240         return 512;
0241     return bio->bi_iter.bi_size;
0242 }
0243 
0244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
0245 {
0246     INIT_LIST_HEAD(&qn->node);
0247     bio_list_init(&qn->bios);
0248     qn->tg = tg;
0249 }
0250 
0251 /**
0252  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
0253  * @bio: bio being added
0254  * @qn: qnode to add bio to
0255  * @queued: the service_queue->queued[] list @qn belongs to
0256  *
0257  * Add @bio to @qn and put @qn on @queued if it's not already on.
0258  * @qn->tg's reference count is bumped when @qn is activated.  See the
0259  * comment on top of throtl_qnode definition for details.
0260  */
0261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
0262                  struct list_head *queued)
0263 {
0264     bio_list_add(&qn->bios, bio);
0265     if (list_empty(&qn->node)) {
0266         list_add_tail(&qn->node, queued);
0267         blkg_get(tg_to_blkg(qn->tg));
0268     }
0269 }
0270 
0271 /**
0272  * throtl_peek_queued - peek the first bio on a qnode list
0273  * @queued: the qnode list to peek
0274  */
0275 static struct bio *throtl_peek_queued(struct list_head *queued)
0276 {
0277     struct throtl_qnode *qn;
0278     struct bio *bio;
0279 
0280     if (list_empty(queued))
0281         return NULL;
0282 
0283     qn = list_first_entry(queued, struct throtl_qnode, node);
0284     bio = bio_list_peek(&qn->bios);
0285     WARN_ON_ONCE(!bio);
0286     return bio;
0287 }
0288 
0289 /**
0290  * throtl_pop_queued - pop the first bio form a qnode list
0291  * @queued: the qnode list to pop a bio from
0292  * @tg_to_put: optional out argument for throtl_grp to put
0293  *
0294  * Pop the first bio from the qnode list @queued.  After popping, the first
0295  * qnode is removed from @queued if empty or moved to the end of @queued so
0296  * that the popping order is round-robin.
0297  *
0298  * When the first qnode is removed, its associated throtl_grp should be put
0299  * too.  If @tg_to_put is NULL, this function automatically puts it;
0300  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
0301  * responsible for putting it.
0302  */
0303 static struct bio *throtl_pop_queued(struct list_head *queued,
0304                      struct throtl_grp **tg_to_put)
0305 {
0306     struct throtl_qnode *qn;
0307     struct bio *bio;
0308 
0309     if (list_empty(queued))
0310         return NULL;
0311 
0312     qn = list_first_entry(queued, struct throtl_qnode, node);
0313     bio = bio_list_pop(&qn->bios);
0314     WARN_ON_ONCE(!bio);
0315 
0316     if (bio_list_empty(&qn->bios)) {
0317         list_del_init(&qn->node);
0318         if (tg_to_put)
0319             *tg_to_put = qn->tg;
0320         else
0321             blkg_put(tg_to_blkg(qn->tg));
0322     } else {
0323         list_move_tail(&qn->node, queued);
0324     }
0325 
0326     return bio;
0327 }
0328 
0329 /* init a service_queue, assumes the caller zeroed it */
0330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
0331 {
0332     INIT_LIST_HEAD(&sq->queued[0]);
0333     INIT_LIST_HEAD(&sq->queued[1]);
0334     sq->pending_tree = RB_ROOT_CACHED;
0335     timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
0336 }
0337 
0338 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
0339                         struct request_queue *q,
0340                         struct blkcg *blkcg)
0341 {
0342     struct throtl_grp *tg;
0343     int rw;
0344 
0345     tg = kzalloc_node(sizeof(*tg), gfp, q->node);
0346     if (!tg)
0347         return NULL;
0348 
0349     if (blkg_rwstat_init(&tg->stat_bytes, gfp))
0350         goto err_free_tg;
0351 
0352     if (blkg_rwstat_init(&tg->stat_ios, gfp))
0353         goto err_exit_stat_bytes;
0354 
0355     throtl_service_queue_init(&tg->service_queue);
0356 
0357     for (rw = READ; rw <= WRITE; rw++) {
0358         throtl_qnode_init(&tg->qnode_on_self[rw], tg);
0359         throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
0360     }
0361 
0362     RB_CLEAR_NODE(&tg->rb_node);
0363     tg->bps[READ][LIMIT_MAX] = U64_MAX;
0364     tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
0365     tg->iops[READ][LIMIT_MAX] = UINT_MAX;
0366     tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
0367     tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
0368     tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
0369     tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
0370     tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
0371     /* LIMIT_LOW will have default value 0 */
0372 
0373     tg->latency_target = DFL_LATENCY_TARGET;
0374     tg->latency_target_conf = DFL_LATENCY_TARGET;
0375     tg->idletime_threshold = DFL_IDLE_THRESHOLD;
0376     tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
0377 
0378     return &tg->pd;
0379 
0380 err_exit_stat_bytes:
0381     blkg_rwstat_exit(&tg->stat_bytes);
0382 err_free_tg:
0383     kfree(tg);
0384     return NULL;
0385 }
0386 
0387 static void throtl_pd_init(struct blkg_policy_data *pd)
0388 {
0389     struct throtl_grp *tg = pd_to_tg(pd);
0390     struct blkcg_gq *blkg = tg_to_blkg(tg);
0391     struct throtl_data *td = blkg->q->td;
0392     struct throtl_service_queue *sq = &tg->service_queue;
0393 
0394     /*
0395      * If on the default hierarchy, we switch to properly hierarchical
0396      * behavior where limits on a given throtl_grp are applied to the
0397      * whole subtree rather than just the group itself.  e.g. If 16M
0398      * read_bps limit is set on the root group, the whole system can't
0399      * exceed 16M for the device.
0400      *
0401      * If not on the default hierarchy, the broken flat hierarchy
0402      * behavior is retained where all throtl_grps are treated as if
0403      * they're all separate root groups right below throtl_data.
0404      * Limits of a group don't interact with limits of other groups
0405      * regardless of the position of the group in the hierarchy.
0406      */
0407     sq->parent_sq = &td->service_queue;
0408     if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
0409         sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
0410     tg->td = td;
0411 }
0412 
0413 /*
0414  * Set has_rules[] if @tg or any of its parents have limits configured.
0415  * This doesn't require walking up to the top of the hierarchy as the
0416  * parent's has_rules[] is guaranteed to be correct.
0417  */
0418 static void tg_update_has_rules(struct throtl_grp *tg)
0419 {
0420     struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
0421     struct throtl_data *td = tg->td;
0422     int rw;
0423     int has_iops_limit = 0;
0424 
0425     for (rw = READ; rw <= WRITE; rw++) {
0426         unsigned int iops_limit = tg_iops_limit(tg, rw);
0427 
0428         tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
0429             (td->limit_valid[td->limit_index] &&
0430              (tg_bps_limit(tg, rw) != U64_MAX ||
0431               iops_limit != UINT_MAX));
0432 
0433         if (iops_limit != UINT_MAX)
0434             has_iops_limit = 1;
0435     }
0436 
0437     if (has_iops_limit)
0438         tg->flags |= THROTL_TG_HAS_IOPS_LIMIT;
0439     else
0440         tg->flags &= ~THROTL_TG_HAS_IOPS_LIMIT;
0441 }
0442 
0443 static void throtl_pd_online(struct blkg_policy_data *pd)
0444 {
0445     struct throtl_grp *tg = pd_to_tg(pd);
0446     /*
0447      * We don't want new groups to escape the limits of its ancestors.
0448      * Update has_rules[] after a new group is brought online.
0449      */
0450     tg_update_has_rules(tg);
0451 }
0452 
0453 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
0454 static void blk_throtl_update_limit_valid(struct throtl_data *td)
0455 {
0456     struct cgroup_subsys_state *pos_css;
0457     struct blkcg_gq *blkg;
0458     bool low_valid = false;
0459 
0460     rcu_read_lock();
0461     blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
0462         struct throtl_grp *tg = blkg_to_tg(blkg);
0463 
0464         if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
0465             tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
0466             low_valid = true;
0467             break;
0468         }
0469     }
0470     rcu_read_unlock();
0471 
0472     td->limit_valid[LIMIT_LOW] = low_valid;
0473 }
0474 #else
0475 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
0476 {
0477 }
0478 #endif
0479 
0480 static void throtl_upgrade_state(struct throtl_data *td);
0481 static void throtl_pd_offline(struct blkg_policy_data *pd)
0482 {
0483     struct throtl_grp *tg = pd_to_tg(pd);
0484 
0485     tg->bps[READ][LIMIT_LOW] = 0;
0486     tg->bps[WRITE][LIMIT_LOW] = 0;
0487     tg->iops[READ][LIMIT_LOW] = 0;
0488     tg->iops[WRITE][LIMIT_LOW] = 0;
0489 
0490     blk_throtl_update_limit_valid(tg->td);
0491 
0492     if (!tg->td->limit_valid[tg->td->limit_index])
0493         throtl_upgrade_state(tg->td);
0494 }
0495 
0496 static void throtl_pd_free(struct blkg_policy_data *pd)
0497 {
0498     struct throtl_grp *tg = pd_to_tg(pd);
0499 
0500     del_timer_sync(&tg->service_queue.pending_timer);
0501     blkg_rwstat_exit(&tg->stat_bytes);
0502     blkg_rwstat_exit(&tg->stat_ios);
0503     kfree(tg);
0504 }
0505 
0506 static struct throtl_grp *
0507 throtl_rb_first(struct throtl_service_queue *parent_sq)
0508 {
0509     struct rb_node *n;
0510 
0511     n = rb_first_cached(&parent_sq->pending_tree);
0512     WARN_ON_ONCE(!n);
0513     if (!n)
0514         return NULL;
0515     return rb_entry_tg(n);
0516 }
0517 
0518 static void throtl_rb_erase(struct rb_node *n,
0519                 struct throtl_service_queue *parent_sq)
0520 {
0521     rb_erase_cached(n, &parent_sq->pending_tree);
0522     RB_CLEAR_NODE(n);
0523     --parent_sq->nr_pending;
0524 }
0525 
0526 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
0527 {
0528     struct throtl_grp *tg;
0529 
0530     tg = throtl_rb_first(parent_sq);
0531     if (!tg)
0532         return;
0533 
0534     parent_sq->first_pending_disptime = tg->disptime;
0535 }
0536 
0537 static void tg_service_queue_add(struct throtl_grp *tg)
0538 {
0539     struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0540     struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
0541     struct rb_node *parent = NULL;
0542     struct throtl_grp *__tg;
0543     unsigned long key = tg->disptime;
0544     bool leftmost = true;
0545 
0546     while (*node != NULL) {
0547         parent = *node;
0548         __tg = rb_entry_tg(parent);
0549 
0550         if (time_before(key, __tg->disptime))
0551             node = &parent->rb_left;
0552         else {
0553             node = &parent->rb_right;
0554             leftmost = false;
0555         }
0556     }
0557 
0558     rb_link_node(&tg->rb_node, parent, node);
0559     rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
0560                    leftmost);
0561 }
0562 
0563 static void throtl_enqueue_tg(struct throtl_grp *tg)
0564 {
0565     if (!(tg->flags & THROTL_TG_PENDING)) {
0566         tg_service_queue_add(tg);
0567         tg->flags |= THROTL_TG_PENDING;
0568         tg->service_queue.parent_sq->nr_pending++;
0569     }
0570 }
0571 
0572 static void throtl_dequeue_tg(struct throtl_grp *tg)
0573 {
0574     if (tg->flags & THROTL_TG_PENDING) {
0575         throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
0576         tg->flags &= ~THROTL_TG_PENDING;
0577     }
0578 }
0579 
0580 /* Call with queue lock held */
0581 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
0582                       unsigned long expires)
0583 {
0584     unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
0585 
0586     /*
0587      * Since we are adjusting the throttle limit dynamically, the sleep
0588      * time calculated according to previous limit might be invalid. It's
0589      * possible the cgroup sleep time is very long and no other cgroups
0590      * have IO running so notify the limit changes. Make sure the cgroup
0591      * doesn't sleep too long to avoid the missed notification.
0592      */
0593     if (time_after(expires, max_expire))
0594         expires = max_expire;
0595     mod_timer(&sq->pending_timer, expires);
0596     throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
0597            expires - jiffies, jiffies);
0598 }
0599 
0600 /**
0601  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
0602  * @sq: the service_queue to schedule dispatch for
0603  * @force: force scheduling
0604  *
0605  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
0606  * dispatch time of the first pending child.  Returns %true if either timer
0607  * is armed or there's no pending child left.  %false if the current
0608  * dispatch window is still open and the caller should continue
0609  * dispatching.
0610  *
0611  * If @force is %true, the dispatch timer is always scheduled and this
0612  * function is guaranteed to return %true.  This is to be used when the
0613  * caller can't dispatch itself and needs to invoke pending_timer
0614  * unconditionally.  Note that forced scheduling is likely to induce short
0615  * delay before dispatch starts even if @sq->first_pending_disptime is not
0616  * in the future and thus shouldn't be used in hot paths.
0617  */
0618 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
0619                       bool force)
0620 {
0621     /* any pending children left? */
0622     if (!sq->nr_pending)
0623         return true;
0624 
0625     update_min_dispatch_time(sq);
0626 
0627     /* is the next dispatch time in the future? */
0628     if (force || time_after(sq->first_pending_disptime, jiffies)) {
0629         throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
0630         return true;
0631     }
0632 
0633     /* tell the caller to continue dispatching */
0634     return false;
0635 }
0636 
0637 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
0638         bool rw, unsigned long start)
0639 {
0640     tg->bytes_disp[rw] = 0;
0641     tg->io_disp[rw] = 0;
0642 
0643     /*
0644      * Previous slice has expired. We must have trimmed it after last
0645      * bio dispatch. That means since start of last slice, we never used
0646      * that bandwidth. Do try to make use of that bandwidth while giving
0647      * credit.
0648      */
0649     if (time_after_eq(start, tg->slice_start[rw]))
0650         tg->slice_start[rw] = start;
0651 
0652     tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
0653     throtl_log(&tg->service_queue,
0654            "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
0655            rw == READ ? 'R' : 'W', tg->slice_start[rw],
0656            tg->slice_end[rw], jiffies);
0657 }
0658 
0659 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
0660 {
0661     tg->bytes_disp[rw] = 0;
0662     tg->io_disp[rw] = 0;
0663     tg->slice_start[rw] = jiffies;
0664     tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
0665 
0666     throtl_log(&tg->service_queue,
0667            "[%c] new slice start=%lu end=%lu jiffies=%lu",
0668            rw == READ ? 'R' : 'W', tg->slice_start[rw],
0669            tg->slice_end[rw], jiffies);
0670 }
0671 
0672 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
0673                     unsigned long jiffy_end)
0674 {
0675     tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
0676 }
0677 
0678 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
0679                        unsigned long jiffy_end)
0680 {
0681     throtl_set_slice_end(tg, rw, jiffy_end);
0682     throtl_log(&tg->service_queue,
0683            "[%c] extend slice start=%lu end=%lu jiffies=%lu",
0684            rw == READ ? 'R' : 'W', tg->slice_start[rw],
0685            tg->slice_end[rw], jiffies);
0686 }
0687 
0688 /* Determine if previously allocated or extended slice is complete or not */
0689 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
0690 {
0691     if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
0692         return false;
0693 
0694     return true;
0695 }
0696 
0697 /* Trim the used slices and adjust slice start accordingly */
0698 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
0699 {
0700     unsigned long nr_slices, time_elapsed, io_trim;
0701     u64 bytes_trim, tmp;
0702 
0703     BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
0704 
0705     /*
0706      * If bps are unlimited (-1), then time slice don't get
0707      * renewed. Don't try to trim the slice if slice is used. A new
0708      * slice will start when appropriate.
0709      */
0710     if (throtl_slice_used(tg, rw))
0711         return;
0712 
0713     /*
0714      * A bio has been dispatched. Also adjust slice_end. It might happen
0715      * that initially cgroup limit was very low resulting in high
0716      * slice_end, but later limit was bumped up and bio was dispatched
0717      * sooner, then we need to reduce slice_end. A high bogus slice_end
0718      * is bad because it does not allow new slice to start.
0719      */
0720 
0721     throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
0722 
0723     time_elapsed = jiffies - tg->slice_start[rw];
0724 
0725     nr_slices = time_elapsed / tg->td->throtl_slice;
0726 
0727     if (!nr_slices)
0728         return;
0729     tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
0730     do_div(tmp, HZ);
0731     bytes_trim = tmp;
0732 
0733     io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
0734         HZ;
0735 
0736     if (!bytes_trim && !io_trim)
0737         return;
0738 
0739     if (tg->bytes_disp[rw] >= bytes_trim)
0740         tg->bytes_disp[rw] -= bytes_trim;
0741     else
0742         tg->bytes_disp[rw] = 0;
0743 
0744     if (tg->io_disp[rw] >= io_trim)
0745         tg->io_disp[rw] -= io_trim;
0746     else
0747         tg->io_disp[rw] = 0;
0748 
0749     tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
0750 
0751     throtl_log(&tg->service_queue,
0752            "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
0753            rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
0754            tg->slice_start[rw], tg->slice_end[rw], jiffies);
0755 }
0756 
0757 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
0758                   u32 iops_limit, unsigned long *wait)
0759 {
0760     bool rw = bio_data_dir(bio);
0761     unsigned int io_allowed;
0762     unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
0763     u64 tmp;
0764 
0765     if (iops_limit == UINT_MAX) {
0766         if (wait)
0767             *wait = 0;
0768         return true;
0769     }
0770 
0771     jiffy_elapsed = jiffies - tg->slice_start[rw];
0772 
0773     /* Round up to the next throttle slice, wait time must be nonzero */
0774     jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
0775 
0776     /*
0777      * jiffy_elapsed_rnd should not be a big value as minimum iops can be
0778      * 1 then at max jiffy elapsed should be equivalent of 1 second as we
0779      * will allow dispatch after 1 second and after that slice should
0780      * have been trimmed.
0781      */
0782 
0783     tmp = (u64)iops_limit * jiffy_elapsed_rnd;
0784     do_div(tmp, HZ);
0785 
0786     if (tmp > UINT_MAX)
0787         io_allowed = UINT_MAX;
0788     else
0789         io_allowed = tmp;
0790 
0791     if (tg->io_disp[rw] + 1 <= io_allowed) {
0792         if (wait)
0793             *wait = 0;
0794         return true;
0795     }
0796 
0797     /* Calc approx time to dispatch */
0798     jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
0799 
0800     if (wait)
0801         *wait = jiffy_wait;
0802     return false;
0803 }
0804 
0805 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
0806                  u64 bps_limit, unsigned long *wait)
0807 {
0808     bool rw = bio_data_dir(bio);
0809     u64 bytes_allowed, extra_bytes, tmp;
0810     unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
0811     unsigned int bio_size = throtl_bio_data_size(bio);
0812 
0813     /* no need to throttle if this bio's bytes have been accounted */
0814     if (bps_limit == U64_MAX || bio_flagged(bio, BIO_THROTTLED)) {
0815         if (wait)
0816             *wait = 0;
0817         return true;
0818     }
0819 
0820     jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
0821 
0822     /* Slice has just started. Consider one slice interval */
0823     if (!jiffy_elapsed)
0824         jiffy_elapsed_rnd = tg->td->throtl_slice;
0825 
0826     jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
0827 
0828     tmp = bps_limit * jiffy_elapsed_rnd;
0829     do_div(tmp, HZ);
0830     bytes_allowed = tmp;
0831 
0832     if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
0833         if (wait)
0834             *wait = 0;
0835         return true;
0836     }
0837 
0838     /* Calc approx time to dispatch */
0839     extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
0840     jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
0841 
0842     if (!jiffy_wait)
0843         jiffy_wait = 1;
0844 
0845     /*
0846      * This wait time is without taking into consideration the rounding
0847      * up we did. Add that time also.
0848      */
0849     jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
0850     if (wait)
0851         *wait = jiffy_wait;
0852     return false;
0853 }
0854 
0855 /*
0856  * Returns whether one can dispatch a bio or not. Also returns approx number
0857  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
0858  */
0859 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
0860                 unsigned long *wait)
0861 {
0862     bool rw = bio_data_dir(bio);
0863     unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
0864     u64 bps_limit = tg_bps_limit(tg, rw);
0865     u32 iops_limit = tg_iops_limit(tg, rw);
0866 
0867     /*
0868      * Currently whole state machine of group depends on first bio
0869      * queued in the group bio list. So one should not be calling
0870      * this function with a different bio if there are other bios
0871      * queued.
0872      */
0873     BUG_ON(tg->service_queue.nr_queued[rw] &&
0874            bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
0875 
0876     /* If tg->bps = -1, then BW is unlimited */
0877     if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
0878         tg->flags & THROTL_TG_CANCELING) {
0879         if (wait)
0880             *wait = 0;
0881         return true;
0882     }
0883 
0884     /*
0885      * If previous slice expired, start a new one otherwise renew/extend
0886      * existing slice to make sure it is at least throtl_slice interval
0887      * long since now. New slice is started only for empty throttle group.
0888      * If there is queued bio, that means there should be an active
0889      * slice and it should be extended instead.
0890      */
0891     if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0892         throtl_start_new_slice(tg, rw);
0893     else {
0894         if (time_before(tg->slice_end[rw],
0895             jiffies + tg->td->throtl_slice))
0896             throtl_extend_slice(tg, rw,
0897                 jiffies + tg->td->throtl_slice);
0898     }
0899 
0900     if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
0901         tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
0902         if (wait)
0903             *wait = 0;
0904         return true;
0905     }
0906 
0907     max_wait = max(bps_wait, iops_wait);
0908 
0909     if (wait)
0910         *wait = max_wait;
0911 
0912     if (time_before(tg->slice_end[rw], jiffies + max_wait))
0913         throtl_extend_slice(tg, rw, jiffies + max_wait);
0914 
0915     return false;
0916 }
0917 
0918 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
0919 {
0920     bool rw = bio_data_dir(bio);
0921     unsigned int bio_size = throtl_bio_data_size(bio);
0922 
0923     /* Charge the bio to the group */
0924     if (!bio_flagged(bio, BIO_THROTTLED)) {
0925         tg->bytes_disp[rw] += bio_size;
0926         tg->last_bytes_disp[rw] += bio_size;
0927     }
0928 
0929     tg->io_disp[rw]++;
0930     tg->last_io_disp[rw]++;
0931 
0932     /*
0933      * BIO_THROTTLED is used to prevent the same bio to be throttled
0934      * more than once as a throttled bio will go through blk-throtl the
0935      * second time when it eventually gets issued.  Set it when a bio
0936      * is being charged to a tg.
0937      */
0938     if (!bio_flagged(bio, BIO_THROTTLED))
0939         bio_set_flag(bio, BIO_THROTTLED);
0940 }
0941 
0942 /**
0943  * throtl_add_bio_tg - add a bio to the specified throtl_grp
0944  * @bio: bio to add
0945  * @qn: qnode to use
0946  * @tg: the target throtl_grp
0947  *
0948  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
0949  * tg->qnode_on_self[] is used.
0950  */
0951 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
0952                   struct throtl_grp *tg)
0953 {
0954     struct throtl_service_queue *sq = &tg->service_queue;
0955     bool rw = bio_data_dir(bio);
0956 
0957     if (!qn)
0958         qn = &tg->qnode_on_self[rw];
0959 
0960     /*
0961      * If @tg doesn't currently have any bios queued in the same
0962      * direction, queueing @bio can change when @tg should be
0963      * dispatched.  Mark that @tg was empty.  This is automatically
0964      * cleared on the next tg_update_disptime().
0965      */
0966     if (!sq->nr_queued[rw])
0967         tg->flags |= THROTL_TG_WAS_EMPTY;
0968 
0969     throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
0970 
0971     sq->nr_queued[rw]++;
0972     throtl_enqueue_tg(tg);
0973 }
0974 
0975 static void tg_update_disptime(struct throtl_grp *tg)
0976 {
0977     struct throtl_service_queue *sq = &tg->service_queue;
0978     unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
0979     struct bio *bio;
0980 
0981     bio = throtl_peek_queued(&sq->queued[READ]);
0982     if (bio)
0983         tg_may_dispatch(tg, bio, &read_wait);
0984 
0985     bio = throtl_peek_queued(&sq->queued[WRITE]);
0986     if (bio)
0987         tg_may_dispatch(tg, bio, &write_wait);
0988 
0989     min_wait = min(read_wait, write_wait);
0990     disptime = jiffies + min_wait;
0991 
0992     /* Update dispatch time */
0993     throtl_dequeue_tg(tg);
0994     tg->disptime = disptime;
0995     throtl_enqueue_tg(tg);
0996 
0997     /* see throtl_add_bio_tg() */
0998     tg->flags &= ~THROTL_TG_WAS_EMPTY;
0999 }
1000 
1001 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1002                     struct throtl_grp *parent_tg, bool rw)
1003 {
1004     if (throtl_slice_used(parent_tg, rw)) {
1005         throtl_start_new_slice_with_credit(parent_tg, rw,
1006                 child_tg->slice_start[rw]);
1007     }
1008 
1009 }
1010 
1011 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1012 {
1013     struct throtl_service_queue *sq = &tg->service_queue;
1014     struct throtl_service_queue *parent_sq = sq->parent_sq;
1015     struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1016     struct throtl_grp *tg_to_put = NULL;
1017     struct bio *bio;
1018 
1019     /*
1020      * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1021      * from @tg may put its reference and @parent_sq might end up
1022      * getting released prematurely.  Remember the tg to put and put it
1023      * after @bio is transferred to @parent_sq.
1024      */
1025     bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1026     sq->nr_queued[rw]--;
1027 
1028     throtl_charge_bio(tg, bio);
1029 
1030     /*
1031      * If our parent is another tg, we just need to transfer @bio to
1032      * the parent using throtl_add_bio_tg().  If our parent is
1033      * @td->service_queue, @bio is ready to be issued.  Put it on its
1034      * bio_lists[] and decrease total number queued.  The caller is
1035      * responsible for issuing these bios.
1036      */
1037     if (parent_tg) {
1038         throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1039         start_parent_slice_with_credit(tg, parent_tg, rw);
1040     } else {
1041         throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1042                      &parent_sq->queued[rw]);
1043         BUG_ON(tg->td->nr_queued[rw] <= 0);
1044         tg->td->nr_queued[rw]--;
1045     }
1046 
1047     throtl_trim_slice(tg, rw);
1048 
1049     if (tg_to_put)
1050         blkg_put(tg_to_blkg(tg_to_put));
1051 }
1052 
1053 static int throtl_dispatch_tg(struct throtl_grp *tg)
1054 {
1055     struct throtl_service_queue *sq = &tg->service_queue;
1056     unsigned int nr_reads = 0, nr_writes = 0;
1057     unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1058     unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1059     struct bio *bio;
1060 
1061     /* Try to dispatch 75% READS and 25% WRITES */
1062 
1063     while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1064            tg_may_dispatch(tg, bio, NULL)) {
1065 
1066         tg_dispatch_one_bio(tg, bio_data_dir(bio));
1067         nr_reads++;
1068 
1069         if (nr_reads >= max_nr_reads)
1070             break;
1071     }
1072 
1073     while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1074            tg_may_dispatch(tg, bio, NULL)) {
1075 
1076         tg_dispatch_one_bio(tg, bio_data_dir(bio));
1077         nr_writes++;
1078 
1079         if (nr_writes >= max_nr_writes)
1080             break;
1081     }
1082 
1083     return nr_reads + nr_writes;
1084 }
1085 
1086 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1087 {
1088     unsigned int nr_disp = 0;
1089 
1090     while (1) {
1091         struct throtl_grp *tg;
1092         struct throtl_service_queue *sq;
1093 
1094         if (!parent_sq->nr_pending)
1095             break;
1096 
1097         tg = throtl_rb_first(parent_sq);
1098         if (!tg)
1099             break;
1100 
1101         if (time_before(jiffies, tg->disptime))
1102             break;
1103 
1104         throtl_dequeue_tg(tg);
1105 
1106         nr_disp += throtl_dispatch_tg(tg);
1107 
1108         sq = &tg->service_queue;
1109         if (sq->nr_queued[0] || sq->nr_queued[1])
1110             tg_update_disptime(tg);
1111 
1112         if (nr_disp >= THROTL_QUANTUM)
1113             break;
1114     }
1115 
1116     return nr_disp;
1117 }
1118 
1119 static bool throtl_can_upgrade(struct throtl_data *td,
1120     struct throtl_grp *this_tg);
1121 /**
1122  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1123  * @t: the pending_timer member of the throtl_service_queue being serviced
1124  *
1125  * This timer is armed when a child throtl_grp with active bio's become
1126  * pending and queued on the service_queue's pending_tree and expires when
1127  * the first child throtl_grp should be dispatched.  This function
1128  * dispatches bio's from the children throtl_grps to the parent
1129  * service_queue.
1130  *
1131  * If the parent's parent is another throtl_grp, dispatching is propagated
1132  * by either arming its pending_timer or repeating dispatch directly.  If
1133  * the top-level service_tree is reached, throtl_data->dispatch_work is
1134  * kicked so that the ready bio's are issued.
1135  */
1136 static void throtl_pending_timer_fn(struct timer_list *t)
1137 {
1138     struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1139     struct throtl_grp *tg = sq_to_tg(sq);
1140     struct throtl_data *td = sq_to_td(sq);
1141     struct throtl_service_queue *parent_sq;
1142     struct request_queue *q;
1143     bool dispatched;
1144     int ret;
1145 
1146     /* throtl_data may be gone, so figure out request queue by blkg */
1147     if (tg)
1148         q = tg->pd.blkg->q;
1149     else
1150         q = td->queue;
1151 
1152     spin_lock_irq(&q->queue_lock);
1153 
1154     if (!q->root_blkg)
1155         goto out_unlock;
1156 
1157     if (throtl_can_upgrade(td, NULL))
1158         throtl_upgrade_state(td);
1159 
1160 again:
1161     parent_sq = sq->parent_sq;
1162     dispatched = false;
1163 
1164     while (true) {
1165         throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1166                sq->nr_queued[READ] + sq->nr_queued[WRITE],
1167                sq->nr_queued[READ], sq->nr_queued[WRITE]);
1168 
1169         ret = throtl_select_dispatch(sq);
1170         if (ret) {
1171             throtl_log(sq, "bios disp=%u", ret);
1172             dispatched = true;
1173         }
1174 
1175         if (throtl_schedule_next_dispatch(sq, false))
1176             break;
1177 
1178         /* this dispatch windows is still open, relax and repeat */
1179         spin_unlock_irq(&q->queue_lock);
1180         cpu_relax();
1181         spin_lock_irq(&q->queue_lock);
1182     }
1183 
1184     if (!dispatched)
1185         goto out_unlock;
1186 
1187     if (parent_sq) {
1188         /* @parent_sq is another throl_grp, propagate dispatch */
1189         if (tg->flags & THROTL_TG_WAS_EMPTY) {
1190             tg_update_disptime(tg);
1191             if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1192                 /* window is already open, repeat dispatching */
1193                 sq = parent_sq;
1194                 tg = sq_to_tg(sq);
1195                 goto again;
1196             }
1197         }
1198     } else {
1199         /* reached the top-level, queue issuing */
1200         queue_work(kthrotld_workqueue, &td->dispatch_work);
1201     }
1202 out_unlock:
1203     spin_unlock_irq(&q->queue_lock);
1204 }
1205 
1206 /**
1207  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1208  * @work: work item being executed
1209  *
1210  * This function is queued for execution when bios reach the bio_lists[]
1211  * of throtl_data->service_queue.  Those bios are ready and issued by this
1212  * function.
1213  */
1214 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1215 {
1216     struct throtl_data *td = container_of(work, struct throtl_data,
1217                           dispatch_work);
1218     struct throtl_service_queue *td_sq = &td->service_queue;
1219     struct request_queue *q = td->queue;
1220     struct bio_list bio_list_on_stack;
1221     struct bio *bio;
1222     struct blk_plug plug;
1223     int rw;
1224 
1225     bio_list_init(&bio_list_on_stack);
1226 
1227     spin_lock_irq(&q->queue_lock);
1228     for (rw = READ; rw <= WRITE; rw++)
1229         while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1230             bio_list_add(&bio_list_on_stack, bio);
1231     spin_unlock_irq(&q->queue_lock);
1232 
1233     if (!bio_list_empty(&bio_list_on_stack)) {
1234         blk_start_plug(&plug);
1235         while ((bio = bio_list_pop(&bio_list_on_stack)))
1236             submit_bio_noacct_nocheck(bio);
1237         blk_finish_plug(&plug);
1238     }
1239 }
1240 
1241 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1242                   int off)
1243 {
1244     struct throtl_grp *tg = pd_to_tg(pd);
1245     u64 v = *(u64 *)((void *)tg + off);
1246 
1247     if (v == U64_MAX)
1248         return 0;
1249     return __blkg_prfill_u64(sf, pd, v);
1250 }
1251 
1252 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1253                    int off)
1254 {
1255     struct throtl_grp *tg = pd_to_tg(pd);
1256     unsigned int v = *(unsigned int *)((void *)tg + off);
1257 
1258     if (v == UINT_MAX)
1259         return 0;
1260     return __blkg_prfill_u64(sf, pd, v);
1261 }
1262 
1263 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1264 {
1265     blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1266               &blkcg_policy_throtl, seq_cft(sf)->private, false);
1267     return 0;
1268 }
1269 
1270 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1271 {
1272     blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1273               &blkcg_policy_throtl, seq_cft(sf)->private, false);
1274     return 0;
1275 }
1276 
1277 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1278 {
1279     struct throtl_service_queue *sq = &tg->service_queue;
1280     struct cgroup_subsys_state *pos_css;
1281     struct blkcg_gq *blkg;
1282 
1283     throtl_log(&tg->service_queue,
1284            "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1285            tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1286            tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1287 
1288     /*
1289      * Update has_rules[] flags for the updated tg's subtree.  A tg is
1290      * considered to have rules if either the tg itself or any of its
1291      * ancestors has rules.  This identifies groups without any
1292      * restrictions in the whole hierarchy and allows them to bypass
1293      * blk-throttle.
1294      */
1295     blkg_for_each_descendant_pre(blkg, pos_css,
1296             global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1297         struct throtl_grp *this_tg = blkg_to_tg(blkg);
1298         struct throtl_grp *parent_tg;
1299 
1300         tg_update_has_rules(this_tg);
1301         /* ignore root/second level */
1302         if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1303             !blkg->parent->parent)
1304             continue;
1305         parent_tg = blkg_to_tg(blkg->parent);
1306         /*
1307          * make sure all children has lower idle time threshold and
1308          * higher latency target
1309          */
1310         this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1311                 parent_tg->idletime_threshold);
1312         this_tg->latency_target = max(this_tg->latency_target,
1313                 parent_tg->latency_target);
1314     }
1315 
1316     /*
1317      * We're already holding queue_lock and know @tg is valid.  Let's
1318      * apply the new config directly.
1319      *
1320      * Restart the slices for both READ and WRITES. It might happen
1321      * that a group's limit are dropped suddenly and we don't want to
1322      * account recently dispatched IO with new low rate.
1323      */
1324     throtl_start_new_slice(tg, READ);
1325     throtl_start_new_slice(tg, WRITE);
1326 
1327     if (tg->flags & THROTL_TG_PENDING) {
1328         tg_update_disptime(tg);
1329         throtl_schedule_next_dispatch(sq->parent_sq, true);
1330     }
1331 }
1332 
1333 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1334                char *buf, size_t nbytes, loff_t off, bool is_u64)
1335 {
1336     struct blkcg *blkcg = css_to_blkcg(of_css(of));
1337     struct blkg_conf_ctx ctx;
1338     struct throtl_grp *tg;
1339     int ret;
1340     u64 v;
1341 
1342     ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1343     if (ret)
1344         return ret;
1345 
1346     ret = -EINVAL;
1347     if (sscanf(ctx.body, "%llu", &v) != 1)
1348         goto out_finish;
1349     if (!v)
1350         v = U64_MAX;
1351 
1352     tg = blkg_to_tg(ctx.blkg);
1353 
1354     if (is_u64)
1355         *(u64 *)((void *)tg + of_cft(of)->private) = v;
1356     else
1357         *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1358 
1359     tg_conf_updated(tg, false);
1360     ret = 0;
1361 out_finish:
1362     blkg_conf_finish(&ctx);
1363     return ret ?: nbytes;
1364 }
1365 
1366 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1367                    char *buf, size_t nbytes, loff_t off)
1368 {
1369     return tg_set_conf(of, buf, nbytes, off, true);
1370 }
1371 
1372 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1373                 char *buf, size_t nbytes, loff_t off)
1374 {
1375     return tg_set_conf(of, buf, nbytes, off, false);
1376 }
1377 
1378 static int tg_print_rwstat(struct seq_file *sf, void *v)
1379 {
1380     blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1381               blkg_prfill_rwstat, &blkcg_policy_throtl,
1382               seq_cft(sf)->private, true);
1383     return 0;
1384 }
1385 
1386 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1387                       struct blkg_policy_data *pd, int off)
1388 {
1389     struct blkg_rwstat_sample sum;
1390 
1391     blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1392                   &sum);
1393     return __blkg_prfill_rwstat(sf, pd, &sum);
1394 }
1395 
1396 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1397 {
1398     blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1399               tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1400               seq_cft(sf)->private, true);
1401     return 0;
1402 }
1403 
1404 static struct cftype throtl_legacy_files[] = {
1405     {
1406         .name = "throttle.read_bps_device",
1407         .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1408         .seq_show = tg_print_conf_u64,
1409         .write = tg_set_conf_u64,
1410     },
1411     {
1412         .name = "throttle.write_bps_device",
1413         .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1414         .seq_show = tg_print_conf_u64,
1415         .write = tg_set_conf_u64,
1416     },
1417     {
1418         .name = "throttle.read_iops_device",
1419         .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1420         .seq_show = tg_print_conf_uint,
1421         .write = tg_set_conf_uint,
1422     },
1423     {
1424         .name = "throttle.write_iops_device",
1425         .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1426         .seq_show = tg_print_conf_uint,
1427         .write = tg_set_conf_uint,
1428     },
1429     {
1430         .name = "throttle.io_service_bytes",
1431         .private = offsetof(struct throtl_grp, stat_bytes),
1432         .seq_show = tg_print_rwstat,
1433     },
1434     {
1435         .name = "throttle.io_service_bytes_recursive",
1436         .private = offsetof(struct throtl_grp, stat_bytes),
1437         .seq_show = tg_print_rwstat_recursive,
1438     },
1439     {
1440         .name = "throttle.io_serviced",
1441         .private = offsetof(struct throtl_grp, stat_ios),
1442         .seq_show = tg_print_rwstat,
1443     },
1444     {
1445         .name = "throttle.io_serviced_recursive",
1446         .private = offsetof(struct throtl_grp, stat_ios),
1447         .seq_show = tg_print_rwstat_recursive,
1448     },
1449     { } /* terminate */
1450 };
1451 
1452 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1453              int off)
1454 {
1455     struct throtl_grp *tg = pd_to_tg(pd);
1456     const char *dname = blkg_dev_name(pd->blkg);
1457     char bufs[4][21] = { "max", "max", "max", "max" };
1458     u64 bps_dft;
1459     unsigned int iops_dft;
1460     char idle_time[26] = "";
1461     char latency_time[26] = "";
1462 
1463     if (!dname)
1464         return 0;
1465 
1466     if (off == LIMIT_LOW) {
1467         bps_dft = 0;
1468         iops_dft = 0;
1469     } else {
1470         bps_dft = U64_MAX;
1471         iops_dft = UINT_MAX;
1472     }
1473 
1474     if (tg->bps_conf[READ][off] == bps_dft &&
1475         tg->bps_conf[WRITE][off] == bps_dft &&
1476         tg->iops_conf[READ][off] == iops_dft &&
1477         tg->iops_conf[WRITE][off] == iops_dft &&
1478         (off != LIMIT_LOW ||
1479          (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1480           tg->latency_target_conf == DFL_LATENCY_TARGET)))
1481         return 0;
1482 
1483     if (tg->bps_conf[READ][off] != U64_MAX)
1484         snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1485             tg->bps_conf[READ][off]);
1486     if (tg->bps_conf[WRITE][off] != U64_MAX)
1487         snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1488             tg->bps_conf[WRITE][off]);
1489     if (tg->iops_conf[READ][off] != UINT_MAX)
1490         snprintf(bufs[2], sizeof(bufs[2]), "%u",
1491             tg->iops_conf[READ][off]);
1492     if (tg->iops_conf[WRITE][off] != UINT_MAX)
1493         snprintf(bufs[3], sizeof(bufs[3]), "%u",
1494             tg->iops_conf[WRITE][off]);
1495     if (off == LIMIT_LOW) {
1496         if (tg->idletime_threshold_conf == ULONG_MAX)
1497             strcpy(idle_time, " idle=max");
1498         else
1499             snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1500                 tg->idletime_threshold_conf);
1501 
1502         if (tg->latency_target_conf == ULONG_MAX)
1503             strcpy(latency_time, " latency=max");
1504         else
1505             snprintf(latency_time, sizeof(latency_time),
1506                 " latency=%lu", tg->latency_target_conf);
1507     }
1508 
1509     seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1510            dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1511            latency_time);
1512     return 0;
1513 }
1514 
1515 static int tg_print_limit(struct seq_file *sf, void *v)
1516 {
1517     blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1518               &blkcg_policy_throtl, seq_cft(sf)->private, false);
1519     return 0;
1520 }
1521 
1522 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1523               char *buf, size_t nbytes, loff_t off)
1524 {
1525     struct blkcg *blkcg = css_to_blkcg(of_css(of));
1526     struct blkg_conf_ctx ctx;
1527     struct throtl_grp *tg;
1528     u64 v[4];
1529     unsigned long idle_time;
1530     unsigned long latency_time;
1531     int ret;
1532     int index = of_cft(of)->private;
1533 
1534     ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1535     if (ret)
1536         return ret;
1537 
1538     tg = blkg_to_tg(ctx.blkg);
1539 
1540     v[0] = tg->bps_conf[READ][index];
1541     v[1] = tg->bps_conf[WRITE][index];
1542     v[2] = tg->iops_conf[READ][index];
1543     v[3] = tg->iops_conf[WRITE][index];
1544 
1545     idle_time = tg->idletime_threshold_conf;
1546     latency_time = tg->latency_target_conf;
1547     while (true) {
1548         char tok[27];   /* wiops=18446744073709551616 */
1549         char *p;
1550         u64 val = U64_MAX;
1551         int len;
1552 
1553         if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1554             break;
1555         if (tok[0] == '\0')
1556             break;
1557         ctx.body += len;
1558 
1559         ret = -EINVAL;
1560         p = tok;
1561         strsep(&p, "=");
1562         if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1563             goto out_finish;
1564 
1565         ret = -ERANGE;
1566         if (!val)
1567             goto out_finish;
1568 
1569         ret = -EINVAL;
1570         if (!strcmp(tok, "rbps") && val > 1)
1571             v[0] = val;
1572         else if (!strcmp(tok, "wbps") && val > 1)
1573             v[1] = val;
1574         else if (!strcmp(tok, "riops") && val > 1)
1575             v[2] = min_t(u64, val, UINT_MAX);
1576         else if (!strcmp(tok, "wiops") && val > 1)
1577             v[3] = min_t(u64, val, UINT_MAX);
1578         else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1579             idle_time = val;
1580         else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1581             latency_time = val;
1582         else
1583             goto out_finish;
1584     }
1585 
1586     tg->bps_conf[READ][index] = v[0];
1587     tg->bps_conf[WRITE][index] = v[1];
1588     tg->iops_conf[READ][index] = v[2];
1589     tg->iops_conf[WRITE][index] = v[3];
1590 
1591     if (index == LIMIT_MAX) {
1592         tg->bps[READ][index] = v[0];
1593         tg->bps[WRITE][index] = v[1];
1594         tg->iops[READ][index] = v[2];
1595         tg->iops[WRITE][index] = v[3];
1596     }
1597     tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1598         tg->bps_conf[READ][LIMIT_MAX]);
1599     tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1600         tg->bps_conf[WRITE][LIMIT_MAX]);
1601     tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1602         tg->iops_conf[READ][LIMIT_MAX]);
1603     tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1604         tg->iops_conf[WRITE][LIMIT_MAX]);
1605     tg->idletime_threshold_conf = idle_time;
1606     tg->latency_target_conf = latency_time;
1607 
1608     /* force user to configure all settings for low limit  */
1609     if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1610           tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1611         tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1612         tg->latency_target_conf == DFL_LATENCY_TARGET) {
1613         tg->bps[READ][LIMIT_LOW] = 0;
1614         tg->bps[WRITE][LIMIT_LOW] = 0;
1615         tg->iops[READ][LIMIT_LOW] = 0;
1616         tg->iops[WRITE][LIMIT_LOW] = 0;
1617         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1618         tg->latency_target = DFL_LATENCY_TARGET;
1619     } else if (index == LIMIT_LOW) {
1620         tg->idletime_threshold = tg->idletime_threshold_conf;
1621         tg->latency_target = tg->latency_target_conf;
1622     }
1623 
1624     blk_throtl_update_limit_valid(tg->td);
1625     if (tg->td->limit_valid[LIMIT_LOW]) {
1626         if (index == LIMIT_LOW)
1627             tg->td->limit_index = LIMIT_LOW;
1628     } else
1629         tg->td->limit_index = LIMIT_MAX;
1630     tg_conf_updated(tg, index == LIMIT_LOW &&
1631         tg->td->limit_valid[LIMIT_LOW]);
1632     ret = 0;
1633 out_finish:
1634     blkg_conf_finish(&ctx);
1635     return ret ?: nbytes;
1636 }
1637 
1638 static struct cftype throtl_files[] = {
1639 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1640     {
1641         .name = "low",
1642         .flags = CFTYPE_NOT_ON_ROOT,
1643         .seq_show = tg_print_limit,
1644         .write = tg_set_limit,
1645         .private = LIMIT_LOW,
1646     },
1647 #endif
1648     {
1649         .name = "max",
1650         .flags = CFTYPE_NOT_ON_ROOT,
1651         .seq_show = tg_print_limit,
1652         .write = tg_set_limit,
1653         .private = LIMIT_MAX,
1654     },
1655     { } /* terminate */
1656 };
1657 
1658 static void throtl_shutdown_wq(struct request_queue *q)
1659 {
1660     struct throtl_data *td = q->td;
1661 
1662     cancel_work_sync(&td->dispatch_work);
1663 }
1664 
1665 struct blkcg_policy blkcg_policy_throtl = {
1666     .dfl_cftypes        = throtl_files,
1667     .legacy_cftypes     = throtl_legacy_files,
1668 
1669     .pd_alloc_fn        = throtl_pd_alloc,
1670     .pd_init_fn     = throtl_pd_init,
1671     .pd_online_fn       = throtl_pd_online,
1672     .pd_offline_fn      = throtl_pd_offline,
1673     .pd_free_fn     = throtl_pd_free,
1674 };
1675 
1676 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1677 {
1678     unsigned long rtime = jiffies, wtime = jiffies;
1679 
1680     if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1681         rtime = tg->last_low_overflow_time[READ];
1682     if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1683         wtime = tg->last_low_overflow_time[WRITE];
1684     return min(rtime, wtime);
1685 }
1686 
1687 /* tg should not be an intermediate node */
1688 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1689 {
1690     struct throtl_service_queue *parent_sq;
1691     struct throtl_grp *parent = tg;
1692     unsigned long ret = __tg_last_low_overflow_time(tg);
1693 
1694     while (true) {
1695         parent_sq = parent->service_queue.parent_sq;
1696         parent = sq_to_tg(parent_sq);
1697         if (!parent)
1698             break;
1699 
1700         /*
1701          * The parent doesn't have low limit, it always reaches low
1702          * limit. Its overflow time is useless for children
1703          */
1704         if (!parent->bps[READ][LIMIT_LOW] &&
1705             !parent->iops[READ][LIMIT_LOW] &&
1706             !parent->bps[WRITE][LIMIT_LOW] &&
1707             !parent->iops[WRITE][LIMIT_LOW])
1708             continue;
1709         if (time_after(__tg_last_low_overflow_time(parent), ret))
1710             ret = __tg_last_low_overflow_time(parent);
1711     }
1712     return ret;
1713 }
1714 
1715 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1716 {
1717     /*
1718      * cgroup is idle if:
1719      * - single idle is too long, longer than a fixed value (in case user
1720      *   configure a too big threshold) or 4 times of idletime threshold
1721      * - average think time is more than threshold
1722      * - IO latency is largely below threshold
1723      */
1724     unsigned long time;
1725     bool ret;
1726 
1727     time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1728     ret = tg->latency_target == DFL_LATENCY_TARGET ||
1729           tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1730           (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1731           tg->avg_idletime > tg->idletime_threshold ||
1732           (tg->latency_target && tg->bio_cnt &&
1733         tg->bad_bio_cnt * 5 < tg->bio_cnt);
1734     throtl_log(&tg->service_queue,
1735         "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1736         tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1737         tg->bio_cnt, ret, tg->td->scale);
1738     return ret;
1739 }
1740 
1741 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1742 {
1743     struct throtl_service_queue *sq = &tg->service_queue;
1744     bool read_limit, write_limit;
1745 
1746     /*
1747      * if cgroup reaches low limit (if low limit is 0, the cgroup always
1748      * reaches), it's ok to upgrade to next limit
1749      */
1750     read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1751     write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1752     if (!read_limit && !write_limit)
1753         return true;
1754     if (read_limit && sq->nr_queued[READ] &&
1755         (!write_limit || sq->nr_queued[WRITE]))
1756         return true;
1757     if (write_limit && sq->nr_queued[WRITE] &&
1758         (!read_limit || sq->nr_queued[READ]))
1759         return true;
1760 
1761     if (time_after_eq(jiffies,
1762         tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1763         throtl_tg_is_idle(tg))
1764         return true;
1765     return false;
1766 }
1767 
1768 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1769 {
1770     while (true) {
1771         if (throtl_tg_can_upgrade(tg))
1772             return true;
1773         tg = sq_to_tg(tg->service_queue.parent_sq);
1774         if (!tg || !tg_to_blkg(tg)->parent)
1775             return false;
1776     }
1777     return false;
1778 }
1779 
1780 void blk_throtl_cancel_bios(struct request_queue *q)
1781 {
1782     struct cgroup_subsys_state *pos_css;
1783     struct blkcg_gq *blkg;
1784 
1785     spin_lock_irq(&q->queue_lock);
1786     /*
1787      * queue_lock is held, rcu lock is not needed here technically.
1788      * However, rcu lock is still held to emphasize that following
1789      * path need RCU protection and to prevent warning from lockdep.
1790      */
1791     rcu_read_lock();
1792     blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1793         struct throtl_grp *tg = blkg_to_tg(blkg);
1794         struct throtl_service_queue *sq = &tg->service_queue;
1795 
1796         /*
1797          * Set the flag to make sure throtl_pending_timer_fn() won't
1798          * stop until all throttled bios are dispatched.
1799          */
1800         blkg_to_tg(blkg)->flags |= THROTL_TG_CANCELING;
1801         /*
1802          * Update disptime after setting the above flag to make sure
1803          * throtl_select_dispatch() won't exit without dispatching.
1804          */
1805         tg_update_disptime(tg);
1806 
1807         throtl_schedule_pending_timer(sq, jiffies + 1);
1808     }
1809     rcu_read_unlock();
1810     spin_unlock_irq(&q->queue_lock);
1811 }
1812 
1813 static bool throtl_can_upgrade(struct throtl_data *td,
1814     struct throtl_grp *this_tg)
1815 {
1816     struct cgroup_subsys_state *pos_css;
1817     struct blkcg_gq *blkg;
1818 
1819     if (td->limit_index != LIMIT_LOW)
1820         return false;
1821 
1822     if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1823         return false;
1824 
1825     rcu_read_lock();
1826     blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1827         struct throtl_grp *tg = blkg_to_tg(blkg);
1828 
1829         if (tg == this_tg)
1830             continue;
1831         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1832             continue;
1833         if (!throtl_hierarchy_can_upgrade(tg)) {
1834             rcu_read_unlock();
1835             return false;
1836         }
1837     }
1838     rcu_read_unlock();
1839     return true;
1840 }
1841 
1842 static void throtl_upgrade_check(struct throtl_grp *tg)
1843 {
1844     unsigned long now = jiffies;
1845 
1846     if (tg->td->limit_index != LIMIT_LOW)
1847         return;
1848 
1849     if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1850         return;
1851 
1852     tg->last_check_time = now;
1853 
1854     if (!time_after_eq(now,
1855          __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1856         return;
1857 
1858     if (throtl_can_upgrade(tg->td, NULL))
1859         throtl_upgrade_state(tg->td);
1860 }
1861 
1862 static void throtl_upgrade_state(struct throtl_data *td)
1863 {
1864     struct cgroup_subsys_state *pos_css;
1865     struct blkcg_gq *blkg;
1866 
1867     throtl_log(&td->service_queue, "upgrade to max");
1868     td->limit_index = LIMIT_MAX;
1869     td->low_upgrade_time = jiffies;
1870     td->scale = 0;
1871     rcu_read_lock();
1872     blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1873         struct throtl_grp *tg = blkg_to_tg(blkg);
1874         struct throtl_service_queue *sq = &tg->service_queue;
1875 
1876         tg->disptime = jiffies - 1;
1877         throtl_select_dispatch(sq);
1878         throtl_schedule_next_dispatch(sq, true);
1879     }
1880     rcu_read_unlock();
1881     throtl_select_dispatch(&td->service_queue);
1882     throtl_schedule_next_dispatch(&td->service_queue, true);
1883     queue_work(kthrotld_workqueue, &td->dispatch_work);
1884 }
1885 
1886 static void throtl_downgrade_state(struct throtl_data *td)
1887 {
1888     td->scale /= 2;
1889 
1890     throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1891     if (td->scale) {
1892         td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1893         return;
1894     }
1895 
1896     td->limit_index = LIMIT_LOW;
1897     td->low_downgrade_time = jiffies;
1898 }
1899 
1900 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1901 {
1902     struct throtl_data *td = tg->td;
1903     unsigned long now = jiffies;
1904 
1905     /*
1906      * If cgroup is below low limit, consider downgrade and throttle other
1907      * cgroups
1908      */
1909     if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1910         time_after_eq(now, tg_last_low_overflow_time(tg) +
1911                     td->throtl_slice) &&
1912         (!throtl_tg_is_idle(tg) ||
1913          !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1914         return true;
1915     return false;
1916 }
1917 
1918 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1919 {
1920     while (true) {
1921         if (!throtl_tg_can_downgrade(tg))
1922             return false;
1923         tg = sq_to_tg(tg->service_queue.parent_sq);
1924         if (!tg || !tg_to_blkg(tg)->parent)
1925             break;
1926     }
1927     return true;
1928 }
1929 
1930 static void throtl_downgrade_check(struct throtl_grp *tg)
1931 {
1932     uint64_t bps;
1933     unsigned int iops;
1934     unsigned long elapsed_time;
1935     unsigned long now = jiffies;
1936 
1937     if (tg->td->limit_index != LIMIT_MAX ||
1938         !tg->td->limit_valid[LIMIT_LOW])
1939         return;
1940     if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1941         return;
1942     if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1943         return;
1944 
1945     elapsed_time = now - tg->last_check_time;
1946     tg->last_check_time = now;
1947 
1948     if (time_before(now, tg_last_low_overflow_time(tg) +
1949             tg->td->throtl_slice))
1950         return;
1951 
1952     if (tg->bps[READ][LIMIT_LOW]) {
1953         bps = tg->last_bytes_disp[READ] * HZ;
1954         do_div(bps, elapsed_time);
1955         if (bps >= tg->bps[READ][LIMIT_LOW])
1956             tg->last_low_overflow_time[READ] = now;
1957     }
1958 
1959     if (tg->bps[WRITE][LIMIT_LOW]) {
1960         bps = tg->last_bytes_disp[WRITE] * HZ;
1961         do_div(bps, elapsed_time);
1962         if (bps >= tg->bps[WRITE][LIMIT_LOW])
1963             tg->last_low_overflow_time[WRITE] = now;
1964     }
1965 
1966     if (tg->iops[READ][LIMIT_LOW]) {
1967         iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1968         if (iops >= tg->iops[READ][LIMIT_LOW])
1969             tg->last_low_overflow_time[READ] = now;
1970     }
1971 
1972     if (tg->iops[WRITE][LIMIT_LOW]) {
1973         iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1974         if (iops >= tg->iops[WRITE][LIMIT_LOW])
1975             tg->last_low_overflow_time[WRITE] = now;
1976     }
1977 
1978     /*
1979      * If cgroup is below low limit, consider downgrade and throttle other
1980      * cgroups
1981      */
1982     if (throtl_hierarchy_can_downgrade(tg))
1983         throtl_downgrade_state(tg->td);
1984 
1985     tg->last_bytes_disp[READ] = 0;
1986     tg->last_bytes_disp[WRITE] = 0;
1987     tg->last_io_disp[READ] = 0;
1988     tg->last_io_disp[WRITE] = 0;
1989 }
1990 
1991 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1992 {
1993     unsigned long now;
1994     unsigned long last_finish_time = tg->last_finish_time;
1995 
1996     if (last_finish_time == 0)
1997         return;
1998 
1999     now = ktime_get_ns() >> 10;
2000     if (now <= last_finish_time ||
2001         last_finish_time == tg->checked_last_finish_time)
2002         return;
2003 
2004     tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2005     tg->checked_last_finish_time = last_finish_time;
2006 }
2007 
2008 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2009 static void throtl_update_latency_buckets(struct throtl_data *td)
2010 {
2011     struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2012     int i, cpu, rw;
2013     unsigned long last_latency[2] = { 0 };
2014     unsigned long latency[2];
2015 
2016     if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2017         return;
2018     if (time_before(jiffies, td->last_calculate_time + HZ))
2019         return;
2020     td->last_calculate_time = jiffies;
2021 
2022     memset(avg_latency, 0, sizeof(avg_latency));
2023     for (rw = READ; rw <= WRITE; rw++) {
2024         for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2025             struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2026 
2027             for_each_possible_cpu(cpu) {
2028                 struct latency_bucket *bucket;
2029 
2030                 /* this isn't race free, but ok in practice */
2031                 bucket = per_cpu_ptr(td->latency_buckets[rw],
2032                     cpu);
2033                 tmp->total_latency += bucket[i].total_latency;
2034                 tmp->samples += bucket[i].samples;
2035                 bucket[i].total_latency = 0;
2036                 bucket[i].samples = 0;
2037             }
2038 
2039             if (tmp->samples >= 32) {
2040                 int samples = tmp->samples;
2041 
2042                 latency[rw] = tmp->total_latency;
2043 
2044                 tmp->total_latency = 0;
2045                 tmp->samples = 0;
2046                 latency[rw] /= samples;
2047                 if (latency[rw] == 0)
2048                     continue;
2049                 avg_latency[rw][i].latency = latency[rw];
2050             }
2051         }
2052     }
2053 
2054     for (rw = READ; rw <= WRITE; rw++) {
2055         for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2056             if (!avg_latency[rw][i].latency) {
2057                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2058                     td->avg_buckets[rw][i].latency =
2059                         last_latency[rw];
2060                 continue;
2061             }
2062 
2063             if (!td->avg_buckets[rw][i].valid)
2064                 latency[rw] = avg_latency[rw][i].latency;
2065             else
2066                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2067                     avg_latency[rw][i].latency) >> 3;
2068 
2069             td->avg_buckets[rw][i].latency = max(latency[rw],
2070                 last_latency[rw]);
2071             td->avg_buckets[rw][i].valid = true;
2072             last_latency[rw] = td->avg_buckets[rw][i].latency;
2073         }
2074     }
2075 
2076     for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2077         throtl_log(&td->service_queue,
2078             "Latency bucket %d: read latency=%ld, read valid=%d, "
2079             "write latency=%ld, write valid=%d", i,
2080             td->avg_buckets[READ][i].latency,
2081             td->avg_buckets[READ][i].valid,
2082             td->avg_buckets[WRITE][i].latency,
2083             td->avg_buckets[WRITE][i].valid);
2084 }
2085 #else
2086 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2087 {
2088 }
2089 #endif
2090 
2091 bool __blk_throtl_bio(struct bio *bio)
2092 {
2093     struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2094     struct blkcg_gq *blkg = bio->bi_blkg;
2095     struct throtl_qnode *qn = NULL;
2096     struct throtl_grp *tg = blkg_to_tg(blkg);
2097     struct throtl_service_queue *sq;
2098     bool rw = bio_data_dir(bio);
2099     bool throttled = false;
2100     struct throtl_data *td = tg->td;
2101 
2102     rcu_read_lock();
2103 
2104     if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2105         blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2106                 bio->bi_iter.bi_size);
2107         blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2108     }
2109 
2110     spin_lock_irq(&q->queue_lock);
2111 
2112     throtl_update_latency_buckets(td);
2113 
2114     blk_throtl_update_idletime(tg);
2115 
2116     sq = &tg->service_queue;
2117 
2118 again:
2119     while (true) {
2120         if (tg->last_low_overflow_time[rw] == 0)
2121             tg->last_low_overflow_time[rw] = jiffies;
2122         throtl_downgrade_check(tg);
2123         throtl_upgrade_check(tg);
2124         /* throtl is FIFO - if bios are already queued, should queue */
2125         if (sq->nr_queued[rw])
2126             break;
2127 
2128         /* if above limits, break to queue */
2129         if (!tg_may_dispatch(tg, bio, NULL)) {
2130             tg->last_low_overflow_time[rw] = jiffies;
2131             if (throtl_can_upgrade(td, tg)) {
2132                 throtl_upgrade_state(td);
2133                 goto again;
2134             }
2135             break;
2136         }
2137 
2138         /* within limits, let's charge and dispatch directly */
2139         throtl_charge_bio(tg, bio);
2140 
2141         /*
2142          * We need to trim slice even when bios are not being queued
2143          * otherwise it might happen that a bio is not queued for
2144          * a long time and slice keeps on extending and trim is not
2145          * called for a long time. Now if limits are reduced suddenly
2146          * we take into account all the IO dispatched so far at new
2147          * low rate and * newly queued IO gets a really long dispatch
2148          * time.
2149          *
2150          * So keep on trimming slice even if bio is not queued.
2151          */
2152         throtl_trim_slice(tg, rw);
2153 
2154         /*
2155          * @bio passed through this layer without being throttled.
2156          * Climb up the ladder.  If we're already at the top, it
2157          * can be executed directly.
2158          */
2159         qn = &tg->qnode_on_parent[rw];
2160         sq = sq->parent_sq;
2161         tg = sq_to_tg(sq);
2162         if (!tg)
2163             goto out_unlock;
2164     }
2165 
2166     /* out-of-limit, queue to @tg */
2167     throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2168            rw == READ ? 'R' : 'W',
2169            tg->bytes_disp[rw], bio->bi_iter.bi_size,
2170            tg_bps_limit(tg, rw),
2171            tg->io_disp[rw], tg_iops_limit(tg, rw),
2172            sq->nr_queued[READ], sq->nr_queued[WRITE]);
2173 
2174     tg->last_low_overflow_time[rw] = jiffies;
2175 
2176     td->nr_queued[rw]++;
2177     throtl_add_bio_tg(bio, qn, tg);
2178     throttled = true;
2179 
2180     /*
2181      * Update @tg's dispatch time and force schedule dispatch if @tg
2182      * was empty before @bio.  The forced scheduling isn't likely to
2183      * cause undue delay as @bio is likely to be dispatched directly if
2184      * its @tg's disptime is not in the future.
2185      */
2186     if (tg->flags & THROTL_TG_WAS_EMPTY) {
2187         tg_update_disptime(tg);
2188         throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2189     }
2190 
2191 out_unlock:
2192     bio_set_flag(bio, BIO_THROTTLED);
2193 
2194 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2195     if (throttled || !td->track_bio_latency)
2196         bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2197 #endif
2198     spin_unlock_irq(&q->queue_lock);
2199 
2200     rcu_read_unlock();
2201     return throttled;
2202 }
2203 
2204 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2205 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2206                  enum req_op op, unsigned long time)
2207 {
2208     const bool rw = op_is_write(op);
2209     struct latency_bucket *latency;
2210     int index;
2211 
2212     if (!td || td->limit_index != LIMIT_LOW ||
2213         !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2214         !blk_queue_nonrot(td->queue))
2215         return;
2216 
2217     index = request_bucket_index(size);
2218 
2219     latency = get_cpu_ptr(td->latency_buckets[rw]);
2220     latency[index].total_latency += time;
2221     latency[index].samples++;
2222     put_cpu_ptr(td->latency_buckets[rw]);
2223 }
2224 
2225 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2226 {
2227     struct request_queue *q = rq->q;
2228     struct throtl_data *td = q->td;
2229 
2230     throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2231                  time_ns >> 10);
2232 }
2233 
2234 void blk_throtl_bio_endio(struct bio *bio)
2235 {
2236     struct blkcg_gq *blkg;
2237     struct throtl_grp *tg;
2238     u64 finish_time_ns;
2239     unsigned long finish_time;
2240     unsigned long start_time;
2241     unsigned long lat;
2242     int rw = bio_data_dir(bio);
2243 
2244     blkg = bio->bi_blkg;
2245     if (!blkg)
2246         return;
2247     tg = blkg_to_tg(blkg);
2248     if (!tg->td->limit_valid[LIMIT_LOW])
2249         return;
2250 
2251     finish_time_ns = ktime_get_ns();
2252     tg->last_finish_time = finish_time_ns >> 10;
2253 
2254     start_time = bio_issue_time(&bio->bi_issue) >> 10;
2255     finish_time = __bio_issue_time(finish_time_ns) >> 10;
2256     if (!start_time || finish_time <= start_time)
2257         return;
2258 
2259     lat = finish_time - start_time;
2260     /* this is only for bio based driver */
2261     if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2262         throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2263                      bio_op(bio), lat);
2264 
2265     if (tg->latency_target && lat >= tg->td->filtered_latency) {
2266         int bucket;
2267         unsigned int threshold;
2268 
2269         bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2270         threshold = tg->td->avg_buckets[rw][bucket].latency +
2271             tg->latency_target;
2272         if (lat > threshold)
2273             tg->bad_bio_cnt++;
2274         /*
2275          * Not race free, could get wrong count, which means cgroups
2276          * will be throttled
2277          */
2278         tg->bio_cnt++;
2279     }
2280 
2281     if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2282         tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2283         tg->bio_cnt /= 2;
2284         tg->bad_bio_cnt /= 2;
2285     }
2286 }
2287 #endif
2288 
2289 int blk_throtl_init(struct request_queue *q)
2290 {
2291     struct throtl_data *td;
2292     int ret;
2293 
2294     td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2295     if (!td)
2296         return -ENOMEM;
2297     td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2298         LATENCY_BUCKET_SIZE, __alignof__(u64));
2299     if (!td->latency_buckets[READ]) {
2300         kfree(td);
2301         return -ENOMEM;
2302     }
2303     td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2304         LATENCY_BUCKET_SIZE, __alignof__(u64));
2305     if (!td->latency_buckets[WRITE]) {
2306         free_percpu(td->latency_buckets[READ]);
2307         kfree(td);
2308         return -ENOMEM;
2309     }
2310 
2311     INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2312     throtl_service_queue_init(&td->service_queue);
2313 
2314     q->td = td;
2315     td->queue = q;
2316 
2317     td->limit_valid[LIMIT_MAX] = true;
2318     td->limit_index = LIMIT_MAX;
2319     td->low_upgrade_time = jiffies;
2320     td->low_downgrade_time = jiffies;
2321 
2322     /* activate policy */
2323     ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2324     if (ret) {
2325         free_percpu(td->latency_buckets[READ]);
2326         free_percpu(td->latency_buckets[WRITE]);
2327         kfree(td);
2328     }
2329     return ret;
2330 }
2331 
2332 void blk_throtl_exit(struct request_queue *q)
2333 {
2334     BUG_ON(!q->td);
2335     del_timer_sync(&q->td->service_queue.pending_timer);
2336     throtl_shutdown_wq(q);
2337     blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2338     free_percpu(q->td->latency_buckets[READ]);
2339     free_percpu(q->td->latency_buckets[WRITE]);
2340     kfree(q->td);
2341 }
2342 
2343 void blk_throtl_register_queue(struct request_queue *q)
2344 {
2345     struct throtl_data *td;
2346     int i;
2347 
2348     td = q->td;
2349     BUG_ON(!td);
2350 
2351     if (blk_queue_nonrot(q)) {
2352         td->throtl_slice = DFL_THROTL_SLICE_SSD;
2353         td->filtered_latency = LATENCY_FILTERED_SSD;
2354     } else {
2355         td->throtl_slice = DFL_THROTL_SLICE_HD;
2356         td->filtered_latency = LATENCY_FILTERED_HD;
2357         for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2358             td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2359             td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2360         }
2361     }
2362 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2363     /* if no low limit, use previous default */
2364     td->throtl_slice = DFL_THROTL_SLICE_HD;
2365 #endif
2366 
2367     td->track_bio_latency = !queue_is_mq(q);
2368     if (!td->track_bio_latency)
2369         blk_stat_enable_accounting(q);
2370 }
2371 
2372 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2373 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2374 {
2375     if (!q->td)
2376         return -EINVAL;
2377     return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2378 }
2379 
2380 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2381     const char *page, size_t count)
2382 {
2383     unsigned long v;
2384     unsigned long t;
2385 
2386     if (!q->td)
2387         return -EINVAL;
2388     if (kstrtoul(page, 10, &v))
2389         return -EINVAL;
2390     t = msecs_to_jiffies(v);
2391     if (t == 0 || t > MAX_THROTL_SLICE)
2392         return -EINVAL;
2393     q->td->throtl_slice = t;
2394     return count;
2395 }
2396 #endif
2397 
2398 static int __init throtl_init(void)
2399 {
2400     kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2401     if (!kthrotld_workqueue)
2402         panic("Failed to create kthrotld\n");
2403 
2404     return blkcg_policy_register(&blkcg_policy_throtl);
2405 }
2406 
2407 module_init(throtl_init);