Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Block multiqueue core code
0004  *
0005  * Copyright (C) 2013-2014 Jens Axboe
0006  * Copyright (C) 2013-2014 Christoph Hellwig
0007  */
0008 #include <linux/kernel.h>
0009 #include <linux/module.h>
0010 #include <linux/backing-dev.h>
0011 #include <linux/bio.h>
0012 #include <linux/blkdev.h>
0013 #include <linux/blk-integrity.h>
0014 #include <linux/kmemleak.h>
0015 #include <linux/mm.h>
0016 #include <linux/init.h>
0017 #include <linux/slab.h>
0018 #include <linux/workqueue.h>
0019 #include <linux/smp.h>
0020 #include <linux/interrupt.h>
0021 #include <linux/llist.h>
0022 #include <linux/cpu.h>
0023 #include <linux/cache.h>
0024 #include <linux/sched/sysctl.h>
0025 #include <linux/sched/topology.h>
0026 #include <linux/sched/signal.h>
0027 #include <linux/delay.h>
0028 #include <linux/crash_dump.h>
0029 #include <linux/prefetch.h>
0030 #include <linux/blk-crypto.h>
0031 #include <linux/part_stat.h>
0032 
0033 #include <trace/events/block.h>
0034 
0035 #include <linux/blk-mq.h>
0036 #include <linux/t10-pi.h>
0037 #include "blk.h"
0038 #include "blk-mq.h"
0039 #include "blk-mq-debugfs.h"
0040 #include "blk-mq-tag.h"
0041 #include "blk-pm.h"
0042 #include "blk-stat.h"
0043 #include "blk-mq-sched.h"
0044 #include "blk-rq-qos.h"
0045 #include "blk-ioprio.h"
0046 
0047 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
0048 
0049 static void blk_mq_poll_stats_start(struct request_queue *q);
0050 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
0051 
0052 static int blk_mq_poll_stats_bkt(const struct request *rq)
0053 {
0054     int ddir, sectors, bucket;
0055 
0056     ddir = rq_data_dir(rq);
0057     sectors = blk_rq_stats_sectors(rq);
0058 
0059     bucket = ddir + 2 * ilog2(sectors);
0060 
0061     if (bucket < 0)
0062         return -1;
0063     else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
0064         return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
0065 
0066     return bucket;
0067 }
0068 
0069 #define BLK_QC_T_SHIFT      16
0070 #define BLK_QC_T_INTERNAL   (1U << 31)
0071 
0072 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
0073         blk_qc_t qc)
0074 {
0075     return xa_load(&q->hctx_table,
0076             (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
0077 }
0078 
0079 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
0080         blk_qc_t qc)
0081 {
0082     unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
0083 
0084     if (qc & BLK_QC_T_INTERNAL)
0085         return blk_mq_tag_to_rq(hctx->sched_tags, tag);
0086     return blk_mq_tag_to_rq(hctx->tags, tag);
0087 }
0088 
0089 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
0090 {
0091     return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
0092         (rq->tag != -1 ?
0093          rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
0094 }
0095 
0096 /*
0097  * Check if any of the ctx, dispatch list or elevator
0098  * have pending work in this hardware queue.
0099  */
0100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
0101 {
0102     return !list_empty_careful(&hctx->dispatch) ||
0103         sbitmap_any_bit_set(&hctx->ctx_map) ||
0104             blk_mq_sched_has_work(hctx);
0105 }
0106 
0107 /*
0108  * Mark this ctx as having pending work in this hardware queue
0109  */
0110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
0111                      struct blk_mq_ctx *ctx)
0112 {
0113     const int bit = ctx->index_hw[hctx->type];
0114 
0115     if (!sbitmap_test_bit(&hctx->ctx_map, bit))
0116         sbitmap_set_bit(&hctx->ctx_map, bit);
0117 }
0118 
0119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
0120                       struct blk_mq_ctx *ctx)
0121 {
0122     const int bit = ctx->index_hw[hctx->type];
0123 
0124     sbitmap_clear_bit(&hctx->ctx_map, bit);
0125 }
0126 
0127 struct mq_inflight {
0128     struct block_device *part;
0129     unsigned int inflight[2];
0130 };
0131 
0132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
0133 {
0134     struct mq_inflight *mi = priv;
0135 
0136     if (rq->part && blk_do_io_stat(rq) &&
0137         (!mi->part->bd_partno || rq->part == mi->part) &&
0138         blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
0139         mi->inflight[rq_data_dir(rq)]++;
0140 
0141     return true;
0142 }
0143 
0144 unsigned int blk_mq_in_flight(struct request_queue *q,
0145         struct block_device *part)
0146 {
0147     struct mq_inflight mi = { .part = part };
0148 
0149     blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
0150 
0151     return mi.inflight[0] + mi.inflight[1];
0152 }
0153 
0154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
0155         unsigned int inflight[2])
0156 {
0157     struct mq_inflight mi = { .part = part };
0158 
0159     blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
0160     inflight[0] = mi.inflight[0];
0161     inflight[1] = mi.inflight[1];
0162 }
0163 
0164 void blk_freeze_queue_start(struct request_queue *q)
0165 {
0166     mutex_lock(&q->mq_freeze_lock);
0167     if (++q->mq_freeze_depth == 1) {
0168         percpu_ref_kill(&q->q_usage_counter);
0169         mutex_unlock(&q->mq_freeze_lock);
0170         if (queue_is_mq(q))
0171             blk_mq_run_hw_queues(q, false);
0172     } else {
0173         mutex_unlock(&q->mq_freeze_lock);
0174     }
0175 }
0176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
0177 
0178 void blk_mq_freeze_queue_wait(struct request_queue *q)
0179 {
0180     wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
0181 }
0182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
0183 
0184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
0185                      unsigned long timeout)
0186 {
0187     return wait_event_timeout(q->mq_freeze_wq,
0188                     percpu_ref_is_zero(&q->q_usage_counter),
0189                     timeout);
0190 }
0191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
0192 
0193 /*
0194  * Guarantee no request is in use, so we can change any data structure of
0195  * the queue afterward.
0196  */
0197 void blk_freeze_queue(struct request_queue *q)
0198 {
0199     /*
0200      * In the !blk_mq case we are only calling this to kill the
0201      * q_usage_counter, otherwise this increases the freeze depth
0202      * and waits for it to return to zero.  For this reason there is
0203      * no blk_unfreeze_queue(), and blk_freeze_queue() is not
0204      * exported to drivers as the only user for unfreeze is blk_mq.
0205      */
0206     blk_freeze_queue_start(q);
0207     blk_mq_freeze_queue_wait(q);
0208 }
0209 
0210 void blk_mq_freeze_queue(struct request_queue *q)
0211 {
0212     /*
0213      * ...just an alias to keep freeze and unfreeze actions balanced
0214      * in the blk_mq_* namespace
0215      */
0216     blk_freeze_queue(q);
0217 }
0218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
0219 
0220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
0221 {
0222     mutex_lock(&q->mq_freeze_lock);
0223     if (force_atomic)
0224         q->q_usage_counter.data->force_atomic = true;
0225     q->mq_freeze_depth--;
0226     WARN_ON_ONCE(q->mq_freeze_depth < 0);
0227     if (!q->mq_freeze_depth) {
0228         percpu_ref_resurrect(&q->q_usage_counter);
0229         wake_up_all(&q->mq_freeze_wq);
0230     }
0231     mutex_unlock(&q->mq_freeze_lock);
0232 }
0233 
0234 void blk_mq_unfreeze_queue(struct request_queue *q)
0235 {
0236     __blk_mq_unfreeze_queue(q, false);
0237 }
0238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
0239 
0240 /*
0241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
0242  * mpt3sas driver such that this function can be removed.
0243  */
0244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
0245 {
0246     unsigned long flags;
0247 
0248     spin_lock_irqsave(&q->queue_lock, flags);
0249     if (!q->quiesce_depth++)
0250         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
0251     spin_unlock_irqrestore(&q->queue_lock, flags);
0252 }
0253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
0254 
0255 /**
0256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
0257  * @q: request queue.
0258  *
0259  * Note: it is driver's responsibility for making sure that quiesce has
0260  * been started.
0261  */
0262 void blk_mq_wait_quiesce_done(struct request_queue *q)
0263 {
0264     if (blk_queue_has_srcu(q))
0265         synchronize_srcu(q->srcu);
0266     else
0267         synchronize_rcu();
0268 }
0269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
0270 
0271 /**
0272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
0273  * @q: request queue.
0274  *
0275  * Note: this function does not prevent that the struct request end_io()
0276  * callback function is invoked. Once this function is returned, we make
0277  * sure no dispatch can happen until the queue is unquiesced via
0278  * blk_mq_unquiesce_queue().
0279  */
0280 void blk_mq_quiesce_queue(struct request_queue *q)
0281 {
0282     blk_mq_quiesce_queue_nowait(q);
0283     blk_mq_wait_quiesce_done(q);
0284 }
0285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
0286 
0287 /*
0288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
0289  * @q: request queue.
0290  *
0291  * This function recovers queue into the state before quiescing
0292  * which is done by blk_mq_quiesce_queue.
0293  */
0294 void blk_mq_unquiesce_queue(struct request_queue *q)
0295 {
0296     unsigned long flags;
0297     bool run_queue = false;
0298 
0299     spin_lock_irqsave(&q->queue_lock, flags);
0300     if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
0301         ;
0302     } else if (!--q->quiesce_depth) {
0303         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
0304         run_queue = true;
0305     }
0306     spin_unlock_irqrestore(&q->queue_lock, flags);
0307 
0308     /* dispatch requests which are inserted during quiescing */
0309     if (run_queue)
0310         blk_mq_run_hw_queues(q, true);
0311 }
0312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
0313 
0314 void blk_mq_wake_waiters(struct request_queue *q)
0315 {
0316     struct blk_mq_hw_ctx *hctx;
0317     unsigned long i;
0318 
0319     queue_for_each_hw_ctx(q, hctx, i)
0320         if (blk_mq_hw_queue_mapped(hctx))
0321             blk_mq_tag_wakeup_all(hctx->tags, true);
0322 }
0323 
0324 void blk_rq_init(struct request_queue *q, struct request *rq)
0325 {
0326     memset(rq, 0, sizeof(*rq));
0327 
0328     INIT_LIST_HEAD(&rq->queuelist);
0329     rq->q = q;
0330     rq->__sector = (sector_t) -1;
0331     INIT_HLIST_NODE(&rq->hash);
0332     RB_CLEAR_NODE(&rq->rb_node);
0333     rq->tag = BLK_MQ_NO_TAG;
0334     rq->internal_tag = BLK_MQ_NO_TAG;
0335     rq->start_time_ns = ktime_get_ns();
0336     rq->part = NULL;
0337     blk_crypto_rq_set_defaults(rq);
0338 }
0339 EXPORT_SYMBOL(blk_rq_init);
0340 
0341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
0342         struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
0343 {
0344     struct blk_mq_ctx *ctx = data->ctx;
0345     struct blk_mq_hw_ctx *hctx = data->hctx;
0346     struct request_queue *q = data->q;
0347     struct request *rq = tags->static_rqs[tag];
0348 
0349     rq->q = q;
0350     rq->mq_ctx = ctx;
0351     rq->mq_hctx = hctx;
0352     rq->cmd_flags = data->cmd_flags;
0353 
0354     if (data->flags & BLK_MQ_REQ_PM)
0355         data->rq_flags |= RQF_PM;
0356     if (blk_queue_io_stat(q))
0357         data->rq_flags |= RQF_IO_STAT;
0358     rq->rq_flags = data->rq_flags;
0359 
0360     if (!(data->rq_flags & RQF_ELV)) {
0361         rq->tag = tag;
0362         rq->internal_tag = BLK_MQ_NO_TAG;
0363     } else {
0364         rq->tag = BLK_MQ_NO_TAG;
0365         rq->internal_tag = tag;
0366     }
0367     rq->timeout = 0;
0368 
0369     if (blk_mq_need_time_stamp(rq))
0370         rq->start_time_ns = ktime_get_ns();
0371     else
0372         rq->start_time_ns = 0;
0373     rq->part = NULL;
0374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
0375     rq->alloc_time_ns = alloc_time_ns;
0376 #endif
0377     rq->io_start_time_ns = 0;
0378     rq->stats_sectors = 0;
0379     rq->nr_phys_segments = 0;
0380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
0381     rq->nr_integrity_segments = 0;
0382 #endif
0383     rq->end_io = NULL;
0384     rq->end_io_data = NULL;
0385 
0386     blk_crypto_rq_set_defaults(rq);
0387     INIT_LIST_HEAD(&rq->queuelist);
0388     /* tag was already set */
0389     WRITE_ONCE(rq->deadline, 0);
0390     req_ref_set(rq, 1);
0391 
0392     if (rq->rq_flags & RQF_ELV) {
0393         struct elevator_queue *e = data->q->elevator;
0394 
0395         INIT_HLIST_NODE(&rq->hash);
0396         RB_CLEAR_NODE(&rq->rb_node);
0397 
0398         if (!op_is_flush(data->cmd_flags) &&
0399             e->type->ops.prepare_request) {
0400             e->type->ops.prepare_request(rq);
0401             rq->rq_flags |= RQF_ELVPRIV;
0402         }
0403     }
0404 
0405     return rq;
0406 }
0407 
0408 static inline struct request *
0409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
0410         u64 alloc_time_ns)
0411 {
0412     unsigned int tag, tag_offset;
0413     struct blk_mq_tags *tags;
0414     struct request *rq;
0415     unsigned long tag_mask;
0416     int i, nr = 0;
0417 
0418     tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
0419     if (unlikely(!tag_mask))
0420         return NULL;
0421 
0422     tags = blk_mq_tags_from_data(data);
0423     for (i = 0; tag_mask; i++) {
0424         if (!(tag_mask & (1UL << i)))
0425             continue;
0426         tag = tag_offset + i;
0427         prefetch(tags->static_rqs[tag]);
0428         tag_mask &= ~(1UL << i);
0429         rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
0430         rq_list_add(data->cached_rq, rq);
0431         nr++;
0432     }
0433     /* caller already holds a reference, add for remainder */
0434     percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
0435     data->nr_tags -= nr;
0436 
0437     return rq_list_pop(data->cached_rq);
0438 }
0439 
0440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
0441 {
0442     struct request_queue *q = data->q;
0443     u64 alloc_time_ns = 0;
0444     struct request *rq;
0445     unsigned int tag;
0446 
0447     /* alloc_time includes depth and tag waits */
0448     if (blk_queue_rq_alloc_time(q))
0449         alloc_time_ns = ktime_get_ns();
0450 
0451     if (data->cmd_flags & REQ_NOWAIT)
0452         data->flags |= BLK_MQ_REQ_NOWAIT;
0453 
0454     if (q->elevator) {
0455         struct elevator_queue *e = q->elevator;
0456 
0457         data->rq_flags |= RQF_ELV;
0458 
0459         /*
0460          * Flush/passthrough requests are special and go directly to the
0461          * dispatch list. Don't include reserved tags in the
0462          * limiting, as it isn't useful.
0463          */
0464         if (!op_is_flush(data->cmd_flags) &&
0465             !blk_op_is_passthrough(data->cmd_flags) &&
0466             e->type->ops.limit_depth &&
0467             !(data->flags & BLK_MQ_REQ_RESERVED))
0468             e->type->ops.limit_depth(data->cmd_flags, data);
0469     }
0470 
0471 retry:
0472     data->ctx = blk_mq_get_ctx(q);
0473     data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
0474     if (!(data->rq_flags & RQF_ELV))
0475         blk_mq_tag_busy(data->hctx);
0476 
0477     if (data->flags & BLK_MQ_REQ_RESERVED)
0478         data->rq_flags |= RQF_RESV;
0479 
0480     /*
0481      * Try batched alloc if we want more than 1 tag.
0482      */
0483     if (data->nr_tags > 1) {
0484         rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
0485         if (rq)
0486             return rq;
0487         data->nr_tags = 1;
0488     }
0489 
0490     /*
0491      * Waiting allocations only fail because of an inactive hctx.  In that
0492      * case just retry the hctx assignment and tag allocation as CPU hotplug
0493      * should have migrated us to an online CPU by now.
0494      */
0495     tag = blk_mq_get_tag(data);
0496     if (tag == BLK_MQ_NO_TAG) {
0497         if (data->flags & BLK_MQ_REQ_NOWAIT)
0498             return NULL;
0499         /*
0500          * Give up the CPU and sleep for a random short time to
0501          * ensure that thread using a realtime scheduling class
0502          * are migrated off the CPU, and thus off the hctx that
0503          * is going away.
0504          */
0505         msleep(3);
0506         goto retry;
0507     }
0508 
0509     return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
0510                     alloc_time_ns);
0511 }
0512 
0513 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
0514         blk_mq_req_flags_t flags)
0515 {
0516     struct blk_mq_alloc_data data = {
0517         .q      = q,
0518         .flags      = flags,
0519         .cmd_flags  = opf,
0520         .nr_tags    = 1,
0521     };
0522     struct request *rq;
0523     int ret;
0524 
0525     ret = blk_queue_enter(q, flags);
0526     if (ret)
0527         return ERR_PTR(ret);
0528 
0529     rq = __blk_mq_alloc_requests(&data);
0530     if (!rq)
0531         goto out_queue_exit;
0532     rq->__data_len = 0;
0533     rq->__sector = (sector_t) -1;
0534     rq->bio = rq->biotail = NULL;
0535     return rq;
0536 out_queue_exit:
0537     blk_queue_exit(q);
0538     return ERR_PTR(-EWOULDBLOCK);
0539 }
0540 EXPORT_SYMBOL(blk_mq_alloc_request);
0541 
0542 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
0543     blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
0544 {
0545     struct blk_mq_alloc_data data = {
0546         .q      = q,
0547         .flags      = flags,
0548         .cmd_flags  = opf,
0549         .nr_tags    = 1,
0550     };
0551     u64 alloc_time_ns = 0;
0552     unsigned int cpu;
0553     unsigned int tag;
0554     int ret;
0555 
0556     /* alloc_time includes depth and tag waits */
0557     if (blk_queue_rq_alloc_time(q))
0558         alloc_time_ns = ktime_get_ns();
0559 
0560     /*
0561      * If the tag allocator sleeps we could get an allocation for a
0562      * different hardware context.  No need to complicate the low level
0563      * allocator for this for the rare use case of a command tied to
0564      * a specific queue.
0565      */
0566     if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
0567         return ERR_PTR(-EINVAL);
0568 
0569     if (hctx_idx >= q->nr_hw_queues)
0570         return ERR_PTR(-EIO);
0571 
0572     ret = blk_queue_enter(q, flags);
0573     if (ret)
0574         return ERR_PTR(ret);
0575 
0576     /*
0577      * Check if the hardware context is actually mapped to anything.
0578      * If not tell the caller that it should skip this queue.
0579      */
0580     ret = -EXDEV;
0581     data.hctx = xa_load(&q->hctx_table, hctx_idx);
0582     if (!blk_mq_hw_queue_mapped(data.hctx))
0583         goto out_queue_exit;
0584     cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
0585     if (cpu >= nr_cpu_ids)
0586         goto out_queue_exit;
0587     data.ctx = __blk_mq_get_ctx(q, cpu);
0588 
0589     if (!q->elevator)
0590         blk_mq_tag_busy(data.hctx);
0591     else
0592         data.rq_flags |= RQF_ELV;
0593 
0594     if (flags & BLK_MQ_REQ_RESERVED)
0595         data.rq_flags |= RQF_RESV;
0596 
0597     ret = -EWOULDBLOCK;
0598     tag = blk_mq_get_tag(&data);
0599     if (tag == BLK_MQ_NO_TAG)
0600         goto out_queue_exit;
0601     return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
0602                     alloc_time_ns);
0603 
0604 out_queue_exit:
0605     blk_queue_exit(q);
0606     return ERR_PTR(ret);
0607 }
0608 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
0609 
0610 static void __blk_mq_free_request(struct request *rq)
0611 {
0612     struct request_queue *q = rq->q;
0613     struct blk_mq_ctx *ctx = rq->mq_ctx;
0614     struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
0615     const int sched_tag = rq->internal_tag;
0616 
0617     blk_crypto_free_request(rq);
0618     blk_pm_mark_last_busy(rq);
0619     rq->mq_hctx = NULL;
0620     if (rq->tag != BLK_MQ_NO_TAG)
0621         blk_mq_put_tag(hctx->tags, ctx, rq->tag);
0622     if (sched_tag != BLK_MQ_NO_TAG)
0623         blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
0624     blk_mq_sched_restart(hctx);
0625     blk_queue_exit(q);
0626 }
0627 
0628 void blk_mq_free_request(struct request *rq)
0629 {
0630     struct request_queue *q = rq->q;
0631     struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
0632 
0633     if ((rq->rq_flags & RQF_ELVPRIV) &&
0634         q->elevator->type->ops.finish_request)
0635         q->elevator->type->ops.finish_request(rq);
0636 
0637     if (rq->rq_flags & RQF_MQ_INFLIGHT)
0638         __blk_mq_dec_active_requests(hctx);
0639 
0640     if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
0641         laptop_io_completion(q->disk->bdi);
0642 
0643     rq_qos_done(q, rq);
0644 
0645     WRITE_ONCE(rq->state, MQ_RQ_IDLE);
0646     if (req_ref_put_and_test(rq))
0647         __blk_mq_free_request(rq);
0648 }
0649 EXPORT_SYMBOL_GPL(blk_mq_free_request);
0650 
0651 void blk_mq_free_plug_rqs(struct blk_plug *plug)
0652 {
0653     struct request *rq;
0654 
0655     while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
0656         blk_mq_free_request(rq);
0657 }
0658 
0659 void blk_dump_rq_flags(struct request *rq, char *msg)
0660 {
0661     printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
0662         rq->q->disk ? rq->q->disk->disk_name : "?",
0663         (__force unsigned long long) rq->cmd_flags);
0664 
0665     printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
0666            (unsigned long long)blk_rq_pos(rq),
0667            blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
0668     printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
0669            rq->bio, rq->biotail, blk_rq_bytes(rq));
0670 }
0671 EXPORT_SYMBOL(blk_dump_rq_flags);
0672 
0673 static void req_bio_endio(struct request *rq, struct bio *bio,
0674               unsigned int nbytes, blk_status_t error)
0675 {
0676     if (unlikely(error)) {
0677         bio->bi_status = error;
0678     } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
0679         /*
0680          * Partial zone append completions cannot be supported as the
0681          * BIO fragments may end up not being written sequentially.
0682          */
0683         if (bio->bi_iter.bi_size != nbytes)
0684             bio->bi_status = BLK_STS_IOERR;
0685         else
0686             bio->bi_iter.bi_sector = rq->__sector;
0687     }
0688 
0689     bio_advance(bio, nbytes);
0690 
0691     if (unlikely(rq->rq_flags & RQF_QUIET))
0692         bio_set_flag(bio, BIO_QUIET);
0693     /* don't actually finish bio if it's part of flush sequence */
0694     if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
0695         bio_endio(bio);
0696 }
0697 
0698 static void blk_account_io_completion(struct request *req, unsigned int bytes)
0699 {
0700     if (req->part && blk_do_io_stat(req)) {
0701         const int sgrp = op_stat_group(req_op(req));
0702 
0703         part_stat_lock();
0704         part_stat_add(req->part, sectors[sgrp], bytes >> 9);
0705         part_stat_unlock();
0706     }
0707 }
0708 
0709 static void blk_print_req_error(struct request *req, blk_status_t status)
0710 {
0711     printk_ratelimited(KERN_ERR
0712         "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
0713         "phys_seg %u prio class %u\n",
0714         blk_status_to_str(status),
0715         req->q->disk ? req->q->disk->disk_name : "?",
0716         blk_rq_pos(req), (__force u32)req_op(req),
0717         blk_op_str(req_op(req)),
0718         (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
0719         req->nr_phys_segments,
0720         IOPRIO_PRIO_CLASS(req->ioprio));
0721 }
0722 
0723 /*
0724  * Fully end IO on a request. Does not support partial completions, or
0725  * errors.
0726  */
0727 static void blk_complete_request(struct request *req)
0728 {
0729     const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
0730     int total_bytes = blk_rq_bytes(req);
0731     struct bio *bio = req->bio;
0732 
0733     trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
0734 
0735     if (!bio)
0736         return;
0737 
0738 #ifdef CONFIG_BLK_DEV_INTEGRITY
0739     if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
0740         req->q->integrity.profile->complete_fn(req, total_bytes);
0741 #endif
0742 
0743     blk_account_io_completion(req, total_bytes);
0744 
0745     do {
0746         struct bio *next = bio->bi_next;
0747 
0748         /* Completion has already been traced */
0749         bio_clear_flag(bio, BIO_TRACE_COMPLETION);
0750 
0751         if (req_op(req) == REQ_OP_ZONE_APPEND)
0752             bio->bi_iter.bi_sector = req->__sector;
0753 
0754         if (!is_flush)
0755             bio_endio(bio);
0756         bio = next;
0757     } while (bio);
0758 
0759     /*
0760      * Reset counters so that the request stacking driver
0761      * can find how many bytes remain in the request
0762      * later.
0763      */
0764     req->bio = NULL;
0765     req->__data_len = 0;
0766 }
0767 
0768 /**
0769  * blk_update_request - Complete multiple bytes without completing the request
0770  * @req:      the request being processed
0771  * @error:    block status code
0772  * @nr_bytes: number of bytes to complete for @req
0773  *
0774  * Description:
0775  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
0776  *     the request structure even if @req doesn't have leftover.
0777  *     If @req has leftover, sets it up for the next range of segments.
0778  *
0779  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
0780  *     %false return from this function.
0781  *
0782  * Note:
0783  *  The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
0784  *      except in the consistency check at the end of this function.
0785  *
0786  * Return:
0787  *     %false - this request doesn't have any more data
0788  *     %true  - this request has more data
0789  **/
0790 bool blk_update_request(struct request *req, blk_status_t error,
0791         unsigned int nr_bytes)
0792 {
0793     int total_bytes;
0794 
0795     trace_block_rq_complete(req, error, nr_bytes);
0796 
0797     if (!req->bio)
0798         return false;
0799 
0800 #ifdef CONFIG_BLK_DEV_INTEGRITY
0801     if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
0802         error == BLK_STS_OK)
0803         req->q->integrity.profile->complete_fn(req, nr_bytes);
0804 #endif
0805 
0806     if (unlikely(error && !blk_rq_is_passthrough(req) &&
0807              !(req->rq_flags & RQF_QUIET)) &&
0808              !test_bit(GD_DEAD, &req->q->disk->state)) {
0809         blk_print_req_error(req, error);
0810         trace_block_rq_error(req, error, nr_bytes);
0811     }
0812 
0813     blk_account_io_completion(req, nr_bytes);
0814 
0815     total_bytes = 0;
0816     while (req->bio) {
0817         struct bio *bio = req->bio;
0818         unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
0819 
0820         if (bio_bytes == bio->bi_iter.bi_size)
0821             req->bio = bio->bi_next;
0822 
0823         /* Completion has already been traced */
0824         bio_clear_flag(bio, BIO_TRACE_COMPLETION);
0825         req_bio_endio(req, bio, bio_bytes, error);
0826 
0827         total_bytes += bio_bytes;
0828         nr_bytes -= bio_bytes;
0829 
0830         if (!nr_bytes)
0831             break;
0832     }
0833 
0834     /*
0835      * completely done
0836      */
0837     if (!req->bio) {
0838         /*
0839          * Reset counters so that the request stacking driver
0840          * can find how many bytes remain in the request
0841          * later.
0842          */
0843         req->__data_len = 0;
0844         return false;
0845     }
0846 
0847     req->__data_len -= total_bytes;
0848 
0849     /* update sector only for requests with clear definition of sector */
0850     if (!blk_rq_is_passthrough(req))
0851         req->__sector += total_bytes >> 9;
0852 
0853     /* mixed attributes always follow the first bio */
0854     if (req->rq_flags & RQF_MIXED_MERGE) {
0855         req->cmd_flags &= ~REQ_FAILFAST_MASK;
0856         req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
0857     }
0858 
0859     if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
0860         /*
0861          * If total number of sectors is less than the first segment
0862          * size, something has gone terribly wrong.
0863          */
0864         if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
0865             blk_dump_rq_flags(req, "request botched");
0866             req->__data_len = blk_rq_cur_bytes(req);
0867         }
0868 
0869         /* recalculate the number of segments */
0870         req->nr_phys_segments = blk_recalc_rq_segments(req);
0871     }
0872 
0873     return true;
0874 }
0875 EXPORT_SYMBOL_GPL(blk_update_request);
0876 
0877 static void __blk_account_io_done(struct request *req, u64 now)
0878 {
0879     const int sgrp = op_stat_group(req_op(req));
0880 
0881     part_stat_lock();
0882     update_io_ticks(req->part, jiffies, true);
0883     part_stat_inc(req->part, ios[sgrp]);
0884     part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
0885     part_stat_unlock();
0886 }
0887 
0888 static inline void blk_account_io_done(struct request *req, u64 now)
0889 {
0890     /*
0891      * Account IO completion.  flush_rq isn't accounted as a
0892      * normal IO on queueing nor completion.  Accounting the
0893      * containing request is enough.
0894      */
0895     if (blk_do_io_stat(req) && req->part &&
0896         !(req->rq_flags & RQF_FLUSH_SEQ))
0897         __blk_account_io_done(req, now);
0898 }
0899 
0900 static void __blk_account_io_start(struct request *rq)
0901 {
0902     /*
0903      * All non-passthrough requests are created from a bio with one
0904      * exception: when a flush command that is part of a flush sequence
0905      * generated by the state machine in blk-flush.c is cloned onto the
0906      * lower device by dm-multipath we can get here without a bio.
0907      */
0908     if (rq->bio)
0909         rq->part = rq->bio->bi_bdev;
0910     else
0911         rq->part = rq->q->disk->part0;
0912 
0913     part_stat_lock();
0914     update_io_ticks(rq->part, jiffies, false);
0915     part_stat_unlock();
0916 }
0917 
0918 static inline void blk_account_io_start(struct request *req)
0919 {
0920     if (blk_do_io_stat(req))
0921         __blk_account_io_start(req);
0922 }
0923 
0924 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
0925 {
0926     if (rq->rq_flags & RQF_STATS) {
0927         blk_mq_poll_stats_start(rq->q);
0928         blk_stat_add(rq, now);
0929     }
0930 
0931     blk_mq_sched_completed_request(rq, now);
0932     blk_account_io_done(rq, now);
0933 }
0934 
0935 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
0936 {
0937     if (blk_mq_need_time_stamp(rq))
0938         __blk_mq_end_request_acct(rq, ktime_get_ns());
0939 
0940     if (rq->end_io) {
0941         rq_qos_done(rq->q, rq);
0942         rq->end_io(rq, error);
0943     } else {
0944         blk_mq_free_request(rq);
0945     }
0946 }
0947 EXPORT_SYMBOL(__blk_mq_end_request);
0948 
0949 void blk_mq_end_request(struct request *rq, blk_status_t error)
0950 {
0951     if (blk_update_request(rq, error, blk_rq_bytes(rq)))
0952         BUG();
0953     __blk_mq_end_request(rq, error);
0954 }
0955 EXPORT_SYMBOL(blk_mq_end_request);
0956 
0957 #define TAG_COMP_BATCH      32
0958 
0959 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
0960                       int *tag_array, int nr_tags)
0961 {
0962     struct request_queue *q = hctx->queue;
0963 
0964     /*
0965      * All requests should have been marked as RQF_MQ_INFLIGHT, so
0966      * update hctx->nr_active in batch
0967      */
0968     if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
0969         __blk_mq_sub_active_requests(hctx, nr_tags);
0970 
0971     blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
0972     percpu_ref_put_many(&q->q_usage_counter, nr_tags);
0973 }
0974 
0975 void blk_mq_end_request_batch(struct io_comp_batch *iob)
0976 {
0977     int tags[TAG_COMP_BATCH], nr_tags = 0;
0978     struct blk_mq_hw_ctx *cur_hctx = NULL;
0979     struct request *rq;
0980     u64 now = 0;
0981 
0982     if (iob->need_ts)
0983         now = ktime_get_ns();
0984 
0985     while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
0986         prefetch(rq->bio);
0987         prefetch(rq->rq_next);
0988 
0989         blk_complete_request(rq);
0990         if (iob->need_ts)
0991             __blk_mq_end_request_acct(rq, now);
0992 
0993         rq_qos_done(rq->q, rq);
0994 
0995         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
0996         if (!req_ref_put_and_test(rq))
0997             continue;
0998 
0999         blk_crypto_free_request(rq);
1000         blk_pm_mark_last_busy(rq);
1001 
1002         if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1003             if (cur_hctx)
1004                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1005             nr_tags = 0;
1006             cur_hctx = rq->mq_hctx;
1007         }
1008         tags[nr_tags++] = rq->tag;
1009     }
1010 
1011     if (nr_tags)
1012         blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1013 }
1014 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1015 
1016 static void blk_complete_reqs(struct llist_head *list)
1017 {
1018     struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1019     struct request *rq, *next;
1020 
1021     llist_for_each_entry_safe(rq, next, entry, ipi_list)
1022         rq->q->mq_ops->complete(rq);
1023 }
1024 
1025 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1026 {
1027     blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1028 }
1029 
1030 static int blk_softirq_cpu_dead(unsigned int cpu)
1031 {
1032     blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1033     return 0;
1034 }
1035 
1036 static void __blk_mq_complete_request_remote(void *data)
1037 {
1038     __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1039 }
1040 
1041 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1042 {
1043     int cpu = raw_smp_processor_id();
1044 
1045     if (!IS_ENABLED(CONFIG_SMP) ||
1046         !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1047         return false;
1048     /*
1049      * With force threaded interrupts enabled, raising softirq from an SMP
1050      * function call will always result in waking the ksoftirqd thread.
1051      * This is probably worse than completing the request on a different
1052      * cache domain.
1053      */
1054     if (force_irqthreads())
1055         return false;
1056 
1057     /* same CPU or cache domain?  Complete locally */
1058     if (cpu == rq->mq_ctx->cpu ||
1059         (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1060          cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1061         return false;
1062 
1063     /* don't try to IPI to an offline CPU */
1064     return cpu_online(rq->mq_ctx->cpu);
1065 }
1066 
1067 static void blk_mq_complete_send_ipi(struct request *rq)
1068 {
1069     struct llist_head *list;
1070     unsigned int cpu;
1071 
1072     cpu = rq->mq_ctx->cpu;
1073     list = &per_cpu(blk_cpu_done, cpu);
1074     if (llist_add(&rq->ipi_list, list)) {
1075         INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1076         smp_call_function_single_async(cpu, &rq->csd);
1077     }
1078 }
1079 
1080 static void blk_mq_raise_softirq(struct request *rq)
1081 {
1082     struct llist_head *list;
1083 
1084     preempt_disable();
1085     list = this_cpu_ptr(&blk_cpu_done);
1086     if (llist_add(&rq->ipi_list, list))
1087         raise_softirq(BLOCK_SOFTIRQ);
1088     preempt_enable();
1089 }
1090 
1091 bool blk_mq_complete_request_remote(struct request *rq)
1092 {
1093     WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1094 
1095     /*
1096      * For a polled request, always complete locally, it's pointless
1097      * to redirect the completion.
1098      */
1099     if (rq->cmd_flags & REQ_POLLED)
1100         return false;
1101 
1102     if (blk_mq_complete_need_ipi(rq)) {
1103         blk_mq_complete_send_ipi(rq);
1104         return true;
1105     }
1106 
1107     if (rq->q->nr_hw_queues == 1) {
1108         blk_mq_raise_softirq(rq);
1109         return true;
1110     }
1111     return false;
1112 }
1113 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1114 
1115 /**
1116  * blk_mq_complete_request - end I/O on a request
1117  * @rq:     the request being processed
1118  *
1119  * Description:
1120  *  Complete a request by scheduling the ->complete_rq operation.
1121  **/
1122 void blk_mq_complete_request(struct request *rq)
1123 {
1124     if (!blk_mq_complete_request_remote(rq))
1125         rq->q->mq_ops->complete(rq);
1126 }
1127 EXPORT_SYMBOL(blk_mq_complete_request);
1128 
1129 /**
1130  * blk_mq_start_request - Start processing a request
1131  * @rq: Pointer to request to be started
1132  *
1133  * Function used by device drivers to notify the block layer that a request
1134  * is going to be processed now, so blk layer can do proper initializations
1135  * such as starting the timeout timer.
1136  */
1137 void blk_mq_start_request(struct request *rq)
1138 {
1139     struct request_queue *q = rq->q;
1140 
1141     trace_block_rq_issue(rq);
1142 
1143     if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1144         rq->io_start_time_ns = ktime_get_ns();
1145         rq->stats_sectors = blk_rq_sectors(rq);
1146         rq->rq_flags |= RQF_STATS;
1147         rq_qos_issue(q, rq);
1148     }
1149 
1150     WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1151 
1152     blk_add_timer(rq);
1153     WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1154 
1155 #ifdef CONFIG_BLK_DEV_INTEGRITY
1156     if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1157         q->integrity.profile->prepare_fn(rq);
1158 #endif
1159     if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1160             WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1161 }
1162 EXPORT_SYMBOL(blk_mq_start_request);
1163 
1164 /*
1165  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1166  * queues. This is important for md arrays to benefit from merging
1167  * requests.
1168  */
1169 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1170 {
1171     if (plug->multiple_queues)
1172         return BLK_MAX_REQUEST_COUNT * 2;
1173     return BLK_MAX_REQUEST_COUNT;
1174 }
1175 
1176 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1177 {
1178     struct request *last = rq_list_peek(&plug->mq_list);
1179 
1180     if (!plug->rq_count) {
1181         trace_block_plug(rq->q);
1182     } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1183            (!blk_queue_nomerges(rq->q) &&
1184             blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1185         blk_mq_flush_plug_list(plug, false);
1186         trace_block_plug(rq->q);
1187     }
1188 
1189     if (!plug->multiple_queues && last && last->q != rq->q)
1190         plug->multiple_queues = true;
1191     if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1192         plug->has_elevator = true;
1193     rq->rq_next = NULL;
1194     rq_list_add(&plug->mq_list, rq);
1195     plug->rq_count++;
1196 }
1197 
1198 /**
1199  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1200  * @rq:     request to insert
1201  * @at_head:    insert request at head or tail of queue
1202  *
1203  * Description:
1204  *    Insert a fully prepared request at the back of the I/O scheduler queue
1205  *    for execution.  Don't wait for completion.
1206  *
1207  * Note:
1208  *    This function will invoke @done directly if the queue is dead.
1209  */
1210 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1211 {
1212     WARN_ON(irqs_disabled());
1213     WARN_ON(!blk_rq_is_passthrough(rq));
1214 
1215     blk_account_io_start(rq);
1216     if (current->plug)
1217         blk_add_rq_to_plug(current->plug, rq);
1218     else
1219         blk_mq_sched_insert_request(rq, at_head, true, false);
1220 }
1221 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1222 
1223 struct blk_rq_wait {
1224     struct completion done;
1225     blk_status_t ret;
1226 };
1227 
1228 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1229 {
1230     struct blk_rq_wait *wait = rq->end_io_data;
1231 
1232     wait->ret = ret;
1233     complete(&wait->done);
1234 }
1235 
1236 static bool blk_rq_is_poll(struct request *rq)
1237 {
1238     if (!rq->mq_hctx)
1239         return false;
1240     if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1241         return false;
1242     if (WARN_ON_ONCE(!rq->bio))
1243         return false;
1244     return true;
1245 }
1246 
1247 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1248 {
1249     do {
1250         bio_poll(rq->bio, NULL, 0);
1251         cond_resched();
1252     } while (!completion_done(wait));
1253 }
1254 
1255 /**
1256  * blk_execute_rq - insert a request into queue for execution
1257  * @rq:     request to insert
1258  * @at_head:    insert request at head or tail of queue
1259  *
1260  * Description:
1261  *    Insert a fully prepared request at the back of the I/O scheduler queue
1262  *    for execution and wait for completion.
1263  * Return: The blk_status_t result provided to blk_mq_end_request().
1264  */
1265 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1266 {
1267     struct blk_rq_wait wait = {
1268         .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1269     };
1270 
1271     WARN_ON(irqs_disabled());
1272     WARN_ON(!blk_rq_is_passthrough(rq));
1273 
1274     rq->end_io_data = &wait;
1275     rq->end_io = blk_end_sync_rq;
1276 
1277     blk_account_io_start(rq);
1278     blk_mq_sched_insert_request(rq, at_head, true, false);
1279 
1280     if (blk_rq_is_poll(rq)) {
1281         blk_rq_poll_completion(rq, &wait.done);
1282     } else {
1283         /*
1284          * Prevent hang_check timer from firing at us during very long
1285          * I/O
1286          */
1287         unsigned long hang_check = sysctl_hung_task_timeout_secs;
1288 
1289         if (hang_check)
1290             while (!wait_for_completion_io_timeout(&wait.done,
1291                     hang_check * (HZ/2)))
1292                 ;
1293         else
1294             wait_for_completion_io(&wait.done);
1295     }
1296 
1297     return wait.ret;
1298 }
1299 EXPORT_SYMBOL(blk_execute_rq);
1300 
1301 static void __blk_mq_requeue_request(struct request *rq)
1302 {
1303     struct request_queue *q = rq->q;
1304 
1305     blk_mq_put_driver_tag(rq);
1306 
1307     trace_block_rq_requeue(rq);
1308     rq_qos_requeue(q, rq);
1309 
1310     if (blk_mq_request_started(rq)) {
1311         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1312         rq->rq_flags &= ~RQF_TIMED_OUT;
1313     }
1314 }
1315 
1316 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1317 {
1318     __blk_mq_requeue_request(rq);
1319 
1320     /* this request will be re-inserted to io scheduler queue */
1321     blk_mq_sched_requeue_request(rq);
1322 
1323     blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1324 }
1325 EXPORT_SYMBOL(blk_mq_requeue_request);
1326 
1327 static void blk_mq_requeue_work(struct work_struct *work)
1328 {
1329     struct request_queue *q =
1330         container_of(work, struct request_queue, requeue_work.work);
1331     LIST_HEAD(rq_list);
1332     struct request *rq, *next;
1333 
1334     spin_lock_irq(&q->requeue_lock);
1335     list_splice_init(&q->requeue_list, &rq_list);
1336     spin_unlock_irq(&q->requeue_lock);
1337 
1338     list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1339         if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1340             continue;
1341 
1342         rq->rq_flags &= ~RQF_SOFTBARRIER;
1343         list_del_init(&rq->queuelist);
1344         /*
1345          * If RQF_DONTPREP, rq has contained some driver specific
1346          * data, so insert it to hctx dispatch list to avoid any
1347          * merge.
1348          */
1349         if (rq->rq_flags & RQF_DONTPREP)
1350             blk_mq_request_bypass_insert(rq, false, false);
1351         else
1352             blk_mq_sched_insert_request(rq, true, false, false);
1353     }
1354 
1355     while (!list_empty(&rq_list)) {
1356         rq = list_entry(rq_list.next, struct request, queuelist);
1357         list_del_init(&rq->queuelist);
1358         blk_mq_sched_insert_request(rq, false, false, false);
1359     }
1360 
1361     blk_mq_run_hw_queues(q, false);
1362 }
1363 
1364 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1365                 bool kick_requeue_list)
1366 {
1367     struct request_queue *q = rq->q;
1368     unsigned long flags;
1369 
1370     /*
1371      * We abuse this flag that is otherwise used by the I/O scheduler to
1372      * request head insertion from the workqueue.
1373      */
1374     BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1375 
1376     spin_lock_irqsave(&q->requeue_lock, flags);
1377     if (at_head) {
1378         rq->rq_flags |= RQF_SOFTBARRIER;
1379         list_add(&rq->queuelist, &q->requeue_list);
1380     } else {
1381         list_add_tail(&rq->queuelist, &q->requeue_list);
1382     }
1383     spin_unlock_irqrestore(&q->requeue_lock, flags);
1384 
1385     if (kick_requeue_list)
1386         blk_mq_kick_requeue_list(q);
1387 }
1388 
1389 void blk_mq_kick_requeue_list(struct request_queue *q)
1390 {
1391     kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1392 }
1393 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1394 
1395 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1396                     unsigned long msecs)
1397 {
1398     kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1399                     msecs_to_jiffies(msecs));
1400 }
1401 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1402 
1403 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1404 {
1405     /*
1406      * If we find a request that isn't idle we know the queue is busy
1407      * as it's checked in the iter.
1408      * Return false to stop the iteration.
1409      */
1410     if (blk_mq_request_started(rq)) {
1411         bool *busy = priv;
1412 
1413         *busy = true;
1414         return false;
1415     }
1416 
1417     return true;
1418 }
1419 
1420 bool blk_mq_queue_inflight(struct request_queue *q)
1421 {
1422     bool busy = false;
1423 
1424     blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1425     return busy;
1426 }
1427 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1428 
1429 static void blk_mq_rq_timed_out(struct request *req)
1430 {
1431     req->rq_flags |= RQF_TIMED_OUT;
1432     if (req->q->mq_ops->timeout) {
1433         enum blk_eh_timer_return ret;
1434 
1435         ret = req->q->mq_ops->timeout(req);
1436         if (ret == BLK_EH_DONE)
1437             return;
1438         WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1439     }
1440 
1441     blk_add_timer(req);
1442 }
1443 
1444 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1445 {
1446     unsigned long deadline;
1447 
1448     if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1449         return false;
1450     if (rq->rq_flags & RQF_TIMED_OUT)
1451         return false;
1452 
1453     deadline = READ_ONCE(rq->deadline);
1454     if (time_after_eq(jiffies, deadline))
1455         return true;
1456 
1457     if (*next == 0)
1458         *next = deadline;
1459     else if (time_after(*next, deadline))
1460         *next = deadline;
1461     return false;
1462 }
1463 
1464 void blk_mq_put_rq_ref(struct request *rq)
1465 {
1466     if (is_flush_rq(rq))
1467         rq->end_io(rq, 0);
1468     else if (req_ref_put_and_test(rq))
1469         __blk_mq_free_request(rq);
1470 }
1471 
1472 static bool blk_mq_check_expired(struct request *rq, void *priv)
1473 {
1474     unsigned long *next = priv;
1475 
1476     /*
1477      * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1478      * be reallocated underneath the timeout handler's processing, then
1479      * the expire check is reliable. If the request is not expired, then
1480      * it was completed and reallocated as a new request after returning
1481      * from blk_mq_check_expired().
1482      */
1483     if (blk_mq_req_expired(rq, next))
1484         blk_mq_rq_timed_out(rq);
1485     return true;
1486 }
1487 
1488 static void blk_mq_timeout_work(struct work_struct *work)
1489 {
1490     struct request_queue *q =
1491         container_of(work, struct request_queue, timeout_work);
1492     unsigned long next = 0;
1493     struct blk_mq_hw_ctx *hctx;
1494     unsigned long i;
1495 
1496     /* A deadlock might occur if a request is stuck requiring a
1497      * timeout at the same time a queue freeze is waiting
1498      * completion, since the timeout code would not be able to
1499      * acquire the queue reference here.
1500      *
1501      * That's why we don't use blk_queue_enter here; instead, we use
1502      * percpu_ref_tryget directly, because we need to be able to
1503      * obtain a reference even in the short window between the queue
1504      * starting to freeze, by dropping the first reference in
1505      * blk_freeze_queue_start, and the moment the last request is
1506      * consumed, marked by the instant q_usage_counter reaches
1507      * zero.
1508      */
1509     if (!percpu_ref_tryget(&q->q_usage_counter))
1510         return;
1511 
1512     blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1513 
1514     if (next != 0) {
1515         mod_timer(&q->timeout, next);
1516     } else {
1517         /*
1518          * Request timeouts are handled as a forward rolling timer. If
1519          * we end up here it means that no requests are pending and
1520          * also that no request has been pending for a while. Mark
1521          * each hctx as idle.
1522          */
1523         queue_for_each_hw_ctx(q, hctx, i) {
1524             /* the hctx may be unmapped, so check it here */
1525             if (blk_mq_hw_queue_mapped(hctx))
1526                 blk_mq_tag_idle(hctx);
1527         }
1528     }
1529     blk_queue_exit(q);
1530 }
1531 
1532 struct flush_busy_ctx_data {
1533     struct blk_mq_hw_ctx *hctx;
1534     struct list_head *list;
1535 };
1536 
1537 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1538 {
1539     struct flush_busy_ctx_data *flush_data = data;
1540     struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1541     struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1542     enum hctx_type type = hctx->type;
1543 
1544     spin_lock(&ctx->lock);
1545     list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1546     sbitmap_clear_bit(sb, bitnr);
1547     spin_unlock(&ctx->lock);
1548     return true;
1549 }
1550 
1551 /*
1552  * Process software queues that have been marked busy, splicing them
1553  * to the for-dispatch
1554  */
1555 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1556 {
1557     struct flush_busy_ctx_data data = {
1558         .hctx = hctx,
1559         .list = list,
1560     };
1561 
1562     sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1563 }
1564 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1565 
1566 struct dispatch_rq_data {
1567     struct blk_mq_hw_ctx *hctx;
1568     struct request *rq;
1569 };
1570 
1571 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1572         void *data)
1573 {
1574     struct dispatch_rq_data *dispatch_data = data;
1575     struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1576     struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1577     enum hctx_type type = hctx->type;
1578 
1579     spin_lock(&ctx->lock);
1580     if (!list_empty(&ctx->rq_lists[type])) {
1581         dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1582         list_del_init(&dispatch_data->rq->queuelist);
1583         if (list_empty(&ctx->rq_lists[type]))
1584             sbitmap_clear_bit(sb, bitnr);
1585     }
1586     spin_unlock(&ctx->lock);
1587 
1588     return !dispatch_data->rq;
1589 }
1590 
1591 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1592                     struct blk_mq_ctx *start)
1593 {
1594     unsigned off = start ? start->index_hw[hctx->type] : 0;
1595     struct dispatch_rq_data data = {
1596         .hctx = hctx,
1597         .rq   = NULL,
1598     };
1599 
1600     __sbitmap_for_each_set(&hctx->ctx_map, off,
1601                    dispatch_rq_from_ctx, &data);
1602 
1603     return data.rq;
1604 }
1605 
1606 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1607 {
1608     struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1609     unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1610     int tag;
1611 
1612     blk_mq_tag_busy(rq->mq_hctx);
1613 
1614     if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1615         bt = &rq->mq_hctx->tags->breserved_tags;
1616         tag_offset = 0;
1617     } else {
1618         if (!hctx_may_queue(rq->mq_hctx, bt))
1619             return false;
1620     }
1621 
1622     tag = __sbitmap_queue_get(bt);
1623     if (tag == BLK_MQ_NO_TAG)
1624         return false;
1625 
1626     rq->tag = tag + tag_offset;
1627     return true;
1628 }
1629 
1630 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1631 {
1632     if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1633         return false;
1634 
1635     if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1636             !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1637         rq->rq_flags |= RQF_MQ_INFLIGHT;
1638         __blk_mq_inc_active_requests(hctx);
1639     }
1640     hctx->tags->rqs[rq->tag] = rq;
1641     return true;
1642 }
1643 
1644 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1645                 int flags, void *key)
1646 {
1647     struct blk_mq_hw_ctx *hctx;
1648 
1649     hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1650 
1651     spin_lock(&hctx->dispatch_wait_lock);
1652     if (!list_empty(&wait->entry)) {
1653         struct sbitmap_queue *sbq;
1654 
1655         list_del_init(&wait->entry);
1656         sbq = &hctx->tags->bitmap_tags;
1657         atomic_dec(&sbq->ws_active);
1658     }
1659     spin_unlock(&hctx->dispatch_wait_lock);
1660 
1661     blk_mq_run_hw_queue(hctx, true);
1662     return 1;
1663 }
1664 
1665 /*
1666  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1667  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1668  * restart. For both cases, take care to check the condition again after
1669  * marking us as waiting.
1670  */
1671 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1672                  struct request *rq)
1673 {
1674     struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1675     struct wait_queue_head *wq;
1676     wait_queue_entry_t *wait;
1677     bool ret;
1678 
1679     if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1680         blk_mq_sched_mark_restart_hctx(hctx);
1681 
1682         /*
1683          * It's possible that a tag was freed in the window between the
1684          * allocation failure and adding the hardware queue to the wait
1685          * queue.
1686          *
1687          * Don't clear RESTART here, someone else could have set it.
1688          * At most this will cost an extra queue run.
1689          */
1690         return blk_mq_get_driver_tag(rq);
1691     }
1692 
1693     wait = &hctx->dispatch_wait;
1694     if (!list_empty_careful(&wait->entry))
1695         return false;
1696 
1697     wq = &bt_wait_ptr(sbq, hctx)->wait;
1698 
1699     spin_lock_irq(&wq->lock);
1700     spin_lock(&hctx->dispatch_wait_lock);
1701     if (!list_empty(&wait->entry)) {
1702         spin_unlock(&hctx->dispatch_wait_lock);
1703         spin_unlock_irq(&wq->lock);
1704         return false;
1705     }
1706 
1707     atomic_inc(&sbq->ws_active);
1708     wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1709     __add_wait_queue(wq, wait);
1710 
1711     /*
1712      * It's possible that a tag was freed in the window between the
1713      * allocation failure and adding the hardware queue to the wait
1714      * queue.
1715      */
1716     ret = blk_mq_get_driver_tag(rq);
1717     if (!ret) {
1718         spin_unlock(&hctx->dispatch_wait_lock);
1719         spin_unlock_irq(&wq->lock);
1720         return false;
1721     }
1722 
1723     /*
1724      * We got a tag, remove ourselves from the wait queue to ensure
1725      * someone else gets the wakeup.
1726      */
1727     list_del_init(&wait->entry);
1728     atomic_dec(&sbq->ws_active);
1729     spin_unlock(&hctx->dispatch_wait_lock);
1730     spin_unlock_irq(&wq->lock);
1731 
1732     return true;
1733 }
1734 
1735 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1736 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1737 /*
1738  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1739  * - EWMA is one simple way to compute running average value
1740  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1741  * - take 4 as factor for avoiding to get too small(0) result, and this
1742  *   factor doesn't matter because EWMA decreases exponentially
1743  */
1744 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1745 {
1746     unsigned int ewma;
1747 
1748     ewma = hctx->dispatch_busy;
1749 
1750     if (!ewma && !busy)
1751         return;
1752 
1753     ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1754     if (busy)
1755         ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1756     ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1757 
1758     hctx->dispatch_busy = ewma;
1759 }
1760 
1761 #define BLK_MQ_RESOURCE_DELAY   3       /* ms units */
1762 
1763 static void blk_mq_handle_dev_resource(struct request *rq,
1764                        struct list_head *list)
1765 {
1766     struct request *next =
1767         list_first_entry_or_null(list, struct request, queuelist);
1768 
1769     /*
1770      * If an I/O scheduler has been configured and we got a driver tag for
1771      * the next request already, free it.
1772      */
1773     if (next)
1774         blk_mq_put_driver_tag(next);
1775 
1776     list_add(&rq->queuelist, list);
1777     __blk_mq_requeue_request(rq);
1778 }
1779 
1780 static void blk_mq_handle_zone_resource(struct request *rq,
1781                     struct list_head *zone_list)
1782 {
1783     /*
1784      * If we end up here it is because we cannot dispatch a request to a
1785      * specific zone due to LLD level zone-write locking or other zone
1786      * related resource not being available. In this case, set the request
1787      * aside in zone_list for retrying it later.
1788      */
1789     list_add(&rq->queuelist, zone_list);
1790     __blk_mq_requeue_request(rq);
1791 }
1792 
1793 enum prep_dispatch {
1794     PREP_DISPATCH_OK,
1795     PREP_DISPATCH_NO_TAG,
1796     PREP_DISPATCH_NO_BUDGET,
1797 };
1798 
1799 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1800                           bool need_budget)
1801 {
1802     struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1803     int budget_token = -1;
1804 
1805     if (need_budget) {
1806         budget_token = blk_mq_get_dispatch_budget(rq->q);
1807         if (budget_token < 0) {
1808             blk_mq_put_driver_tag(rq);
1809             return PREP_DISPATCH_NO_BUDGET;
1810         }
1811         blk_mq_set_rq_budget_token(rq, budget_token);
1812     }
1813 
1814     if (!blk_mq_get_driver_tag(rq)) {
1815         /*
1816          * The initial allocation attempt failed, so we need to
1817          * rerun the hardware queue when a tag is freed. The
1818          * waitqueue takes care of that. If the queue is run
1819          * before we add this entry back on the dispatch list,
1820          * we'll re-run it below.
1821          */
1822         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1823             /*
1824              * All budgets not got from this function will be put
1825              * together during handling partial dispatch
1826              */
1827             if (need_budget)
1828                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1829             return PREP_DISPATCH_NO_TAG;
1830         }
1831     }
1832 
1833     return PREP_DISPATCH_OK;
1834 }
1835 
1836 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1837 static void blk_mq_release_budgets(struct request_queue *q,
1838         struct list_head *list)
1839 {
1840     struct request *rq;
1841 
1842     list_for_each_entry(rq, list, queuelist) {
1843         int budget_token = blk_mq_get_rq_budget_token(rq);
1844 
1845         if (budget_token >= 0)
1846             blk_mq_put_dispatch_budget(q, budget_token);
1847     }
1848 }
1849 
1850 /*
1851  * Returns true if we did some work AND can potentially do more.
1852  */
1853 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1854                  unsigned int nr_budgets)
1855 {
1856     enum prep_dispatch prep;
1857     struct request_queue *q = hctx->queue;
1858     struct request *rq, *nxt;
1859     int errors, queued;
1860     blk_status_t ret = BLK_STS_OK;
1861     LIST_HEAD(zone_list);
1862     bool needs_resource = false;
1863 
1864     if (list_empty(list))
1865         return false;
1866 
1867     /*
1868      * Now process all the entries, sending them to the driver.
1869      */
1870     errors = queued = 0;
1871     do {
1872         struct blk_mq_queue_data bd;
1873 
1874         rq = list_first_entry(list, struct request, queuelist);
1875 
1876         WARN_ON_ONCE(hctx != rq->mq_hctx);
1877         prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1878         if (prep != PREP_DISPATCH_OK)
1879             break;
1880 
1881         list_del_init(&rq->queuelist);
1882 
1883         bd.rq = rq;
1884 
1885         /*
1886          * Flag last if we have no more requests, or if we have more
1887          * but can't assign a driver tag to it.
1888          */
1889         if (list_empty(list))
1890             bd.last = true;
1891         else {
1892             nxt = list_first_entry(list, struct request, queuelist);
1893             bd.last = !blk_mq_get_driver_tag(nxt);
1894         }
1895 
1896         /*
1897          * once the request is queued to lld, no need to cover the
1898          * budget any more
1899          */
1900         if (nr_budgets)
1901             nr_budgets--;
1902         ret = q->mq_ops->queue_rq(hctx, &bd);
1903         switch (ret) {
1904         case BLK_STS_OK:
1905             queued++;
1906             break;
1907         case BLK_STS_RESOURCE:
1908             needs_resource = true;
1909             fallthrough;
1910         case BLK_STS_DEV_RESOURCE:
1911             blk_mq_handle_dev_resource(rq, list);
1912             goto out;
1913         case BLK_STS_ZONE_RESOURCE:
1914             /*
1915              * Move the request to zone_list and keep going through
1916              * the dispatch list to find more requests the drive can
1917              * accept.
1918              */
1919             blk_mq_handle_zone_resource(rq, &zone_list);
1920             needs_resource = true;
1921             break;
1922         default:
1923             errors++;
1924             blk_mq_end_request(rq, ret);
1925         }
1926     } while (!list_empty(list));
1927 out:
1928     if (!list_empty(&zone_list))
1929         list_splice_tail_init(&zone_list, list);
1930 
1931     /* If we didn't flush the entire list, we could have told the driver
1932      * there was more coming, but that turned out to be a lie.
1933      */
1934     if ((!list_empty(list) || errors || needs_resource ||
1935          ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1936         q->mq_ops->commit_rqs(hctx);
1937     /*
1938      * Any items that need requeuing? Stuff them into hctx->dispatch,
1939      * that is where we will continue on next queue run.
1940      */
1941     if (!list_empty(list)) {
1942         bool needs_restart;
1943         /* For non-shared tags, the RESTART check will suffice */
1944         bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1945             (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1946 
1947         if (nr_budgets)
1948             blk_mq_release_budgets(q, list);
1949 
1950         spin_lock(&hctx->lock);
1951         list_splice_tail_init(list, &hctx->dispatch);
1952         spin_unlock(&hctx->lock);
1953 
1954         /*
1955          * Order adding requests to hctx->dispatch and checking
1956          * SCHED_RESTART flag. The pair of this smp_mb() is the one
1957          * in blk_mq_sched_restart(). Avoid restart code path to
1958          * miss the new added requests to hctx->dispatch, meantime
1959          * SCHED_RESTART is observed here.
1960          */
1961         smp_mb();
1962 
1963         /*
1964          * If SCHED_RESTART was set by the caller of this function and
1965          * it is no longer set that means that it was cleared by another
1966          * thread and hence that a queue rerun is needed.
1967          *
1968          * If 'no_tag' is set, that means that we failed getting
1969          * a driver tag with an I/O scheduler attached. If our dispatch
1970          * waitqueue is no longer active, ensure that we run the queue
1971          * AFTER adding our entries back to the list.
1972          *
1973          * If no I/O scheduler has been configured it is possible that
1974          * the hardware queue got stopped and restarted before requests
1975          * were pushed back onto the dispatch list. Rerun the queue to
1976          * avoid starvation. Notes:
1977          * - blk_mq_run_hw_queue() checks whether or not a queue has
1978          *   been stopped before rerunning a queue.
1979          * - Some but not all block drivers stop a queue before
1980          *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1981          *   and dm-rq.
1982          *
1983          * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1984          * bit is set, run queue after a delay to avoid IO stalls
1985          * that could otherwise occur if the queue is idle.  We'll do
1986          * similar if we couldn't get budget or couldn't lock a zone
1987          * and SCHED_RESTART is set.
1988          */
1989         needs_restart = blk_mq_sched_needs_restart(hctx);
1990         if (prep == PREP_DISPATCH_NO_BUDGET)
1991             needs_resource = true;
1992         if (!needs_restart ||
1993             (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1994             blk_mq_run_hw_queue(hctx, true);
1995         else if (needs_restart && needs_resource)
1996             blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1997 
1998         blk_mq_update_dispatch_busy(hctx, true);
1999         return false;
2000     } else
2001         blk_mq_update_dispatch_busy(hctx, false);
2002 
2003     return (queued + errors) != 0;
2004 }
2005 
2006 /**
2007  * __blk_mq_run_hw_queue - Run a hardware queue.
2008  * @hctx: Pointer to the hardware queue to run.
2009  *
2010  * Send pending requests to the hardware.
2011  */
2012 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2013 {
2014     /*
2015      * We can't run the queue inline with ints disabled. Ensure that
2016      * we catch bad users of this early.
2017      */
2018     WARN_ON_ONCE(in_interrupt());
2019 
2020     blk_mq_run_dispatch_ops(hctx->queue,
2021             blk_mq_sched_dispatch_requests(hctx));
2022 }
2023 
2024 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2025 {
2026     int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2027 
2028     if (cpu >= nr_cpu_ids)
2029         cpu = cpumask_first(hctx->cpumask);
2030     return cpu;
2031 }
2032 
2033 /*
2034  * It'd be great if the workqueue API had a way to pass
2035  * in a mask and had some smarts for more clever placement.
2036  * For now we just round-robin here, switching for every
2037  * BLK_MQ_CPU_WORK_BATCH queued items.
2038  */
2039 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2040 {
2041     bool tried = false;
2042     int next_cpu = hctx->next_cpu;
2043 
2044     if (hctx->queue->nr_hw_queues == 1)
2045         return WORK_CPU_UNBOUND;
2046 
2047     if (--hctx->next_cpu_batch <= 0) {
2048 select_cpu:
2049         next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2050                 cpu_online_mask);
2051         if (next_cpu >= nr_cpu_ids)
2052             next_cpu = blk_mq_first_mapped_cpu(hctx);
2053         hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2054     }
2055 
2056     /*
2057      * Do unbound schedule if we can't find a online CPU for this hctx,
2058      * and it should only happen in the path of handling CPU DEAD.
2059      */
2060     if (!cpu_online(next_cpu)) {
2061         if (!tried) {
2062             tried = true;
2063             goto select_cpu;
2064         }
2065 
2066         /*
2067          * Make sure to re-select CPU next time once after CPUs
2068          * in hctx->cpumask become online again.
2069          */
2070         hctx->next_cpu = next_cpu;
2071         hctx->next_cpu_batch = 1;
2072         return WORK_CPU_UNBOUND;
2073     }
2074 
2075     hctx->next_cpu = next_cpu;
2076     return next_cpu;
2077 }
2078 
2079 /**
2080  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2081  * @hctx: Pointer to the hardware queue to run.
2082  * @async: If we want to run the queue asynchronously.
2083  * @msecs: Milliseconds of delay to wait before running the queue.
2084  *
2085  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2086  * with a delay of @msecs.
2087  */
2088 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2089                     unsigned long msecs)
2090 {
2091     if (unlikely(blk_mq_hctx_stopped(hctx)))
2092         return;
2093 
2094     if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2095         if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2096             __blk_mq_run_hw_queue(hctx);
2097             return;
2098         }
2099     }
2100 
2101     kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2102                     msecs_to_jiffies(msecs));
2103 }
2104 
2105 /**
2106  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2107  * @hctx: Pointer to the hardware queue to run.
2108  * @msecs: Milliseconds of delay to wait before running the queue.
2109  *
2110  * Run a hardware queue asynchronously with a delay of @msecs.
2111  */
2112 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2113 {
2114     __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2115 }
2116 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2117 
2118 /**
2119  * blk_mq_run_hw_queue - Start to run a hardware queue.
2120  * @hctx: Pointer to the hardware queue to run.
2121  * @async: If we want to run the queue asynchronously.
2122  *
2123  * Check if the request queue is not in a quiesced state and if there are
2124  * pending requests to be sent. If this is true, run the queue to send requests
2125  * to hardware.
2126  */
2127 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2128 {
2129     bool need_run;
2130 
2131     /*
2132      * When queue is quiesced, we may be switching io scheduler, or
2133      * updating nr_hw_queues, or other things, and we can't run queue
2134      * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2135      *
2136      * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2137      * quiesced.
2138      */
2139     __blk_mq_run_dispatch_ops(hctx->queue, false,
2140         need_run = !blk_queue_quiesced(hctx->queue) &&
2141         blk_mq_hctx_has_pending(hctx));
2142 
2143     if (need_run)
2144         __blk_mq_delay_run_hw_queue(hctx, async, 0);
2145 }
2146 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2147 
2148 /*
2149  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2150  * scheduler.
2151  */
2152 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2153 {
2154     struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2155     /*
2156      * If the IO scheduler does not respect hardware queues when
2157      * dispatching, we just don't bother with multiple HW queues and
2158      * dispatch from hctx for the current CPU since running multiple queues
2159      * just causes lock contention inside the scheduler and pointless cache
2160      * bouncing.
2161      */
2162     struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2163 
2164     if (!blk_mq_hctx_stopped(hctx))
2165         return hctx;
2166     return NULL;
2167 }
2168 
2169 /**
2170  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2171  * @q: Pointer to the request queue to run.
2172  * @async: If we want to run the queue asynchronously.
2173  */
2174 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2175 {
2176     struct blk_mq_hw_ctx *hctx, *sq_hctx;
2177     unsigned long i;
2178 
2179     sq_hctx = NULL;
2180     if (blk_queue_sq_sched(q))
2181         sq_hctx = blk_mq_get_sq_hctx(q);
2182     queue_for_each_hw_ctx(q, hctx, i) {
2183         if (blk_mq_hctx_stopped(hctx))
2184             continue;
2185         /*
2186          * Dispatch from this hctx either if there's no hctx preferred
2187          * by IO scheduler or if it has requests that bypass the
2188          * scheduler.
2189          */
2190         if (!sq_hctx || sq_hctx == hctx ||
2191             !list_empty_careful(&hctx->dispatch))
2192             blk_mq_run_hw_queue(hctx, async);
2193     }
2194 }
2195 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2196 
2197 /**
2198  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2199  * @q: Pointer to the request queue to run.
2200  * @msecs: Milliseconds of delay to wait before running the queues.
2201  */
2202 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2203 {
2204     struct blk_mq_hw_ctx *hctx, *sq_hctx;
2205     unsigned long i;
2206 
2207     sq_hctx = NULL;
2208     if (blk_queue_sq_sched(q))
2209         sq_hctx = blk_mq_get_sq_hctx(q);
2210     queue_for_each_hw_ctx(q, hctx, i) {
2211         if (blk_mq_hctx_stopped(hctx))
2212             continue;
2213         /*
2214          * If there is already a run_work pending, leave the
2215          * pending delay untouched. Otherwise, a hctx can stall
2216          * if another hctx is re-delaying the other's work
2217          * before the work executes.
2218          */
2219         if (delayed_work_pending(&hctx->run_work))
2220             continue;
2221         /*
2222          * Dispatch from this hctx either if there's no hctx preferred
2223          * by IO scheduler or if it has requests that bypass the
2224          * scheduler.
2225          */
2226         if (!sq_hctx || sq_hctx == hctx ||
2227             !list_empty_careful(&hctx->dispatch))
2228             blk_mq_delay_run_hw_queue(hctx, msecs);
2229     }
2230 }
2231 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2232 
2233 /*
2234  * This function is often used for pausing .queue_rq() by driver when
2235  * there isn't enough resource or some conditions aren't satisfied, and
2236  * BLK_STS_RESOURCE is usually returned.
2237  *
2238  * We do not guarantee that dispatch can be drained or blocked
2239  * after blk_mq_stop_hw_queue() returns. Please use
2240  * blk_mq_quiesce_queue() for that requirement.
2241  */
2242 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2243 {
2244     cancel_delayed_work(&hctx->run_work);
2245 
2246     set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2247 }
2248 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2249 
2250 /*
2251  * This function is often used for pausing .queue_rq() by driver when
2252  * there isn't enough resource or some conditions aren't satisfied, and
2253  * BLK_STS_RESOURCE is usually returned.
2254  *
2255  * We do not guarantee that dispatch can be drained or blocked
2256  * after blk_mq_stop_hw_queues() returns. Please use
2257  * blk_mq_quiesce_queue() for that requirement.
2258  */
2259 void blk_mq_stop_hw_queues(struct request_queue *q)
2260 {
2261     struct blk_mq_hw_ctx *hctx;
2262     unsigned long i;
2263 
2264     queue_for_each_hw_ctx(q, hctx, i)
2265         blk_mq_stop_hw_queue(hctx);
2266 }
2267 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2268 
2269 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2270 {
2271     clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2272 
2273     blk_mq_run_hw_queue(hctx, false);
2274 }
2275 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2276 
2277 void blk_mq_start_hw_queues(struct request_queue *q)
2278 {
2279     struct blk_mq_hw_ctx *hctx;
2280     unsigned long i;
2281 
2282     queue_for_each_hw_ctx(q, hctx, i)
2283         blk_mq_start_hw_queue(hctx);
2284 }
2285 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2286 
2287 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2288 {
2289     if (!blk_mq_hctx_stopped(hctx))
2290         return;
2291 
2292     clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2293     blk_mq_run_hw_queue(hctx, async);
2294 }
2295 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2296 
2297 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2298 {
2299     struct blk_mq_hw_ctx *hctx;
2300     unsigned long i;
2301 
2302     queue_for_each_hw_ctx(q, hctx, i)
2303         blk_mq_start_stopped_hw_queue(hctx, async);
2304 }
2305 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2306 
2307 static void blk_mq_run_work_fn(struct work_struct *work)
2308 {
2309     struct blk_mq_hw_ctx *hctx;
2310 
2311     hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2312 
2313     /*
2314      * If we are stopped, don't run the queue.
2315      */
2316     if (blk_mq_hctx_stopped(hctx))
2317         return;
2318 
2319     __blk_mq_run_hw_queue(hctx);
2320 }
2321 
2322 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2323                         struct request *rq,
2324                         bool at_head)
2325 {
2326     struct blk_mq_ctx *ctx = rq->mq_ctx;
2327     enum hctx_type type = hctx->type;
2328 
2329     lockdep_assert_held(&ctx->lock);
2330 
2331     trace_block_rq_insert(rq);
2332 
2333     if (at_head)
2334         list_add(&rq->queuelist, &ctx->rq_lists[type]);
2335     else
2336         list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2337 }
2338 
2339 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2340                  bool at_head)
2341 {
2342     struct blk_mq_ctx *ctx = rq->mq_ctx;
2343 
2344     lockdep_assert_held(&ctx->lock);
2345 
2346     __blk_mq_insert_req_list(hctx, rq, at_head);
2347     blk_mq_hctx_mark_pending(hctx, ctx);
2348 }
2349 
2350 /**
2351  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2352  * @rq: Pointer to request to be inserted.
2353  * @at_head: true if the request should be inserted at the head of the list.
2354  * @run_queue: If we should run the hardware queue after inserting the request.
2355  *
2356  * Should only be used carefully, when the caller knows we want to
2357  * bypass a potential IO scheduler on the target device.
2358  */
2359 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2360                   bool run_queue)
2361 {
2362     struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2363 
2364     spin_lock(&hctx->lock);
2365     if (at_head)
2366         list_add(&rq->queuelist, &hctx->dispatch);
2367     else
2368         list_add_tail(&rq->queuelist, &hctx->dispatch);
2369     spin_unlock(&hctx->lock);
2370 
2371     if (run_queue)
2372         blk_mq_run_hw_queue(hctx, false);
2373 }
2374 
2375 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2376                 struct list_head *list)
2377 
2378 {
2379     struct request *rq;
2380     enum hctx_type type = hctx->type;
2381 
2382     /*
2383      * preemption doesn't flush plug list, so it's possible ctx->cpu is
2384      * offline now
2385      */
2386     list_for_each_entry(rq, list, queuelist) {
2387         BUG_ON(rq->mq_ctx != ctx);
2388         trace_block_rq_insert(rq);
2389     }
2390 
2391     spin_lock(&ctx->lock);
2392     list_splice_tail_init(list, &ctx->rq_lists[type]);
2393     blk_mq_hctx_mark_pending(hctx, ctx);
2394     spin_unlock(&ctx->lock);
2395 }
2396 
2397 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2398                   bool from_schedule)
2399 {
2400     if (hctx->queue->mq_ops->commit_rqs) {
2401         trace_block_unplug(hctx->queue, *queued, !from_schedule);
2402         hctx->queue->mq_ops->commit_rqs(hctx);
2403     }
2404     *queued = 0;
2405 }
2406 
2407 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2408         unsigned int nr_segs)
2409 {
2410     int err;
2411 
2412     if (bio->bi_opf & REQ_RAHEAD)
2413         rq->cmd_flags |= REQ_FAILFAST_MASK;
2414 
2415     rq->__sector = bio->bi_iter.bi_sector;
2416     blk_rq_bio_prep(rq, bio, nr_segs);
2417 
2418     /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2419     err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2420     WARN_ON_ONCE(err);
2421 
2422     blk_account_io_start(rq);
2423 }
2424 
2425 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2426                         struct request *rq, bool last)
2427 {
2428     struct request_queue *q = rq->q;
2429     struct blk_mq_queue_data bd = {
2430         .rq = rq,
2431         .last = last,
2432     };
2433     blk_status_t ret;
2434 
2435     /*
2436      * For OK queue, we are done. For error, caller may kill it.
2437      * Any other error (busy), just add it to our list as we
2438      * previously would have done.
2439      */
2440     ret = q->mq_ops->queue_rq(hctx, &bd);
2441     switch (ret) {
2442     case BLK_STS_OK:
2443         blk_mq_update_dispatch_busy(hctx, false);
2444         break;
2445     case BLK_STS_RESOURCE:
2446     case BLK_STS_DEV_RESOURCE:
2447         blk_mq_update_dispatch_busy(hctx, true);
2448         __blk_mq_requeue_request(rq);
2449         break;
2450     default:
2451         blk_mq_update_dispatch_busy(hctx, false);
2452         break;
2453     }
2454 
2455     return ret;
2456 }
2457 
2458 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2459                         struct request *rq,
2460                         bool bypass_insert, bool last)
2461 {
2462     struct request_queue *q = rq->q;
2463     bool run_queue = true;
2464     int budget_token;
2465 
2466     /*
2467      * RCU or SRCU read lock is needed before checking quiesced flag.
2468      *
2469      * When queue is stopped or quiesced, ignore 'bypass_insert' from
2470      * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2471      * and avoid driver to try to dispatch again.
2472      */
2473     if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2474         run_queue = false;
2475         bypass_insert = false;
2476         goto insert;
2477     }
2478 
2479     if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2480         goto insert;
2481 
2482     budget_token = blk_mq_get_dispatch_budget(q);
2483     if (budget_token < 0)
2484         goto insert;
2485 
2486     blk_mq_set_rq_budget_token(rq, budget_token);
2487 
2488     if (!blk_mq_get_driver_tag(rq)) {
2489         blk_mq_put_dispatch_budget(q, budget_token);
2490         goto insert;
2491     }
2492 
2493     return __blk_mq_issue_directly(hctx, rq, last);
2494 insert:
2495     if (bypass_insert)
2496         return BLK_STS_RESOURCE;
2497 
2498     blk_mq_sched_insert_request(rq, false, run_queue, false);
2499 
2500     return BLK_STS_OK;
2501 }
2502 
2503 /**
2504  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2505  * @hctx: Pointer of the associated hardware queue.
2506  * @rq: Pointer to request to be sent.
2507  *
2508  * If the device has enough resources to accept a new request now, send the
2509  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2510  * we can try send it another time in the future. Requests inserted at this
2511  * queue have higher priority.
2512  */
2513 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2514         struct request *rq)
2515 {
2516     blk_status_t ret =
2517         __blk_mq_try_issue_directly(hctx, rq, false, true);
2518 
2519     if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2520         blk_mq_request_bypass_insert(rq, false, true);
2521     else if (ret != BLK_STS_OK)
2522         blk_mq_end_request(rq, ret);
2523 }
2524 
2525 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2526 {
2527     return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2528 }
2529 
2530 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2531 {
2532     struct blk_mq_hw_ctx *hctx = NULL;
2533     struct request *rq;
2534     int queued = 0;
2535     int errors = 0;
2536 
2537     while ((rq = rq_list_pop(&plug->mq_list))) {
2538         bool last = rq_list_empty(plug->mq_list);
2539         blk_status_t ret;
2540 
2541         if (hctx != rq->mq_hctx) {
2542             if (hctx)
2543                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2544             hctx = rq->mq_hctx;
2545         }
2546 
2547         ret = blk_mq_request_issue_directly(rq, last);
2548         switch (ret) {
2549         case BLK_STS_OK:
2550             queued++;
2551             break;
2552         case BLK_STS_RESOURCE:
2553         case BLK_STS_DEV_RESOURCE:
2554             blk_mq_request_bypass_insert(rq, false, true);
2555             blk_mq_commit_rqs(hctx, &queued, from_schedule);
2556             return;
2557         default:
2558             blk_mq_end_request(rq, ret);
2559             errors++;
2560             break;
2561         }
2562     }
2563 
2564     /*
2565      * If we didn't flush the entire list, we could have told the driver
2566      * there was more coming, but that turned out to be a lie.
2567      */
2568     if (errors)
2569         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2570 }
2571 
2572 static void __blk_mq_flush_plug_list(struct request_queue *q,
2573                      struct blk_plug *plug)
2574 {
2575     if (blk_queue_quiesced(q))
2576         return;
2577     q->mq_ops->queue_rqs(&plug->mq_list);
2578 }
2579 
2580 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2581 {
2582     struct blk_mq_hw_ctx *this_hctx = NULL;
2583     struct blk_mq_ctx *this_ctx = NULL;
2584     struct request *requeue_list = NULL;
2585     unsigned int depth = 0;
2586     LIST_HEAD(list);
2587 
2588     do {
2589         struct request *rq = rq_list_pop(&plug->mq_list);
2590 
2591         if (!this_hctx) {
2592             this_hctx = rq->mq_hctx;
2593             this_ctx = rq->mq_ctx;
2594         } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2595             rq_list_add(&requeue_list, rq);
2596             continue;
2597         }
2598         list_add_tail(&rq->queuelist, &list);
2599         depth++;
2600     } while (!rq_list_empty(plug->mq_list));
2601 
2602     plug->mq_list = requeue_list;
2603     trace_block_unplug(this_hctx->queue, depth, !from_sched);
2604     blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2605 }
2606 
2607 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2608 {
2609     struct request *rq;
2610 
2611     if (rq_list_empty(plug->mq_list))
2612         return;
2613     plug->rq_count = 0;
2614 
2615     if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2616         struct request_queue *q;
2617 
2618         rq = rq_list_peek(&plug->mq_list);
2619         q = rq->q;
2620 
2621         /*
2622          * Peek first request and see if we have a ->queue_rqs() hook.
2623          * If we do, we can dispatch the whole plug list in one go. We
2624          * already know at this point that all requests belong to the
2625          * same queue, caller must ensure that's the case.
2626          *
2627          * Since we pass off the full list to the driver at this point,
2628          * we do not increment the active request count for the queue.
2629          * Bypass shared tags for now because of that.
2630          */
2631         if (q->mq_ops->queue_rqs &&
2632             !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2633             blk_mq_run_dispatch_ops(q,
2634                 __blk_mq_flush_plug_list(q, plug));
2635             if (rq_list_empty(plug->mq_list))
2636                 return;
2637         }
2638 
2639         blk_mq_run_dispatch_ops(q,
2640                 blk_mq_plug_issue_direct(plug, false));
2641         if (rq_list_empty(plug->mq_list))
2642             return;
2643     }
2644 
2645     do {
2646         blk_mq_dispatch_plug_list(plug, from_schedule);
2647     } while (!rq_list_empty(plug->mq_list));
2648 }
2649 
2650 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2651         struct list_head *list)
2652 {
2653     int queued = 0;
2654     int errors = 0;
2655 
2656     while (!list_empty(list)) {
2657         blk_status_t ret;
2658         struct request *rq = list_first_entry(list, struct request,
2659                 queuelist);
2660 
2661         list_del_init(&rq->queuelist);
2662         ret = blk_mq_request_issue_directly(rq, list_empty(list));
2663         if (ret != BLK_STS_OK) {
2664             errors++;
2665             if (ret == BLK_STS_RESOURCE ||
2666                     ret == BLK_STS_DEV_RESOURCE) {
2667                 blk_mq_request_bypass_insert(rq, false,
2668                             list_empty(list));
2669                 break;
2670             }
2671             blk_mq_end_request(rq, ret);
2672         } else
2673             queued++;
2674     }
2675 
2676     /*
2677      * If we didn't flush the entire list, we could have told
2678      * the driver there was more coming, but that turned out to
2679      * be a lie.
2680      */
2681     if ((!list_empty(list) || errors) &&
2682          hctx->queue->mq_ops->commit_rqs && queued)
2683         hctx->queue->mq_ops->commit_rqs(hctx);
2684 }
2685 
2686 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2687                      struct bio *bio, unsigned int nr_segs)
2688 {
2689     if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2690         if (blk_attempt_plug_merge(q, bio, nr_segs))
2691             return true;
2692         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2693             return true;
2694     }
2695     return false;
2696 }
2697 
2698 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2699                            struct blk_plug *plug,
2700                            struct bio *bio,
2701                            unsigned int nsegs)
2702 {
2703     struct blk_mq_alloc_data data = {
2704         .q      = q,
2705         .nr_tags    = 1,
2706         .cmd_flags  = bio->bi_opf,
2707     };
2708     struct request *rq;
2709 
2710     if (unlikely(bio_queue_enter(bio)))
2711         return NULL;
2712 
2713     if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2714         goto queue_exit;
2715 
2716     rq_qos_throttle(q, bio);
2717 
2718     if (plug) {
2719         data.nr_tags = plug->nr_ios;
2720         plug->nr_ios = 1;
2721         data.cached_rq = &plug->cached_rq;
2722     }
2723 
2724     rq = __blk_mq_alloc_requests(&data);
2725     if (rq)
2726         return rq;
2727     rq_qos_cleanup(q, bio);
2728     if (bio->bi_opf & REQ_NOWAIT)
2729         bio_wouldblock_error(bio);
2730 queue_exit:
2731     blk_queue_exit(q);
2732     return NULL;
2733 }
2734 
2735 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2736         struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2737 {
2738     struct request *rq;
2739 
2740     if (!plug)
2741         return NULL;
2742     rq = rq_list_peek(&plug->cached_rq);
2743     if (!rq || rq->q != q)
2744         return NULL;
2745 
2746     if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2747         *bio = NULL;
2748         return NULL;
2749     }
2750 
2751     if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2752         return NULL;
2753     if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2754         return NULL;
2755 
2756     /*
2757      * If any qos ->throttle() end up blocking, we will have flushed the
2758      * plug and hence killed the cached_rq list as well. Pop this entry
2759      * before we throttle.
2760      */
2761     plug->cached_rq = rq_list_next(rq);
2762     rq_qos_throttle(q, *bio);
2763 
2764     rq->cmd_flags = (*bio)->bi_opf;
2765     INIT_LIST_HEAD(&rq->queuelist);
2766     return rq;
2767 }
2768 
2769 static void bio_set_ioprio(struct bio *bio)
2770 {
2771     /* Nobody set ioprio so far? Initialize it based on task's nice value */
2772     if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2773         bio->bi_ioprio = get_current_ioprio();
2774     blkcg_set_ioprio(bio);
2775 }
2776 
2777 /**
2778  * blk_mq_submit_bio - Create and send a request to block device.
2779  * @bio: Bio pointer.
2780  *
2781  * Builds up a request structure from @q and @bio and send to the device. The
2782  * request may not be queued directly to hardware if:
2783  * * This request can be merged with another one
2784  * * We want to place request at plug queue for possible future merging
2785  * * There is an IO scheduler active at this queue
2786  *
2787  * It will not queue the request if there is an error with the bio, or at the
2788  * request creation.
2789  */
2790 void blk_mq_submit_bio(struct bio *bio)
2791 {
2792     struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2793     struct blk_plug *plug = blk_mq_plug(bio);
2794     const int is_sync = op_is_sync(bio->bi_opf);
2795     struct request *rq;
2796     unsigned int nr_segs = 1;
2797     blk_status_t ret;
2798 
2799     bio = blk_queue_bounce(bio, q);
2800     if (bio_may_exceed_limits(bio, &q->limits))
2801         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2802 
2803     if (!bio_integrity_prep(bio))
2804         return;
2805 
2806     bio_set_ioprio(bio);
2807 
2808     rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2809     if (!rq) {
2810         if (!bio)
2811             return;
2812         rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2813         if (unlikely(!rq))
2814             return;
2815     }
2816 
2817     trace_block_getrq(bio);
2818 
2819     rq_qos_track(q, rq, bio);
2820 
2821     blk_mq_bio_to_request(rq, bio, nr_segs);
2822 
2823     ret = blk_crypto_init_request(rq);
2824     if (ret != BLK_STS_OK) {
2825         bio->bi_status = ret;
2826         bio_endio(bio);
2827         blk_mq_free_request(rq);
2828         return;
2829     }
2830 
2831     if (op_is_flush(bio->bi_opf)) {
2832         blk_insert_flush(rq);
2833         return;
2834     }
2835 
2836     if (plug)
2837         blk_add_rq_to_plug(plug, rq);
2838     else if ((rq->rq_flags & RQF_ELV) ||
2839          (rq->mq_hctx->dispatch_busy &&
2840           (q->nr_hw_queues == 1 || !is_sync)))
2841         blk_mq_sched_insert_request(rq, false, true, true);
2842     else
2843         blk_mq_run_dispatch_ops(rq->q,
2844                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2845 }
2846 
2847 #ifdef CONFIG_BLK_MQ_STACKING
2848 /**
2849  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2850  * @rq: the request being queued
2851  */
2852 blk_status_t blk_insert_cloned_request(struct request *rq)
2853 {
2854     struct request_queue *q = rq->q;
2855     unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2856     blk_status_t ret;
2857 
2858     if (blk_rq_sectors(rq) > max_sectors) {
2859         /*
2860          * SCSI device does not have a good way to return if
2861          * Write Same/Zero is actually supported. If a device rejects
2862          * a non-read/write command (discard, write same,etc.) the
2863          * low-level device driver will set the relevant queue limit to
2864          * 0 to prevent blk-lib from issuing more of the offending
2865          * operations. Commands queued prior to the queue limit being
2866          * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2867          * errors being propagated to upper layers.
2868          */
2869         if (max_sectors == 0)
2870             return BLK_STS_NOTSUPP;
2871 
2872         printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2873             __func__, blk_rq_sectors(rq), max_sectors);
2874         return BLK_STS_IOERR;
2875     }
2876 
2877     /*
2878      * The queue settings related to segment counting may differ from the
2879      * original queue.
2880      */
2881     rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2882     if (rq->nr_phys_segments > queue_max_segments(q)) {
2883         printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2884             __func__, rq->nr_phys_segments, queue_max_segments(q));
2885         return BLK_STS_IOERR;
2886     }
2887 
2888     if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2889         return BLK_STS_IOERR;
2890 
2891     if (blk_crypto_insert_cloned_request(rq))
2892         return BLK_STS_IOERR;
2893 
2894     blk_account_io_start(rq);
2895 
2896     /*
2897      * Since we have a scheduler attached on the top device,
2898      * bypass a potential scheduler on the bottom device for
2899      * insert.
2900      */
2901     blk_mq_run_dispatch_ops(q,
2902             ret = blk_mq_request_issue_directly(rq, true));
2903     if (ret)
2904         blk_account_io_done(rq, ktime_get_ns());
2905     return ret;
2906 }
2907 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2908 
2909 /**
2910  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2911  * @rq: the clone request to be cleaned up
2912  *
2913  * Description:
2914  *     Free all bios in @rq for a cloned request.
2915  */
2916 void blk_rq_unprep_clone(struct request *rq)
2917 {
2918     struct bio *bio;
2919 
2920     while ((bio = rq->bio) != NULL) {
2921         rq->bio = bio->bi_next;
2922 
2923         bio_put(bio);
2924     }
2925 }
2926 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2927 
2928 /**
2929  * blk_rq_prep_clone - Helper function to setup clone request
2930  * @rq: the request to be setup
2931  * @rq_src: original request to be cloned
2932  * @bs: bio_set that bios for clone are allocated from
2933  * @gfp_mask: memory allocation mask for bio
2934  * @bio_ctr: setup function to be called for each clone bio.
2935  *           Returns %0 for success, non %0 for failure.
2936  * @data: private data to be passed to @bio_ctr
2937  *
2938  * Description:
2939  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2940  *     Also, pages which the original bios are pointing to are not copied
2941  *     and the cloned bios just point same pages.
2942  *     So cloned bios must be completed before original bios, which means
2943  *     the caller must complete @rq before @rq_src.
2944  */
2945 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2946               struct bio_set *bs, gfp_t gfp_mask,
2947               int (*bio_ctr)(struct bio *, struct bio *, void *),
2948               void *data)
2949 {
2950     struct bio *bio, *bio_src;
2951 
2952     if (!bs)
2953         bs = &fs_bio_set;
2954 
2955     __rq_for_each_bio(bio_src, rq_src) {
2956         bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2957                       bs);
2958         if (!bio)
2959             goto free_and_out;
2960 
2961         if (bio_ctr && bio_ctr(bio, bio_src, data))
2962             goto free_and_out;
2963 
2964         if (rq->bio) {
2965             rq->biotail->bi_next = bio;
2966             rq->biotail = bio;
2967         } else {
2968             rq->bio = rq->biotail = bio;
2969         }
2970         bio = NULL;
2971     }
2972 
2973     /* Copy attributes of the original request to the clone request. */
2974     rq->__sector = blk_rq_pos(rq_src);
2975     rq->__data_len = blk_rq_bytes(rq_src);
2976     if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2977         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2978         rq->special_vec = rq_src->special_vec;
2979     }
2980     rq->nr_phys_segments = rq_src->nr_phys_segments;
2981     rq->ioprio = rq_src->ioprio;
2982 
2983     if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2984         goto free_and_out;
2985 
2986     return 0;
2987 
2988 free_and_out:
2989     if (bio)
2990         bio_put(bio);
2991     blk_rq_unprep_clone(rq);
2992 
2993     return -ENOMEM;
2994 }
2995 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2996 #endif /* CONFIG_BLK_MQ_STACKING */
2997 
2998 /*
2999  * Steal bios from a request and add them to a bio list.
3000  * The request must not have been partially completed before.
3001  */
3002 void blk_steal_bios(struct bio_list *list, struct request *rq)
3003 {
3004     if (rq->bio) {
3005         if (list->tail)
3006             list->tail->bi_next = rq->bio;
3007         else
3008             list->head = rq->bio;
3009         list->tail = rq->biotail;
3010 
3011         rq->bio = NULL;
3012         rq->biotail = NULL;
3013     }
3014 
3015     rq->__data_len = 0;
3016 }
3017 EXPORT_SYMBOL_GPL(blk_steal_bios);
3018 
3019 static size_t order_to_size(unsigned int order)
3020 {
3021     return (size_t)PAGE_SIZE << order;
3022 }
3023 
3024 /* called before freeing request pool in @tags */
3025 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3026                     struct blk_mq_tags *tags)
3027 {
3028     struct page *page;
3029     unsigned long flags;
3030 
3031     /* There is no need to clear a driver tags own mapping */
3032     if (drv_tags == tags)
3033         return;
3034 
3035     list_for_each_entry(page, &tags->page_list, lru) {
3036         unsigned long start = (unsigned long)page_address(page);
3037         unsigned long end = start + order_to_size(page->private);
3038         int i;
3039 
3040         for (i = 0; i < drv_tags->nr_tags; i++) {
3041             struct request *rq = drv_tags->rqs[i];
3042             unsigned long rq_addr = (unsigned long)rq;
3043 
3044             if (rq_addr >= start && rq_addr < end) {
3045                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3046                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3047             }
3048         }
3049     }
3050 
3051     /*
3052      * Wait until all pending iteration is done.
3053      *
3054      * Request reference is cleared and it is guaranteed to be observed
3055      * after the ->lock is released.
3056      */
3057     spin_lock_irqsave(&drv_tags->lock, flags);
3058     spin_unlock_irqrestore(&drv_tags->lock, flags);
3059 }
3060 
3061 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3062              unsigned int hctx_idx)
3063 {
3064     struct blk_mq_tags *drv_tags;
3065     struct page *page;
3066 
3067     if (list_empty(&tags->page_list))
3068         return;
3069 
3070     if (blk_mq_is_shared_tags(set->flags))
3071         drv_tags = set->shared_tags;
3072     else
3073         drv_tags = set->tags[hctx_idx];
3074 
3075     if (tags->static_rqs && set->ops->exit_request) {
3076         int i;
3077 
3078         for (i = 0; i < tags->nr_tags; i++) {
3079             struct request *rq = tags->static_rqs[i];
3080 
3081             if (!rq)
3082                 continue;
3083             set->ops->exit_request(set, rq, hctx_idx);
3084             tags->static_rqs[i] = NULL;
3085         }
3086     }
3087 
3088     blk_mq_clear_rq_mapping(drv_tags, tags);
3089 
3090     while (!list_empty(&tags->page_list)) {
3091         page = list_first_entry(&tags->page_list, struct page, lru);
3092         list_del_init(&page->lru);
3093         /*
3094          * Remove kmemleak object previously allocated in
3095          * blk_mq_alloc_rqs().
3096          */
3097         kmemleak_free(page_address(page));
3098         __free_pages(page, page->private);
3099     }
3100 }
3101 
3102 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3103 {
3104     kfree(tags->rqs);
3105     tags->rqs = NULL;
3106     kfree(tags->static_rqs);
3107     tags->static_rqs = NULL;
3108 
3109     blk_mq_free_tags(tags);
3110 }
3111 
3112 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3113         unsigned int hctx_idx)
3114 {
3115     int i;
3116 
3117     for (i = 0; i < set->nr_maps; i++) {
3118         unsigned int start = set->map[i].queue_offset;
3119         unsigned int end = start + set->map[i].nr_queues;
3120 
3121         if (hctx_idx >= start && hctx_idx < end)
3122             break;
3123     }
3124 
3125     if (i >= set->nr_maps)
3126         i = HCTX_TYPE_DEFAULT;
3127 
3128     return i;
3129 }
3130 
3131 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3132         unsigned int hctx_idx)
3133 {
3134     enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3135 
3136     return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3137 }
3138 
3139 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3140                            unsigned int hctx_idx,
3141                            unsigned int nr_tags,
3142                            unsigned int reserved_tags)
3143 {
3144     int node = blk_mq_get_hctx_node(set, hctx_idx);
3145     struct blk_mq_tags *tags;
3146 
3147     if (node == NUMA_NO_NODE)
3148         node = set->numa_node;
3149 
3150     tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3151                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3152     if (!tags)
3153         return NULL;
3154 
3155     tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3156                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3157                  node);
3158     if (!tags->rqs) {
3159         blk_mq_free_tags(tags);
3160         return NULL;
3161     }
3162 
3163     tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3164                     GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3165                     node);
3166     if (!tags->static_rqs) {
3167         kfree(tags->rqs);
3168         blk_mq_free_tags(tags);
3169         return NULL;
3170     }
3171 
3172     return tags;
3173 }
3174 
3175 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3176                    unsigned int hctx_idx, int node)
3177 {
3178     int ret;
3179 
3180     if (set->ops->init_request) {
3181         ret = set->ops->init_request(set, rq, hctx_idx, node);
3182         if (ret)
3183             return ret;
3184     }
3185 
3186     WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3187     return 0;
3188 }
3189 
3190 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3191                 struct blk_mq_tags *tags,
3192                 unsigned int hctx_idx, unsigned int depth)
3193 {
3194     unsigned int i, j, entries_per_page, max_order = 4;
3195     int node = blk_mq_get_hctx_node(set, hctx_idx);
3196     size_t rq_size, left;
3197 
3198     if (node == NUMA_NO_NODE)
3199         node = set->numa_node;
3200 
3201     INIT_LIST_HEAD(&tags->page_list);
3202 
3203     /*
3204      * rq_size is the size of the request plus driver payload, rounded
3205      * to the cacheline size
3206      */
3207     rq_size = round_up(sizeof(struct request) + set->cmd_size,
3208                 cache_line_size());
3209     left = rq_size * depth;
3210 
3211     for (i = 0; i < depth; ) {
3212         int this_order = max_order;
3213         struct page *page;
3214         int to_do;
3215         void *p;
3216 
3217         while (this_order && left < order_to_size(this_order - 1))
3218             this_order--;
3219 
3220         do {
3221             page = alloc_pages_node(node,
3222                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3223                 this_order);
3224             if (page)
3225                 break;
3226             if (!this_order--)
3227                 break;
3228             if (order_to_size(this_order) < rq_size)
3229                 break;
3230         } while (1);
3231 
3232         if (!page)
3233             goto fail;
3234 
3235         page->private = this_order;
3236         list_add_tail(&page->lru, &tags->page_list);
3237 
3238         p = page_address(page);
3239         /*
3240          * Allow kmemleak to scan these pages as they contain pointers
3241          * to additional allocations like via ops->init_request().
3242          */
3243         kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3244         entries_per_page = order_to_size(this_order) / rq_size;
3245         to_do = min(entries_per_page, depth - i);
3246         left -= to_do * rq_size;
3247         for (j = 0; j < to_do; j++) {
3248             struct request *rq = p;
3249 
3250             tags->static_rqs[i] = rq;
3251             if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3252                 tags->static_rqs[i] = NULL;
3253                 goto fail;
3254             }
3255 
3256             p += rq_size;
3257             i++;
3258         }
3259     }
3260     return 0;
3261 
3262 fail:
3263     blk_mq_free_rqs(set, tags, hctx_idx);
3264     return -ENOMEM;
3265 }
3266 
3267 struct rq_iter_data {
3268     struct blk_mq_hw_ctx *hctx;
3269     bool has_rq;
3270 };
3271 
3272 static bool blk_mq_has_request(struct request *rq, void *data)
3273 {
3274     struct rq_iter_data *iter_data = data;
3275 
3276     if (rq->mq_hctx != iter_data->hctx)
3277         return true;
3278     iter_data->has_rq = true;
3279     return false;
3280 }
3281 
3282 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3283 {
3284     struct blk_mq_tags *tags = hctx->sched_tags ?
3285             hctx->sched_tags : hctx->tags;
3286     struct rq_iter_data data = {
3287         .hctx   = hctx,
3288     };
3289 
3290     blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3291     return data.has_rq;
3292 }
3293 
3294 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3295         struct blk_mq_hw_ctx *hctx)
3296 {
3297     if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3298         return false;
3299     if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3300         return false;
3301     return true;
3302 }
3303 
3304 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3305 {
3306     struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3307             struct blk_mq_hw_ctx, cpuhp_online);
3308 
3309     if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3310         !blk_mq_last_cpu_in_hctx(cpu, hctx))
3311         return 0;
3312 
3313     /*
3314      * Prevent new request from being allocated on the current hctx.
3315      *
3316      * The smp_mb__after_atomic() Pairs with the implied barrier in
3317      * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3318      * seen once we return from the tag allocator.
3319      */
3320     set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3321     smp_mb__after_atomic();
3322 
3323     /*
3324      * Try to grab a reference to the queue and wait for any outstanding
3325      * requests.  If we could not grab a reference the queue has been
3326      * frozen and there are no requests.
3327      */
3328     if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3329         while (blk_mq_hctx_has_requests(hctx))
3330             msleep(5);
3331         percpu_ref_put(&hctx->queue->q_usage_counter);
3332     }
3333 
3334     return 0;
3335 }
3336 
3337 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3338 {
3339     struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3340             struct blk_mq_hw_ctx, cpuhp_online);
3341 
3342     if (cpumask_test_cpu(cpu, hctx->cpumask))
3343         clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3344     return 0;
3345 }
3346 
3347 /*
3348  * 'cpu' is going away. splice any existing rq_list entries from this
3349  * software queue to the hw queue dispatch list, and ensure that it
3350  * gets run.
3351  */
3352 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3353 {
3354     struct blk_mq_hw_ctx *hctx;
3355     struct blk_mq_ctx *ctx;
3356     LIST_HEAD(tmp);
3357     enum hctx_type type;
3358 
3359     hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3360     if (!cpumask_test_cpu(cpu, hctx->cpumask))
3361         return 0;
3362 
3363     ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3364     type = hctx->type;
3365 
3366     spin_lock(&ctx->lock);
3367     if (!list_empty(&ctx->rq_lists[type])) {
3368         list_splice_init(&ctx->rq_lists[type], &tmp);
3369         blk_mq_hctx_clear_pending(hctx, ctx);
3370     }
3371     spin_unlock(&ctx->lock);
3372 
3373     if (list_empty(&tmp))
3374         return 0;
3375 
3376     spin_lock(&hctx->lock);
3377     list_splice_tail_init(&tmp, &hctx->dispatch);
3378     spin_unlock(&hctx->lock);
3379 
3380     blk_mq_run_hw_queue(hctx, true);
3381     return 0;
3382 }
3383 
3384 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3385 {
3386     if (!(hctx->flags & BLK_MQ_F_STACKING))
3387         cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3388                             &hctx->cpuhp_online);
3389     cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3390                         &hctx->cpuhp_dead);
3391 }
3392 
3393 /*
3394  * Before freeing hw queue, clearing the flush request reference in
3395  * tags->rqs[] for avoiding potential UAF.
3396  */
3397 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3398         unsigned int queue_depth, struct request *flush_rq)
3399 {
3400     int i;
3401     unsigned long flags;
3402 
3403     /* The hw queue may not be mapped yet */
3404     if (!tags)
3405         return;
3406 
3407     WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3408 
3409     for (i = 0; i < queue_depth; i++)
3410         cmpxchg(&tags->rqs[i], flush_rq, NULL);
3411 
3412     /*
3413      * Wait until all pending iteration is done.
3414      *
3415      * Request reference is cleared and it is guaranteed to be observed
3416      * after the ->lock is released.
3417      */
3418     spin_lock_irqsave(&tags->lock, flags);
3419     spin_unlock_irqrestore(&tags->lock, flags);
3420 }
3421 
3422 /* hctx->ctxs will be freed in queue's release handler */
3423 static void blk_mq_exit_hctx(struct request_queue *q,
3424         struct blk_mq_tag_set *set,
3425         struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3426 {
3427     struct request *flush_rq = hctx->fq->flush_rq;
3428 
3429     if (blk_mq_hw_queue_mapped(hctx))
3430         blk_mq_tag_idle(hctx);
3431 
3432     if (blk_queue_init_done(q))
3433         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3434                 set->queue_depth, flush_rq);
3435     if (set->ops->exit_request)
3436         set->ops->exit_request(set, flush_rq, hctx_idx);
3437 
3438     if (set->ops->exit_hctx)
3439         set->ops->exit_hctx(hctx, hctx_idx);
3440 
3441     blk_mq_remove_cpuhp(hctx);
3442 
3443     xa_erase(&q->hctx_table, hctx_idx);
3444 
3445     spin_lock(&q->unused_hctx_lock);
3446     list_add(&hctx->hctx_list, &q->unused_hctx_list);
3447     spin_unlock(&q->unused_hctx_lock);
3448 }
3449 
3450 static void blk_mq_exit_hw_queues(struct request_queue *q,
3451         struct blk_mq_tag_set *set, int nr_queue)
3452 {
3453     struct blk_mq_hw_ctx *hctx;
3454     unsigned long i;
3455 
3456     queue_for_each_hw_ctx(q, hctx, i) {
3457         if (i == nr_queue)
3458             break;
3459         blk_mq_exit_hctx(q, set, hctx, i);
3460     }
3461 }
3462 
3463 static int blk_mq_init_hctx(struct request_queue *q,
3464         struct blk_mq_tag_set *set,
3465         struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3466 {
3467     hctx->queue_num = hctx_idx;
3468 
3469     if (!(hctx->flags & BLK_MQ_F_STACKING))
3470         cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3471                 &hctx->cpuhp_online);
3472     cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3473 
3474     hctx->tags = set->tags[hctx_idx];
3475 
3476     if (set->ops->init_hctx &&
3477         set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3478         goto unregister_cpu_notifier;
3479 
3480     if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3481                 hctx->numa_node))
3482         goto exit_hctx;
3483 
3484     if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3485         goto exit_flush_rq;
3486 
3487     return 0;
3488 
3489  exit_flush_rq:
3490     if (set->ops->exit_request)
3491         set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3492  exit_hctx:
3493     if (set->ops->exit_hctx)
3494         set->ops->exit_hctx(hctx, hctx_idx);
3495  unregister_cpu_notifier:
3496     blk_mq_remove_cpuhp(hctx);
3497     return -1;
3498 }
3499 
3500 static struct blk_mq_hw_ctx *
3501 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3502         int node)
3503 {
3504     struct blk_mq_hw_ctx *hctx;
3505     gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3506 
3507     hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3508     if (!hctx)
3509         goto fail_alloc_hctx;
3510 
3511     if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3512         goto free_hctx;
3513 
3514     atomic_set(&hctx->nr_active, 0);
3515     if (node == NUMA_NO_NODE)
3516         node = set->numa_node;
3517     hctx->numa_node = node;
3518 
3519     INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3520     spin_lock_init(&hctx->lock);
3521     INIT_LIST_HEAD(&hctx->dispatch);
3522     hctx->queue = q;
3523     hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3524 
3525     INIT_LIST_HEAD(&hctx->hctx_list);
3526 
3527     /*
3528      * Allocate space for all possible cpus to avoid allocation at
3529      * runtime
3530      */
3531     hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3532             gfp, node);
3533     if (!hctx->ctxs)
3534         goto free_cpumask;
3535 
3536     if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3537                 gfp, node, false, false))
3538         goto free_ctxs;
3539     hctx->nr_ctx = 0;
3540 
3541     spin_lock_init(&hctx->dispatch_wait_lock);
3542     init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3543     INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3544 
3545     hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3546     if (!hctx->fq)
3547         goto free_bitmap;
3548 
3549     blk_mq_hctx_kobj_init(hctx);
3550 
3551     return hctx;
3552 
3553  free_bitmap:
3554     sbitmap_free(&hctx->ctx_map);
3555  free_ctxs:
3556     kfree(hctx->ctxs);
3557  free_cpumask:
3558     free_cpumask_var(hctx->cpumask);
3559  free_hctx:
3560     kfree(hctx);
3561  fail_alloc_hctx:
3562     return NULL;
3563 }
3564 
3565 static void blk_mq_init_cpu_queues(struct request_queue *q,
3566                    unsigned int nr_hw_queues)
3567 {
3568     struct blk_mq_tag_set *set = q->tag_set;
3569     unsigned int i, j;
3570 
3571     for_each_possible_cpu(i) {
3572         struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3573         struct blk_mq_hw_ctx *hctx;
3574         int k;
3575 
3576         __ctx->cpu = i;
3577         spin_lock_init(&__ctx->lock);
3578         for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3579             INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3580 
3581         __ctx->queue = q;
3582 
3583         /*
3584          * Set local node, IFF we have more than one hw queue. If
3585          * not, we remain on the home node of the device
3586          */
3587         for (j = 0; j < set->nr_maps; j++) {
3588             hctx = blk_mq_map_queue_type(q, j, i);
3589             if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3590                 hctx->numa_node = cpu_to_node(i);
3591         }
3592     }
3593 }
3594 
3595 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3596                          unsigned int hctx_idx,
3597                          unsigned int depth)
3598 {
3599     struct blk_mq_tags *tags;
3600     int ret;
3601 
3602     tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3603     if (!tags)
3604         return NULL;
3605 
3606     ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3607     if (ret) {
3608         blk_mq_free_rq_map(tags);
3609         return NULL;
3610     }
3611 
3612     return tags;
3613 }
3614 
3615 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3616                        int hctx_idx)
3617 {
3618     if (blk_mq_is_shared_tags(set->flags)) {
3619         set->tags[hctx_idx] = set->shared_tags;
3620 
3621         return true;
3622     }
3623 
3624     set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3625                                set->queue_depth);
3626 
3627     return set->tags[hctx_idx];
3628 }
3629 
3630 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3631                  struct blk_mq_tags *tags,
3632                  unsigned int hctx_idx)
3633 {
3634     if (tags) {
3635         blk_mq_free_rqs(set, tags, hctx_idx);
3636         blk_mq_free_rq_map(tags);
3637     }
3638 }
3639 
3640 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3641                       unsigned int hctx_idx)
3642 {
3643     if (!blk_mq_is_shared_tags(set->flags))
3644         blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3645 
3646     set->tags[hctx_idx] = NULL;
3647 }
3648 
3649 static void blk_mq_map_swqueue(struct request_queue *q)
3650 {
3651     unsigned int j, hctx_idx;
3652     unsigned long i;
3653     struct blk_mq_hw_ctx *hctx;
3654     struct blk_mq_ctx *ctx;
3655     struct blk_mq_tag_set *set = q->tag_set;
3656 
3657     queue_for_each_hw_ctx(q, hctx, i) {
3658         cpumask_clear(hctx->cpumask);
3659         hctx->nr_ctx = 0;
3660         hctx->dispatch_from = NULL;
3661     }
3662 
3663     /*
3664      * Map software to hardware queues.
3665      *
3666      * If the cpu isn't present, the cpu is mapped to first hctx.
3667      */
3668     for_each_possible_cpu(i) {
3669 
3670         ctx = per_cpu_ptr(q->queue_ctx, i);
3671         for (j = 0; j < set->nr_maps; j++) {
3672             if (!set->map[j].nr_queues) {
3673                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3674                         HCTX_TYPE_DEFAULT, i);
3675                 continue;
3676             }
3677             hctx_idx = set->map[j].mq_map[i];
3678             /* unmapped hw queue can be remapped after CPU topo changed */
3679             if (!set->tags[hctx_idx] &&
3680                 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3681                 /*
3682                  * If tags initialization fail for some hctx,
3683                  * that hctx won't be brought online.  In this
3684                  * case, remap the current ctx to hctx[0] which
3685                  * is guaranteed to always have tags allocated
3686                  */
3687                 set->map[j].mq_map[i] = 0;
3688             }
3689 
3690             hctx = blk_mq_map_queue_type(q, j, i);
3691             ctx->hctxs[j] = hctx;
3692             /*
3693              * If the CPU is already set in the mask, then we've
3694              * mapped this one already. This can happen if
3695              * devices share queues across queue maps.
3696              */
3697             if (cpumask_test_cpu(i, hctx->cpumask))
3698                 continue;
3699 
3700             cpumask_set_cpu(i, hctx->cpumask);
3701             hctx->type = j;
3702             ctx->index_hw[hctx->type] = hctx->nr_ctx;
3703             hctx->ctxs[hctx->nr_ctx++] = ctx;
3704 
3705             /*
3706              * If the nr_ctx type overflows, we have exceeded the
3707              * amount of sw queues we can support.
3708              */
3709             BUG_ON(!hctx->nr_ctx);
3710         }
3711 
3712         for (; j < HCTX_MAX_TYPES; j++)
3713             ctx->hctxs[j] = blk_mq_map_queue_type(q,
3714                     HCTX_TYPE_DEFAULT, i);
3715     }
3716 
3717     queue_for_each_hw_ctx(q, hctx, i) {
3718         /*
3719          * If no software queues are mapped to this hardware queue,
3720          * disable it and free the request entries.
3721          */
3722         if (!hctx->nr_ctx) {
3723             /* Never unmap queue 0.  We need it as a
3724              * fallback in case of a new remap fails
3725              * allocation
3726              */
3727             if (i)
3728                 __blk_mq_free_map_and_rqs(set, i);
3729 
3730             hctx->tags = NULL;
3731             continue;
3732         }
3733 
3734         hctx->tags = set->tags[i];
3735         WARN_ON(!hctx->tags);
3736 
3737         /*
3738          * Set the map size to the number of mapped software queues.
3739          * This is more accurate and more efficient than looping
3740          * over all possibly mapped software queues.
3741          */
3742         sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3743 
3744         /*
3745          * Initialize batch roundrobin counts
3746          */
3747         hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3748         hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3749     }
3750 }
3751 
3752 /*
3753  * Caller needs to ensure that we're either frozen/quiesced, or that
3754  * the queue isn't live yet.
3755  */
3756 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3757 {
3758     struct blk_mq_hw_ctx *hctx;
3759     unsigned long i;
3760 
3761     queue_for_each_hw_ctx(q, hctx, i) {
3762         if (shared) {
3763             hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3764         } else {
3765             blk_mq_tag_idle(hctx);
3766             hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3767         }
3768     }
3769 }
3770 
3771 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3772                      bool shared)
3773 {
3774     struct request_queue *q;
3775 
3776     lockdep_assert_held(&set->tag_list_lock);
3777 
3778     list_for_each_entry(q, &set->tag_list, tag_set_list) {
3779         blk_mq_freeze_queue(q);
3780         queue_set_hctx_shared(q, shared);
3781         blk_mq_unfreeze_queue(q);
3782     }
3783 }
3784 
3785 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3786 {
3787     struct blk_mq_tag_set *set = q->tag_set;
3788 
3789     mutex_lock(&set->tag_list_lock);
3790     list_del(&q->tag_set_list);
3791     if (list_is_singular(&set->tag_list)) {
3792         /* just transitioned to unshared */
3793         set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3794         /* update existing queue */
3795         blk_mq_update_tag_set_shared(set, false);
3796     }
3797     mutex_unlock(&set->tag_list_lock);
3798     INIT_LIST_HEAD(&q->tag_set_list);
3799 }
3800 
3801 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3802                      struct request_queue *q)
3803 {
3804     mutex_lock(&set->tag_list_lock);
3805 
3806     /*
3807      * Check to see if we're transitioning to shared (from 1 to 2 queues).
3808      */
3809     if (!list_empty(&set->tag_list) &&
3810         !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3811         set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3812         /* update existing queue */
3813         blk_mq_update_tag_set_shared(set, true);
3814     }
3815     if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3816         queue_set_hctx_shared(q, true);
3817     list_add_tail(&q->tag_set_list, &set->tag_list);
3818 
3819     mutex_unlock(&set->tag_list_lock);
3820 }
3821 
3822 /* All allocations will be freed in release handler of q->mq_kobj */
3823 static int blk_mq_alloc_ctxs(struct request_queue *q)
3824 {
3825     struct blk_mq_ctxs *ctxs;
3826     int cpu;
3827 
3828     ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3829     if (!ctxs)
3830         return -ENOMEM;
3831 
3832     ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3833     if (!ctxs->queue_ctx)
3834         goto fail;
3835 
3836     for_each_possible_cpu(cpu) {
3837         struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3838         ctx->ctxs = ctxs;
3839     }
3840 
3841     q->mq_kobj = &ctxs->kobj;
3842     q->queue_ctx = ctxs->queue_ctx;
3843 
3844     return 0;
3845  fail:
3846     kfree(ctxs);
3847     return -ENOMEM;
3848 }
3849 
3850 /*
3851  * It is the actual release handler for mq, but we do it from
3852  * request queue's release handler for avoiding use-after-free
3853  * and headache because q->mq_kobj shouldn't have been introduced,
3854  * but we can't group ctx/kctx kobj without it.
3855  */
3856 void blk_mq_release(struct request_queue *q)
3857 {
3858     struct blk_mq_hw_ctx *hctx, *next;
3859     unsigned long i;
3860 
3861     queue_for_each_hw_ctx(q, hctx, i)
3862         WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3863 
3864     /* all hctx are in .unused_hctx_list now */
3865     list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3866         list_del_init(&hctx->hctx_list);
3867         kobject_put(&hctx->kobj);
3868     }
3869 
3870     xa_destroy(&q->hctx_table);
3871 
3872     /*
3873      * release .mq_kobj and sw queue's kobject now because
3874      * both share lifetime with request queue.
3875      */
3876     blk_mq_sysfs_deinit(q);
3877 }
3878 
3879 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3880         void *queuedata)
3881 {
3882     struct request_queue *q;
3883     int ret;
3884 
3885     q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3886     if (!q)
3887         return ERR_PTR(-ENOMEM);
3888     q->queuedata = queuedata;
3889     ret = blk_mq_init_allocated_queue(set, q);
3890     if (ret) {
3891         blk_put_queue(q);
3892         return ERR_PTR(ret);
3893     }
3894     return q;
3895 }
3896 
3897 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3898 {
3899     return blk_mq_init_queue_data(set, NULL);
3900 }
3901 EXPORT_SYMBOL(blk_mq_init_queue);
3902 
3903 /**
3904  * blk_mq_destroy_queue - shutdown a request queue
3905  * @q: request queue to shutdown
3906  *
3907  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
3908  * the initial reference.  All future requests will failed with -ENODEV.
3909  *
3910  * Context: can sleep
3911  */
3912 void blk_mq_destroy_queue(struct request_queue *q)
3913 {
3914     WARN_ON_ONCE(!queue_is_mq(q));
3915     WARN_ON_ONCE(blk_queue_registered(q));
3916 
3917     might_sleep();
3918 
3919     blk_queue_flag_set(QUEUE_FLAG_DYING, q);
3920     blk_queue_start_drain(q);
3921     blk_freeze_queue(q);
3922 
3923     blk_sync_queue(q);
3924     blk_mq_cancel_work_sync(q);
3925     blk_mq_exit_queue(q);
3926 
3927     /* @q is and will stay empty, shutdown and put */
3928     blk_put_queue(q);
3929 }
3930 EXPORT_SYMBOL(blk_mq_destroy_queue);
3931 
3932 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3933         struct lock_class_key *lkclass)
3934 {
3935     struct request_queue *q;
3936     struct gendisk *disk;
3937 
3938     q = blk_mq_init_queue_data(set, queuedata);
3939     if (IS_ERR(q))
3940         return ERR_CAST(q);
3941 
3942     disk = __alloc_disk_node(q, set->numa_node, lkclass);
3943     if (!disk) {
3944         blk_mq_destroy_queue(q);
3945         return ERR_PTR(-ENOMEM);
3946     }
3947     set_bit(GD_OWNS_QUEUE, &disk->state);
3948     return disk;
3949 }
3950 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3951 
3952 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
3953         struct lock_class_key *lkclass)
3954 {
3955     if (!blk_get_queue(q))
3956         return NULL;
3957     return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
3958 }
3959 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
3960 
3961 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3962         struct blk_mq_tag_set *set, struct request_queue *q,
3963         int hctx_idx, int node)
3964 {
3965     struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3966 
3967     /* reuse dead hctx first */
3968     spin_lock(&q->unused_hctx_lock);
3969     list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3970         if (tmp->numa_node == node) {
3971             hctx = tmp;
3972             break;
3973         }
3974     }
3975     if (hctx)
3976         list_del_init(&hctx->hctx_list);
3977     spin_unlock(&q->unused_hctx_lock);
3978 
3979     if (!hctx)
3980         hctx = blk_mq_alloc_hctx(q, set, node);
3981     if (!hctx)
3982         goto fail;
3983 
3984     if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3985         goto free_hctx;
3986 
3987     return hctx;
3988 
3989  free_hctx:
3990     kobject_put(&hctx->kobj);
3991  fail:
3992     return NULL;
3993 }
3994 
3995 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3996                         struct request_queue *q)
3997 {
3998     struct blk_mq_hw_ctx *hctx;
3999     unsigned long i, j;
4000 
4001     /* protect against switching io scheduler  */
4002     mutex_lock(&q->sysfs_lock);
4003     for (i = 0; i < set->nr_hw_queues; i++) {
4004         int old_node;
4005         int node = blk_mq_get_hctx_node(set, i);
4006         struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4007 
4008         if (old_hctx) {
4009             old_node = old_hctx->numa_node;
4010             blk_mq_exit_hctx(q, set, old_hctx, i);
4011         }
4012 
4013         if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4014             if (!old_hctx)
4015                 break;
4016             pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4017                     node, old_node);
4018             hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4019             WARN_ON_ONCE(!hctx);
4020         }
4021     }
4022     /*
4023      * Increasing nr_hw_queues fails. Free the newly allocated
4024      * hctxs and keep the previous q->nr_hw_queues.
4025      */
4026     if (i != set->nr_hw_queues) {
4027         j = q->nr_hw_queues;
4028     } else {
4029         j = i;
4030         q->nr_hw_queues = set->nr_hw_queues;
4031     }
4032 
4033     xa_for_each_start(&q->hctx_table, j, hctx, j)
4034         blk_mq_exit_hctx(q, set, hctx, j);
4035     mutex_unlock(&q->sysfs_lock);
4036 }
4037 
4038 static void blk_mq_update_poll_flag(struct request_queue *q)
4039 {
4040     struct blk_mq_tag_set *set = q->tag_set;
4041 
4042     if (set->nr_maps > HCTX_TYPE_POLL &&
4043         set->map[HCTX_TYPE_POLL].nr_queues)
4044         blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4045     else
4046         blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4047 }
4048 
4049 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4050         struct request_queue *q)
4051 {
4052     WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4053             !!(set->flags & BLK_MQ_F_BLOCKING));
4054 
4055     /* mark the queue as mq asap */
4056     q->mq_ops = set->ops;
4057 
4058     q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4059                          blk_mq_poll_stats_bkt,
4060                          BLK_MQ_POLL_STATS_BKTS, q);
4061     if (!q->poll_cb)
4062         goto err_exit;
4063 
4064     if (blk_mq_alloc_ctxs(q))
4065         goto err_poll;
4066 
4067     /* init q->mq_kobj and sw queues' kobjects */
4068     blk_mq_sysfs_init(q);
4069 
4070     INIT_LIST_HEAD(&q->unused_hctx_list);
4071     spin_lock_init(&q->unused_hctx_lock);
4072 
4073     xa_init(&q->hctx_table);
4074 
4075     blk_mq_realloc_hw_ctxs(set, q);
4076     if (!q->nr_hw_queues)
4077         goto err_hctxs;
4078 
4079     INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4080     blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4081 
4082     q->tag_set = set;
4083 
4084     q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4085     blk_mq_update_poll_flag(q);
4086 
4087     INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4088     INIT_LIST_HEAD(&q->requeue_list);
4089     spin_lock_init(&q->requeue_lock);
4090 
4091     q->nr_requests = set->queue_depth;
4092 
4093     /*
4094      * Default to classic polling
4095      */
4096     q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4097 
4098     blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4099     blk_mq_add_queue_tag_set(set, q);
4100     blk_mq_map_swqueue(q);
4101     return 0;
4102 
4103 err_hctxs:
4104     xa_destroy(&q->hctx_table);
4105     q->nr_hw_queues = 0;
4106     blk_mq_sysfs_deinit(q);
4107 err_poll:
4108     blk_stat_free_callback(q->poll_cb);
4109     q->poll_cb = NULL;
4110 err_exit:
4111     q->mq_ops = NULL;
4112     return -ENOMEM;
4113 }
4114 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4115 
4116 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4117 void blk_mq_exit_queue(struct request_queue *q)
4118 {
4119     struct blk_mq_tag_set *set = q->tag_set;
4120 
4121     /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4122     blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4123     /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4124     blk_mq_del_queue_tag_set(q);
4125 }
4126 
4127 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4128 {
4129     int i;
4130 
4131     if (blk_mq_is_shared_tags(set->flags)) {
4132         set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4133                         BLK_MQ_NO_HCTX_IDX,
4134                         set->queue_depth);
4135         if (!set->shared_tags)
4136             return -ENOMEM;
4137     }
4138 
4139     for (i = 0; i < set->nr_hw_queues; i++) {
4140         if (!__blk_mq_alloc_map_and_rqs(set, i))
4141             goto out_unwind;
4142         cond_resched();
4143     }
4144 
4145     return 0;
4146 
4147 out_unwind:
4148     while (--i >= 0)
4149         __blk_mq_free_map_and_rqs(set, i);
4150 
4151     if (blk_mq_is_shared_tags(set->flags)) {
4152         blk_mq_free_map_and_rqs(set, set->shared_tags,
4153                     BLK_MQ_NO_HCTX_IDX);
4154     }
4155 
4156     return -ENOMEM;
4157 }
4158 
4159 /*
4160  * Allocate the request maps associated with this tag_set. Note that this
4161  * may reduce the depth asked for, if memory is tight. set->queue_depth
4162  * will be updated to reflect the allocated depth.
4163  */
4164 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4165 {
4166     unsigned int depth;
4167     int err;
4168 
4169     depth = set->queue_depth;
4170     do {
4171         err = __blk_mq_alloc_rq_maps(set);
4172         if (!err)
4173             break;
4174 
4175         set->queue_depth >>= 1;
4176         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4177             err = -ENOMEM;
4178             break;
4179         }
4180     } while (set->queue_depth);
4181 
4182     if (!set->queue_depth || err) {
4183         pr_err("blk-mq: failed to allocate request map\n");
4184         return -ENOMEM;
4185     }
4186 
4187     if (depth != set->queue_depth)
4188         pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4189                         depth, set->queue_depth);
4190 
4191     return 0;
4192 }
4193 
4194 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4195 {
4196     /*
4197      * blk_mq_map_queues() and multiple .map_queues() implementations
4198      * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4199      * number of hardware queues.
4200      */
4201     if (set->nr_maps == 1)
4202         set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4203 
4204     if (set->ops->map_queues && !is_kdump_kernel()) {
4205         int i;
4206 
4207         /*
4208          * transport .map_queues is usually done in the following
4209          * way:
4210          *
4211          * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4212          *  mask = get_cpu_mask(queue)
4213          *  for_each_cpu(cpu, mask)
4214          *      set->map[x].mq_map[cpu] = queue;
4215          * }
4216          *
4217          * When we need to remap, the table has to be cleared for
4218          * killing stale mapping since one CPU may not be mapped
4219          * to any hw queue.
4220          */
4221         for (i = 0; i < set->nr_maps; i++)
4222             blk_mq_clear_mq_map(&set->map[i]);
4223 
4224         return set->ops->map_queues(set);
4225     } else {
4226         BUG_ON(set->nr_maps > 1);
4227         return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4228     }
4229 }
4230 
4231 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4232                   int cur_nr_hw_queues, int new_nr_hw_queues)
4233 {
4234     struct blk_mq_tags **new_tags;
4235 
4236     if (cur_nr_hw_queues >= new_nr_hw_queues)
4237         return 0;
4238 
4239     new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4240                 GFP_KERNEL, set->numa_node);
4241     if (!new_tags)
4242         return -ENOMEM;
4243 
4244     if (set->tags)
4245         memcpy(new_tags, set->tags, cur_nr_hw_queues *
4246                sizeof(*set->tags));
4247     kfree(set->tags);
4248     set->tags = new_tags;
4249     set->nr_hw_queues = new_nr_hw_queues;
4250 
4251     return 0;
4252 }
4253 
4254 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4255                 int new_nr_hw_queues)
4256 {
4257     return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4258 }
4259 
4260 /*
4261  * Alloc a tag set to be associated with one or more request queues.
4262  * May fail with EINVAL for various error conditions. May adjust the
4263  * requested depth down, if it's too large. In that case, the set
4264  * value will be stored in set->queue_depth.
4265  */
4266 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4267 {
4268     int i, ret;
4269 
4270     BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4271 
4272     if (!set->nr_hw_queues)
4273         return -EINVAL;
4274     if (!set->queue_depth)
4275         return -EINVAL;
4276     if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4277         return -EINVAL;
4278 
4279     if (!set->ops->queue_rq)
4280         return -EINVAL;
4281 
4282     if (!set->ops->get_budget ^ !set->ops->put_budget)
4283         return -EINVAL;
4284 
4285     if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4286         pr_info("blk-mq: reduced tag depth to %u\n",
4287             BLK_MQ_MAX_DEPTH);
4288         set->queue_depth = BLK_MQ_MAX_DEPTH;
4289     }
4290 
4291     if (!set->nr_maps)
4292         set->nr_maps = 1;
4293     else if (set->nr_maps > HCTX_MAX_TYPES)
4294         return -EINVAL;
4295 
4296     /*
4297      * If a crashdump is active, then we are potentially in a very
4298      * memory constrained environment. Limit us to 1 queue and
4299      * 64 tags to prevent using too much memory.
4300      */
4301     if (is_kdump_kernel()) {
4302         set->nr_hw_queues = 1;
4303         set->nr_maps = 1;
4304         set->queue_depth = min(64U, set->queue_depth);
4305     }
4306     /*
4307      * There is no use for more h/w queues than cpus if we just have
4308      * a single map
4309      */
4310     if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4311         set->nr_hw_queues = nr_cpu_ids;
4312 
4313     if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4314         return -ENOMEM;
4315 
4316     ret = -ENOMEM;
4317     for (i = 0; i < set->nr_maps; i++) {
4318         set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4319                           sizeof(set->map[i].mq_map[0]),
4320                           GFP_KERNEL, set->numa_node);
4321         if (!set->map[i].mq_map)
4322             goto out_free_mq_map;
4323         set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4324     }
4325 
4326     ret = blk_mq_update_queue_map(set);
4327     if (ret)
4328         goto out_free_mq_map;
4329 
4330     ret = blk_mq_alloc_set_map_and_rqs(set);
4331     if (ret)
4332         goto out_free_mq_map;
4333 
4334     mutex_init(&set->tag_list_lock);
4335     INIT_LIST_HEAD(&set->tag_list);
4336 
4337     return 0;
4338 
4339 out_free_mq_map:
4340     for (i = 0; i < set->nr_maps; i++) {
4341         kfree(set->map[i].mq_map);
4342         set->map[i].mq_map = NULL;
4343     }
4344     kfree(set->tags);
4345     set->tags = NULL;
4346     return ret;
4347 }
4348 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4349 
4350 /* allocate and initialize a tagset for a simple single-queue device */
4351 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4352         const struct blk_mq_ops *ops, unsigned int queue_depth,
4353         unsigned int set_flags)
4354 {
4355     memset(set, 0, sizeof(*set));
4356     set->ops = ops;
4357     set->nr_hw_queues = 1;
4358     set->nr_maps = 1;
4359     set->queue_depth = queue_depth;
4360     set->numa_node = NUMA_NO_NODE;
4361     set->flags = set_flags;
4362     return blk_mq_alloc_tag_set(set);
4363 }
4364 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4365 
4366 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4367 {
4368     int i, j;
4369 
4370     for (i = 0; i < set->nr_hw_queues; i++)
4371         __blk_mq_free_map_and_rqs(set, i);
4372 
4373     if (blk_mq_is_shared_tags(set->flags)) {
4374         blk_mq_free_map_and_rqs(set, set->shared_tags,
4375                     BLK_MQ_NO_HCTX_IDX);
4376     }
4377 
4378     for (j = 0; j < set->nr_maps; j++) {
4379         kfree(set->map[j].mq_map);
4380         set->map[j].mq_map = NULL;
4381     }
4382 
4383     kfree(set->tags);
4384     set->tags = NULL;
4385 }
4386 EXPORT_SYMBOL(blk_mq_free_tag_set);
4387 
4388 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4389 {
4390     struct blk_mq_tag_set *set = q->tag_set;
4391     struct blk_mq_hw_ctx *hctx;
4392     int ret;
4393     unsigned long i;
4394 
4395     if (!set)
4396         return -EINVAL;
4397 
4398     if (q->nr_requests == nr)
4399         return 0;
4400 
4401     blk_mq_freeze_queue(q);
4402     blk_mq_quiesce_queue(q);
4403 
4404     ret = 0;
4405     queue_for_each_hw_ctx(q, hctx, i) {
4406         if (!hctx->tags)
4407             continue;
4408         /*
4409          * If we're using an MQ scheduler, just update the scheduler
4410          * queue depth. This is similar to what the old code would do.
4411          */
4412         if (hctx->sched_tags) {
4413             ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4414                               nr, true);
4415         } else {
4416             ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4417                               false);
4418         }
4419         if (ret)
4420             break;
4421         if (q->elevator && q->elevator->type->ops.depth_updated)
4422             q->elevator->type->ops.depth_updated(hctx);
4423     }
4424     if (!ret) {
4425         q->nr_requests = nr;
4426         if (blk_mq_is_shared_tags(set->flags)) {
4427             if (q->elevator)
4428                 blk_mq_tag_update_sched_shared_tags(q);
4429             else
4430                 blk_mq_tag_resize_shared_tags(set, nr);
4431         }
4432     }
4433 
4434     blk_mq_unquiesce_queue(q);
4435     blk_mq_unfreeze_queue(q);
4436 
4437     return ret;
4438 }
4439 
4440 /*
4441  * request_queue and elevator_type pair.
4442  * It is just used by __blk_mq_update_nr_hw_queues to cache
4443  * the elevator_type associated with a request_queue.
4444  */
4445 struct blk_mq_qe_pair {
4446     struct list_head node;
4447     struct request_queue *q;
4448     struct elevator_type *type;
4449 };
4450 
4451 /*
4452  * Cache the elevator_type in qe pair list and switch the
4453  * io scheduler to 'none'
4454  */
4455 static bool blk_mq_elv_switch_none(struct list_head *head,
4456         struct request_queue *q)
4457 {
4458     struct blk_mq_qe_pair *qe;
4459 
4460     if (!q->elevator)
4461         return true;
4462 
4463     qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4464     if (!qe)
4465         return false;
4466 
4467     /* q->elevator needs protection from ->sysfs_lock */
4468     mutex_lock(&q->sysfs_lock);
4469 
4470     INIT_LIST_HEAD(&qe->node);
4471     qe->q = q;
4472     qe->type = q->elevator->type;
4473     list_add(&qe->node, head);
4474 
4475     /*
4476      * After elevator_switch_mq, the previous elevator_queue will be
4477      * released by elevator_release. The reference of the io scheduler
4478      * module get by elevator_get will also be put. So we need to get
4479      * a reference of the io scheduler module here to prevent it to be
4480      * removed.
4481      */
4482     __module_get(qe->type->elevator_owner);
4483     elevator_switch_mq(q, NULL);
4484     mutex_unlock(&q->sysfs_lock);
4485 
4486     return true;
4487 }
4488 
4489 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4490                         struct request_queue *q)
4491 {
4492     struct blk_mq_qe_pair *qe;
4493 
4494     list_for_each_entry(qe, head, node)
4495         if (qe->q == q)
4496             return qe;
4497 
4498     return NULL;
4499 }
4500 
4501 static void blk_mq_elv_switch_back(struct list_head *head,
4502                   struct request_queue *q)
4503 {
4504     struct blk_mq_qe_pair *qe;
4505     struct elevator_type *t;
4506 
4507     qe = blk_lookup_qe_pair(head, q);
4508     if (!qe)
4509         return;
4510     t = qe->type;
4511     list_del(&qe->node);
4512     kfree(qe);
4513 
4514     mutex_lock(&q->sysfs_lock);
4515     elevator_switch_mq(q, t);
4516     mutex_unlock(&q->sysfs_lock);
4517 }
4518 
4519 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4520                             int nr_hw_queues)
4521 {
4522     struct request_queue *q;
4523     LIST_HEAD(head);
4524     int prev_nr_hw_queues;
4525 
4526     lockdep_assert_held(&set->tag_list_lock);
4527 
4528     if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4529         nr_hw_queues = nr_cpu_ids;
4530     if (nr_hw_queues < 1)
4531         return;
4532     if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4533         return;
4534 
4535     list_for_each_entry(q, &set->tag_list, tag_set_list)
4536         blk_mq_freeze_queue(q);
4537     /*
4538      * Switch IO scheduler to 'none', cleaning up the data associated
4539      * with the previous scheduler. We will switch back once we are done
4540      * updating the new sw to hw queue mappings.
4541      */
4542     list_for_each_entry(q, &set->tag_list, tag_set_list)
4543         if (!blk_mq_elv_switch_none(&head, q))
4544             goto switch_back;
4545 
4546     list_for_each_entry(q, &set->tag_list, tag_set_list) {
4547         blk_mq_debugfs_unregister_hctxs(q);
4548         blk_mq_sysfs_unregister_hctxs(q);
4549     }
4550 
4551     prev_nr_hw_queues = set->nr_hw_queues;
4552     if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4553         0)
4554         goto reregister;
4555 
4556     set->nr_hw_queues = nr_hw_queues;
4557 fallback:
4558     blk_mq_update_queue_map(set);
4559     list_for_each_entry(q, &set->tag_list, tag_set_list) {
4560         blk_mq_realloc_hw_ctxs(set, q);
4561         blk_mq_update_poll_flag(q);
4562         if (q->nr_hw_queues != set->nr_hw_queues) {
4563             int i = prev_nr_hw_queues;
4564 
4565             pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4566                     nr_hw_queues, prev_nr_hw_queues);
4567             for (; i < set->nr_hw_queues; i++)
4568                 __blk_mq_free_map_and_rqs(set, i);
4569 
4570             set->nr_hw_queues = prev_nr_hw_queues;
4571             blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4572             goto fallback;
4573         }
4574         blk_mq_map_swqueue(q);
4575     }
4576 
4577 reregister:
4578     list_for_each_entry(q, &set->tag_list, tag_set_list) {
4579         blk_mq_sysfs_register_hctxs(q);
4580         blk_mq_debugfs_register_hctxs(q);
4581     }
4582 
4583 switch_back:
4584     list_for_each_entry(q, &set->tag_list, tag_set_list)
4585         blk_mq_elv_switch_back(&head, q);
4586 
4587     list_for_each_entry(q, &set->tag_list, tag_set_list)
4588         blk_mq_unfreeze_queue(q);
4589 }
4590 
4591 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4592 {
4593     mutex_lock(&set->tag_list_lock);
4594     __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4595     mutex_unlock(&set->tag_list_lock);
4596 }
4597 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4598 
4599 /* Enable polling stats and return whether they were already enabled. */
4600 static bool blk_poll_stats_enable(struct request_queue *q)
4601 {
4602     if (q->poll_stat)
4603         return true;
4604 
4605     return blk_stats_alloc_enable(q);
4606 }
4607 
4608 static void blk_mq_poll_stats_start(struct request_queue *q)
4609 {
4610     /*
4611      * We don't arm the callback if polling stats are not enabled or the
4612      * callback is already active.
4613      */
4614     if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4615         return;
4616 
4617     blk_stat_activate_msecs(q->poll_cb, 100);
4618 }
4619 
4620 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4621 {
4622     struct request_queue *q = cb->data;
4623     int bucket;
4624 
4625     for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4626         if (cb->stat[bucket].nr_samples)
4627             q->poll_stat[bucket] = cb->stat[bucket];
4628     }
4629 }
4630 
4631 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4632                        struct request *rq)
4633 {
4634     unsigned long ret = 0;
4635     int bucket;
4636 
4637     /*
4638      * If stats collection isn't on, don't sleep but turn it on for
4639      * future users
4640      */
4641     if (!blk_poll_stats_enable(q))
4642         return 0;
4643 
4644     /*
4645      * As an optimistic guess, use half of the mean service time
4646      * for this type of request. We can (and should) make this smarter.
4647      * For instance, if the completion latencies are tight, we can
4648      * get closer than just half the mean. This is especially
4649      * important on devices where the completion latencies are longer
4650      * than ~10 usec. We do use the stats for the relevant IO size
4651      * if available which does lead to better estimates.
4652      */
4653     bucket = blk_mq_poll_stats_bkt(rq);
4654     if (bucket < 0)
4655         return ret;
4656 
4657     if (q->poll_stat[bucket].nr_samples)
4658         ret = (q->poll_stat[bucket].mean + 1) / 2;
4659 
4660     return ret;
4661 }
4662 
4663 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4664 {
4665     struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4666     struct request *rq = blk_qc_to_rq(hctx, qc);
4667     struct hrtimer_sleeper hs;
4668     enum hrtimer_mode mode;
4669     unsigned int nsecs;
4670     ktime_t kt;
4671 
4672     /*
4673      * If a request has completed on queue that uses an I/O scheduler, we
4674      * won't get back a request from blk_qc_to_rq.
4675      */
4676     if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4677         return false;
4678 
4679     /*
4680      * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4681      *
4682      *  0:  use half of prev avg
4683      * >0:  use this specific value
4684      */
4685     if (q->poll_nsec > 0)
4686         nsecs = q->poll_nsec;
4687     else
4688         nsecs = blk_mq_poll_nsecs(q, rq);
4689 
4690     if (!nsecs)
4691         return false;
4692 
4693     rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4694 
4695     /*
4696      * This will be replaced with the stats tracking code, using
4697      * 'avg_completion_time / 2' as the pre-sleep target.
4698      */
4699     kt = nsecs;
4700 
4701     mode = HRTIMER_MODE_REL;
4702     hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4703     hrtimer_set_expires(&hs.timer, kt);
4704 
4705     do {
4706         if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4707             break;
4708         set_current_state(TASK_UNINTERRUPTIBLE);
4709         hrtimer_sleeper_start_expires(&hs, mode);
4710         if (hs.task)
4711             io_schedule();
4712         hrtimer_cancel(&hs.timer);
4713         mode = HRTIMER_MODE_ABS;
4714     } while (hs.task && !signal_pending(current));
4715 
4716     __set_current_state(TASK_RUNNING);
4717     destroy_hrtimer_on_stack(&hs.timer);
4718 
4719     /*
4720      * If we sleep, have the caller restart the poll loop to reset the
4721      * state.  Like for the other success return cases, the caller is
4722      * responsible for checking if the IO completed.  If the IO isn't
4723      * complete, we'll get called again and will go straight to the busy
4724      * poll loop.
4725      */
4726     return true;
4727 }
4728 
4729 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4730                    struct io_comp_batch *iob, unsigned int flags)
4731 {
4732     struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4733     long state = get_current_state();
4734     int ret;
4735 
4736     do {
4737         ret = q->mq_ops->poll(hctx, iob);
4738         if (ret > 0) {
4739             __set_current_state(TASK_RUNNING);
4740             return ret;
4741         }
4742 
4743         if (signal_pending_state(state, current))
4744             __set_current_state(TASK_RUNNING);
4745         if (task_is_running(current))
4746             return 1;
4747 
4748         if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4749             break;
4750         cpu_relax();
4751     } while (!need_resched());
4752 
4753     __set_current_state(TASK_RUNNING);
4754     return 0;
4755 }
4756 
4757 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4758         unsigned int flags)
4759 {
4760     if (!(flags & BLK_POLL_NOSLEEP) &&
4761         q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4762         if (blk_mq_poll_hybrid(q, cookie))
4763             return 1;
4764     }
4765     return blk_mq_poll_classic(q, cookie, iob, flags);
4766 }
4767 
4768 unsigned int blk_mq_rq_cpu(struct request *rq)
4769 {
4770     return rq->mq_ctx->cpu;
4771 }
4772 EXPORT_SYMBOL(blk_mq_rq_cpu);
4773 
4774 void blk_mq_cancel_work_sync(struct request_queue *q)
4775 {
4776     if (queue_is_mq(q)) {
4777         struct blk_mq_hw_ctx *hctx;
4778         unsigned long i;
4779 
4780         cancel_delayed_work_sync(&q->requeue_work);
4781 
4782         queue_for_each_hw_ctx(q, hctx, i)
4783             cancel_delayed_work_sync(&hctx->run_work);
4784     }
4785 }
4786 
4787 static int __init blk_mq_init(void)
4788 {
4789     int i;
4790 
4791     for_each_possible_cpu(i)
4792         init_llist_head(&per_cpu(blk_cpu_done, i));
4793     open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4794 
4795     cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4796                   "block/softirq:dead", NULL,
4797                   blk_softirq_cpu_dead);
4798     cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4799                 blk_mq_hctx_notify_dead);
4800     cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4801                 blk_mq_hctx_notify_online,
4802                 blk_mq_hctx_notify_offline);
4803     return 0;
4804 }
4805 subsys_initcall(blk_mq_init);