Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Common Block IO controller cgroup interface
0004  *
0005  * Based on ideas and code from CFQ, CFS and BFQ:
0006  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
0007  *
0008  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
0009  *            Paolo Valente <paolo.valente@unimore.it>
0010  *
0011  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
0012  *                Nauman Rafique <nauman@google.com>
0013  *
0014  * For policy-specific per-blkcg data:
0015  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
0016  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
0017  */
0018 #include <linux/ioprio.h>
0019 #include <linux/kdev_t.h>
0020 #include <linux/module.h>
0021 #include <linux/sched/signal.h>
0022 #include <linux/err.h>
0023 #include <linux/blkdev.h>
0024 #include <linux/backing-dev.h>
0025 #include <linux/slab.h>
0026 #include <linux/delay.h>
0027 #include <linux/atomic.h>
0028 #include <linux/ctype.h>
0029 #include <linux/resume_user_mode.h>
0030 #include <linux/psi.h>
0031 #include <linux/part_stat.h>
0032 #include "blk.h"
0033 #include "blk-cgroup.h"
0034 #include "blk-ioprio.h"
0035 #include "blk-throttle.h"
0036 
0037 /*
0038  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
0039  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
0040  * policy [un]register operations including cgroup file additions /
0041  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
0042  * allows grabbing it from cgroup callbacks.
0043  */
0044 static DEFINE_MUTEX(blkcg_pol_register_mutex);
0045 static DEFINE_MUTEX(blkcg_pol_mutex);
0046 
0047 struct blkcg blkcg_root;
0048 EXPORT_SYMBOL_GPL(blkcg_root);
0049 
0050 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
0051 EXPORT_SYMBOL_GPL(blkcg_root_css);
0052 
0053 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
0054 
0055 static LIST_HEAD(all_blkcgs);       /* protected by blkcg_pol_mutex */
0056 
0057 bool blkcg_debug_stats = false;
0058 static struct workqueue_struct *blkcg_punt_bio_wq;
0059 
0060 #define BLKG_DESTROY_BATCH_SIZE  64
0061 
0062 /**
0063  * blkcg_css - find the current css
0064  *
0065  * Find the css associated with either the kthread or the current task.
0066  * This may return a dying css, so it is up to the caller to use tryget logic
0067  * to confirm it is alive and well.
0068  */
0069 static struct cgroup_subsys_state *blkcg_css(void)
0070 {
0071     struct cgroup_subsys_state *css;
0072 
0073     css = kthread_blkcg();
0074     if (css)
0075         return css;
0076     return task_css(current, io_cgrp_id);
0077 }
0078 
0079 static bool blkcg_policy_enabled(struct request_queue *q,
0080                  const struct blkcg_policy *pol)
0081 {
0082     return pol && test_bit(pol->plid, q->blkcg_pols);
0083 }
0084 
0085 static void blkg_free_workfn(struct work_struct *work)
0086 {
0087     struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
0088                          free_work);
0089     int i;
0090 
0091     for (i = 0; i < BLKCG_MAX_POLS; i++)
0092         if (blkg->pd[i])
0093             blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
0094 
0095     if (blkg->q)
0096         blk_put_queue(blkg->q);
0097     free_percpu(blkg->iostat_cpu);
0098     percpu_ref_exit(&blkg->refcnt);
0099     kfree(blkg);
0100 }
0101 
0102 /**
0103  * blkg_free - free a blkg
0104  * @blkg: blkg to free
0105  *
0106  * Free @blkg which may be partially allocated.
0107  */
0108 static void blkg_free(struct blkcg_gq *blkg)
0109 {
0110     if (!blkg)
0111         return;
0112 
0113     /*
0114      * Both ->pd_free_fn() and request queue's release handler may
0115      * sleep, so free us by scheduling one work func
0116      */
0117     INIT_WORK(&blkg->free_work, blkg_free_workfn);
0118     schedule_work(&blkg->free_work);
0119 }
0120 
0121 static void __blkg_release(struct rcu_head *rcu)
0122 {
0123     struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
0124 
0125     WARN_ON(!bio_list_empty(&blkg->async_bios));
0126 
0127     /* release the blkcg and parent blkg refs this blkg has been holding */
0128     css_put(&blkg->blkcg->css);
0129     if (blkg->parent)
0130         blkg_put(blkg->parent);
0131     blkg_free(blkg);
0132 }
0133 
0134 /*
0135  * A group is RCU protected, but having an rcu lock does not mean that one
0136  * can access all the fields of blkg and assume these are valid.  For
0137  * example, don't try to follow throtl_data and request queue links.
0138  *
0139  * Having a reference to blkg under an rcu allows accesses to only values
0140  * local to groups like group stats and group rate limits.
0141  */
0142 static void blkg_release(struct percpu_ref *ref)
0143 {
0144     struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
0145 
0146     call_rcu(&blkg->rcu_head, __blkg_release);
0147 }
0148 
0149 static void blkg_async_bio_workfn(struct work_struct *work)
0150 {
0151     struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
0152                          async_bio_work);
0153     struct bio_list bios = BIO_EMPTY_LIST;
0154     struct bio *bio;
0155     struct blk_plug plug;
0156     bool need_plug = false;
0157 
0158     /* as long as there are pending bios, @blkg can't go away */
0159     spin_lock_bh(&blkg->async_bio_lock);
0160     bio_list_merge(&bios, &blkg->async_bios);
0161     bio_list_init(&blkg->async_bios);
0162     spin_unlock_bh(&blkg->async_bio_lock);
0163 
0164     /* start plug only when bio_list contains at least 2 bios */
0165     if (bios.head && bios.head->bi_next) {
0166         need_plug = true;
0167         blk_start_plug(&plug);
0168     }
0169     while ((bio = bio_list_pop(&bios)))
0170         submit_bio(bio);
0171     if (need_plug)
0172         blk_finish_plug(&plug);
0173 }
0174 
0175 /**
0176  * bio_blkcg_css - return the blkcg CSS associated with a bio
0177  * @bio: target bio
0178  *
0179  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
0180  * associated. Callers are expected to either handle %NULL or know association
0181  * has been done prior to calling this.
0182  */
0183 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
0184 {
0185     if (!bio || !bio->bi_blkg)
0186         return NULL;
0187     return &bio->bi_blkg->blkcg->css;
0188 }
0189 EXPORT_SYMBOL_GPL(bio_blkcg_css);
0190 
0191 /**
0192  * blkcg_parent - get the parent of a blkcg
0193  * @blkcg: blkcg of interest
0194  *
0195  * Return the parent blkcg of @blkcg.  Can be called anytime.
0196  */
0197 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
0198 {
0199     return css_to_blkcg(blkcg->css.parent);
0200 }
0201 
0202 /**
0203  * blkg_alloc - allocate a blkg
0204  * @blkcg: block cgroup the new blkg is associated with
0205  * @q: request_queue the new blkg is associated with
0206  * @gfp_mask: allocation mask to use
0207  *
0208  * Allocate a new blkg assocating @blkcg and @q.
0209  */
0210 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
0211                    gfp_t gfp_mask)
0212 {
0213     struct blkcg_gq *blkg;
0214     int i, cpu;
0215 
0216     /* alloc and init base part */
0217     blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
0218     if (!blkg)
0219         return NULL;
0220 
0221     if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
0222         goto err_free;
0223 
0224     blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
0225     if (!blkg->iostat_cpu)
0226         goto err_free;
0227 
0228     if (!blk_get_queue(q))
0229         goto err_free;
0230 
0231     blkg->q = q;
0232     INIT_LIST_HEAD(&blkg->q_node);
0233     spin_lock_init(&blkg->async_bio_lock);
0234     bio_list_init(&blkg->async_bios);
0235     INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
0236     blkg->blkcg = blkcg;
0237 
0238     u64_stats_init(&blkg->iostat.sync);
0239     for_each_possible_cpu(cpu)
0240         u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
0241 
0242     for (i = 0; i < BLKCG_MAX_POLS; i++) {
0243         struct blkcg_policy *pol = blkcg_policy[i];
0244         struct blkg_policy_data *pd;
0245 
0246         if (!blkcg_policy_enabled(q, pol))
0247             continue;
0248 
0249         /* alloc per-policy data and attach it to blkg */
0250         pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
0251         if (!pd)
0252             goto err_free;
0253 
0254         blkg->pd[i] = pd;
0255         pd->blkg = blkg;
0256         pd->plid = i;
0257     }
0258 
0259     return blkg;
0260 
0261 err_free:
0262     blkg_free(blkg);
0263     return NULL;
0264 }
0265 
0266 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
0267                       struct request_queue *q, bool update_hint)
0268 {
0269     struct blkcg_gq *blkg;
0270 
0271     /*
0272      * Hint didn't match.  Look up from the radix tree.  Note that the
0273      * hint can only be updated under queue_lock as otherwise @blkg
0274      * could have already been removed from blkg_tree.  The caller is
0275      * responsible for grabbing queue_lock if @update_hint.
0276      */
0277     blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
0278     if (blkg && blkg->q == q) {
0279         if (update_hint) {
0280             lockdep_assert_held(&q->queue_lock);
0281             rcu_assign_pointer(blkcg->blkg_hint, blkg);
0282         }
0283         return blkg;
0284     }
0285 
0286     return NULL;
0287 }
0288 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
0289 
0290 /*
0291  * If @new_blkg is %NULL, this function tries to allocate a new one as
0292  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
0293  */
0294 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
0295                     struct request_queue *q,
0296                     struct blkcg_gq *new_blkg)
0297 {
0298     struct blkcg_gq *blkg;
0299     int i, ret;
0300 
0301     lockdep_assert_held(&q->queue_lock);
0302 
0303     /* request_queue is dying, do not create/recreate a blkg */
0304     if (blk_queue_dying(q)) {
0305         ret = -ENODEV;
0306         goto err_free_blkg;
0307     }
0308 
0309     /* blkg holds a reference to blkcg */
0310     if (!css_tryget_online(&blkcg->css)) {
0311         ret = -ENODEV;
0312         goto err_free_blkg;
0313     }
0314 
0315     /* allocate */
0316     if (!new_blkg) {
0317         new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
0318         if (unlikely(!new_blkg)) {
0319             ret = -ENOMEM;
0320             goto err_put_css;
0321         }
0322     }
0323     blkg = new_blkg;
0324 
0325     /* link parent */
0326     if (blkcg_parent(blkcg)) {
0327         blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
0328         if (WARN_ON_ONCE(!blkg->parent)) {
0329             ret = -ENODEV;
0330             goto err_put_css;
0331         }
0332         blkg_get(blkg->parent);
0333     }
0334 
0335     /* invoke per-policy init */
0336     for (i = 0; i < BLKCG_MAX_POLS; i++) {
0337         struct blkcg_policy *pol = blkcg_policy[i];
0338 
0339         if (blkg->pd[i] && pol->pd_init_fn)
0340             pol->pd_init_fn(blkg->pd[i]);
0341     }
0342 
0343     /* insert */
0344     spin_lock(&blkcg->lock);
0345     ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
0346     if (likely(!ret)) {
0347         hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
0348         list_add(&blkg->q_node, &q->blkg_list);
0349 
0350         for (i = 0; i < BLKCG_MAX_POLS; i++) {
0351             struct blkcg_policy *pol = blkcg_policy[i];
0352 
0353             if (blkg->pd[i] && pol->pd_online_fn)
0354                 pol->pd_online_fn(blkg->pd[i]);
0355         }
0356     }
0357     blkg->online = true;
0358     spin_unlock(&blkcg->lock);
0359 
0360     if (!ret)
0361         return blkg;
0362 
0363     /* @blkg failed fully initialized, use the usual release path */
0364     blkg_put(blkg);
0365     return ERR_PTR(ret);
0366 
0367 err_put_css:
0368     css_put(&blkcg->css);
0369 err_free_blkg:
0370     blkg_free(new_blkg);
0371     return ERR_PTR(ret);
0372 }
0373 
0374 /**
0375  * blkg_lookup_create - lookup blkg, try to create one if not there
0376  * @blkcg: blkcg of interest
0377  * @q: request_queue of interest
0378  *
0379  * Lookup blkg for the @blkcg - @q pair.  If it doesn't exist, try to
0380  * create one.  blkg creation is performed recursively from blkcg_root such
0381  * that all non-root blkg's have access to the parent blkg.  This function
0382  * should be called under RCU read lock and takes @q->queue_lock.
0383  *
0384  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
0385  * down from root.
0386  */
0387 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
0388         struct request_queue *q)
0389 {
0390     struct blkcg_gq *blkg;
0391     unsigned long flags;
0392 
0393     WARN_ON_ONCE(!rcu_read_lock_held());
0394 
0395     blkg = blkg_lookup(blkcg, q);
0396     if (blkg)
0397         return blkg;
0398 
0399     spin_lock_irqsave(&q->queue_lock, flags);
0400     blkg = __blkg_lookup(blkcg, q, true);
0401     if (blkg)
0402         goto found;
0403 
0404     /*
0405      * Create blkgs walking down from blkcg_root to @blkcg, so that all
0406      * non-root blkgs have access to their parents.  Returns the closest
0407      * blkg to the intended blkg should blkg_create() fail.
0408      */
0409     while (true) {
0410         struct blkcg *pos = blkcg;
0411         struct blkcg *parent = blkcg_parent(blkcg);
0412         struct blkcg_gq *ret_blkg = q->root_blkg;
0413 
0414         while (parent) {
0415             blkg = __blkg_lookup(parent, q, false);
0416             if (blkg) {
0417                 /* remember closest blkg */
0418                 ret_blkg = blkg;
0419                 break;
0420             }
0421             pos = parent;
0422             parent = blkcg_parent(parent);
0423         }
0424 
0425         blkg = blkg_create(pos, q, NULL);
0426         if (IS_ERR(blkg)) {
0427             blkg = ret_blkg;
0428             break;
0429         }
0430         if (pos == blkcg)
0431             break;
0432     }
0433 
0434 found:
0435     spin_unlock_irqrestore(&q->queue_lock, flags);
0436     return blkg;
0437 }
0438 
0439 static void blkg_destroy(struct blkcg_gq *blkg)
0440 {
0441     struct blkcg *blkcg = blkg->blkcg;
0442     int i;
0443 
0444     lockdep_assert_held(&blkg->q->queue_lock);
0445     lockdep_assert_held(&blkcg->lock);
0446 
0447     /* Something wrong if we are trying to remove same group twice */
0448     WARN_ON_ONCE(list_empty(&blkg->q_node));
0449     WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
0450 
0451     for (i = 0; i < BLKCG_MAX_POLS; i++) {
0452         struct blkcg_policy *pol = blkcg_policy[i];
0453 
0454         if (blkg->pd[i] && pol->pd_offline_fn)
0455             pol->pd_offline_fn(blkg->pd[i]);
0456     }
0457 
0458     blkg->online = false;
0459 
0460     radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
0461     list_del_init(&blkg->q_node);
0462     hlist_del_init_rcu(&blkg->blkcg_node);
0463 
0464     /*
0465      * Both setting lookup hint to and clearing it from @blkg are done
0466      * under queue_lock.  If it's not pointing to @blkg now, it never
0467      * will.  Hint assignment itself can race safely.
0468      */
0469     if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
0470         rcu_assign_pointer(blkcg->blkg_hint, NULL);
0471 
0472     /*
0473      * Put the reference taken at the time of creation so that when all
0474      * queues are gone, group can be destroyed.
0475      */
0476     percpu_ref_kill(&blkg->refcnt);
0477 }
0478 
0479 /**
0480  * blkg_destroy_all - destroy all blkgs associated with a request_queue
0481  * @q: request_queue of interest
0482  *
0483  * Destroy all blkgs associated with @q.
0484  */
0485 static void blkg_destroy_all(struct request_queue *q)
0486 {
0487     struct blkcg_gq *blkg, *n;
0488     int count = BLKG_DESTROY_BATCH_SIZE;
0489 
0490 restart:
0491     spin_lock_irq(&q->queue_lock);
0492     list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
0493         struct blkcg *blkcg = blkg->blkcg;
0494 
0495         spin_lock(&blkcg->lock);
0496         blkg_destroy(blkg);
0497         spin_unlock(&blkcg->lock);
0498 
0499         /*
0500          * in order to avoid holding the spin lock for too long, release
0501          * it when a batch of blkgs are destroyed.
0502          */
0503         if (!(--count)) {
0504             count = BLKG_DESTROY_BATCH_SIZE;
0505             spin_unlock_irq(&q->queue_lock);
0506             cond_resched();
0507             goto restart;
0508         }
0509     }
0510 
0511     q->root_blkg = NULL;
0512     spin_unlock_irq(&q->queue_lock);
0513 }
0514 
0515 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
0516                  struct cftype *cftype, u64 val)
0517 {
0518     struct blkcg *blkcg = css_to_blkcg(css);
0519     struct blkcg_gq *blkg;
0520     int i, cpu;
0521 
0522     mutex_lock(&blkcg_pol_mutex);
0523     spin_lock_irq(&blkcg->lock);
0524 
0525     /*
0526      * Note that stat reset is racy - it doesn't synchronize against
0527      * stat updates.  This is a debug feature which shouldn't exist
0528      * anyway.  If you get hit by a race, retry.
0529      */
0530     hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
0531         for_each_possible_cpu(cpu) {
0532             struct blkg_iostat_set *bis =
0533                 per_cpu_ptr(blkg->iostat_cpu, cpu);
0534             memset(bis, 0, sizeof(*bis));
0535         }
0536         memset(&blkg->iostat, 0, sizeof(blkg->iostat));
0537 
0538         for (i = 0; i < BLKCG_MAX_POLS; i++) {
0539             struct blkcg_policy *pol = blkcg_policy[i];
0540 
0541             if (blkg->pd[i] && pol->pd_reset_stats_fn)
0542                 pol->pd_reset_stats_fn(blkg->pd[i]);
0543         }
0544     }
0545 
0546     spin_unlock_irq(&blkcg->lock);
0547     mutex_unlock(&blkcg_pol_mutex);
0548     return 0;
0549 }
0550 
0551 const char *blkg_dev_name(struct blkcg_gq *blkg)
0552 {
0553     if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
0554         return NULL;
0555     return bdi_dev_name(blkg->q->disk->bdi);
0556 }
0557 
0558 /**
0559  * blkcg_print_blkgs - helper for printing per-blkg data
0560  * @sf: seq_file to print to
0561  * @blkcg: blkcg of interest
0562  * @prfill: fill function to print out a blkg
0563  * @pol: policy in question
0564  * @data: data to be passed to @prfill
0565  * @show_total: to print out sum of prfill return values or not
0566  *
0567  * This function invokes @prfill on each blkg of @blkcg if pd for the
0568  * policy specified by @pol exists.  @prfill is invoked with @sf, the
0569  * policy data and @data and the matching queue lock held.  If @show_total
0570  * is %true, the sum of the return values from @prfill is printed with
0571  * "Total" label at the end.
0572  *
0573  * This is to be used to construct print functions for
0574  * cftype->read_seq_string method.
0575  */
0576 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
0577                u64 (*prfill)(struct seq_file *,
0578                      struct blkg_policy_data *, int),
0579                const struct blkcg_policy *pol, int data,
0580                bool show_total)
0581 {
0582     struct blkcg_gq *blkg;
0583     u64 total = 0;
0584 
0585     rcu_read_lock();
0586     hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
0587         spin_lock_irq(&blkg->q->queue_lock);
0588         if (blkcg_policy_enabled(blkg->q, pol))
0589             total += prfill(sf, blkg->pd[pol->plid], data);
0590         spin_unlock_irq(&blkg->q->queue_lock);
0591     }
0592     rcu_read_unlock();
0593 
0594     if (show_total)
0595         seq_printf(sf, "Total %llu\n", (unsigned long long)total);
0596 }
0597 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
0598 
0599 /**
0600  * __blkg_prfill_u64 - prfill helper for a single u64 value
0601  * @sf: seq_file to print to
0602  * @pd: policy private data of interest
0603  * @v: value to print
0604  *
0605  * Print @v to @sf for the device assocaited with @pd.
0606  */
0607 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
0608 {
0609     const char *dname = blkg_dev_name(pd->blkg);
0610 
0611     if (!dname)
0612         return 0;
0613 
0614     seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
0615     return v;
0616 }
0617 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
0618 
0619 /* Performs queue bypass and policy enabled checks then looks up blkg. */
0620 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
0621                       const struct blkcg_policy *pol,
0622                       struct request_queue *q)
0623 {
0624     WARN_ON_ONCE(!rcu_read_lock_held());
0625     lockdep_assert_held(&q->queue_lock);
0626 
0627     if (!blkcg_policy_enabled(q, pol))
0628         return ERR_PTR(-EOPNOTSUPP);
0629     return __blkg_lookup(blkcg, q, true /* update_hint */);
0630 }
0631 
0632 /**
0633  * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
0634  * @inputp: input string pointer
0635  *
0636  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
0637  * from @input and get and return the matching bdev.  *@inputp is
0638  * updated to point past the device node prefix.  Returns an ERR_PTR()
0639  * value on error.
0640  *
0641  * Use this function iff blkg_conf_prep() can't be used for some reason.
0642  */
0643 struct block_device *blkcg_conf_open_bdev(char **inputp)
0644 {
0645     char *input = *inputp;
0646     unsigned int major, minor;
0647     struct block_device *bdev;
0648     int key_len;
0649 
0650     if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
0651         return ERR_PTR(-EINVAL);
0652 
0653     input += key_len;
0654     if (!isspace(*input))
0655         return ERR_PTR(-EINVAL);
0656     input = skip_spaces(input);
0657 
0658     bdev = blkdev_get_no_open(MKDEV(major, minor));
0659     if (!bdev)
0660         return ERR_PTR(-ENODEV);
0661     if (bdev_is_partition(bdev)) {
0662         blkdev_put_no_open(bdev);
0663         return ERR_PTR(-ENODEV);
0664     }
0665 
0666     *inputp = input;
0667     return bdev;
0668 }
0669 
0670 /**
0671  * blkg_conf_prep - parse and prepare for per-blkg config update
0672  * @blkcg: target block cgroup
0673  * @pol: target policy
0674  * @input: input string
0675  * @ctx: blkg_conf_ctx to be filled
0676  *
0677  * Parse per-blkg config update from @input and initialize @ctx with the
0678  * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
0679  * part of @input following MAJ:MIN.  This function returns with RCU read
0680  * lock and queue lock held and must be paired with blkg_conf_finish().
0681  */
0682 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
0683            char *input, struct blkg_conf_ctx *ctx)
0684     __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
0685 {
0686     struct block_device *bdev;
0687     struct request_queue *q;
0688     struct blkcg_gq *blkg;
0689     int ret;
0690 
0691     bdev = blkcg_conf_open_bdev(&input);
0692     if (IS_ERR(bdev))
0693         return PTR_ERR(bdev);
0694 
0695     q = bdev_get_queue(bdev);
0696 
0697     /*
0698      * blkcg_deactivate_policy() requires queue to be frozen, we can grab
0699      * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
0700      */
0701     ret = blk_queue_enter(q, 0);
0702     if (ret)
0703         goto fail;
0704 
0705     rcu_read_lock();
0706     spin_lock_irq(&q->queue_lock);
0707 
0708     blkg = blkg_lookup_check(blkcg, pol, q);
0709     if (IS_ERR(blkg)) {
0710         ret = PTR_ERR(blkg);
0711         goto fail_unlock;
0712     }
0713 
0714     if (blkg)
0715         goto success;
0716 
0717     /*
0718      * Create blkgs walking down from blkcg_root to @blkcg, so that all
0719      * non-root blkgs have access to their parents.
0720      */
0721     while (true) {
0722         struct blkcg *pos = blkcg;
0723         struct blkcg *parent;
0724         struct blkcg_gq *new_blkg;
0725 
0726         parent = blkcg_parent(blkcg);
0727         while (parent && !__blkg_lookup(parent, q, false)) {
0728             pos = parent;
0729             parent = blkcg_parent(parent);
0730         }
0731 
0732         /* Drop locks to do new blkg allocation with GFP_KERNEL. */
0733         spin_unlock_irq(&q->queue_lock);
0734         rcu_read_unlock();
0735 
0736         new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
0737         if (unlikely(!new_blkg)) {
0738             ret = -ENOMEM;
0739             goto fail_exit_queue;
0740         }
0741 
0742         if (radix_tree_preload(GFP_KERNEL)) {
0743             blkg_free(new_blkg);
0744             ret = -ENOMEM;
0745             goto fail_exit_queue;
0746         }
0747 
0748         rcu_read_lock();
0749         spin_lock_irq(&q->queue_lock);
0750 
0751         blkg = blkg_lookup_check(pos, pol, q);
0752         if (IS_ERR(blkg)) {
0753             ret = PTR_ERR(blkg);
0754             blkg_free(new_blkg);
0755             goto fail_preloaded;
0756         }
0757 
0758         if (blkg) {
0759             blkg_free(new_blkg);
0760         } else {
0761             blkg = blkg_create(pos, q, new_blkg);
0762             if (IS_ERR(blkg)) {
0763                 ret = PTR_ERR(blkg);
0764                 goto fail_preloaded;
0765             }
0766         }
0767 
0768         radix_tree_preload_end();
0769 
0770         if (pos == blkcg)
0771             goto success;
0772     }
0773 success:
0774     blk_queue_exit(q);
0775     ctx->bdev = bdev;
0776     ctx->blkg = blkg;
0777     ctx->body = input;
0778     return 0;
0779 
0780 fail_preloaded:
0781     radix_tree_preload_end();
0782 fail_unlock:
0783     spin_unlock_irq(&q->queue_lock);
0784     rcu_read_unlock();
0785 fail_exit_queue:
0786     blk_queue_exit(q);
0787 fail:
0788     blkdev_put_no_open(bdev);
0789     /*
0790      * If queue was bypassing, we should retry.  Do so after a
0791      * short msleep().  It isn't strictly necessary but queue
0792      * can be bypassing for some time and it's always nice to
0793      * avoid busy looping.
0794      */
0795     if (ret == -EBUSY) {
0796         msleep(10);
0797         ret = restart_syscall();
0798     }
0799     return ret;
0800 }
0801 EXPORT_SYMBOL_GPL(blkg_conf_prep);
0802 
0803 /**
0804  * blkg_conf_finish - finish up per-blkg config update
0805  * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
0806  *
0807  * Finish up after per-blkg config update.  This function must be paired
0808  * with blkg_conf_prep().
0809  */
0810 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
0811     __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
0812 {
0813     spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
0814     rcu_read_unlock();
0815     blkdev_put_no_open(ctx->bdev);
0816 }
0817 EXPORT_SYMBOL_GPL(blkg_conf_finish);
0818 
0819 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
0820 {
0821     int i;
0822 
0823     for (i = 0; i < BLKG_IOSTAT_NR; i++) {
0824         dst->bytes[i] = src->bytes[i];
0825         dst->ios[i] = src->ios[i];
0826     }
0827 }
0828 
0829 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
0830 {
0831     int i;
0832 
0833     for (i = 0; i < BLKG_IOSTAT_NR; i++) {
0834         dst->bytes[i] += src->bytes[i];
0835         dst->ios[i] += src->ios[i];
0836     }
0837 }
0838 
0839 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
0840 {
0841     int i;
0842 
0843     for (i = 0; i < BLKG_IOSTAT_NR; i++) {
0844         dst->bytes[i] -= src->bytes[i];
0845         dst->ios[i] -= src->ios[i];
0846     }
0847 }
0848 
0849 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
0850                 struct blkg_iostat *last)
0851 {
0852     struct blkg_iostat delta;
0853     unsigned long flags;
0854 
0855     /* propagate percpu delta to global */
0856     flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
0857     blkg_iostat_set(&delta, cur);
0858     blkg_iostat_sub(&delta, last);
0859     blkg_iostat_add(&blkg->iostat.cur, &delta);
0860     blkg_iostat_add(last, &delta);
0861     u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
0862 }
0863 
0864 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
0865 {
0866     struct blkcg *blkcg = css_to_blkcg(css);
0867     struct blkcg_gq *blkg;
0868 
0869     /* Root-level stats are sourced from system-wide IO stats */
0870     if (!cgroup_parent(css->cgroup))
0871         return;
0872 
0873     rcu_read_lock();
0874 
0875     hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
0876         struct blkcg_gq *parent = blkg->parent;
0877         struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
0878         struct blkg_iostat cur;
0879         unsigned int seq;
0880 
0881         /* fetch the current per-cpu values */
0882         do {
0883             seq = u64_stats_fetch_begin(&bisc->sync);
0884             blkg_iostat_set(&cur, &bisc->cur);
0885         } while (u64_stats_fetch_retry(&bisc->sync, seq));
0886 
0887         blkcg_iostat_update(blkg, &cur, &bisc->last);
0888 
0889         /* propagate global delta to parent (unless that's root) */
0890         if (parent && parent->parent)
0891             blkcg_iostat_update(parent, &blkg->iostat.cur,
0892                         &blkg->iostat.last);
0893     }
0894 
0895     rcu_read_unlock();
0896 }
0897 
0898 /*
0899  * We source root cgroup stats from the system-wide stats to avoid
0900  * tracking the same information twice and incurring overhead when no
0901  * cgroups are defined. For that reason, cgroup_rstat_flush in
0902  * blkcg_print_stat does not actually fill out the iostat in the root
0903  * cgroup's blkcg_gq.
0904  *
0905  * However, we would like to re-use the printing code between the root and
0906  * non-root cgroups to the extent possible. For that reason, we simulate
0907  * flushing the root cgroup's stats by explicitly filling in the iostat
0908  * with disk level statistics.
0909  */
0910 static void blkcg_fill_root_iostats(void)
0911 {
0912     struct class_dev_iter iter;
0913     struct device *dev;
0914 
0915     class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
0916     while ((dev = class_dev_iter_next(&iter))) {
0917         struct block_device *bdev = dev_to_bdev(dev);
0918         struct blkcg_gq *blkg =
0919             blk_queue_root_blkg(bdev_get_queue(bdev));
0920         struct blkg_iostat tmp;
0921         int cpu;
0922         unsigned long flags;
0923 
0924         memset(&tmp, 0, sizeof(tmp));
0925         for_each_possible_cpu(cpu) {
0926             struct disk_stats *cpu_dkstats;
0927 
0928             cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
0929             tmp.ios[BLKG_IOSTAT_READ] +=
0930                 cpu_dkstats->ios[STAT_READ];
0931             tmp.ios[BLKG_IOSTAT_WRITE] +=
0932                 cpu_dkstats->ios[STAT_WRITE];
0933             tmp.ios[BLKG_IOSTAT_DISCARD] +=
0934                 cpu_dkstats->ios[STAT_DISCARD];
0935             // convert sectors to bytes
0936             tmp.bytes[BLKG_IOSTAT_READ] +=
0937                 cpu_dkstats->sectors[STAT_READ] << 9;
0938             tmp.bytes[BLKG_IOSTAT_WRITE] +=
0939                 cpu_dkstats->sectors[STAT_WRITE] << 9;
0940             tmp.bytes[BLKG_IOSTAT_DISCARD] +=
0941                 cpu_dkstats->sectors[STAT_DISCARD] << 9;
0942         }
0943 
0944         flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
0945         blkg_iostat_set(&blkg->iostat.cur, &tmp);
0946         u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
0947     }
0948 }
0949 
0950 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
0951 {
0952     struct blkg_iostat_set *bis = &blkg->iostat;
0953     u64 rbytes, wbytes, rios, wios, dbytes, dios;
0954     const char *dname;
0955     unsigned seq;
0956     int i;
0957 
0958     if (!blkg->online)
0959         return;
0960 
0961     dname = blkg_dev_name(blkg);
0962     if (!dname)
0963         return;
0964 
0965     seq_printf(s, "%s ", dname);
0966 
0967     do {
0968         seq = u64_stats_fetch_begin(&bis->sync);
0969 
0970         rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
0971         wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
0972         dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
0973         rios = bis->cur.ios[BLKG_IOSTAT_READ];
0974         wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
0975         dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
0976     } while (u64_stats_fetch_retry(&bis->sync, seq));
0977 
0978     if (rbytes || wbytes || rios || wios) {
0979         seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
0980             rbytes, wbytes, rios, wios,
0981             dbytes, dios);
0982     }
0983 
0984     if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
0985         seq_printf(s, " use_delay=%d delay_nsec=%llu",
0986             atomic_read(&blkg->use_delay),
0987             atomic64_read(&blkg->delay_nsec));
0988     }
0989 
0990     for (i = 0; i < BLKCG_MAX_POLS; i++) {
0991         struct blkcg_policy *pol = blkcg_policy[i];
0992 
0993         if (!blkg->pd[i] || !pol->pd_stat_fn)
0994             continue;
0995 
0996         pol->pd_stat_fn(blkg->pd[i], s);
0997     }
0998 
0999     seq_puts(s, "\n");
1000 }
1001 
1002 static int blkcg_print_stat(struct seq_file *sf, void *v)
1003 {
1004     struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1005     struct blkcg_gq *blkg;
1006 
1007     if (!seq_css(sf)->parent)
1008         blkcg_fill_root_iostats();
1009     else
1010         cgroup_rstat_flush(blkcg->css.cgroup);
1011 
1012     rcu_read_lock();
1013     hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1014         spin_lock_irq(&blkg->q->queue_lock);
1015         blkcg_print_one_stat(blkg, sf);
1016         spin_unlock_irq(&blkg->q->queue_lock);
1017     }
1018     rcu_read_unlock();
1019     return 0;
1020 }
1021 
1022 static struct cftype blkcg_files[] = {
1023     {
1024         .name = "stat",
1025         .seq_show = blkcg_print_stat,
1026     },
1027     { } /* terminate */
1028 };
1029 
1030 static struct cftype blkcg_legacy_files[] = {
1031     {
1032         .name = "reset_stats",
1033         .write_u64 = blkcg_reset_stats,
1034     },
1035     { } /* terminate */
1036 };
1037 
1038 #ifdef CONFIG_CGROUP_WRITEBACK
1039 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1040 {
1041     return &css_to_blkcg(css)->cgwb_list;
1042 }
1043 #endif
1044 
1045 /*
1046  * blkcg destruction is a three-stage process.
1047  *
1048  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1049  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1050  *    to the completion of writeback associated with the blkcg.  This lets us
1051  *    avoid punting potentially large amounts of outstanding writeback to root
1052  *    while maintaining any ongoing policies.  The next stage is triggered when
1053  *    the nr_cgwbs count goes to zero.
1054  *
1055  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1056  *    and handles the destruction of blkgs.  Here the css reference held by
1057  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1058  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1059  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1060  *    punted to the root_blkg.
1061  *
1062  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1063  *    This finally frees the blkcg.
1064  */
1065 
1066 /**
1067  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1068  * @blkcg: blkcg of interest
1069  *
1070  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1071  * is nested inside q lock, this function performs reverse double lock dancing.
1072  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1073  * blkcg_css_free to eventually be called.
1074  *
1075  * This is the blkcg counterpart of ioc_release_fn().
1076  */
1077 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1078 {
1079     might_sleep();
1080 
1081     spin_lock_irq(&blkcg->lock);
1082 
1083     while (!hlist_empty(&blkcg->blkg_list)) {
1084         struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1085                         struct blkcg_gq, blkcg_node);
1086         struct request_queue *q = blkg->q;
1087 
1088         if (need_resched() || !spin_trylock(&q->queue_lock)) {
1089             /*
1090              * Given that the system can accumulate a huge number
1091              * of blkgs in pathological cases, check to see if we
1092              * need to rescheduling to avoid softlockup.
1093              */
1094             spin_unlock_irq(&blkcg->lock);
1095             cond_resched();
1096             spin_lock_irq(&blkcg->lock);
1097             continue;
1098         }
1099 
1100         blkg_destroy(blkg);
1101         spin_unlock(&q->queue_lock);
1102     }
1103 
1104     spin_unlock_irq(&blkcg->lock);
1105 }
1106 
1107 /**
1108  * blkcg_pin_online - pin online state
1109  * @blkcg_css: blkcg of interest
1110  *
1111  * While pinned, a blkcg is kept online.  This is primarily used to
1112  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1113  * while an associated cgwb is still active.
1114  */
1115 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1116 {
1117     refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1118 }
1119 
1120 /**
1121  * blkcg_unpin_online - unpin online state
1122  * @blkcg_css: blkcg of interest
1123  *
1124  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1125  * that blkg doesn't go offline while an associated cgwb is still active.
1126  * When this count goes to zero, all active cgwbs have finished so the
1127  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1128  */
1129 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1130 {
1131     struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1132 
1133     do {
1134         if (!refcount_dec_and_test(&blkcg->online_pin))
1135             break;
1136         blkcg_destroy_blkgs(blkcg);
1137         blkcg = blkcg_parent(blkcg);
1138     } while (blkcg);
1139 }
1140 
1141 /**
1142  * blkcg_css_offline - cgroup css_offline callback
1143  * @css: css of interest
1144  *
1145  * This function is called when @css is about to go away.  Here the cgwbs are
1146  * offlined first and only once writeback associated with the blkcg has
1147  * finished do we start step 2 (see above).
1148  */
1149 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1150 {
1151     /* this prevents anyone from attaching or migrating to this blkcg */
1152     wb_blkcg_offline(css);
1153 
1154     /* put the base online pin allowing step 2 to be triggered */
1155     blkcg_unpin_online(css);
1156 }
1157 
1158 static void blkcg_css_free(struct cgroup_subsys_state *css)
1159 {
1160     struct blkcg *blkcg = css_to_blkcg(css);
1161     int i;
1162 
1163     mutex_lock(&blkcg_pol_mutex);
1164 
1165     list_del(&blkcg->all_blkcgs_node);
1166 
1167     for (i = 0; i < BLKCG_MAX_POLS; i++)
1168         if (blkcg->cpd[i])
1169             blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1170 
1171     mutex_unlock(&blkcg_pol_mutex);
1172 
1173     kfree(blkcg);
1174 }
1175 
1176 static struct cgroup_subsys_state *
1177 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1178 {
1179     struct blkcg *blkcg;
1180     struct cgroup_subsys_state *ret;
1181     int i;
1182 
1183     mutex_lock(&blkcg_pol_mutex);
1184 
1185     if (!parent_css) {
1186         blkcg = &blkcg_root;
1187     } else {
1188         blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1189         if (!blkcg) {
1190             ret = ERR_PTR(-ENOMEM);
1191             goto unlock;
1192         }
1193     }
1194 
1195     for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1196         struct blkcg_policy *pol = blkcg_policy[i];
1197         struct blkcg_policy_data *cpd;
1198 
1199         /*
1200          * If the policy hasn't been attached yet, wait for it
1201          * to be attached before doing anything else. Otherwise,
1202          * check if the policy requires any specific per-cgroup
1203          * data: if it does, allocate and initialize it.
1204          */
1205         if (!pol || !pol->cpd_alloc_fn)
1206             continue;
1207 
1208         cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1209         if (!cpd) {
1210             ret = ERR_PTR(-ENOMEM);
1211             goto free_pd_blkcg;
1212         }
1213         blkcg->cpd[i] = cpd;
1214         cpd->blkcg = blkcg;
1215         cpd->plid = i;
1216         if (pol->cpd_init_fn)
1217             pol->cpd_init_fn(cpd);
1218     }
1219 
1220     spin_lock_init(&blkcg->lock);
1221     refcount_set(&blkcg->online_pin, 1);
1222     INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1223     INIT_HLIST_HEAD(&blkcg->blkg_list);
1224 #ifdef CONFIG_CGROUP_WRITEBACK
1225     INIT_LIST_HEAD(&blkcg->cgwb_list);
1226 #endif
1227     list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1228 
1229     mutex_unlock(&blkcg_pol_mutex);
1230     return &blkcg->css;
1231 
1232 free_pd_blkcg:
1233     for (i--; i >= 0; i--)
1234         if (blkcg->cpd[i])
1235             blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1236 
1237     if (blkcg != &blkcg_root)
1238         kfree(blkcg);
1239 unlock:
1240     mutex_unlock(&blkcg_pol_mutex);
1241     return ret;
1242 }
1243 
1244 static int blkcg_css_online(struct cgroup_subsys_state *css)
1245 {
1246     struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1247 
1248     /*
1249      * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1250      * don't go offline while cgwbs are still active on them.  Pin the
1251      * parent so that offline always happens towards the root.
1252      */
1253     if (parent)
1254         blkcg_pin_online(css);
1255     return 0;
1256 }
1257 
1258 /**
1259  * blkcg_init_queue - initialize blkcg part of request queue
1260  * @q: request_queue to initialize
1261  *
1262  * Called from blk_alloc_queue(). Responsible for initializing blkcg
1263  * part of new request_queue @q.
1264  *
1265  * RETURNS:
1266  * 0 on success, -errno on failure.
1267  */
1268 int blkcg_init_queue(struct request_queue *q)
1269 {
1270     struct blkcg_gq *new_blkg, *blkg;
1271     bool preloaded;
1272     int ret;
1273 
1274     INIT_LIST_HEAD(&q->blkg_list);
1275 
1276     new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1277     if (!new_blkg)
1278         return -ENOMEM;
1279 
1280     preloaded = !radix_tree_preload(GFP_KERNEL);
1281 
1282     /* Make sure the root blkg exists. */
1283     /* spin_lock_irq can serve as RCU read-side critical section. */
1284     spin_lock_irq(&q->queue_lock);
1285     blkg = blkg_create(&blkcg_root, q, new_blkg);
1286     if (IS_ERR(blkg))
1287         goto err_unlock;
1288     q->root_blkg = blkg;
1289     spin_unlock_irq(&q->queue_lock);
1290 
1291     if (preloaded)
1292         radix_tree_preload_end();
1293 
1294     ret = blk_ioprio_init(q);
1295     if (ret)
1296         goto err_destroy_all;
1297 
1298     ret = blk_throtl_init(q);
1299     if (ret)
1300         goto err_destroy_all;
1301 
1302     ret = blk_iolatency_init(q);
1303     if (ret) {
1304         blk_throtl_exit(q);
1305         blk_ioprio_exit(q);
1306         goto err_destroy_all;
1307     }
1308 
1309     return 0;
1310 
1311 err_destroy_all:
1312     blkg_destroy_all(q);
1313     return ret;
1314 err_unlock:
1315     spin_unlock_irq(&q->queue_lock);
1316     if (preloaded)
1317         radix_tree_preload_end();
1318     return PTR_ERR(blkg);
1319 }
1320 
1321 /**
1322  * blkcg_exit_queue - exit and release blkcg part of request_queue
1323  * @q: request_queue being released
1324  *
1325  * Called from blk_exit_queue().  Responsible for exiting blkcg part.
1326  */
1327 void blkcg_exit_queue(struct request_queue *q)
1328 {
1329     blkg_destroy_all(q);
1330     blk_throtl_exit(q);
1331 }
1332 
1333 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1334 {
1335     int i;
1336 
1337     mutex_lock(&blkcg_pol_mutex);
1338 
1339     for (i = 0; i < BLKCG_MAX_POLS; i++) {
1340         struct blkcg_policy *pol = blkcg_policy[i];
1341         struct blkcg *blkcg;
1342 
1343         if (!pol || !pol->cpd_bind_fn)
1344             continue;
1345 
1346         list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1347             if (blkcg->cpd[pol->plid])
1348                 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1349     }
1350     mutex_unlock(&blkcg_pol_mutex);
1351 }
1352 
1353 static void blkcg_exit(struct task_struct *tsk)
1354 {
1355     if (tsk->throttle_queue)
1356         blk_put_queue(tsk->throttle_queue);
1357     tsk->throttle_queue = NULL;
1358 }
1359 
1360 struct cgroup_subsys io_cgrp_subsys = {
1361     .css_alloc = blkcg_css_alloc,
1362     .css_online = blkcg_css_online,
1363     .css_offline = blkcg_css_offline,
1364     .css_free = blkcg_css_free,
1365     .css_rstat_flush = blkcg_rstat_flush,
1366     .bind = blkcg_bind,
1367     .dfl_cftypes = blkcg_files,
1368     .legacy_cftypes = blkcg_legacy_files,
1369     .legacy_name = "blkio",
1370     .exit = blkcg_exit,
1371 #ifdef CONFIG_MEMCG
1372     /*
1373      * This ensures that, if available, memcg is automatically enabled
1374      * together on the default hierarchy so that the owner cgroup can
1375      * be retrieved from writeback pages.
1376      */
1377     .depends_on = 1 << memory_cgrp_id,
1378 #endif
1379 };
1380 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1381 
1382 /**
1383  * blkcg_activate_policy - activate a blkcg policy on a request_queue
1384  * @q: request_queue of interest
1385  * @pol: blkcg policy to activate
1386  *
1387  * Activate @pol on @q.  Requires %GFP_KERNEL context.  @q goes through
1388  * bypass mode to populate its blkgs with policy_data for @pol.
1389  *
1390  * Activation happens with @q bypassed, so nobody would be accessing blkgs
1391  * from IO path.  Update of each blkg is protected by both queue and blkcg
1392  * locks so that holding either lock and testing blkcg_policy_enabled() is
1393  * always enough for dereferencing policy data.
1394  *
1395  * The caller is responsible for synchronizing [de]activations and policy
1396  * [un]registerations.  Returns 0 on success, -errno on failure.
1397  */
1398 int blkcg_activate_policy(struct request_queue *q,
1399               const struct blkcg_policy *pol)
1400 {
1401     struct blkg_policy_data *pd_prealloc = NULL;
1402     struct blkcg_gq *blkg, *pinned_blkg = NULL;
1403     int ret;
1404 
1405     if (blkcg_policy_enabled(q, pol))
1406         return 0;
1407 
1408     if (queue_is_mq(q))
1409         blk_mq_freeze_queue(q);
1410 retry:
1411     spin_lock_irq(&q->queue_lock);
1412 
1413     /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1414     list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1415         struct blkg_policy_data *pd;
1416 
1417         if (blkg->pd[pol->plid])
1418             continue;
1419 
1420         /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1421         if (blkg == pinned_blkg) {
1422             pd = pd_prealloc;
1423             pd_prealloc = NULL;
1424         } else {
1425             pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1426                           blkg->blkcg);
1427         }
1428 
1429         if (!pd) {
1430             /*
1431              * GFP_NOWAIT failed.  Free the existing one and
1432              * prealloc for @blkg w/ GFP_KERNEL.
1433              */
1434             if (pinned_blkg)
1435                 blkg_put(pinned_blkg);
1436             blkg_get(blkg);
1437             pinned_blkg = blkg;
1438 
1439             spin_unlock_irq(&q->queue_lock);
1440 
1441             if (pd_prealloc)
1442                 pol->pd_free_fn(pd_prealloc);
1443             pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1444                                blkg->blkcg);
1445             if (pd_prealloc)
1446                 goto retry;
1447             else
1448                 goto enomem;
1449         }
1450 
1451         blkg->pd[pol->plid] = pd;
1452         pd->blkg = blkg;
1453         pd->plid = pol->plid;
1454     }
1455 
1456     /* all allocated, init in the same order */
1457     if (pol->pd_init_fn)
1458         list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1459             pol->pd_init_fn(blkg->pd[pol->plid]);
1460 
1461     __set_bit(pol->plid, q->blkcg_pols);
1462     ret = 0;
1463 
1464     spin_unlock_irq(&q->queue_lock);
1465 out:
1466     if (queue_is_mq(q))
1467         blk_mq_unfreeze_queue(q);
1468     if (pinned_blkg)
1469         blkg_put(pinned_blkg);
1470     if (pd_prealloc)
1471         pol->pd_free_fn(pd_prealloc);
1472     return ret;
1473 
1474 enomem:
1475     /* alloc failed, nothing's initialized yet, free everything */
1476     spin_lock_irq(&q->queue_lock);
1477     list_for_each_entry(blkg, &q->blkg_list, q_node) {
1478         struct blkcg *blkcg = blkg->blkcg;
1479 
1480         spin_lock(&blkcg->lock);
1481         if (blkg->pd[pol->plid]) {
1482             pol->pd_free_fn(blkg->pd[pol->plid]);
1483             blkg->pd[pol->plid] = NULL;
1484         }
1485         spin_unlock(&blkcg->lock);
1486     }
1487     spin_unlock_irq(&q->queue_lock);
1488     ret = -ENOMEM;
1489     goto out;
1490 }
1491 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1492 
1493 /**
1494  * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1495  * @q: request_queue of interest
1496  * @pol: blkcg policy to deactivate
1497  *
1498  * Deactivate @pol on @q.  Follows the same synchronization rules as
1499  * blkcg_activate_policy().
1500  */
1501 void blkcg_deactivate_policy(struct request_queue *q,
1502                  const struct blkcg_policy *pol)
1503 {
1504     struct blkcg_gq *blkg;
1505 
1506     if (!blkcg_policy_enabled(q, pol))
1507         return;
1508 
1509     if (queue_is_mq(q))
1510         blk_mq_freeze_queue(q);
1511 
1512     spin_lock_irq(&q->queue_lock);
1513 
1514     __clear_bit(pol->plid, q->blkcg_pols);
1515 
1516     list_for_each_entry(blkg, &q->blkg_list, q_node) {
1517         struct blkcg *blkcg = blkg->blkcg;
1518 
1519         spin_lock(&blkcg->lock);
1520         if (blkg->pd[pol->plid]) {
1521             if (pol->pd_offline_fn)
1522                 pol->pd_offline_fn(blkg->pd[pol->plid]);
1523             pol->pd_free_fn(blkg->pd[pol->plid]);
1524             blkg->pd[pol->plid] = NULL;
1525         }
1526         spin_unlock(&blkcg->lock);
1527     }
1528 
1529     spin_unlock_irq(&q->queue_lock);
1530 
1531     if (queue_is_mq(q))
1532         blk_mq_unfreeze_queue(q);
1533 }
1534 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1535 
1536 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1537 {
1538     struct blkcg *blkcg;
1539 
1540     list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1541         if (blkcg->cpd[pol->plid]) {
1542             pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1543             blkcg->cpd[pol->plid] = NULL;
1544         }
1545     }
1546 }
1547 
1548 /**
1549  * blkcg_policy_register - register a blkcg policy
1550  * @pol: blkcg policy to register
1551  *
1552  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1553  * successful registration.  Returns 0 on success and -errno on failure.
1554  */
1555 int blkcg_policy_register(struct blkcg_policy *pol)
1556 {
1557     struct blkcg *blkcg;
1558     int i, ret;
1559 
1560     mutex_lock(&blkcg_pol_register_mutex);
1561     mutex_lock(&blkcg_pol_mutex);
1562 
1563     /* find an empty slot */
1564     ret = -ENOSPC;
1565     for (i = 0; i < BLKCG_MAX_POLS; i++)
1566         if (!blkcg_policy[i])
1567             break;
1568     if (i >= BLKCG_MAX_POLS) {
1569         pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1570         goto err_unlock;
1571     }
1572 
1573     /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1574     if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1575         (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1576         goto err_unlock;
1577 
1578     /* register @pol */
1579     pol->plid = i;
1580     blkcg_policy[pol->plid] = pol;
1581 
1582     /* allocate and install cpd's */
1583     if (pol->cpd_alloc_fn) {
1584         list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1585             struct blkcg_policy_data *cpd;
1586 
1587             cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1588             if (!cpd)
1589                 goto err_free_cpds;
1590 
1591             blkcg->cpd[pol->plid] = cpd;
1592             cpd->blkcg = blkcg;
1593             cpd->plid = pol->plid;
1594             if (pol->cpd_init_fn)
1595                 pol->cpd_init_fn(cpd);
1596         }
1597     }
1598 
1599     mutex_unlock(&blkcg_pol_mutex);
1600 
1601     /* everything is in place, add intf files for the new policy */
1602     if (pol->dfl_cftypes)
1603         WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1604                            pol->dfl_cftypes));
1605     if (pol->legacy_cftypes)
1606         WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1607                           pol->legacy_cftypes));
1608     mutex_unlock(&blkcg_pol_register_mutex);
1609     return 0;
1610 
1611 err_free_cpds:
1612     if (pol->cpd_free_fn)
1613         blkcg_free_all_cpd(pol);
1614 
1615     blkcg_policy[pol->plid] = NULL;
1616 err_unlock:
1617     mutex_unlock(&blkcg_pol_mutex);
1618     mutex_unlock(&blkcg_pol_register_mutex);
1619     return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1622 
1623 /**
1624  * blkcg_policy_unregister - unregister a blkcg policy
1625  * @pol: blkcg policy to unregister
1626  *
1627  * Undo blkcg_policy_register(@pol).  Might sleep.
1628  */
1629 void blkcg_policy_unregister(struct blkcg_policy *pol)
1630 {
1631     mutex_lock(&blkcg_pol_register_mutex);
1632 
1633     if (WARN_ON(blkcg_policy[pol->plid] != pol))
1634         goto out_unlock;
1635 
1636     /* kill the intf files first */
1637     if (pol->dfl_cftypes)
1638         cgroup_rm_cftypes(pol->dfl_cftypes);
1639     if (pol->legacy_cftypes)
1640         cgroup_rm_cftypes(pol->legacy_cftypes);
1641 
1642     /* remove cpds and unregister */
1643     mutex_lock(&blkcg_pol_mutex);
1644 
1645     if (pol->cpd_free_fn)
1646         blkcg_free_all_cpd(pol);
1647 
1648     blkcg_policy[pol->plid] = NULL;
1649 
1650     mutex_unlock(&blkcg_pol_mutex);
1651 out_unlock:
1652     mutex_unlock(&blkcg_pol_register_mutex);
1653 }
1654 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1655 
1656 bool __blkcg_punt_bio_submit(struct bio *bio)
1657 {
1658     struct blkcg_gq *blkg = bio->bi_blkg;
1659 
1660     /* consume the flag first */
1661     bio->bi_opf &= ~REQ_CGROUP_PUNT;
1662 
1663     /* never bounce for the root cgroup */
1664     if (!blkg->parent)
1665         return false;
1666 
1667     spin_lock_bh(&blkg->async_bio_lock);
1668     bio_list_add(&blkg->async_bios, bio);
1669     spin_unlock_bh(&blkg->async_bio_lock);
1670 
1671     queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1672     return true;
1673 }
1674 
1675 /*
1676  * Scale the accumulated delay based on how long it has been since we updated
1677  * the delay.  We only call this when we are adding delay, in case it's been a
1678  * while since we added delay, and when we are checking to see if we need to
1679  * delay a task, to account for any delays that may have occurred.
1680  */
1681 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1682 {
1683     u64 old = atomic64_read(&blkg->delay_start);
1684 
1685     /* negative use_delay means no scaling, see blkcg_set_delay() */
1686     if (atomic_read(&blkg->use_delay) < 0)
1687         return;
1688 
1689     /*
1690      * We only want to scale down every second.  The idea here is that we
1691      * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1692      * time window.  We only want to throttle tasks for recent delay that
1693      * has occurred, in 1 second time windows since that's the maximum
1694      * things can be throttled.  We save the current delay window in
1695      * blkg->last_delay so we know what amount is still left to be charged
1696      * to the blkg from this point onward.  blkg->last_use keeps track of
1697      * the use_delay counter.  The idea is if we're unthrottling the blkg we
1698      * are ok with whatever is happening now, and we can take away more of
1699      * the accumulated delay as we've already throttled enough that
1700      * everybody is happy with their IO latencies.
1701      */
1702     if (time_before64(old + NSEC_PER_SEC, now) &&
1703         atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1704         u64 cur = atomic64_read(&blkg->delay_nsec);
1705         u64 sub = min_t(u64, blkg->last_delay, now - old);
1706         int cur_use = atomic_read(&blkg->use_delay);
1707 
1708         /*
1709          * We've been unthrottled, subtract a larger chunk of our
1710          * accumulated delay.
1711          */
1712         if (cur_use < blkg->last_use)
1713             sub = max_t(u64, sub, blkg->last_delay >> 1);
1714 
1715         /*
1716          * This shouldn't happen, but handle it anyway.  Our delay_nsec
1717          * should only ever be growing except here where we subtract out
1718          * min(last_delay, 1 second), but lord knows bugs happen and I'd
1719          * rather not end up with negative numbers.
1720          */
1721         if (unlikely(cur < sub)) {
1722             atomic64_set(&blkg->delay_nsec, 0);
1723             blkg->last_delay = 0;
1724         } else {
1725             atomic64_sub(sub, &blkg->delay_nsec);
1726             blkg->last_delay = cur - sub;
1727         }
1728         blkg->last_use = cur_use;
1729     }
1730 }
1731 
1732 /*
1733  * This is called when we want to actually walk up the hierarchy and check to
1734  * see if we need to throttle, and then actually throttle if there is some
1735  * accumulated delay.  This should only be called upon return to user space so
1736  * we're not holding some lock that would induce a priority inversion.
1737  */
1738 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1739 {
1740     unsigned long pflags;
1741     bool clamp;
1742     u64 now = ktime_to_ns(ktime_get());
1743     u64 exp;
1744     u64 delay_nsec = 0;
1745     int tok;
1746 
1747     while (blkg->parent) {
1748         int use_delay = atomic_read(&blkg->use_delay);
1749 
1750         if (use_delay) {
1751             u64 this_delay;
1752 
1753             blkcg_scale_delay(blkg, now);
1754             this_delay = atomic64_read(&blkg->delay_nsec);
1755             if (this_delay > delay_nsec) {
1756                 delay_nsec = this_delay;
1757                 clamp = use_delay > 0;
1758             }
1759         }
1760         blkg = blkg->parent;
1761     }
1762 
1763     if (!delay_nsec)
1764         return;
1765 
1766     /*
1767      * Let's not sleep for all eternity if we've amassed a huge delay.
1768      * Swapping or metadata IO can accumulate 10's of seconds worth of
1769      * delay, and we want userspace to be able to do _something_ so cap the
1770      * delays at 0.25s. If there's 10's of seconds worth of delay then the
1771      * tasks will be delayed for 0.25 second for every syscall. If
1772      * blkcg_set_delay() was used as indicated by negative use_delay, the
1773      * caller is responsible for regulating the range.
1774      */
1775     if (clamp)
1776         delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1777 
1778     if (use_memdelay)
1779         psi_memstall_enter(&pflags);
1780 
1781     exp = ktime_add_ns(now, delay_nsec);
1782     tok = io_schedule_prepare();
1783     do {
1784         __set_current_state(TASK_KILLABLE);
1785         if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1786             break;
1787     } while (!fatal_signal_pending(current));
1788     io_schedule_finish(tok);
1789 
1790     if (use_memdelay)
1791         psi_memstall_leave(&pflags);
1792 }
1793 
1794 /**
1795  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1796  *
1797  * This is only called if we've been marked with set_notify_resume().  Obviously
1798  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1799  * check to see if current->throttle_queue is set and if not this doesn't do
1800  * anything.  This should only ever be called by the resume code, it's not meant
1801  * to be called by people willy-nilly as it will actually do the work to
1802  * throttle the task if it is setup for throttling.
1803  */
1804 void blkcg_maybe_throttle_current(void)
1805 {
1806     struct request_queue *q = current->throttle_queue;
1807     struct blkcg *blkcg;
1808     struct blkcg_gq *blkg;
1809     bool use_memdelay = current->use_memdelay;
1810 
1811     if (!q)
1812         return;
1813 
1814     current->throttle_queue = NULL;
1815     current->use_memdelay = false;
1816 
1817     rcu_read_lock();
1818     blkcg = css_to_blkcg(blkcg_css());
1819     if (!blkcg)
1820         goto out;
1821     blkg = blkg_lookup(blkcg, q);
1822     if (!blkg)
1823         goto out;
1824     if (!blkg_tryget(blkg))
1825         goto out;
1826     rcu_read_unlock();
1827 
1828     blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1829     blkg_put(blkg);
1830     blk_put_queue(q);
1831     return;
1832 out:
1833     rcu_read_unlock();
1834     blk_put_queue(q);
1835 }
1836 
1837 /**
1838  * blkcg_schedule_throttle - this task needs to check for throttling
1839  * @q: the request queue IO was submitted on
1840  * @use_memdelay: do we charge this to memory delay for PSI
1841  *
1842  * This is called by the IO controller when we know there's delay accumulated
1843  * for the blkg for this task.  We do not pass the blkg because there are places
1844  * we call this that may not have that information, the swapping code for
1845  * instance will only have a request_queue at that point.  This set's the
1846  * notify_resume for the task to check and see if it requires throttling before
1847  * returning to user space.
1848  *
1849  * We will only schedule once per syscall.  You can call this over and over
1850  * again and it will only do the check once upon return to user space, and only
1851  * throttle once.  If the task needs to be throttled again it'll need to be
1852  * re-set at the next time we see the task.
1853  */
1854 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1855 {
1856     if (unlikely(current->flags & PF_KTHREAD))
1857         return;
1858 
1859     if (current->throttle_queue != q) {
1860         if (!blk_get_queue(q))
1861             return;
1862 
1863         if (current->throttle_queue)
1864             blk_put_queue(current->throttle_queue);
1865         current->throttle_queue = q;
1866     }
1867 
1868     if (use_memdelay)
1869         current->use_memdelay = use_memdelay;
1870     set_notify_resume(current);
1871 }
1872 
1873 /**
1874  * blkcg_add_delay - add delay to this blkg
1875  * @blkg: blkg of interest
1876  * @now: the current time in nanoseconds
1877  * @delta: how many nanoseconds of delay to add
1878  *
1879  * Charge @delta to the blkg's current delay accumulation.  This is used to
1880  * throttle tasks if an IO controller thinks we need more throttling.
1881  */
1882 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1883 {
1884     if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1885         return;
1886     blkcg_scale_delay(blkg, now);
1887     atomic64_add(delta, &blkg->delay_nsec);
1888 }
1889 
1890 /**
1891  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1892  * @bio: target bio
1893  * @css: target css
1894  *
1895  * As the failure mode here is to walk up the blkg tree, this ensure that the
1896  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1897  * up taking a reference on or %NULL if no reference was taken.
1898  */
1899 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1900         struct cgroup_subsys_state *css)
1901 {
1902     struct blkcg_gq *blkg, *ret_blkg = NULL;
1903 
1904     rcu_read_lock();
1905     blkg = blkg_lookup_create(css_to_blkcg(css),
1906                   bdev_get_queue(bio->bi_bdev));
1907     while (blkg) {
1908         if (blkg_tryget(blkg)) {
1909             ret_blkg = blkg;
1910             break;
1911         }
1912         blkg = blkg->parent;
1913     }
1914     rcu_read_unlock();
1915 
1916     return ret_blkg;
1917 }
1918 
1919 /**
1920  * bio_associate_blkg_from_css - associate a bio with a specified css
1921  * @bio: target bio
1922  * @css: target css
1923  *
1924  * Associate @bio with the blkg found by combining the css's blkg and the
1925  * request_queue of the @bio.  An association failure is handled by walking up
1926  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1927  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1928  * then the remaining bios will spill to the closest alive blkg.
1929  *
1930  * A reference will be taken on the blkg and will be released when @bio is
1931  * freed.
1932  */
1933 void bio_associate_blkg_from_css(struct bio *bio,
1934                  struct cgroup_subsys_state *css)
1935 {
1936     if (bio->bi_blkg)
1937         blkg_put(bio->bi_blkg);
1938 
1939     if (css && css->parent) {
1940         bio->bi_blkg = blkg_tryget_closest(bio, css);
1941     } else {
1942         blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1943         bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1944     }
1945 }
1946 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1947 
1948 /**
1949  * bio_associate_blkg - associate a bio with a blkg
1950  * @bio: target bio
1951  *
1952  * Associate @bio with the blkg found from the bio's css and request_queue.
1953  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1954  * already associated, the css is reused and association redone as the
1955  * request_queue may have changed.
1956  */
1957 void bio_associate_blkg(struct bio *bio)
1958 {
1959     struct cgroup_subsys_state *css;
1960 
1961     rcu_read_lock();
1962 
1963     if (bio->bi_blkg)
1964         css = bio_blkcg_css(bio);
1965     else
1966         css = blkcg_css();
1967 
1968     bio_associate_blkg_from_css(bio, css);
1969 
1970     rcu_read_unlock();
1971 }
1972 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1973 
1974 /**
1975  * bio_clone_blkg_association - clone blkg association from src to dst bio
1976  * @dst: destination bio
1977  * @src: source bio
1978  */
1979 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1980 {
1981     if (src->bi_blkg)
1982         bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
1983 }
1984 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1985 
1986 static int blk_cgroup_io_type(struct bio *bio)
1987 {
1988     if (op_is_discard(bio->bi_opf))
1989         return BLKG_IOSTAT_DISCARD;
1990     if (op_is_write(bio->bi_opf))
1991         return BLKG_IOSTAT_WRITE;
1992     return BLKG_IOSTAT_READ;
1993 }
1994 
1995 void blk_cgroup_bio_start(struct bio *bio)
1996 {
1997     int rwd = blk_cgroup_io_type(bio), cpu;
1998     struct blkg_iostat_set *bis;
1999     unsigned long flags;
2000 
2001     cpu = get_cpu();
2002     bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2003     flags = u64_stats_update_begin_irqsave(&bis->sync);
2004 
2005     /*
2006      * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2007      * bio and we would have already accounted for the size of the bio.
2008      */
2009     if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2010         bio_set_flag(bio, BIO_CGROUP_ACCT);
2011         bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2012     }
2013     bis->cur.ios[rwd]++;
2014 
2015     u64_stats_update_end_irqrestore(&bis->sync, flags);
2016     if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2017         cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
2018     put_cpu();
2019 }
2020 
2021 bool blk_cgroup_congested(void)
2022 {
2023     struct cgroup_subsys_state *css;
2024     bool ret = false;
2025 
2026     rcu_read_lock();
2027     for (css = blkcg_css(); css; css = css->parent) {
2028         if (atomic_read(&css->cgroup->congestion_count)) {
2029             ret = true;
2030             break;
2031         }
2032     }
2033     rcu_read_unlock();
2034     return ret;
2035 }
2036 
2037 static int __init blkcg_init(void)
2038 {
2039     blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
2040                         WQ_MEM_RECLAIM | WQ_FREEZABLE |
2041                         WQ_UNBOUND | WQ_SYSFS, 0);
2042     if (!blkcg_punt_bio_wq)
2043         return -ENOMEM;
2044     return 0;
2045 }
2046 subsys_initcall(blkcg_init);
2047 
2048 module_param(blkcg_debug_stats, bool, 0644);
2049 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");