Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
0004  */
0005 #include <linux/mm.h>
0006 #include <linux/swap.h>
0007 #include <linux/bio.h>
0008 #include <linux/blkdev.h>
0009 #include <linux/uio.h>
0010 #include <linux/iocontext.h>
0011 #include <linux/slab.h>
0012 #include <linux/init.h>
0013 #include <linux/kernel.h>
0014 #include <linux/export.h>
0015 #include <linux/mempool.h>
0016 #include <linux/workqueue.h>
0017 #include <linux/cgroup.h>
0018 #include <linux/highmem.h>
0019 #include <linux/sched/sysctl.h>
0020 #include <linux/blk-crypto.h>
0021 #include <linux/xarray.h>
0022 
0023 #include <trace/events/block.h>
0024 #include "blk.h"
0025 #include "blk-rq-qos.h"
0026 #include "blk-cgroup.h"
0027 
0028 struct bio_alloc_cache {
0029     struct bio      *free_list;
0030     unsigned int        nr;
0031 };
0032 
0033 static struct biovec_slab {
0034     int nr_vecs;
0035     char *name;
0036     struct kmem_cache *slab;
0037 } bvec_slabs[] __read_mostly = {
0038     { .nr_vecs = 16, .name = "biovec-16" },
0039     { .nr_vecs = 64, .name = "biovec-64" },
0040     { .nr_vecs = 128, .name = "biovec-128" },
0041     { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
0042 };
0043 
0044 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
0045 {
0046     switch (nr_vecs) {
0047     /* smaller bios use inline vecs */
0048     case 5 ... 16:
0049         return &bvec_slabs[0];
0050     case 17 ... 64:
0051         return &bvec_slabs[1];
0052     case 65 ... 128:
0053         return &bvec_slabs[2];
0054     case 129 ... BIO_MAX_VECS:
0055         return &bvec_slabs[3];
0056     default:
0057         BUG();
0058         return NULL;
0059     }
0060 }
0061 
0062 /*
0063  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
0064  * IO code that does not need private memory pools.
0065  */
0066 struct bio_set fs_bio_set;
0067 EXPORT_SYMBOL(fs_bio_set);
0068 
0069 /*
0070  * Our slab pool management
0071  */
0072 struct bio_slab {
0073     struct kmem_cache *slab;
0074     unsigned int slab_ref;
0075     unsigned int slab_size;
0076     char name[8];
0077 };
0078 static DEFINE_MUTEX(bio_slab_lock);
0079 static DEFINE_XARRAY(bio_slabs);
0080 
0081 static struct bio_slab *create_bio_slab(unsigned int size)
0082 {
0083     struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
0084 
0085     if (!bslab)
0086         return NULL;
0087 
0088     snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
0089     bslab->slab = kmem_cache_create(bslab->name, size,
0090             ARCH_KMALLOC_MINALIGN,
0091             SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
0092     if (!bslab->slab)
0093         goto fail_alloc_slab;
0094 
0095     bslab->slab_ref = 1;
0096     bslab->slab_size = size;
0097 
0098     if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
0099         return bslab;
0100 
0101     kmem_cache_destroy(bslab->slab);
0102 
0103 fail_alloc_slab:
0104     kfree(bslab);
0105     return NULL;
0106 }
0107 
0108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
0109 {
0110     return bs->front_pad + sizeof(struct bio) + bs->back_pad;
0111 }
0112 
0113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
0114 {
0115     unsigned int size = bs_bio_slab_size(bs);
0116     struct bio_slab *bslab;
0117 
0118     mutex_lock(&bio_slab_lock);
0119     bslab = xa_load(&bio_slabs, size);
0120     if (bslab)
0121         bslab->slab_ref++;
0122     else
0123         bslab = create_bio_slab(size);
0124     mutex_unlock(&bio_slab_lock);
0125 
0126     if (bslab)
0127         return bslab->slab;
0128     return NULL;
0129 }
0130 
0131 static void bio_put_slab(struct bio_set *bs)
0132 {
0133     struct bio_slab *bslab = NULL;
0134     unsigned int slab_size = bs_bio_slab_size(bs);
0135 
0136     mutex_lock(&bio_slab_lock);
0137 
0138     bslab = xa_load(&bio_slabs, slab_size);
0139     if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
0140         goto out;
0141 
0142     WARN_ON_ONCE(bslab->slab != bs->bio_slab);
0143 
0144     WARN_ON(!bslab->slab_ref);
0145 
0146     if (--bslab->slab_ref)
0147         goto out;
0148 
0149     xa_erase(&bio_slabs, slab_size);
0150 
0151     kmem_cache_destroy(bslab->slab);
0152     kfree(bslab);
0153 
0154 out:
0155     mutex_unlock(&bio_slab_lock);
0156 }
0157 
0158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
0159 {
0160     BUG_ON(nr_vecs > BIO_MAX_VECS);
0161 
0162     if (nr_vecs == BIO_MAX_VECS)
0163         mempool_free(bv, pool);
0164     else if (nr_vecs > BIO_INLINE_VECS)
0165         kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
0166 }
0167 
0168 /*
0169  * Make the first allocation restricted and don't dump info on allocation
0170  * failures, since we'll fall back to the mempool in case of failure.
0171  */
0172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
0173 {
0174     return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
0175         __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
0176 }
0177 
0178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
0179         gfp_t gfp_mask)
0180 {
0181     struct biovec_slab *bvs = biovec_slab(*nr_vecs);
0182 
0183     if (WARN_ON_ONCE(!bvs))
0184         return NULL;
0185 
0186     /*
0187      * Upgrade the nr_vecs request to take full advantage of the allocation.
0188      * We also rely on this in the bvec_free path.
0189      */
0190     *nr_vecs = bvs->nr_vecs;
0191 
0192     /*
0193      * Try a slab allocation first for all smaller allocations.  If that
0194      * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
0195      * The mempool is sized to handle up to BIO_MAX_VECS entries.
0196      */
0197     if (*nr_vecs < BIO_MAX_VECS) {
0198         struct bio_vec *bvl;
0199 
0200         bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
0201         if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
0202             return bvl;
0203         *nr_vecs = BIO_MAX_VECS;
0204     }
0205 
0206     return mempool_alloc(pool, gfp_mask);
0207 }
0208 
0209 void bio_uninit(struct bio *bio)
0210 {
0211 #ifdef CONFIG_BLK_CGROUP
0212     if (bio->bi_blkg) {
0213         blkg_put(bio->bi_blkg);
0214         bio->bi_blkg = NULL;
0215     }
0216 #endif
0217     if (bio_integrity(bio))
0218         bio_integrity_free(bio);
0219 
0220     bio_crypt_free_ctx(bio);
0221 }
0222 EXPORT_SYMBOL(bio_uninit);
0223 
0224 static void bio_free(struct bio *bio)
0225 {
0226     struct bio_set *bs = bio->bi_pool;
0227     void *p = bio;
0228 
0229     WARN_ON_ONCE(!bs);
0230 
0231     bio_uninit(bio);
0232     bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
0233     mempool_free(p - bs->front_pad, &bs->bio_pool);
0234 }
0235 
0236 /*
0237  * Users of this function have their own bio allocation. Subsequently,
0238  * they must remember to pair any call to bio_init() with bio_uninit()
0239  * when IO has completed, or when the bio is released.
0240  */
0241 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
0242           unsigned short max_vecs, blk_opf_t opf)
0243 {
0244     bio->bi_next = NULL;
0245     bio->bi_bdev = bdev;
0246     bio->bi_opf = opf;
0247     bio->bi_flags = 0;
0248     bio->bi_ioprio = 0;
0249     bio->bi_status = 0;
0250     bio->bi_iter.bi_sector = 0;
0251     bio->bi_iter.bi_size = 0;
0252     bio->bi_iter.bi_idx = 0;
0253     bio->bi_iter.bi_bvec_done = 0;
0254     bio->bi_end_io = NULL;
0255     bio->bi_private = NULL;
0256 #ifdef CONFIG_BLK_CGROUP
0257     bio->bi_blkg = NULL;
0258     bio->bi_issue.value = 0;
0259     if (bdev)
0260         bio_associate_blkg(bio);
0261 #ifdef CONFIG_BLK_CGROUP_IOCOST
0262     bio->bi_iocost_cost = 0;
0263 #endif
0264 #endif
0265 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
0266     bio->bi_crypt_context = NULL;
0267 #endif
0268 #ifdef CONFIG_BLK_DEV_INTEGRITY
0269     bio->bi_integrity = NULL;
0270 #endif
0271     bio->bi_vcnt = 0;
0272 
0273     atomic_set(&bio->__bi_remaining, 1);
0274     atomic_set(&bio->__bi_cnt, 1);
0275     bio->bi_cookie = BLK_QC_T_NONE;
0276 
0277     bio->bi_max_vecs = max_vecs;
0278     bio->bi_io_vec = table;
0279     bio->bi_pool = NULL;
0280 }
0281 EXPORT_SYMBOL(bio_init);
0282 
0283 /**
0284  * bio_reset - reinitialize a bio
0285  * @bio:    bio to reset
0286  * @bdev:   block device to use the bio for
0287  * @opf:    operation and flags for bio
0288  *
0289  * Description:
0290  *   After calling bio_reset(), @bio will be in the same state as a freshly
0291  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
0292  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
0293  *   comment in struct bio.
0294  */
0295 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
0296 {
0297     bio_uninit(bio);
0298     memset(bio, 0, BIO_RESET_BYTES);
0299     atomic_set(&bio->__bi_remaining, 1);
0300     bio->bi_bdev = bdev;
0301     if (bio->bi_bdev)
0302         bio_associate_blkg(bio);
0303     bio->bi_opf = opf;
0304 }
0305 EXPORT_SYMBOL(bio_reset);
0306 
0307 static struct bio *__bio_chain_endio(struct bio *bio)
0308 {
0309     struct bio *parent = bio->bi_private;
0310 
0311     if (bio->bi_status && !parent->bi_status)
0312         parent->bi_status = bio->bi_status;
0313     bio_put(bio);
0314     return parent;
0315 }
0316 
0317 static void bio_chain_endio(struct bio *bio)
0318 {
0319     bio_endio(__bio_chain_endio(bio));
0320 }
0321 
0322 /**
0323  * bio_chain - chain bio completions
0324  * @bio: the target bio
0325  * @parent: the parent bio of @bio
0326  *
0327  * The caller won't have a bi_end_io called when @bio completes - instead,
0328  * @parent's bi_end_io won't be called until both @parent and @bio have
0329  * completed; the chained bio will also be freed when it completes.
0330  *
0331  * The caller must not set bi_private or bi_end_io in @bio.
0332  */
0333 void bio_chain(struct bio *bio, struct bio *parent)
0334 {
0335     BUG_ON(bio->bi_private || bio->bi_end_io);
0336 
0337     bio->bi_private = parent;
0338     bio->bi_end_io  = bio_chain_endio;
0339     bio_inc_remaining(parent);
0340 }
0341 EXPORT_SYMBOL(bio_chain);
0342 
0343 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
0344         unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
0345 {
0346     struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
0347 
0348     if (bio) {
0349         bio_chain(bio, new);
0350         submit_bio(bio);
0351     }
0352 
0353     return new;
0354 }
0355 EXPORT_SYMBOL_GPL(blk_next_bio);
0356 
0357 static void bio_alloc_rescue(struct work_struct *work)
0358 {
0359     struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
0360     struct bio *bio;
0361 
0362     while (1) {
0363         spin_lock(&bs->rescue_lock);
0364         bio = bio_list_pop(&bs->rescue_list);
0365         spin_unlock(&bs->rescue_lock);
0366 
0367         if (!bio)
0368             break;
0369 
0370         submit_bio_noacct(bio);
0371     }
0372 }
0373 
0374 static void punt_bios_to_rescuer(struct bio_set *bs)
0375 {
0376     struct bio_list punt, nopunt;
0377     struct bio *bio;
0378 
0379     if (WARN_ON_ONCE(!bs->rescue_workqueue))
0380         return;
0381     /*
0382      * In order to guarantee forward progress we must punt only bios that
0383      * were allocated from this bio_set; otherwise, if there was a bio on
0384      * there for a stacking driver higher up in the stack, processing it
0385      * could require allocating bios from this bio_set, and doing that from
0386      * our own rescuer would be bad.
0387      *
0388      * Since bio lists are singly linked, pop them all instead of trying to
0389      * remove from the middle of the list:
0390      */
0391 
0392     bio_list_init(&punt);
0393     bio_list_init(&nopunt);
0394 
0395     while ((bio = bio_list_pop(&current->bio_list[0])))
0396         bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
0397     current->bio_list[0] = nopunt;
0398 
0399     bio_list_init(&nopunt);
0400     while ((bio = bio_list_pop(&current->bio_list[1])))
0401         bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
0402     current->bio_list[1] = nopunt;
0403 
0404     spin_lock(&bs->rescue_lock);
0405     bio_list_merge(&bs->rescue_list, &punt);
0406     spin_unlock(&bs->rescue_lock);
0407 
0408     queue_work(bs->rescue_workqueue, &bs->rescue_work);
0409 }
0410 
0411 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
0412         unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
0413         struct bio_set *bs)
0414 {
0415     struct bio_alloc_cache *cache;
0416     struct bio *bio;
0417 
0418     cache = per_cpu_ptr(bs->cache, get_cpu());
0419     if (!cache->free_list) {
0420         put_cpu();
0421         return NULL;
0422     }
0423     bio = cache->free_list;
0424     cache->free_list = bio->bi_next;
0425     cache->nr--;
0426     put_cpu();
0427 
0428     bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
0429     bio->bi_pool = bs;
0430     return bio;
0431 }
0432 
0433 /**
0434  * bio_alloc_bioset - allocate a bio for I/O
0435  * @bdev:   block device to allocate the bio for (can be %NULL)
0436  * @nr_vecs:    number of bvecs to pre-allocate
0437  * @opf:    operation and flags for bio
0438  * @gfp_mask:   the GFP_* mask given to the slab allocator
0439  * @bs:     the bio_set to allocate from.
0440  *
0441  * Allocate a bio from the mempools in @bs.
0442  *
0443  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
0444  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
0445  * callers must never allocate more than 1 bio at a time from the general pool.
0446  * Callers that need to allocate more than 1 bio must always submit the
0447  * previously allocated bio for IO before attempting to allocate a new one.
0448  * Failure to do so can cause deadlocks under memory pressure.
0449  *
0450  * Note that when running under submit_bio_noacct() (i.e. any block driver),
0451  * bios are not submitted until after you return - see the code in
0452  * submit_bio_noacct() that converts recursion into iteration, to prevent
0453  * stack overflows.
0454  *
0455  * This would normally mean allocating multiple bios under submit_bio_noacct()
0456  * would be susceptible to deadlocks, but we have
0457  * deadlock avoidance code that resubmits any blocked bios from a rescuer
0458  * thread.
0459  *
0460  * However, we do not guarantee forward progress for allocations from other
0461  * mempools. Doing multiple allocations from the same mempool under
0462  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
0463  * for per bio allocations.
0464  *
0465  * If REQ_ALLOC_CACHE is set, the final put of the bio MUST be done from process
0466  * context, not hard/soft IRQ.
0467  *
0468  * Returns: Pointer to new bio on success, NULL on failure.
0469  */
0470 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
0471                  blk_opf_t opf, gfp_t gfp_mask,
0472                  struct bio_set *bs)
0473 {
0474     gfp_t saved_gfp = gfp_mask;
0475     struct bio *bio;
0476     void *p;
0477 
0478     /* should not use nobvec bioset for nr_vecs > 0 */
0479     if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
0480         return NULL;
0481 
0482     if (opf & REQ_ALLOC_CACHE) {
0483         if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
0484             bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
0485                              gfp_mask, bs);
0486             if (bio)
0487                 return bio;
0488             /*
0489              * No cached bio available, bio returned below marked with
0490              * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
0491              */
0492         } else {
0493             opf &= ~REQ_ALLOC_CACHE;
0494         }
0495     }
0496 
0497     /*
0498      * submit_bio_noacct() converts recursion to iteration; this means if
0499      * we're running beneath it, any bios we allocate and submit will not be
0500      * submitted (and thus freed) until after we return.
0501      *
0502      * This exposes us to a potential deadlock if we allocate multiple bios
0503      * from the same bio_set() while running underneath submit_bio_noacct().
0504      * If we were to allocate multiple bios (say a stacking block driver
0505      * that was splitting bios), we would deadlock if we exhausted the
0506      * mempool's reserve.
0507      *
0508      * We solve this, and guarantee forward progress, with a rescuer
0509      * workqueue per bio_set. If we go to allocate and there are bios on
0510      * current->bio_list, we first try the allocation without
0511      * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
0512      * blocking to the rescuer workqueue before we retry with the original
0513      * gfp_flags.
0514      */
0515     if (current->bio_list &&
0516         (!bio_list_empty(&current->bio_list[0]) ||
0517          !bio_list_empty(&current->bio_list[1])) &&
0518         bs->rescue_workqueue)
0519         gfp_mask &= ~__GFP_DIRECT_RECLAIM;
0520 
0521     p = mempool_alloc(&bs->bio_pool, gfp_mask);
0522     if (!p && gfp_mask != saved_gfp) {
0523         punt_bios_to_rescuer(bs);
0524         gfp_mask = saved_gfp;
0525         p = mempool_alloc(&bs->bio_pool, gfp_mask);
0526     }
0527     if (unlikely(!p))
0528         return NULL;
0529 
0530     bio = p + bs->front_pad;
0531     if (nr_vecs > BIO_INLINE_VECS) {
0532         struct bio_vec *bvl = NULL;
0533 
0534         bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
0535         if (!bvl && gfp_mask != saved_gfp) {
0536             punt_bios_to_rescuer(bs);
0537             gfp_mask = saved_gfp;
0538             bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
0539         }
0540         if (unlikely(!bvl))
0541             goto err_free;
0542 
0543         bio_init(bio, bdev, bvl, nr_vecs, opf);
0544     } else if (nr_vecs) {
0545         bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
0546     } else {
0547         bio_init(bio, bdev, NULL, 0, opf);
0548     }
0549 
0550     bio->bi_pool = bs;
0551     return bio;
0552 
0553 err_free:
0554     mempool_free(p, &bs->bio_pool);
0555     return NULL;
0556 }
0557 EXPORT_SYMBOL(bio_alloc_bioset);
0558 
0559 /**
0560  * bio_kmalloc - kmalloc a bio
0561  * @nr_vecs:    number of bio_vecs to allocate
0562  * @gfp_mask:   the GFP_* mask given to the slab allocator
0563  *
0564  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
0565  * using bio_init() before use.  To free a bio returned from this function use
0566  * kfree() after calling bio_uninit().  A bio returned from this function can
0567  * be reused by calling bio_uninit() before calling bio_init() again.
0568  *
0569  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
0570  * function are not backed by a mempool can can fail.  Do not use this function
0571  * for allocations in the file system I/O path.
0572  *
0573  * Returns: Pointer to new bio on success, NULL on failure.
0574  */
0575 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
0576 {
0577     struct bio *bio;
0578 
0579     if (nr_vecs > UIO_MAXIOV)
0580         return NULL;
0581     return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
0582 }
0583 EXPORT_SYMBOL(bio_kmalloc);
0584 
0585 void zero_fill_bio(struct bio *bio)
0586 {
0587     struct bio_vec bv;
0588     struct bvec_iter iter;
0589 
0590     bio_for_each_segment(bv, bio, iter)
0591         memzero_bvec(&bv);
0592 }
0593 EXPORT_SYMBOL(zero_fill_bio);
0594 
0595 /**
0596  * bio_truncate - truncate the bio to small size of @new_size
0597  * @bio:    the bio to be truncated
0598  * @new_size:   new size for truncating the bio
0599  *
0600  * Description:
0601  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
0602  *   REQ_OP_READ, zero the truncated part. This function should only
0603  *   be used for handling corner cases, such as bio eod.
0604  */
0605 static void bio_truncate(struct bio *bio, unsigned new_size)
0606 {
0607     struct bio_vec bv;
0608     struct bvec_iter iter;
0609     unsigned int done = 0;
0610     bool truncated = false;
0611 
0612     if (new_size >= bio->bi_iter.bi_size)
0613         return;
0614 
0615     if (bio_op(bio) != REQ_OP_READ)
0616         goto exit;
0617 
0618     bio_for_each_segment(bv, bio, iter) {
0619         if (done + bv.bv_len > new_size) {
0620             unsigned offset;
0621 
0622             if (!truncated)
0623                 offset = new_size - done;
0624             else
0625                 offset = 0;
0626             zero_user(bv.bv_page, bv.bv_offset + offset,
0627                   bv.bv_len - offset);
0628             truncated = true;
0629         }
0630         done += bv.bv_len;
0631     }
0632 
0633  exit:
0634     /*
0635      * Don't touch bvec table here and make it really immutable, since
0636      * fs bio user has to retrieve all pages via bio_for_each_segment_all
0637      * in its .end_bio() callback.
0638      *
0639      * It is enough to truncate bio by updating .bi_size since we can make
0640      * correct bvec with the updated .bi_size for drivers.
0641      */
0642     bio->bi_iter.bi_size = new_size;
0643 }
0644 
0645 /**
0646  * guard_bio_eod - truncate a BIO to fit the block device
0647  * @bio:    bio to truncate
0648  *
0649  * This allows us to do IO even on the odd last sectors of a device, even if the
0650  * block size is some multiple of the physical sector size.
0651  *
0652  * We'll just truncate the bio to the size of the device, and clear the end of
0653  * the buffer head manually.  Truly out-of-range accesses will turn into actual
0654  * I/O errors, this only handles the "we need to be able to do I/O at the final
0655  * sector" case.
0656  */
0657 void guard_bio_eod(struct bio *bio)
0658 {
0659     sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
0660 
0661     if (!maxsector)
0662         return;
0663 
0664     /*
0665      * If the *whole* IO is past the end of the device,
0666      * let it through, and the IO layer will turn it into
0667      * an EIO.
0668      */
0669     if (unlikely(bio->bi_iter.bi_sector >= maxsector))
0670         return;
0671 
0672     maxsector -= bio->bi_iter.bi_sector;
0673     if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
0674         return;
0675 
0676     bio_truncate(bio, maxsector << 9);
0677 }
0678 
0679 #define ALLOC_CACHE_MAX     512
0680 #define ALLOC_CACHE_SLACK    64
0681 
0682 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
0683                   unsigned int nr)
0684 {
0685     unsigned int i = 0;
0686     struct bio *bio;
0687 
0688     while ((bio = cache->free_list) != NULL) {
0689         cache->free_list = bio->bi_next;
0690         cache->nr--;
0691         bio_free(bio);
0692         if (++i == nr)
0693             break;
0694     }
0695 }
0696 
0697 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
0698 {
0699     struct bio_set *bs;
0700 
0701     bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
0702     if (bs->cache) {
0703         struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
0704 
0705         bio_alloc_cache_prune(cache, -1U);
0706     }
0707     return 0;
0708 }
0709 
0710 static void bio_alloc_cache_destroy(struct bio_set *bs)
0711 {
0712     int cpu;
0713 
0714     if (!bs->cache)
0715         return;
0716 
0717     cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
0718     for_each_possible_cpu(cpu) {
0719         struct bio_alloc_cache *cache;
0720 
0721         cache = per_cpu_ptr(bs->cache, cpu);
0722         bio_alloc_cache_prune(cache, -1U);
0723     }
0724     free_percpu(bs->cache);
0725     bs->cache = NULL;
0726 }
0727 
0728 /**
0729  * bio_put - release a reference to a bio
0730  * @bio:   bio to release reference to
0731  *
0732  * Description:
0733  *   Put a reference to a &struct bio, either one you have gotten with
0734  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
0735  **/
0736 void bio_put(struct bio *bio)
0737 {
0738     if (unlikely(bio_flagged(bio, BIO_REFFED))) {
0739         BUG_ON(!atomic_read(&bio->__bi_cnt));
0740         if (!atomic_dec_and_test(&bio->__bi_cnt))
0741             return;
0742     }
0743 
0744     if (bio->bi_opf & REQ_ALLOC_CACHE) {
0745         struct bio_alloc_cache *cache;
0746 
0747         bio_uninit(bio);
0748         cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
0749         bio->bi_next = cache->free_list;
0750         cache->free_list = bio;
0751         if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
0752             bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
0753         put_cpu();
0754     } else {
0755         bio_free(bio);
0756     }
0757 }
0758 EXPORT_SYMBOL(bio_put);
0759 
0760 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
0761 {
0762     bio_set_flag(bio, BIO_CLONED);
0763     if (bio_flagged(bio_src, BIO_THROTTLED))
0764         bio_set_flag(bio, BIO_THROTTLED);
0765     bio->bi_ioprio = bio_src->bi_ioprio;
0766     bio->bi_iter = bio_src->bi_iter;
0767 
0768     if (bio->bi_bdev) {
0769         if (bio->bi_bdev == bio_src->bi_bdev &&
0770             bio_flagged(bio_src, BIO_REMAPPED))
0771             bio_set_flag(bio, BIO_REMAPPED);
0772         bio_clone_blkg_association(bio, bio_src);
0773     }
0774 
0775     if (bio_crypt_clone(bio, bio_src, gfp) < 0)
0776         return -ENOMEM;
0777     if (bio_integrity(bio_src) &&
0778         bio_integrity_clone(bio, bio_src, gfp) < 0)
0779         return -ENOMEM;
0780     return 0;
0781 }
0782 
0783 /**
0784  * bio_alloc_clone - clone a bio that shares the original bio's biovec
0785  * @bdev: block_device to clone onto
0786  * @bio_src: bio to clone from
0787  * @gfp: allocation priority
0788  * @bs: bio_set to allocate from
0789  *
0790  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
0791  * bio, but not the actual data it points to.
0792  *
0793  * The caller must ensure that the return bio is not freed before @bio_src.
0794  */
0795 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
0796         gfp_t gfp, struct bio_set *bs)
0797 {
0798     struct bio *bio;
0799 
0800     bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
0801     if (!bio)
0802         return NULL;
0803 
0804     if (__bio_clone(bio, bio_src, gfp) < 0) {
0805         bio_put(bio);
0806         return NULL;
0807     }
0808     bio->bi_io_vec = bio_src->bi_io_vec;
0809 
0810     return bio;
0811 }
0812 EXPORT_SYMBOL(bio_alloc_clone);
0813 
0814 /**
0815  * bio_init_clone - clone a bio that shares the original bio's biovec
0816  * @bdev: block_device to clone onto
0817  * @bio: bio to clone into
0818  * @bio_src: bio to clone from
0819  * @gfp: allocation priority
0820  *
0821  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
0822  * The caller owns the returned bio, but not the actual data it points to.
0823  *
0824  * The caller must ensure that @bio_src is not freed before @bio.
0825  */
0826 int bio_init_clone(struct block_device *bdev, struct bio *bio,
0827         struct bio *bio_src, gfp_t gfp)
0828 {
0829     int ret;
0830 
0831     bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
0832     ret = __bio_clone(bio, bio_src, gfp);
0833     if (ret)
0834         bio_uninit(bio);
0835     return ret;
0836 }
0837 EXPORT_SYMBOL(bio_init_clone);
0838 
0839 /**
0840  * bio_full - check if the bio is full
0841  * @bio:    bio to check
0842  * @len:    length of one segment to be added
0843  *
0844  * Return true if @bio is full and one segment with @len bytes can't be
0845  * added to the bio, otherwise return false
0846  */
0847 static inline bool bio_full(struct bio *bio, unsigned len)
0848 {
0849     if (bio->bi_vcnt >= bio->bi_max_vecs)
0850         return true;
0851     if (bio->bi_iter.bi_size > UINT_MAX - len)
0852         return true;
0853     return false;
0854 }
0855 
0856 static inline bool page_is_mergeable(const struct bio_vec *bv,
0857         struct page *page, unsigned int len, unsigned int off,
0858         bool *same_page)
0859 {
0860     size_t bv_end = bv->bv_offset + bv->bv_len;
0861     phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
0862     phys_addr_t page_addr = page_to_phys(page);
0863 
0864     if (vec_end_addr + 1 != page_addr + off)
0865         return false;
0866     if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
0867         return false;
0868 
0869     *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
0870     if (*same_page)
0871         return true;
0872     return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
0873 }
0874 
0875 /**
0876  * __bio_try_merge_page - try appending data to an existing bvec.
0877  * @bio: destination bio
0878  * @page: start page to add
0879  * @len: length of the data to add
0880  * @off: offset of the data relative to @page
0881  * @same_page: return if the segment has been merged inside the same page
0882  *
0883  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
0884  * useful optimisation for file systems with a block size smaller than the
0885  * page size.
0886  *
0887  * Warn if (@len, @off) crosses pages in case that @same_page is true.
0888  *
0889  * Return %true on success or %false on failure.
0890  */
0891 static bool __bio_try_merge_page(struct bio *bio, struct page *page,
0892         unsigned int len, unsigned int off, bool *same_page)
0893 {
0894     if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0895         return false;
0896 
0897     if (bio->bi_vcnt > 0) {
0898         struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
0899 
0900         if (page_is_mergeable(bv, page, len, off, same_page)) {
0901             if (bio->bi_iter.bi_size > UINT_MAX - len) {
0902                 *same_page = false;
0903                 return false;
0904             }
0905             bv->bv_len += len;
0906             bio->bi_iter.bi_size += len;
0907             return true;
0908         }
0909     }
0910     return false;
0911 }
0912 
0913 /*
0914  * Try to merge a page into a segment, while obeying the hardware segment
0915  * size limit.  This is not for normal read/write bios, but for passthrough
0916  * or Zone Append operations that we can't split.
0917  */
0918 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
0919                  struct page *page, unsigned len,
0920                  unsigned offset, bool *same_page)
0921 {
0922     struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
0923     unsigned long mask = queue_segment_boundary(q);
0924     phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
0925     phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
0926 
0927     if ((addr1 | mask) != (addr2 | mask))
0928         return false;
0929     if (bv->bv_len + len > queue_max_segment_size(q))
0930         return false;
0931     return __bio_try_merge_page(bio, page, len, offset, same_page);
0932 }
0933 
0934 /**
0935  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
0936  * @q: the target queue
0937  * @bio: destination bio
0938  * @page: page to add
0939  * @len: vec entry length
0940  * @offset: vec entry offset
0941  * @max_sectors: maximum number of sectors that can be added
0942  * @same_page: return if the segment has been merged inside the same page
0943  *
0944  * Add a page to a bio while respecting the hardware max_sectors, max_segment
0945  * and gap limitations.
0946  */
0947 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
0948         struct page *page, unsigned int len, unsigned int offset,
0949         unsigned int max_sectors, bool *same_page)
0950 {
0951     struct bio_vec *bvec;
0952 
0953     if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0954         return 0;
0955 
0956     if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
0957         return 0;
0958 
0959     if (bio->bi_vcnt > 0) {
0960         if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
0961             return len;
0962 
0963         /*
0964          * If the queue doesn't support SG gaps and adding this segment
0965          * would create a gap, disallow it.
0966          */
0967         bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
0968         if (bvec_gap_to_prev(&q->limits, bvec, offset))
0969             return 0;
0970     }
0971 
0972     if (bio_full(bio, len))
0973         return 0;
0974 
0975     if (bio->bi_vcnt >= queue_max_segments(q))
0976         return 0;
0977 
0978     bvec = &bio->bi_io_vec[bio->bi_vcnt];
0979     bvec->bv_page = page;
0980     bvec->bv_len = len;
0981     bvec->bv_offset = offset;
0982     bio->bi_vcnt++;
0983     bio->bi_iter.bi_size += len;
0984     return len;
0985 }
0986 
0987 /**
0988  * bio_add_pc_page  - attempt to add page to passthrough bio
0989  * @q: the target queue
0990  * @bio: destination bio
0991  * @page: page to add
0992  * @len: vec entry length
0993  * @offset: vec entry offset
0994  *
0995  * Attempt to add a page to the bio_vec maplist. This can fail for a
0996  * number of reasons, such as the bio being full or target block device
0997  * limitations. The target block device must allow bio's up to PAGE_SIZE,
0998  * so it is always possible to add a single page to an empty bio.
0999  *
1000  * This should only be used by passthrough bios.
1001  */
1002 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1003         struct page *page, unsigned int len, unsigned int offset)
1004 {
1005     bool same_page = false;
1006     return bio_add_hw_page(q, bio, page, len, offset,
1007             queue_max_hw_sectors(q), &same_page);
1008 }
1009 EXPORT_SYMBOL(bio_add_pc_page);
1010 
1011 /**
1012  * bio_add_zone_append_page - attempt to add page to zone-append bio
1013  * @bio: destination bio
1014  * @page: page to add
1015  * @len: vec entry length
1016  * @offset: vec entry offset
1017  *
1018  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1019  * for a zone-append request. This can fail for a number of reasons, such as the
1020  * bio being full or the target block device is not a zoned block device or
1021  * other limitations of the target block device. The target block device must
1022  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1023  * to an empty bio.
1024  *
1025  * Returns: number of bytes added to the bio, or 0 in case of a failure.
1026  */
1027 int bio_add_zone_append_page(struct bio *bio, struct page *page,
1028                  unsigned int len, unsigned int offset)
1029 {
1030     struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1031     bool same_page = false;
1032 
1033     if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1034         return 0;
1035 
1036     if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1037         return 0;
1038 
1039     return bio_add_hw_page(q, bio, page, len, offset,
1040                    queue_max_zone_append_sectors(q), &same_page);
1041 }
1042 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1043 
1044 /**
1045  * __bio_add_page - add page(s) to a bio in a new segment
1046  * @bio: destination bio
1047  * @page: start page to add
1048  * @len: length of the data to add, may cross pages
1049  * @off: offset of the data relative to @page, may cross pages
1050  *
1051  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1052  * that @bio has space for another bvec.
1053  */
1054 void __bio_add_page(struct bio *bio, struct page *page,
1055         unsigned int len, unsigned int off)
1056 {
1057     struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
1058 
1059     WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1060     WARN_ON_ONCE(bio_full(bio, len));
1061 
1062     bv->bv_page = page;
1063     bv->bv_offset = off;
1064     bv->bv_len = len;
1065 
1066     bio->bi_iter.bi_size += len;
1067     bio->bi_vcnt++;
1068 
1069     if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1070         bio_set_flag(bio, BIO_WORKINGSET);
1071 }
1072 EXPORT_SYMBOL_GPL(__bio_add_page);
1073 
1074 /**
1075  *  bio_add_page    -   attempt to add page(s) to bio
1076  *  @bio: destination bio
1077  *  @page: start page to add
1078  *  @len: vec entry length, may cross pages
1079  *  @offset: vec entry offset relative to @page, may cross pages
1080  *
1081  *  Attempt to add page(s) to the bio_vec maplist. This will only fail
1082  *  if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1083  */
1084 int bio_add_page(struct bio *bio, struct page *page,
1085          unsigned int len, unsigned int offset)
1086 {
1087     bool same_page = false;
1088 
1089     if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1090         if (bio_full(bio, len))
1091             return 0;
1092         __bio_add_page(bio, page, len, offset);
1093     }
1094     return len;
1095 }
1096 EXPORT_SYMBOL(bio_add_page);
1097 
1098 /**
1099  * bio_add_folio - Attempt to add part of a folio to a bio.
1100  * @bio: BIO to add to.
1101  * @folio: Folio to add.
1102  * @len: How many bytes from the folio to add.
1103  * @off: First byte in this folio to add.
1104  *
1105  * Filesystems that use folios can call this function instead of calling
1106  * bio_add_page() for each page in the folio.  If @off is bigger than
1107  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1108  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1109  *
1110  * Return: Whether the addition was successful.
1111  */
1112 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1113            size_t off)
1114 {
1115     if (len > UINT_MAX || off > UINT_MAX)
1116         return false;
1117     return bio_add_page(bio, &folio->page, len, off) > 0;
1118 }
1119 
1120 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1121 {
1122     struct bvec_iter_all iter_all;
1123     struct bio_vec *bvec;
1124 
1125     bio_for_each_segment_all(bvec, bio, iter_all) {
1126         if (mark_dirty && !PageCompound(bvec->bv_page))
1127             set_page_dirty_lock(bvec->bv_page);
1128         put_page(bvec->bv_page);
1129     }
1130 }
1131 EXPORT_SYMBOL_GPL(__bio_release_pages);
1132 
1133 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1134 {
1135     size_t size = iov_iter_count(iter);
1136 
1137     WARN_ON_ONCE(bio->bi_max_vecs);
1138 
1139     if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1140         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1141         size_t max_sectors = queue_max_zone_append_sectors(q);
1142 
1143         size = min(size, max_sectors << SECTOR_SHIFT);
1144     }
1145 
1146     bio->bi_vcnt = iter->nr_segs;
1147     bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1148     bio->bi_iter.bi_bvec_done = iter->iov_offset;
1149     bio->bi_iter.bi_size = size;
1150     bio_set_flag(bio, BIO_NO_PAGE_REF);
1151     bio_set_flag(bio, BIO_CLONED);
1152 }
1153 
1154 static int bio_iov_add_page(struct bio *bio, struct page *page,
1155         unsigned int len, unsigned int offset)
1156 {
1157     bool same_page = false;
1158 
1159     if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1160         __bio_add_page(bio, page, len, offset);
1161         return 0;
1162     }
1163 
1164     if (same_page)
1165         put_page(page);
1166     return 0;
1167 }
1168 
1169 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1170         unsigned int len, unsigned int offset)
1171 {
1172     struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1173     bool same_page = false;
1174 
1175     if (bio_add_hw_page(q, bio, page, len, offset,
1176             queue_max_zone_append_sectors(q), &same_page) != len)
1177         return -EINVAL;
1178     if (same_page)
1179         put_page(page);
1180     return 0;
1181 }
1182 
1183 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1184 
1185 /**
1186  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1187  * @bio: bio to add pages to
1188  * @iter: iov iterator describing the region to be mapped
1189  *
1190  * Pins pages from *iter and appends them to @bio's bvec array. The
1191  * pages will have to be released using put_page() when done.
1192  * For multi-segment *iter, this function only adds pages from the
1193  * next non-empty segment of the iov iterator.
1194  */
1195 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1196 {
1197     unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1198     unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1199     struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1200     struct page **pages = (struct page **)bv;
1201     ssize_t size, left;
1202     unsigned len, i = 0;
1203     size_t offset, trim;
1204     int ret = 0;
1205 
1206     /*
1207      * Move page array up in the allocated memory for the bio vecs as far as
1208      * possible so that we can start filling biovecs from the beginning
1209      * without overwriting the temporary page array.
1210      */
1211     BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1212     pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1213 
1214     /*
1215      * Each segment in the iov is required to be a block size multiple.
1216      * However, we may not be able to get the entire segment if it spans
1217      * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1218      * result to ensure the bio's total size is correct. The remainder of
1219      * the iov data will be picked up in the next bio iteration.
1220      */
1221     size = iov_iter_get_pages2(iter, pages, UINT_MAX - bio->bi_iter.bi_size,
1222                   nr_pages, &offset);
1223     if (unlikely(size <= 0))
1224         return size ? size : -EFAULT;
1225 
1226     nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1227 
1228     trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1229     iov_iter_revert(iter, trim);
1230 
1231     size -= trim;
1232     if (unlikely(!size)) {
1233         ret = -EFAULT;
1234         goto out;
1235     }
1236 
1237     for (left = size, i = 0; left > 0; left -= len, i++) {
1238         struct page *page = pages[i];
1239 
1240         len = min_t(size_t, PAGE_SIZE - offset, left);
1241         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1242             ret = bio_iov_add_zone_append_page(bio, page, len,
1243                     offset);
1244             if (ret)
1245                 break;
1246         } else
1247             bio_iov_add_page(bio, page, len, offset);
1248 
1249         offset = 0;
1250     }
1251 
1252     iov_iter_revert(iter, left);
1253 out:
1254     while (i < nr_pages)
1255         put_page(pages[i++]);
1256 
1257     return ret;
1258 }
1259 
1260 /**
1261  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1262  * @bio: bio to add pages to
1263  * @iter: iov iterator describing the region to be added
1264  *
1265  * This takes either an iterator pointing to user memory, or one pointing to
1266  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1267  * map them into the kernel. On IO completion, the caller should put those
1268  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1269  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1270  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1271  * completed by a call to ->ki_complete() or returns with an error other than
1272  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1273  * on IO completion. If it isn't, then pages should be released.
1274  *
1275  * The function tries, but does not guarantee, to pin as many pages as
1276  * fit into the bio, or are requested in @iter, whatever is smaller. If
1277  * MM encounters an error pinning the requested pages, it stops. Error
1278  * is returned only if 0 pages could be pinned.
1279  *
1280  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1281  * responsible for setting BIO_WORKINGSET if necessary.
1282  */
1283 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1284 {
1285     int ret = 0;
1286 
1287     if (iov_iter_is_bvec(iter)) {
1288         bio_iov_bvec_set(bio, iter);
1289         iov_iter_advance(iter, bio->bi_iter.bi_size);
1290         return 0;
1291     }
1292 
1293     do {
1294         ret = __bio_iov_iter_get_pages(bio, iter);
1295     } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1296 
1297     /* don't account direct I/O as memory stall */
1298     bio_clear_flag(bio, BIO_WORKINGSET);
1299     return bio->bi_vcnt ? 0 : ret;
1300 }
1301 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1302 
1303 static void submit_bio_wait_endio(struct bio *bio)
1304 {
1305     complete(bio->bi_private);
1306 }
1307 
1308 /**
1309  * submit_bio_wait - submit a bio, and wait until it completes
1310  * @bio: The &struct bio which describes the I/O
1311  *
1312  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1313  * bio_endio() on failure.
1314  *
1315  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1316  * result in bio reference to be consumed. The caller must drop the reference
1317  * on his own.
1318  */
1319 int submit_bio_wait(struct bio *bio)
1320 {
1321     DECLARE_COMPLETION_ONSTACK_MAP(done,
1322             bio->bi_bdev->bd_disk->lockdep_map);
1323     unsigned long hang_check;
1324 
1325     bio->bi_private = &done;
1326     bio->bi_end_io = submit_bio_wait_endio;
1327     bio->bi_opf |= REQ_SYNC;
1328     submit_bio(bio);
1329 
1330     /* Prevent hang_check timer from firing at us during very long I/O */
1331     hang_check = sysctl_hung_task_timeout_secs;
1332     if (hang_check)
1333         while (!wait_for_completion_io_timeout(&done,
1334                     hang_check * (HZ/2)))
1335             ;
1336     else
1337         wait_for_completion_io(&done);
1338 
1339     return blk_status_to_errno(bio->bi_status);
1340 }
1341 EXPORT_SYMBOL(submit_bio_wait);
1342 
1343 void __bio_advance(struct bio *bio, unsigned bytes)
1344 {
1345     if (bio_integrity(bio))
1346         bio_integrity_advance(bio, bytes);
1347 
1348     bio_crypt_advance(bio, bytes);
1349     bio_advance_iter(bio, &bio->bi_iter, bytes);
1350 }
1351 EXPORT_SYMBOL(__bio_advance);
1352 
1353 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1354             struct bio *src, struct bvec_iter *src_iter)
1355 {
1356     while (src_iter->bi_size && dst_iter->bi_size) {
1357         struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1358         struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1359         unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1360         void *src_buf = bvec_kmap_local(&src_bv);
1361         void *dst_buf = bvec_kmap_local(&dst_bv);
1362 
1363         memcpy(dst_buf, src_buf, bytes);
1364 
1365         kunmap_local(dst_buf);
1366         kunmap_local(src_buf);
1367 
1368         bio_advance_iter_single(src, src_iter, bytes);
1369         bio_advance_iter_single(dst, dst_iter, bytes);
1370     }
1371 }
1372 EXPORT_SYMBOL(bio_copy_data_iter);
1373 
1374 /**
1375  * bio_copy_data - copy contents of data buffers from one bio to another
1376  * @src: source bio
1377  * @dst: destination bio
1378  *
1379  * Stops when it reaches the end of either @src or @dst - that is, copies
1380  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1381  */
1382 void bio_copy_data(struct bio *dst, struct bio *src)
1383 {
1384     struct bvec_iter src_iter = src->bi_iter;
1385     struct bvec_iter dst_iter = dst->bi_iter;
1386 
1387     bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1388 }
1389 EXPORT_SYMBOL(bio_copy_data);
1390 
1391 void bio_free_pages(struct bio *bio)
1392 {
1393     struct bio_vec *bvec;
1394     struct bvec_iter_all iter_all;
1395 
1396     bio_for_each_segment_all(bvec, bio, iter_all)
1397         __free_page(bvec->bv_page);
1398 }
1399 EXPORT_SYMBOL(bio_free_pages);
1400 
1401 /*
1402  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1403  * for performing direct-IO in BIOs.
1404  *
1405  * The problem is that we cannot run set_page_dirty() from interrupt context
1406  * because the required locks are not interrupt-safe.  So what we can do is to
1407  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1408  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1409  * in process context.
1410  *
1411  * We special-case compound pages here: normally this means reads into hugetlb
1412  * pages.  The logic in here doesn't really work right for compound pages
1413  * because the VM does not uniformly chase down the head page in all cases.
1414  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1415  * handle them at all.  So we skip compound pages here at an early stage.
1416  *
1417  * Note that this code is very hard to test under normal circumstances because
1418  * direct-io pins the pages with get_user_pages().  This makes
1419  * is_page_cache_freeable return false, and the VM will not clean the pages.
1420  * But other code (eg, flusher threads) could clean the pages if they are mapped
1421  * pagecache.
1422  *
1423  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1424  * deferred bio dirtying paths.
1425  */
1426 
1427 /*
1428  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1429  */
1430 void bio_set_pages_dirty(struct bio *bio)
1431 {
1432     struct bio_vec *bvec;
1433     struct bvec_iter_all iter_all;
1434 
1435     bio_for_each_segment_all(bvec, bio, iter_all) {
1436         if (!PageCompound(bvec->bv_page))
1437             set_page_dirty_lock(bvec->bv_page);
1438     }
1439 }
1440 
1441 /*
1442  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1443  * If they are, then fine.  If, however, some pages are clean then they must
1444  * have been written out during the direct-IO read.  So we take another ref on
1445  * the BIO and re-dirty the pages in process context.
1446  *
1447  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1448  * here on.  It will run one put_page() against each page and will run one
1449  * bio_put() against the BIO.
1450  */
1451 
1452 static void bio_dirty_fn(struct work_struct *work);
1453 
1454 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1455 static DEFINE_SPINLOCK(bio_dirty_lock);
1456 static struct bio *bio_dirty_list;
1457 
1458 /*
1459  * This runs in process context
1460  */
1461 static void bio_dirty_fn(struct work_struct *work)
1462 {
1463     struct bio *bio, *next;
1464 
1465     spin_lock_irq(&bio_dirty_lock);
1466     next = bio_dirty_list;
1467     bio_dirty_list = NULL;
1468     spin_unlock_irq(&bio_dirty_lock);
1469 
1470     while ((bio = next) != NULL) {
1471         next = bio->bi_private;
1472 
1473         bio_release_pages(bio, true);
1474         bio_put(bio);
1475     }
1476 }
1477 
1478 void bio_check_pages_dirty(struct bio *bio)
1479 {
1480     struct bio_vec *bvec;
1481     unsigned long flags;
1482     struct bvec_iter_all iter_all;
1483 
1484     bio_for_each_segment_all(bvec, bio, iter_all) {
1485         if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1486             goto defer;
1487     }
1488 
1489     bio_release_pages(bio, false);
1490     bio_put(bio);
1491     return;
1492 defer:
1493     spin_lock_irqsave(&bio_dirty_lock, flags);
1494     bio->bi_private = bio_dirty_list;
1495     bio_dirty_list = bio;
1496     spin_unlock_irqrestore(&bio_dirty_lock, flags);
1497     schedule_work(&bio_dirty_work);
1498 }
1499 
1500 static inline bool bio_remaining_done(struct bio *bio)
1501 {
1502     /*
1503      * If we're not chaining, then ->__bi_remaining is always 1 and
1504      * we always end io on the first invocation.
1505      */
1506     if (!bio_flagged(bio, BIO_CHAIN))
1507         return true;
1508 
1509     BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1510 
1511     if (atomic_dec_and_test(&bio->__bi_remaining)) {
1512         bio_clear_flag(bio, BIO_CHAIN);
1513         return true;
1514     }
1515 
1516     return false;
1517 }
1518 
1519 /**
1520  * bio_endio - end I/O on a bio
1521  * @bio:    bio
1522  *
1523  * Description:
1524  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1525  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1526  *   bio unless they own it and thus know that it has an end_io function.
1527  *
1528  *   bio_endio() can be called several times on a bio that has been chained
1529  *   using bio_chain().  The ->bi_end_io() function will only be called the
1530  *   last time.
1531  **/
1532 void bio_endio(struct bio *bio)
1533 {
1534 again:
1535     if (!bio_remaining_done(bio))
1536         return;
1537     if (!bio_integrity_endio(bio))
1538         return;
1539 
1540     rq_qos_done_bio(bio);
1541 
1542     if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1543         trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1544         bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1545     }
1546 
1547     /*
1548      * Need to have a real endio function for chained bios, otherwise
1549      * various corner cases will break (like stacking block devices that
1550      * save/restore bi_end_io) - however, we want to avoid unbounded
1551      * recursion and blowing the stack. Tail call optimization would
1552      * handle this, but compiling with frame pointers also disables
1553      * gcc's sibling call optimization.
1554      */
1555     if (bio->bi_end_io == bio_chain_endio) {
1556         bio = __bio_chain_endio(bio);
1557         goto again;
1558     }
1559 
1560     blk_throtl_bio_endio(bio);
1561     /* release cgroup info */
1562     bio_uninit(bio);
1563     if (bio->bi_end_io)
1564         bio->bi_end_io(bio);
1565 }
1566 EXPORT_SYMBOL(bio_endio);
1567 
1568 /**
1569  * bio_split - split a bio
1570  * @bio:    bio to split
1571  * @sectors:    number of sectors to split from the front of @bio
1572  * @gfp:    gfp mask
1573  * @bs:     bio set to allocate from
1574  *
1575  * Allocates and returns a new bio which represents @sectors from the start of
1576  * @bio, and updates @bio to represent the remaining sectors.
1577  *
1578  * Unless this is a discard request the newly allocated bio will point
1579  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1580  * neither @bio nor @bs are freed before the split bio.
1581  */
1582 struct bio *bio_split(struct bio *bio, int sectors,
1583               gfp_t gfp, struct bio_set *bs)
1584 {
1585     struct bio *split;
1586 
1587     BUG_ON(sectors <= 0);
1588     BUG_ON(sectors >= bio_sectors(bio));
1589 
1590     /* Zone append commands cannot be split */
1591     if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1592         return NULL;
1593 
1594     split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1595     if (!split)
1596         return NULL;
1597 
1598     split->bi_iter.bi_size = sectors << 9;
1599 
1600     if (bio_integrity(split))
1601         bio_integrity_trim(split);
1602 
1603     bio_advance(bio, split->bi_iter.bi_size);
1604 
1605     if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1606         bio_set_flag(split, BIO_TRACE_COMPLETION);
1607 
1608     return split;
1609 }
1610 EXPORT_SYMBOL(bio_split);
1611 
1612 /**
1613  * bio_trim - trim a bio
1614  * @bio:    bio to trim
1615  * @offset: number of sectors to trim from the front of @bio
1616  * @size:   size we want to trim @bio to, in sectors
1617  *
1618  * This function is typically used for bios that are cloned and submitted
1619  * to the underlying device in parts.
1620  */
1621 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1622 {
1623     if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1624              offset + size > bio_sectors(bio)))
1625         return;
1626 
1627     size <<= 9;
1628     if (offset == 0 && size == bio->bi_iter.bi_size)
1629         return;
1630 
1631     bio_advance(bio, offset << 9);
1632     bio->bi_iter.bi_size = size;
1633 
1634     if (bio_integrity(bio))
1635         bio_integrity_trim(bio);
1636 }
1637 EXPORT_SYMBOL_GPL(bio_trim);
1638 
1639 /*
1640  * create memory pools for biovec's in a bio_set.
1641  * use the global biovec slabs created for general use.
1642  */
1643 int biovec_init_pool(mempool_t *pool, int pool_entries)
1644 {
1645     struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1646 
1647     return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1648 }
1649 
1650 /*
1651  * bioset_exit - exit a bioset initialized with bioset_init()
1652  *
1653  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1654  * kzalloc()).
1655  */
1656 void bioset_exit(struct bio_set *bs)
1657 {
1658     bio_alloc_cache_destroy(bs);
1659     if (bs->rescue_workqueue)
1660         destroy_workqueue(bs->rescue_workqueue);
1661     bs->rescue_workqueue = NULL;
1662 
1663     mempool_exit(&bs->bio_pool);
1664     mempool_exit(&bs->bvec_pool);
1665 
1666     bioset_integrity_free(bs);
1667     if (bs->bio_slab)
1668         bio_put_slab(bs);
1669     bs->bio_slab = NULL;
1670 }
1671 EXPORT_SYMBOL(bioset_exit);
1672 
1673 /**
1674  * bioset_init - Initialize a bio_set
1675  * @bs:     pool to initialize
1676  * @pool_size:  Number of bio and bio_vecs to cache in the mempool
1677  * @front_pad:  Number of bytes to allocate in front of the returned bio
1678  * @flags:  Flags to modify behavior, currently %BIOSET_NEED_BVECS
1679  *              and %BIOSET_NEED_RESCUER
1680  *
1681  * Description:
1682  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1683  *    to ask for a number of bytes to be allocated in front of the bio.
1684  *    Front pad allocation is useful for embedding the bio inside
1685  *    another structure, to avoid allocating extra data to go with the bio.
1686  *    Note that the bio must be embedded at the END of that structure always,
1687  *    or things will break badly.
1688  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1689  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1690  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1691  *    to dispatch queued requests when the mempool runs out of space.
1692  *
1693  */
1694 int bioset_init(struct bio_set *bs,
1695         unsigned int pool_size,
1696         unsigned int front_pad,
1697         int flags)
1698 {
1699     bs->front_pad = front_pad;
1700     if (flags & BIOSET_NEED_BVECS)
1701         bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1702     else
1703         bs->back_pad = 0;
1704 
1705     spin_lock_init(&bs->rescue_lock);
1706     bio_list_init(&bs->rescue_list);
1707     INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1708 
1709     bs->bio_slab = bio_find_or_create_slab(bs);
1710     if (!bs->bio_slab)
1711         return -ENOMEM;
1712 
1713     if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1714         goto bad;
1715 
1716     if ((flags & BIOSET_NEED_BVECS) &&
1717         biovec_init_pool(&bs->bvec_pool, pool_size))
1718         goto bad;
1719 
1720     if (flags & BIOSET_NEED_RESCUER) {
1721         bs->rescue_workqueue = alloc_workqueue("bioset",
1722                             WQ_MEM_RECLAIM, 0);
1723         if (!bs->rescue_workqueue)
1724             goto bad;
1725     }
1726     if (flags & BIOSET_PERCPU_CACHE) {
1727         bs->cache = alloc_percpu(struct bio_alloc_cache);
1728         if (!bs->cache)
1729             goto bad;
1730         cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1731     }
1732 
1733     return 0;
1734 bad:
1735     bioset_exit(bs);
1736     return -ENOMEM;
1737 }
1738 EXPORT_SYMBOL(bioset_init);
1739 
1740 static int __init init_bio(void)
1741 {
1742     int i;
1743 
1744     bio_integrity_init();
1745 
1746     for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1747         struct biovec_slab *bvs = bvec_slabs + i;
1748 
1749         bvs->slab = kmem_cache_create(bvs->name,
1750                 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1751                 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1752     }
1753 
1754     cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1755                     bio_cpu_dead);
1756 
1757     if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1758         panic("bio: can't allocate bios\n");
1759 
1760     if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1761         panic("bio: can't create integrity pool\n");
1762 
1763     return 0;
1764 }
1765 subsys_initcall(init_bio);