![]() |
|
|||
0001 /* SPDX-License-Identifier: GPL-2.0-or-later */ 0002 /* 0003 * Header file for the BFQ I/O scheduler: data structures and 0004 * prototypes of interface functions among BFQ components. 0005 */ 0006 #ifndef _BFQ_H 0007 #define _BFQ_H 0008 0009 #include <linux/blktrace_api.h> 0010 #include <linux/hrtimer.h> 0011 0012 #include "blk-cgroup-rwstat.h" 0013 0014 #define BFQ_IOPRIO_CLASSES 3 0015 #define BFQ_CL_IDLE_TIMEOUT (HZ/5) 0016 0017 #define BFQ_MIN_WEIGHT 1 0018 #define BFQ_MAX_WEIGHT 1000 0019 #define BFQ_WEIGHT_CONVERSION_COEFF 10 0020 0021 #define BFQ_DEFAULT_QUEUE_IOPRIO 4 0022 0023 #define BFQ_WEIGHT_LEGACY_DFL 100 0024 #define BFQ_DEFAULT_GRP_IOPRIO 0 0025 #define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE 0026 0027 #define MAX_BFQQ_NAME_LENGTH 16 0028 0029 /* 0030 * Soft real-time applications are extremely more latency sensitive 0031 * than interactive ones. Over-raise the weight of the former to 0032 * privilege them against the latter. 0033 */ 0034 #define BFQ_SOFTRT_WEIGHT_FACTOR 100 0035 0036 struct bfq_entity; 0037 0038 /** 0039 * struct bfq_service_tree - per ioprio_class service tree. 0040 * 0041 * Each service tree represents a B-WF2Q+ scheduler on its own. Each 0042 * ioprio_class has its own independent scheduler, and so its own 0043 * bfq_service_tree. All the fields are protected by the queue lock 0044 * of the containing bfqd. 0045 */ 0046 struct bfq_service_tree { 0047 /* tree for active entities (i.e., those backlogged) */ 0048 struct rb_root active; 0049 /* tree for idle entities (i.e., not backlogged, with V < F_i)*/ 0050 struct rb_root idle; 0051 0052 /* idle entity with minimum F_i */ 0053 struct bfq_entity *first_idle; 0054 /* idle entity with maximum F_i */ 0055 struct bfq_entity *last_idle; 0056 0057 /* scheduler virtual time */ 0058 u64 vtime; 0059 /* scheduler weight sum; active and idle entities contribute to it */ 0060 unsigned long wsum; 0061 }; 0062 0063 /** 0064 * struct bfq_sched_data - multi-class scheduler. 0065 * 0066 * bfq_sched_data is the basic scheduler queue. It supports three 0067 * ioprio_classes, and can be used either as a toplevel queue or as an 0068 * intermediate queue in a hierarchical setup. 0069 * 0070 * The supported ioprio_classes are the same as in CFQ, in descending 0071 * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE. 0072 * Requests from higher priority queues are served before all the 0073 * requests from lower priority queues; among requests of the same 0074 * queue requests are served according to B-WF2Q+. 0075 * 0076 * The schedule is implemented by the service trees, plus the field 0077 * @next_in_service, which points to the entity on the active trees 0078 * that will be served next, if 1) no changes in the schedule occurs 0079 * before the current in-service entity is expired, 2) the in-service 0080 * queue becomes idle when it expires, and 3) if the entity pointed by 0081 * in_service_entity is not a queue, then the in-service child entity 0082 * of the entity pointed by in_service_entity becomes idle on 0083 * expiration. This peculiar definition allows for the following 0084 * optimization, not yet exploited: while a given entity is still in 0085 * service, we already know which is the best candidate for next 0086 * service among the other active entities in the same parent 0087 * entity. We can then quickly compare the timestamps of the 0088 * in-service entity with those of such best candidate. 0089 * 0090 * All fields are protected by the lock of the containing bfqd. 0091 */ 0092 struct bfq_sched_data { 0093 /* entity in service */ 0094 struct bfq_entity *in_service_entity; 0095 /* head-of-line entity (see comments above) */ 0096 struct bfq_entity *next_in_service; 0097 /* array of service trees, one per ioprio_class */ 0098 struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES]; 0099 /* last time CLASS_IDLE was served */ 0100 unsigned long bfq_class_idle_last_service; 0101 0102 }; 0103 0104 /** 0105 * struct bfq_weight_counter - counter of the number of all active queues 0106 * with a given weight. 0107 */ 0108 struct bfq_weight_counter { 0109 unsigned int weight; /* weight of the queues this counter refers to */ 0110 unsigned int num_active; /* nr of active queues with this weight */ 0111 /* 0112 * Weights tree member (see bfq_data's @queue_weights_tree) 0113 */ 0114 struct rb_node weights_node; 0115 }; 0116 0117 /** 0118 * struct bfq_entity - schedulable entity. 0119 * 0120 * A bfq_entity is used to represent either a bfq_queue (leaf node in the 0121 * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each 0122 * entity belongs to the sched_data of the parent group in the cgroup 0123 * hierarchy. Non-leaf entities have also their own sched_data, stored 0124 * in @my_sched_data. 0125 * 0126 * Each entity stores independently its priority values; this would 0127 * allow different weights on different devices, but this 0128 * functionality is not exported to userspace by now. Priorities and 0129 * weights are updated lazily, first storing the new values into the 0130 * new_* fields, then setting the @prio_changed flag. As soon as 0131 * there is a transition in the entity state that allows the priority 0132 * update to take place the effective and the requested priority 0133 * values are synchronized. 0134 * 0135 * Unless cgroups are used, the weight value is calculated from the 0136 * ioprio to export the same interface as CFQ. When dealing with 0137 * "well-behaved" queues (i.e., queues that do not spend too much 0138 * time to consume their budget and have true sequential behavior, and 0139 * when there are no external factors breaking anticipation) the 0140 * relative weights at each level of the cgroups hierarchy should be 0141 * guaranteed. All the fields are protected by the queue lock of the 0142 * containing bfqd. 0143 */ 0144 struct bfq_entity { 0145 /* service_tree member */ 0146 struct rb_node rb_node; 0147 0148 /* 0149 * Flag, true if the entity is on a tree (either the active or 0150 * the idle one of its service_tree) or is in service. 0151 */ 0152 bool on_st_or_in_serv; 0153 0154 /* B-WF2Q+ start and finish timestamps [sectors/weight] */ 0155 u64 start, finish; 0156 0157 /* tree the entity is enqueued into; %NULL if not on a tree */ 0158 struct rb_root *tree; 0159 0160 /* 0161 * minimum start time of the (active) subtree rooted at this 0162 * entity; used for O(log N) lookups into active trees 0163 */ 0164 u64 min_start; 0165 0166 /* amount of service received during the last service slot */ 0167 int service; 0168 0169 /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */ 0170 int budget; 0171 0172 /* Number of requests allocated in the subtree of this entity */ 0173 int allocated; 0174 0175 /* device weight, if non-zero, it overrides the default weight of 0176 * bfq_group_data */ 0177 int dev_weight; 0178 /* weight of the queue */ 0179 int weight; 0180 /* next weight if a change is in progress */ 0181 int new_weight; 0182 0183 /* original weight, used to implement weight boosting */ 0184 int orig_weight; 0185 0186 /* parent entity, for hierarchical scheduling */ 0187 struct bfq_entity *parent; 0188 0189 /* 0190 * For non-leaf nodes in the hierarchy, the associated 0191 * scheduler queue, %NULL on leaf nodes. 0192 */ 0193 struct bfq_sched_data *my_sched_data; 0194 /* the scheduler queue this entity belongs to */ 0195 struct bfq_sched_data *sched_data; 0196 0197 /* flag, set to request a weight, ioprio or ioprio_class change */ 0198 int prio_changed; 0199 0200 /* flag, set if the entity is counted in groups_with_pending_reqs */ 0201 bool in_groups_with_pending_reqs; 0202 0203 /* last child queue of entity created (for non-leaf entities) */ 0204 struct bfq_queue *last_bfqq_created; 0205 }; 0206 0207 struct bfq_group; 0208 0209 /** 0210 * struct bfq_ttime - per process thinktime stats. 0211 */ 0212 struct bfq_ttime { 0213 /* completion time of the last request */ 0214 u64 last_end_request; 0215 0216 /* total process thinktime */ 0217 u64 ttime_total; 0218 /* number of thinktime samples */ 0219 unsigned long ttime_samples; 0220 /* average process thinktime */ 0221 u64 ttime_mean; 0222 }; 0223 0224 /** 0225 * struct bfq_queue - leaf schedulable entity. 0226 * 0227 * A bfq_queue is a leaf request queue; it can be associated with an 0228 * io_context or more, if it is async or shared between cooperating 0229 * processes. @cgroup holds a reference to the cgroup, to be sure that it 0230 * does not disappear while a bfqq still references it (mostly to avoid 0231 * races between request issuing and task migration followed by cgroup 0232 * destruction). 0233 * All the fields are protected by the queue lock of the containing bfqd. 0234 */ 0235 struct bfq_queue { 0236 /* reference counter */ 0237 int ref; 0238 /* counter of references from other queues for delayed stable merge */ 0239 int stable_ref; 0240 /* parent bfq_data */ 0241 struct bfq_data *bfqd; 0242 0243 /* current ioprio and ioprio class */ 0244 unsigned short ioprio, ioprio_class; 0245 /* next ioprio and ioprio class if a change is in progress */ 0246 unsigned short new_ioprio, new_ioprio_class; 0247 0248 /* last total-service-time sample, see bfq_update_inject_limit() */ 0249 u64 last_serv_time_ns; 0250 /* limit for request injection */ 0251 unsigned int inject_limit; 0252 /* last time the inject limit has been decreased, in jiffies */ 0253 unsigned long decrease_time_jif; 0254 0255 /* 0256 * Shared bfq_queue if queue is cooperating with one or more 0257 * other queues. 0258 */ 0259 struct bfq_queue *new_bfqq; 0260 /* request-position tree member (see bfq_group's @rq_pos_tree) */ 0261 struct rb_node pos_node; 0262 /* request-position tree root (see bfq_group's @rq_pos_tree) */ 0263 struct rb_root *pos_root; 0264 0265 /* sorted list of pending requests */ 0266 struct rb_root sort_list; 0267 /* if fifo isn't expired, next request to serve */ 0268 struct request *next_rq; 0269 /* number of sync and async requests queued */ 0270 int queued[2]; 0271 /* number of pending metadata requests */ 0272 int meta_pending; 0273 /* fifo list of requests in sort_list */ 0274 struct list_head fifo; 0275 0276 /* entity representing this queue in the scheduler */ 0277 struct bfq_entity entity; 0278 0279 /* pointer to the weight counter associated with this entity */ 0280 struct bfq_weight_counter *weight_counter; 0281 0282 /* maximum budget allowed from the feedback mechanism */ 0283 int max_budget; 0284 /* budget expiration (in jiffies) */ 0285 unsigned long budget_timeout; 0286 0287 /* number of requests on the dispatch list or inside driver */ 0288 int dispatched; 0289 0290 /* status flags */ 0291 unsigned long flags; 0292 0293 /* node for active/idle bfqq list inside parent bfqd */ 0294 struct list_head bfqq_list; 0295 0296 /* associated @bfq_ttime struct */ 0297 struct bfq_ttime ttime; 0298 0299 /* when bfqq started to do I/O within the last observation window */ 0300 u64 io_start_time; 0301 /* how long bfqq has remained empty during the last observ. window */ 0302 u64 tot_idle_time; 0303 0304 /* bit vector: a 1 for each seeky requests in history */ 0305 u32 seek_history; 0306 0307 /* node for the device's burst list */ 0308 struct hlist_node burst_list_node; 0309 0310 /* position of the last request enqueued */ 0311 sector_t last_request_pos; 0312 0313 /* Number of consecutive pairs of request completion and 0314 * arrival, such that the queue becomes idle after the 0315 * completion, but the next request arrives within an idle 0316 * time slice; used only if the queue's IO_bound flag has been 0317 * cleared. 0318 */ 0319 unsigned int requests_within_timer; 0320 0321 /* pid of the process owning the queue, used for logging purposes */ 0322 pid_t pid; 0323 0324 /* 0325 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL 0326 * if the queue is shared. 0327 */ 0328 struct bfq_io_cq *bic; 0329 0330 /* current maximum weight-raising time for this queue */ 0331 unsigned long wr_cur_max_time; 0332 /* 0333 * Minimum time instant such that, only if a new request is 0334 * enqueued after this time instant in an idle @bfq_queue with 0335 * no outstanding requests, then the task associated with the 0336 * queue it is deemed as soft real-time (see the comments on 0337 * the function bfq_bfqq_softrt_next_start()) 0338 */ 0339 unsigned long soft_rt_next_start; 0340 /* 0341 * Start time of the current weight-raising period if 0342 * the @bfq-queue is being weight-raised, otherwise 0343 * finish time of the last weight-raising period. 0344 */ 0345 unsigned long last_wr_start_finish; 0346 /* factor by which the weight of this queue is multiplied */ 0347 unsigned int wr_coeff; 0348 /* 0349 * Time of the last transition of the @bfq_queue from idle to 0350 * backlogged. 0351 */ 0352 unsigned long last_idle_bklogged; 0353 /* 0354 * Cumulative service received from the @bfq_queue since the 0355 * last transition from idle to backlogged. 0356 */ 0357 unsigned long service_from_backlogged; 0358 /* 0359 * Cumulative service received from the @bfq_queue since its 0360 * last transition to weight-raised state. 0361 */ 0362 unsigned long service_from_wr; 0363 0364 /* 0365 * Value of wr start time when switching to soft rt 0366 */ 0367 unsigned long wr_start_at_switch_to_srt; 0368 0369 unsigned long split_time; /* time of last split */ 0370 0371 unsigned long first_IO_time; /* time of first I/O for this queue */ 0372 0373 unsigned long creation_time; /* when this queue is created */ 0374 0375 /* max service rate measured so far */ 0376 u32 max_service_rate; 0377 0378 /* 0379 * Pointer to the waker queue for this queue, i.e., to the 0380 * queue Q such that this queue happens to get new I/O right 0381 * after some I/O request of Q is completed. For details, see 0382 * the comments on the choice of the queue for injection in 0383 * bfq_select_queue(). 0384 */ 0385 struct bfq_queue *waker_bfqq; 0386 /* pointer to the curr. tentative waker queue, see bfq_check_waker() */ 0387 struct bfq_queue *tentative_waker_bfqq; 0388 /* number of times the same tentative waker has been detected */ 0389 unsigned int num_waker_detections; 0390 /* time when we started considering this waker */ 0391 u64 waker_detection_started; 0392 0393 /* node for woken_list, see below */ 0394 struct hlist_node woken_list_node; 0395 /* 0396 * Head of the list of the woken queues for this queue, i.e., 0397 * of the list of the queues for which this queue is a waker 0398 * queue. This list is used to reset the waker_bfqq pointer in 0399 * the woken queues when this queue exits. 0400 */ 0401 struct hlist_head woken_list; 0402 }; 0403 0404 /** 0405 * struct bfq_io_cq - per (request_queue, io_context) structure. 0406 */ 0407 struct bfq_io_cq { 0408 /* associated io_cq structure */ 0409 struct io_cq icq; /* must be the first member */ 0410 /* array of two process queues, the sync and the async */ 0411 struct bfq_queue *bfqq[2]; 0412 /* per (request_queue, blkcg) ioprio */ 0413 int ioprio; 0414 #ifdef CONFIG_BFQ_GROUP_IOSCHED 0415 uint64_t blkcg_serial_nr; /* the current blkcg serial */ 0416 #endif 0417 /* 0418 * Snapshot of the has_short_time flag before merging; taken 0419 * to remember its value while the queue is merged, so as to 0420 * be able to restore it in case of split. 0421 */ 0422 bool saved_has_short_ttime; 0423 /* 0424 * Same purpose as the previous two fields for the I/O bound 0425 * classification of a queue. 0426 */ 0427 bool saved_IO_bound; 0428 0429 u64 saved_io_start_time; 0430 u64 saved_tot_idle_time; 0431 0432 /* 0433 * Same purpose as the previous fields for the value of the 0434 * field keeping the queue's belonging to a large burst 0435 */ 0436 bool saved_in_large_burst; 0437 /* 0438 * True if the queue belonged to a burst list before its merge 0439 * with another cooperating queue. 0440 */ 0441 bool was_in_burst_list; 0442 0443 /* 0444 * Save the weight when a merge occurs, to be able 0445 * to restore it in case of split. If the weight is not 0446 * correctly resumed when the queue is recycled, 0447 * then the weight of the recycled queue could differ 0448 * from the weight of the original queue. 0449 */ 0450 unsigned int saved_weight; 0451 0452 /* 0453 * Similar to previous fields: save wr information. 0454 */ 0455 unsigned long saved_wr_coeff; 0456 unsigned long saved_last_wr_start_finish; 0457 unsigned long saved_service_from_wr; 0458 unsigned long saved_wr_start_at_switch_to_srt; 0459 unsigned int saved_wr_cur_max_time; 0460 struct bfq_ttime saved_ttime; 0461 0462 /* Save also injection state */ 0463 u64 saved_last_serv_time_ns; 0464 unsigned int saved_inject_limit; 0465 unsigned long saved_decrease_time_jif; 0466 0467 /* candidate queue for a stable merge (due to close creation time) */ 0468 struct bfq_queue *stable_merge_bfqq; 0469 0470 bool stably_merged; /* non splittable if true */ 0471 unsigned int requests; /* Number of requests this process has in flight */ 0472 }; 0473 0474 /** 0475 * struct bfq_data - per-device data structure. 0476 * 0477 * All the fields are protected by @lock. 0478 */ 0479 struct bfq_data { 0480 /* device request queue */ 0481 struct request_queue *queue; 0482 /* dispatch queue */ 0483 struct list_head dispatch; 0484 0485 /* root bfq_group for the device */ 0486 struct bfq_group *root_group; 0487 0488 /* 0489 * rbtree of weight counters of @bfq_queues, sorted by 0490 * weight. Used to keep track of whether all @bfq_queues have 0491 * the same weight. The tree contains one counter for each 0492 * distinct weight associated to some active and not 0493 * weight-raised @bfq_queue (see the comments to the functions 0494 * bfq_weights_tree_[add|remove] for further details). 0495 */ 0496 struct rb_root_cached queue_weights_tree; 0497 0498 /* 0499 * Number of groups with at least one descendant process that 0500 * has at least one request waiting for completion. Note that 0501 * this accounts for also requests already dispatched, but not 0502 * yet completed. Therefore this number of groups may differ 0503 * (be larger) than the number of active groups, as a group is 0504 * considered active only if its corresponding entity has 0505 * descendant queues with at least one request queued. This 0506 * number is used to decide whether a scenario is symmetric. 0507 * For a detailed explanation see comments on the computation 0508 * of the variable asymmetric_scenario in the function 0509 * bfq_better_to_idle(). 0510 * 0511 * However, it is hard to compute this number exactly, for 0512 * groups with multiple descendant processes. Consider a group 0513 * that is inactive, i.e., that has no descendant process with 0514 * pending I/O inside BFQ queues. Then suppose that 0515 * num_groups_with_pending_reqs is still accounting for this 0516 * group, because the group has descendant processes with some 0517 * I/O request still in flight. num_groups_with_pending_reqs 0518 * should be decremented when the in-flight request of the 0519 * last descendant process is finally completed (assuming that 0520 * nothing else has changed for the group in the meantime, in 0521 * terms of composition of the group and active/inactive state of child 0522 * groups and processes). To accomplish this, an additional 0523 * pending-request counter must be added to entities, and must 0524 * be updated correctly. To avoid this additional field and operations, 0525 * we resort to the following tradeoff between simplicity and 0526 * accuracy: for an inactive group that is still counted in 0527 * num_groups_with_pending_reqs, we decrement 0528 * num_groups_with_pending_reqs when the first descendant 0529 * process of the group remains with no request waiting for 0530 * completion. 0531 * 0532 * Even this simpler decrement strategy requires a little 0533 * carefulness: to avoid multiple decrements, we flag a group, 0534 * more precisely an entity representing a group, as still 0535 * counted in num_groups_with_pending_reqs when it becomes 0536 * inactive. Then, when the first descendant queue of the 0537 * entity remains with no request waiting for completion, 0538 * num_groups_with_pending_reqs is decremented, and this flag 0539 * is reset. After this flag is reset for the entity, 0540 * num_groups_with_pending_reqs won't be decremented any 0541 * longer in case a new descendant queue of the entity remains 0542 * with no request waiting for completion. 0543 */ 0544 unsigned int num_groups_with_pending_reqs; 0545 0546 /* 0547 * Per-class (RT, BE, IDLE) number of bfq_queues containing 0548 * requests (including the queue in service, even if it is 0549 * idling). 0550 */ 0551 unsigned int busy_queues[3]; 0552 /* number of weight-raised busy @bfq_queues */ 0553 int wr_busy_queues; 0554 /* number of queued requests */ 0555 int queued; 0556 /* number of requests dispatched and waiting for completion */ 0557 int rq_in_driver; 0558 0559 /* true if the device is non rotational and performs queueing */ 0560 bool nonrot_with_queueing; 0561 0562 /* 0563 * Maximum number of requests in driver in the last 0564 * @hw_tag_samples completed requests. 0565 */ 0566 int max_rq_in_driver; 0567 /* number of samples used to calculate hw_tag */ 0568 int hw_tag_samples; 0569 /* flag set to one if the driver is showing a queueing behavior */ 0570 int hw_tag; 0571 0572 /* number of budgets assigned */ 0573 int budgets_assigned; 0574 0575 /* 0576 * Timer set when idling (waiting) for the next request from 0577 * the queue in service. 0578 */ 0579 struct hrtimer idle_slice_timer; 0580 0581 /* bfq_queue in service */ 0582 struct bfq_queue *in_service_queue; 0583 0584 /* on-disk position of the last served request */ 0585 sector_t last_position; 0586 0587 /* position of the last served request for the in-service queue */ 0588 sector_t in_serv_last_pos; 0589 0590 /* time of last request completion (ns) */ 0591 u64 last_completion; 0592 0593 /* bfqq owning the last completed rq */ 0594 struct bfq_queue *last_completed_rq_bfqq; 0595 0596 /* last bfqq created, among those in the root group */ 0597 struct bfq_queue *last_bfqq_created; 0598 0599 /* time of last transition from empty to non-empty (ns) */ 0600 u64 last_empty_occupied_ns; 0601 0602 /* 0603 * Flag set to activate the sampling of the total service time 0604 * of a just-arrived first I/O request (see 0605 * bfq_update_inject_limit()). This will cause the setting of 0606 * waited_rq when the request is finally dispatched. 0607 */ 0608 bool wait_dispatch; 0609 /* 0610 * If set, then bfq_update_inject_limit() is invoked when 0611 * waited_rq is eventually completed. 0612 */ 0613 struct request *waited_rq; 0614 /* 0615 * True if some request has been injected during the last service hole. 0616 */ 0617 bool rqs_injected; 0618 0619 /* time of first rq dispatch in current observation interval (ns) */ 0620 u64 first_dispatch; 0621 /* time of last rq dispatch in current observation interval (ns) */ 0622 u64 last_dispatch; 0623 0624 /* beginning of the last budget */ 0625 ktime_t last_budget_start; 0626 /* beginning of the last idle slice */ 0627 ktime_t last_idling_start; 0628 unsigned long last_idling_start_jiffies; 0629 0630 /* number of samples in current observation interval */ 0631 int peak_rate_samples; 0632 /* num of samples of seq dispatches in current observation interval */ 0633 u32 sequential_samples; 0634 /* total num of sectors transferred in current observation interval */ 0635 u64 tot_sectors_dispatched; 0636 /* max rq size seen during current observation interval (sectors) */ 0637 u32 last_rq_max_size; 0638 /* time elapsed from first dispatch in current observ. interval (us) */ 0639 u64 delta_from_first; 0640 /* 0641 * Current estimate of the device peak rate, measured in 0642 * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by 0643 * BFQ_RATE_SHIFT is performed to increase precision in 0644 * fixed-point calculations. 0645 */ 0646 u32 peak_rate; 0647 0648 /* maximum budget allotted to a bfq_queue before rescheduling */ 0649 int bfq_max_budget; 0650 0651 /* list of all the bfq_queues active on the device */ 0652 struct list_head active_list; 0653 /* list of all the bfq_queues idle on the device */ 0654 struct list_head idle_list; 0655 0656 /* 0657 * Timeout for async/sync requests; when it fires, requests 0658 * are served in fifo order. 0659 */ 0660 u64 bfq_fifo_expire[2]; 0661 /* weight of backward seeks wrt forward ones */ 0662 unsigned int bfq_back_penalty; 0663 /* maximum allowed backward seek */ 0664 unsigned int bfq_back_max; 0665 /* maximum idling time */ 0666 u32 bfq_slice_idle; 0667 0668 /* user-configured max budget value (0 for auto-tuning) */ 0669 int bfq_user_max_budget; 0670 /* 0671 * Timeout for bfq_queues to consume their budget; used to 0672 * prevent seeky queues from imposing long latencies to 0673 * sequential or quasi-sequential ones (this also implies that 0674 * seeky queues cannot receive guarantees in the service 0675 * domain; after a timeout they are charged for the time they 0676 * have been in service, to preserve fairness among them, but 0677 * without service-domain guarantees). 0678 */ 0679 unsigned int bfq_timeout; 0680 0681 /* 0682 * Force device idling whenever needed to provide accurate 0683 * service guarantees, without caring about throughput 0684 * issues. CAVEAT: this may even increase latencies, in case 0685 * of useless idling for processes that did stop doing I/O. 0686 */ 0687 bool strict_guarantees; 0688 0689 /* 0690 * Last time at which a queue entered the current burst of 0691 * queues being activated shortly after each other; for more 0692 * details about this and the following parameters related to 0693 * a burst of activations, see the comments on the function 0694 * bfq_handle_burst. 0695 */ 0696 unsigned long last_ins_in_burst; 0697 /* 0698 * Reference time interval used to decide whether a queue has 0699 * been activated shortly after @last_ins_in_burst. 0700 */ 0701 unsigned long bfq_burst_interval; 0702 /* number of queues in the current burst of queue activations */ 0703 int burst_size; 0704 0705 /* common parent entity for the queues in the burst */ 0706 struct bfq_entity *burst_parent_entity; 0707 /* Maximum burst size above which the current queue-activation 0708 * burst is deemed as 'large'. 0709 */ 0710 unsigned long bfq_large_burst_thresh; 0711 /* true if a large queue-activation burst is in progress */ 0712 bool large_burst; 0713 /* 0714 * Head of the burst list (as for the above fields, more 0715 * details in the comments on the function bfq_handle_burst). 0716 */ 0717 struct hlist_head burst_list; 0718 0719 /* if set to true, low-latency heuristics are enabled */ 0720 bool low_latency; 0721 /* 0722 * Maximum factor by which the weight of a weight-raised queue 0723 * is multiplied. 0724 */ 0725 unsigned int bfq_wr_coeff; 0726 /* maximum duration of a weight-raising period (jiffies) */ 0727 unsigned int bfq_wr_max_time; 0728 0729 /* Maximum weight-raising duration for soft real-time processes */ 0730 unsigned int bfq_wr_rt_max_time; 0731 /* 0732 * Minimum idle period after which weight-raising may be 0733 * reactivated for a queue (in jiffies). 0734 */ 0735 unsigned int bfq_wr_min_idle_time; 0736 /* 0737 * Minimum period between request arrivals after which 0738 * weight-raising may be reactivated for an already busy async 0739 * queue (in jiffies). 0740 */ 0741 unsigned long bfq_wr_min_inter_arr_async; 0742 0743 /* Max service-rate for a soft real-time queue, in sectors/sec */ 0744 unsigned int bfq_wr_max_softrt_rate; 0745 /* 0746 * Cached value of the product ref_rate*ref_wr_duration, used 0747 * for computing the maximum duration of weight raising 0748 * automatically. 0749 */ 0750 u64 rate_dur_prod; 0751 0752 /* fallback dummy bfqq for extreme OOM conditions */ 0753 struct bfq_queue oom_bfqq; 0754 0755 spinlock_t lock; 0756 0757 /* 0758 * bic associated with the task issuing current bio for 0759 * merging. This and the next field are used as a support to 0760 * be able to perform the bic lookup, needed by bio-merge 0761 * functions, before the scheduler lock is taken, and thus 0762 * avoid taking the request-queue lock while the scheduler 0763 * lock is being held. 0764 */ 0765 struct bfq_io_cq *bio_bic; 0766 /* bfqq associated with the task issuing current bio for merging */ 0767 struct bfq_queue *bio_bfqq; 0768 0769 /* 0770 * Depth limits used in bfq_limit_depth (see comments on the 0771 * function) 0772 */ 0773 unsigned int word_depths[2][2]; 0774 unsigned int full_depth_shift; 0775 }; 0776 0777 enum bfqq_state_flags { 0778 BFQQF_just_created = 0, /* queue just allocated */ 0779 BFQQF_busy, /* has requests or is in service */ 0780 BFQQF_wait_request, /* waiting for a request */ 0781 BFQQF_non_blocking_wait_rq, /* 0782 * waiting for a request 0783 * without idling the device 0784 */ 0785 BFQQF_fifo_expire, /* FIFO checked in this slice */ 0786 BFQQF_has_short_ttime, /* queue has a short think time */ 0787 BFQQF_sync, /* synchronous queue */ 0788 BFQQF_IO_bound, /* 0789 * bfqq has timed-out at least once 0790 * having consumed at most 2/10 of 0791 * its budget 0792 */ 0793 BFQQF_in_large_burst, /* 0794 * bfqq activated in a large burst, 0795 * see comments to bfq_handle_burst. 0796 */ 0797 BFQQF_softrt_update, /* 0798 * may need softrt-next-start 0799 * update 0800 */ 0801 BFQQF_coop, /* bfqq is shared */ 0802 BFQQF_split_coop, /* shared bfqq will be split */ 0803 }; 0804 0805 #define BFQ_BFQQ_FNS(name) \ 0806 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq); \ 0807 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq); \ 0808 int bfq_bfqq_##name(const struct bfq_queue *bfqq); 0809 0810 BFQ_BFQQ_FNS(just_created); 0811 BFQ_BFQQ_FNS(busy); 0812 BFQ_BFQQ_FNS(wait_request); 0813 BFQ_BFQQ_FNS(non_blocking_wait_rq); 0814 BFQ_BFQQ_FNS(fifo_expire); 0815 BFQ_BFQQ_FNS(has_short_ttime); 0816 BFQ_BFQQ_FNS(sync); 0817 BFQ_BFQQ_FNS(IO_bound); 0818 BFQ_BFQQ_FNS(in_large_burst); 0819 BFQ_BFQQ_FNS(coop); 0820 BFQ_BFQQ_FNS(split_coop); 0821 BFQ_BFQQ_FNS(softrt_update); 0822 #undef BFQ_BFQQ_FNS 0823 0824 /* Expiration reasons. */ 0825 enum bfqq_expiration { 0826 BFQQE_TOO_IDLE = 0, /* 0827 * queue has been idling for 0828 * too long 0829 */ 0830 BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */ 0831 BFQQE_BUDGET_EXHAUSTED, /* budget consumed */ 0832 BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */ 0833 BFQQE_PREEMPTED /* preemption in progress */ 0834 }; 0835 0836 struct bfq_stat { 0837 struct percpu_counter cpu_cnt; 0838 atomic64_t aux_cnt; 0839 }; 0840 0841 struct bfqg_stats { 0842 /* basic stats */ 0843 struct blkg_rwstat bytes; 0844 struct blkg_rwstat ios; 0845 #ifdef CONFIG_BFQ_CGROUP_DEBUG 0846 /* number of ios merged */ 0847 struct blkg_rwstat merged; 0848 /* total time spent on device in ns, may not be accurate w/ queueing */ 0849 struct blkg_rwstat service_time; 0850 /* total time spent waiting in scheduler queue in ns */ 0851 struct blkg_rwstat wait_time; 0852 /* number of IOs queued up */ 0853 struct blkg_rwstat queued; 0854 /* total disk time and nr sectors dispatched by this group */ 0855 struct bfq_stat time; 0856 /* sum of number of ios queued across all samples */ 0857 struct bfq_stat avg_queue_size_sum; 0858 /* count of samples taken for average */ 0859 struct bfq_stat avg_queue_size_samples; 0860 /* how many times this group has been removed from service tree */ 0861 struct bfq_stat dequeue; 0862 /* total time spent waiting for it to be assigned a timeslice. */ 0863 struct bfq_stat group_wait_time; 0864 /* time spent idling for this blkcg_gq */ 0865 struct bfq_stat idle_time; 0866 /* total time with empty current active q with other requests queued */ 0867 struct bfq_stat empty_time; 0868 /* fields after this shouldn't be cleared on stat reset */ 0869 u64 start_group_wait_time; 0870 u64 start_idle_time; 0871 u64 start_empty_time; 0872 uint16_t flags; 0873 #endif /* CONFIG_BFQ_CGROUP_DEBUG */ 0874 }; 0875 0876 #ifdef CONFIG_BFQ_GROUP_IOSCHED 0877 0878 /* 0879 * struct bfq_group_data - per-blkcg storage for the blkio subsystem. 0880 * 0881 * @ps: @blkcg_policy_storage that this structure inherits 0882 * @weight: weight of the bfq_group 0883 */ 0884 struct bfq_group_data { 0885 /* must be the first member */ 0886 struct blkcg_policy_data pd; 0887 0888 unsigned int weight; 0889 }; 0890 0891 /** 0892 * struct bfq_group - per (device, cgroup) data structure. 0893 * @entity: schedulable entity to insert into the parent group sched_data. 0894 * @sched_data: own sched_data, to contain child entities (they may be 0895 * both bfq_queues and bfq_groups). 0896 * @bfqd: the bfq_data for the device this group acts upon. 0897 * @async_bfqq: array of async queues for all the tasks belonging to 0898 * the group, one queue per ioprio value per ioprio_class, 0899 * except for the idle class that has only one queue. 0900 * @async_idle_bfqq: async queue for the idle class (ioprio is ignored). 0901 * @my_entity: pointer to @entity, %NULL for the toplevel group; used 0902 * to avoid too many special cases during group creation/ 0903 * migration. 0904 * @stats: stats for this bfqg. 0905 * @active_entities: number of active entities belonging to the group; 0906 * unused for the root group. Used to know whether there 0907 * are groups with more than one active @bfq_entity 0908 * (see the comments to the function 0909 * bfq_bfqq_may_idle()). 0910 * @rq_pos_tree: rbtree sorted by next_request position, used when 0911 * determining if two or more queues have interleaving 0912 * requests (see bfq_find_close_cooperator()). 0913 * 0914 * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup 0915 * there is a set of bfq_groups, each one collecting the lower-level 0916 * entities belonging to the group that are acting on the same device. 0917 * 0918 * Locking works as follows: 0919 * o @bfqd is protected by the queue lock, RCU is used to access it 0920 * from the readers. 0921 * o All the other fields are protected by the @bfqd queue lock. 0922 */ 0923 struct bfq_group { 0924 /* must be the first member */ 0925 struct blkg_policy_data pd; 0926 0927 /* cached path for this blkg (see comments in bfq_bic_update_cgroup) */ 0928 char blkg_path[128]; 0929 0930 /* reference counter (see comments in bfq_bic_update_cgroup) */ 0931 int ref; 0932 /* Is bfq_group still online? */ 0933 bool online; 0934 0935 struct bfq_entity entity; 0936 struct bfq_sched_data sched_data; 0937 0938 void *bfqd; 0939 0940 struct bfq_queue *async_bfqq[2][IOPRIO_NR_LEVELS]; 0941 struct bfq_queue *async_idle_bfqq; 0942 0943 struct bfq_entity *my_entity; 0944 0945 int active_entities; 0946 0947 struct rb_root rq_pos_tree; 0948 0949 struct bfqg_stats stats; 0950 }; 0951 0952 #else 0953 struct bfq_group { 0954 struct bfq_entity entity; 0955 struct bfq_sched_data sched_data; 0956 0957 struct bfq_queue *async_bfqq[2][IOPRIO_NR_LEVELS]; 0958 struct bfq_queue *async_idle_bfqq; 0959 0960 struct rb_root rq_pos_tree; 0961 }; 0962 #endif 0963 0964 /* --------------- main algorithm interface ----------------- */ 0965 0966 #define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \ 0967 { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 }) 0968 0969 extern const int bfq_timeout; 0970 0971 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync); 0972 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync); 0973 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic); 0974 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq); 0975 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq, 0976 struct rb_root_cached *root); 0977 void __bfq_weights_tree_remove(struct bfq_data *bfqd, 0978 struct bfq_queue *bfqq, 0979 struct rb_root_cached *root); 0980 void bfq_weights_tree_remove(struct bfq_data *bfqd, 0981 struct bfq_queue *bfqq); 0982 void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq, 0983 bool compensate, enum bfqq_expiration reason); 0984 void bfq_put_queue(struct bfq_queue *bfqq); 0985 void bfq_put_cooperator(struct bfq_queue *bfqq); 0986 void bfq_end_wr_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); 0987 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq); 0988 void bfq_schedule_dispatch(struct bfq_data *bfqd); 0989 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); 0990 0991 /* ------------ end of main algorithm interface -------------- */ 0992 0993 /* ---------------- cgroups-support interface ---------------- */ 0994 0995 void bfqg_stats_update_legacy_io(struct request_queue *q, struct request *rq); 0996 void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq, 0997 blk_opf_t opf); 0998 void bfqg_stats_update_io_remove(struct bfq_group *bfqg, blk_opf_t opf); 0999 void bfqg_stats_update_io_merged(struct bfq_group *bfqg, blk_opf_t opf); 1000 void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns, 1001 u64 io_start_time_ns, blk_opf_t opf); 1002 void bfqg_stats_update_dequeue(struct bfq_group *bfqg); 1003 void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg); 1004 void bfqg_stats_update_idle_time(struct bfq_group *bfqg); 1005 void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg); 1006 void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg); 1007 void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1008 struct bfq_group *bfqg); 1009 1010 void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg); 1011 void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio); 1012 void bfq_end_wr_async(struct bfq_data *bfqd); 1013 struct bfq_group *bfq_bio_bfqg(struct bfq_data *bfqd, struct bio *bio); 1014 struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg); 1015 struct bfq_group *bfqq_group(struct bfq_queue *bfqq); 1016 struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node); 1017 void bfqg_and_blkg_put(struct bfq_group *bfqg); 1018 1019 #ifdef CONFIG_BFQ_GROUP_IOSCHED 1020 extern struct cftype bfq_blkcg_legacy_files[]; 1021 extern struct cftype bfq_blkg_files[]; 1022 extern struct blkcg_policy blkcg_policy_bfq; 1023 #endif 1024 1025 /* ------------- end of cgroups-support interface ------------- */ 1026 1027 /* - interface of the internal hierarchical B-WF2Q+ scheduler - */ 1028 1029 #ifdef CONFIG_BFQ_GROUP_IOSCHED 1030 /* both next loops stop at one of the child entities of the root group */ 1031 #define for_each_entity(entity) \ 1032 for (; entity ; entity = entity->parent) 1033 1034 /* 1035 * For each iteration, compute parent in advance, so as to be safe if 1036 * entity is deallocated during the iteration. Such a deallocation may 1037 * happen as a consequence of a bfq_put_queue that frees the bfq_queue 1038 * containing entity. 1039 */ 1040 #define for_each_entity_safe(entity, parent) \ 1041 for (; entity && ({ parent = entity->parent; 1; }); entity = parent) 1042 1043 #else /* CONFIG_BFQ_GROUP_IOSCHED */ 1044 /* 1045 * Next two macros are fake loops when cgroups support is not 1046 * enabled. I fact, in such a case, there is only one level to go up 1047 * (to reach the root group). 1048 */ 1049 #define for_each_entity(entity) \ 1050 for (; entity ; entity = NULL) 1051 1052 #define for_each_entity_safe(entity, parent) \ 1053 for (parent = NULL; entity ; entity = parent) 1054 #endif /* CONFIG_BFQ_GROUP_IOSCHED */ 1055 1056 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); 1057 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd); 1058 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity); 1059 struct bfq_entity *bfq_entity_of(struct rb_node *node); 1060 unsigned short bfq_ioprio_to_weight(int ioprio); 1061 void bfq_put_idle_entity(struct bfq_service_tree *st, 1062 struct bfq_entity *entity); 1063 struct bfq_service_tree * 1064 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, 1065 struct bfq_entity *entity, 1066 bool update_class_too); 1067 void bfq_bfqq_served(struct bfq_queue *bfqq, int served); 1068 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1069 unsigned long time_ms); 1070 bool __bfq_deactivate_entity(struct bfq_entity *entity, 1071 bool ins_into_idle_tree); 1072 bool next_queue_may_preempt(struct bfq_data *bfqd); 1073 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd); 1074 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd); 1075 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1076 bool ins_into_idle_tree, bool expiration); 1077 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq); 1078 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1079 bool expiration); 1080 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1081 bool expiration); 1082 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq); 1083 1084 /* --------------- end of interface of B-WF2Q+ ---------------- */ 1085 1086 /* Logging facilities. */ 1087 static inline void bfq_bfqq_name(struct bfq_queue *bfqq, char *str, int len) 1088 { 1089 char type = bfq_bfqq_sync(bfqq) ? 'S' : 'A'; 1090 1091 if (bfqq->pid != -1) 1092 snprintf(str, len, "bfq%d%c", bfqq->pid, type); 1093 else 1094 snprintf(str, len, "bfqSHARED-%c", type); 1095 } 1096 1097 #ifdef CONFIG_BFQ_GROUP_IOSCHED 1098 struct bfq_group *bfqq_group(struct bfq_queue *bfqq); 1099 1100 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \ 1101 char pid_str[MAX_BFQQ_NAME_LENGTH]; \ 1102 if (likely(!blk_trace_note_message_enabled((bfqd)->queue))) \ 1103 break; \ 1104 bfq_bfqq_name((bfqq), pid_str, MAX_BFQQ_NAME_LENGTH); \ 1105 blk_add_cgroup_trace_msg((bfqd)->queue, \ 1106 &bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css, \ 1107 "%s " fmt, pid_str, ##args); \ 1108 } while (0) 1109 1110 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \ 1111 blk_add_cgroup_trace_msg((bfqd)->queue, \ 1112 &bfqg_to_blkg(bfqg)->blkcg->css, fmt, ##args); \ 1113 } while (0) 1114 1115 #else /* CONFIG_BFQ_GROUP_IOSCHED */ 1116 1117 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \ 1118 char pid_str[MAX_BFQQ_NAME_LENGTH]; \ 1119 if (likely(!blk_trace_note_message_enabled((bfqd)->queue))) \ 1120 break; \ 1121 bfq_bfqq_name((bfqq), pid_str, MAX_BFQQ_NAME_LENGTH); \ 1122 blk_add_trace_msg((bfqd)->queue, "%s " fmt, pid_str, ##args); \ 1123 } while (0) 1124 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0) 1125 1126 #endif /* CONFIG_BFQ_GROUP_IOSCHED */ 1127 1128 #define bfq_log(bfqd, fmt, args...) \ 1129 blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args) 1130 1131 #endif /* _BFQ_H */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |