Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 
0003 /*
0004  * Xen mmu operations
0005  *
0006  * This file contains the various mmu fetch and update operations.
0007  * The most important job they must perform is the mapping between the
0008  * domain's pfn and the overall machine mfns.
0009  *
0010  * Xen allows guests to directly update the pagetable, in a controlled
0011  * fashion.  In other words, the guest modifies the same pagetable
0012  * that the CPU actually uses, which eliminates the overhead of having
0013  * a separate shadow pagetable.
0014  *
0015  * In order to allow this, it falls on the guest domain to map its
0016  * notion of a "physical" pfn - which is just a domain-local linear
0017  * address - into a real "machine address" which the CPU's MMU can
0018  * use.
0019  *
0020  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
0021  * inserted directly into the pagetable.  When creating a new
0022  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
0023  * when reading the content back with __(pgd|pmd|pte)_val, it converts
0024  * the mfn back into a pfn.
0025  *
0026  * The other constraint is that all pages which make up a pagetable
0027  * must be mapped read-only in the guest.  This prevents uncontrolled
0028  * guest updates to the pagetable.  Xen strictly enforces this, and
0029  * will disallow any pagetable update which will end up mapping a
0030  * pagetable page RW, and will disallow using any writable page as a
0031  * pagetable.
0032  *
0033  * Naively, when loading %cr3 with the base of a new pagetable, Xen
0034  * would need to validate the whole pagetable before going on.
0035  * Naturally, this is quite slow.  The solution is to "pin" a
0036  * pagetable, which enforces all the constraints on the pagetable even
0037  * when it is not actively in use.  This menas that Xen can be assured
0038  * that it is still valid when you do load it into %cr3, and doesn't
0039  * need to revalidate it.
0040  *
0041  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
0042  */
0043 #include <linux/sched/mm.h>
0044 #include <linux/debugfs.h>
0045 #include <linux/bug.h>
0046 #include <linux/vmalloc.h>
0047 #include <linux/export.h>
0048 #include <linux/init.h>
0049 #include <linux/gfp.h>
0050 #include <linux/memblock.h>
0051 #include <linux/seq_file.h>
0052 #include <linux/crash_dump.h>
0053 #include <linux/pgtable.h>
0054 #ifdef CONFIG_KEXEC_CORE
0055 #include <linux/kexec.h>
0056 #endif
0057 
0058 #include <trace/events/xen.h>
0059 
0060 #include <asm/tlbflush.h>
0061 #include <asm/fixmap.h>
0062 #include <asm/mmu_context.h>
0063 #include <asm/setup.h>
0064 #include <asm/paravirt.h>
0065 #include <asm/e820/api.h>
0066 #include <asm/linkage.h>
0067 #include <asm/page.h>
0068 #include <asm/init.h>
0069 #include <asm/memtype.h>
0070 #include <asm/smp.h>
0071 #include <asm/tlb.h>
0072 
0073 #include <asm/xen/hypercall.h>
0074 #include <asm/xen/hypervisor.h>
0075 
0076 #include <xen/xen.h>
0077 #include <xen/page.h>
0078 #include <xen/interface/xen.h>
0079 #include <xen/interface/hvm/hvm_op.h>
0080 #include <xen/interface/version.h>
0081 #include <xen/interface/memory.h>
0082 #include <xen/hvc-console.h>
0083 #include <xen/swiotlb-xen.h>
0084 
0085 #include "multicalls.h"
0086 #include "mmu.h"
0087 #include "debugfs.h"
0088 
0089 #ifdef CONFIG_X86_VSYSCALL_EMULATION
0090 /* l3 pud for userspace vsyscall mapping */
0091 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
0092 #endif
0093 
0094 /*
0095  * Protects atomic reservation decrease/increase against concurrent increases.
0096  * Also protects non-atomic updates of current_pages and balloon lists.
0097  */
0098 static DEFINE_SPINLOCK(xen_reservation_lock);
0099 
0100 /*
0101  * Note about cr3 (pagetable base) values:
0102  *
0103  * xen_cr3 contains the current logical cr3 value; it contains the
0104  * last set cr3.  This may not be the current effective cr3, because
0105  * its update may be being lazily deferred.  However, a vcpu looking
0106  * at its own cr3 can use this value knowing that it everything will
0107  * be self-consistent.
0108  *
0109  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
0110  * hypercall to set the vcpu cr3 is complete (so it may be a little
0111  * out of date, but it will never be set early).  If one vcpu is
0112  * looking at another vcpu's cr3 value, it should use this variable.
0113  */
0114 DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
0115 DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
0116 
0117 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
0118 
0119 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
0120 
0121 /*
0122  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
0123  * redzone above it, so round it up to a PGD boundary.
0124  */
0125 #define USER_LIMIT  ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
0126 
0127 void make_lowmem_page_readonly(void *vaddr)
0128 {
0129     pte_t *pte, ptev;
0130     unsigned long address = (unsigned long)vaddr;
0131     unsigned int level;
0132 
0133     pte = lookup_address(address, &level);
0134     if (pte == NULL)
0135         return;     /* vaddr missing */
0136 
0137     ptev = pte_wrprotect(*pte);
0138 
0139     if (HYPERVISOR_update_va_mapping(address, ptev, 0))
0140         BUG();
0141 }
0142 
0143 void make_lowmem_page_readwrite(void *vaddr)
0144 {
0145     pte_t *pte, ptev;
0146     unsigned long address = (unsigned long)vaddr;
0147     unsigned int level;
0148 
0149     pte = lookup_address(address, &level);
0150     if (pte == NULL)
0151         return;     /* vaddr missing */
0152 
0153     ptev = pte_mkwrite(*pte);
0154 
0155     if (HYPERVISOR_update_va_mapping(address, ptev, 0))
0156         BUG();
0157 }
0158 
0159 
0160 /*
0161  * During early boot all page table pages are pinned, but we do not have struct
0162  * pages, so return true until struct pages are ready.
0163  */
0164 static bool xen_page_pinned(void *ptr)
0165 {
0166     if (static_branch_likely(&xen_struct_pages_ready)) {
0167         struct page *page = virt_to_page(ptr);
0168 
0169         return PagePinned(page);
0170     }
0171     return true;
0172 }
0173 
0174 static void xen_extend_mmu_update(const struct mmu_update *update)
0175 {
0176     struct multicall_space mcs;
0177     struct mmu_update *u;
0178 
0179     mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
0180 
0181     if (mcs.mc != NULL) {
0182         mcs.mc->args[1]++;
0183     } else {
0184         mcs = __xen_mc_entry(sizeof(*u));
0185         MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
0186     }
0187 
0188     u = mcs.args;
0189     *u = *update;
0190 }
0191 
0192 static void xen_extend_mmuext_op(const struct mmuext_op *op)
0193 {
0194     struct multicall_space mcs;
0195     struct mmuext_op *u;
0196 
0197     mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
0198 
0199     if (mcs.mc != NULL) {
0200         mcs.mc->args[1]++;
0201     } else {
0202         mcs = __xen_mc_entry(sizeof(*u));
0203         MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
0204     }
0205 
0206     u = mcs.args;
0207     *u = *op;
0208 }
0209 
0210 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
0211 {
0212     struct mmu_update u;
0213 
0214     preempt_disable();
0215 
0216     xen_mc_batch();
0217 
0218     /* ptr may be ioremapped for 64-bit pagetable setup */
0219     u.ptr = arbitrary_virt_to_machine(ptr).maddr;
0220     u.val = pmd_val_ma(val);
0221     xen_extend_mmu_update(&u);
0222 
0223     xen_mc_issue(PARAVIRT_LAZY_MMU);
0224 
0225     preempt_enable();
0226 }
0227 
0228 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
0229 {
0230     trace_xen_mmu_set_pmd(ptr, val);
0231 
0232     /* If page is not pinned, we can just update the entry
0233        directly */
0234     if (!xen_page_pinned(ptr)) {
0235         *ptr = val;
0236         return;
0237     }
0238 
0239     xen_set_pmd_hyper(ptr, val);
0240 }
0241 
0242 /*
0243  * Associate a virtual page frame with a given physical page frame
0244  * and protection flags for that frame.
0245  */
0246 void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
0247 {
0248     if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags),
0249                      UVMF_INVLPG))
0250         BUG();
0251 }
0252 
0253 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
0254 {
0255     struct mmu_update u;
0256 
0257     if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
0258         return false;
0259 
0260     xen_mc_batch();
0261 
0262     u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
0263     u.val = pte_val_ma(pteval);
0264     xen_extend_mmu_update(&u);
0265 
0266     xen_mc_issue(PARAVIRT_LAZY_MMU);
0267 
0268     return true;
0269 }
0270 
0271 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
0272 {
0273     if (!xen_batched_set_pte(ptep, pteval)) {
0274         /*
0275          * Could call native_set_pte() here and trap and
0276          * emulate the PTE write, but a hypercall is much cheaper.
0277          */
0278         struct mmu_update u;
0279 
0280         u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
0281         u.val = pte_val_ma(pteval);
0282         HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
0283     }
0284 }
0285 
0286 static void xen_set_pte(pte_t *ptep, pte_t pteval)
0287 {
0288     trace_xen_mmu_set_pte(ptep, pteval);
0289     __xen_set_pte(ptep, pteval);
0290 }
0291 
0292 pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
0293                  unsigned long addr, pte_t *ptep)
0294 {
0295     /* Just return the pte as-is.  We preserve the bits on commit */
0296     trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
0297     return *ptep;
0298 }
0299 
0300 void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
0301                  pte_t *ptep, pte_t pte)
0302 {
0303     struct mmu_update u;
0304 
0305     trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
0306     xen_mc_batch();
0307 
0308     u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
0309     u.val = pte_val_ma(pte);
0310     xen_extend_mmu_update(&u);
0311 
0312     xen_mc_issue(PARAVIRT_LAZY_MMU);
0313 }
0314 
0315 /* Assume pteval_t is equivalent to all the other *val_t types. */
0316 static pteval_t pte_mfn_to_pfn(pteval_t val)
0317 {
0318     if (val & _PAGE_PRESENT) {
0319         unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
0320         unsigned long pfn = mfn_to_pfn(mfn);
0321 
0322         pteval_t flags = val & PTE_FLAGS_MASK;
0323         if (unlikely(pfn == ~0))
0324             val = flags & ~_PAGE_PRESENT;
0325         else
0326             val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
0327     }
0328 
0329     return val;
0330 }
0331 
0332 static pteval_t pte_pfn_to_mfn(pteval_t val)
0333 {
0334     if (val & _PAGE_PRESENT) {
0335         unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
0336         pteval_t flags = val & PTE_FLAGS_MASK;
0337         unsigned long mfn;
0338 
0339         mfn = __pfn_to_mfn(pfn);
0340 
0341         /*
0342          * If there's no mfn for the pfn, then just create an
0343          * empty non-present pte.  Unfortunately this loses
0344          * information about the original pfn, so
0345          * pte_mfn_to_pfn is asymmetric.
0346          */
0347         if (unlikely(mfn == INVALID_P2M_ENTRY)) {
0348             mfn = 0;
0349             flags = 0;
0350         } else
0351             mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
0352         val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
0353     }
0354 
0355     return val;
0356 }
0357 
0358 __visible pteval_t xen_pte_val(pte_t pte)
0359 {
0360     pteval_t pteval = pte.pte;
0361 
0362     return pte_mfn_to_pfn(pteval);
0363 }
0364 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
0365 
0366 __visible pgdval_t xen_pgd_val(pgd_t pgd)
0367 {
0368     return pte_mfn_to_pfn(pgd.pgd);
0369 }
0370 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
0371 
0372 __visible pte_t xen_make_pte(pteval_t pte)
0373 {
0374     pte = pte_pfn_to_mfn(pte);
0375 
0376     return native_make_pte(pte);
0377 }
0378 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
0379 
0380 __visible pgd_t xen_make_pgd(pgdval_t pgd)
0381 {
0382     pgd = pte_pfn_to_mfn(pgd);
0383     return native_make_pgd(pgd);
0384 }
0385 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
0386 
0387 __visible pmdval_t xen_pmd_val(pmd_t pmd)
0388 {
0389     return pte_mfn_to_pfn(pmd.pmd);
0390 }
0391 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
0392 
0393 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
0394 {
0395     struct mmu_update u;
0396 
0397     preempt_disable();
0398 
0399     xen_mc_batch();
0400 
0401     /* ptr may be ioremapped for 64-bit pagetable setup */
0402     u.ptr = arbitrary_virt_to_machine(ptr).maddr;
0403     u.val = pud_val_ma(val);
0404     xen_extend_mmu_update(&u);
0405 
0406     xen_mc_issue(PARAVIRT_LAZY_MMU);
0407 
0408     preempt_enable();
0409 }
0410 
0411 static void xen_set_pud(pud_t *ptr, pud_t val)
0412 {
0413     trace_xen_mmu_set_pud(ptr, val);
0414 
0415     /* If page is not pinned, we can just update the entry
0416        directly */
0417     if (!xen_page_pinned(ptr)) {
0418         *ptr = val;
0419         return;
0420     }
0421 
0422     xen_set_pud_hyper(ptr, val);
0423 }
0424 
0425 __visible pmd_t xen_make_pmd(pmdval_t pmd)
0426 {
0427     pmd = pte_pfn_to_mfn(pmd);
0428     return native_make_pmd(pmd);
0429 }
0430 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
0431 
0432 __visible pudval_t xen_pud_val(pud_t pud)
0433 {
0434     return pte_mfn_to_pfn(pud.pud);
0435 }
0436 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
0437 
0438 __visible pud_t xen_make_pud(pudval_t pud)
0439 {
0440     pud = pte_pfn_to_mfn(pud);
0441 
0442     return native_make_pud(pud);
0443 }
0444 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
0445 
0446 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
0447 {
0448     pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
0449     unsigned offset = pgd - pgd_page;
0450     pgd_t *user_ptr = NULL;
0451 
0452     if (offset < pgd_index(USER_LIMIT)) {
0453         struct page *page = virt_to_page(pgd_page);
0454         user_ptr = (pgd_t *)page->private;
0455         if (user_ptr)
0456             user_ptr += offset;
0457     }
0458 
0459     return user_ptr;
0460 }
0461 
0462 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
0463 {
0464     struct mmu_update u;
0465 
0466     u.ptr = virt_to_machine(ptr).maddr;
0467     u.val = p4d_val_ma(val);
0468     xen_extend_mmu_update(&u);
0469 }
0470 
0471 /*
0472  * Raw hypercall-based set_p4d, intended for in early boot before
0473  * there's a page structure.  This implies:
0474  *  1. The only existing pagetable is the kernel's
0475  *  2. It is always pinned
0476  *  3. It has no user pagetable attached to it
0477  */
0478 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
0479 {
0480     preempt_disable();
0481 
0482     xen_mc_batch();
0483 
0484     __xen_set_p4d_hyper(ptr, val);
0485 
0486     xen_mc_issue(PARAVIRT_LAZY_MMU);
0487 
0488     preempt_enable();
0489 }
0490 
0491 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
0492 {
0493     pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
0494     pgd_t pgd_val;
0495 
0496     trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
0497 
0498     /* If page is not pinned, we can just update the entry
0499        directly */
0500     if (!xen_page_pinned(ptr)) {
0501         *ptr = val;
0502         if (user_ptr) {
0503             WARN_ON(xen_page_pinned(user_ptr));
0504             pgd_val.pgd = p4d_val_ma(val);
0505             *user_ptr = pgd_val;
0506         }
0507         return;
0508     }
0509 
0510     /* If it's pinned, then we can at least batch the kernel and
0511        user updates together. */
0512     xen_mc_batch();
0513 
0514     __xen_set_p4d_hyper(ptr, val);
0515     if (user_ptr)
0516         __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
0517 
0518     xen_mc_issue(PARAVIRT_LAZY_MMU);
0519 }
0520 
0521 #if CONFIG_PGTABLE_LEVELS >= 5
0522 __visible p4dval_t xen_p4d_val(p4d_t p4d)
0523 {
0524     return pte_mfn_to_pfn(p4d.p4d);
0525 }
0526 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
0527 
0528 __visible p4d_t xen_make_p4d(p4dval_t p4d)
0529 {
0530     p4d = pte_pfn_to_mfn(p4d);
0531 
0532     return native_make_p4d(p4d);
0533 }
0534 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
0535 #endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
0536 
0537 static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
0538              void (*func)(struct mm_struct *mm, struct page *,
0539                       enum pt_level),
0540              bool last, unsigned long limit)
0541 {
0542     int i, nr;
0543 
0544     nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
0545     for (i = 0; i < nr; i++) {
0546         if (!pmd_none(pmd[i]))
0547             (*func)(mm, pmd_page(pmd[i]), PT_PTE);
0548     }
0549 }
0550 
0551 static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
0552              void (*func)(struct mm_struct *mm, struct page *,
0553                       enum pt_level),
0554              bool last, unsigned long limit)
0555 {
0556     int i, nr;
0557 
0558     nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
0559     for (i = 0; i < nr; i++) {
0560         pmd_t *pmd;
0561 
0562         if (pud_none(pud[i]))
0563             continue;
0564 
0565         pmd = pmd_offset(&pud[i], 0);
0566         if (PTRS_PER_PMD > 1)
0567             (*func)(mm, virt_to_page(pmd), PT_PMD);
0568         xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
0569     }
0570 }
0571 
0572 static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
0573              void (*func)(struct mm_struct *mm, struct page *,
0574                       enum pt_level),
0575              bool last, unsigned long limit)
0576 {
0577     pud_t *pud;
0578 
0579 
0580     if (p4d_none(*p4d))
0581         return;
0582 
0583     pud = pud_offset(p4d, 0);
0584     if (PTRS_PER_PUD > 1)
0585         (*func)(mm, virt_to_page(pud), PT_PUD);
0586     xen_pud_walk(mm, pud, func, last, limit);
0587 }
0588 
0589 /*
0590  * (Yet another) pagetable walker.  This one is intended for pinning a
0591  * pagetable.  This means that it walks a pagetable and calls the
0592  * callback function on each page it finds making up the page table,
0593  * at every level.  It walks the entire pagetable, but it only bothers
0594  * pinning pte pages which are below limit.  In the normal case this
0595  * will be STACK_TOP_MAX, but at boot we need to pin up to
0596  * FIXADDR_TOP.
0597  *
0598  * We must skip the Xen hole in the middle of the address space, just after
0599  * the big x86-64 virtual hole.
0600  */
0601 static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
0602                void (*func)(struct mm_struct *mm, struct page *,
0603                     enum pt_level),
0604                unsigned long limit)
0605 {
0606     int i, nr;
0607     unsigned hole_low = 0, hole_high = 0;
0608 
0609     /* The limit is the last byte to be touched */
0610     limit--;
0611     BUG_ON(limit >= FIXADDR_TOP);
0612 
0613     /*
0614      * 64-bit has a great big hole in the middle of the address
0615      * space, which contains the Xen mappings.
0616      */
0617     hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
0618     hole_high = pgd_index(GUARD_HOLE_END_ADDR);
0619 
0620     nr = pgd_index(limit) + 1;
0621     for (i = 0; i < nr; i++) {
0622         p4d_t *p4d;
0623 
0624         if (i >= hole_low && i < hole_high)
0625             continue;
0626 
0627         if (pgd_none(pgd[i]))
0628             continue;
0629 
0630         p4d = p4d_offset(&pgd[i], 0);
0631         xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
0632     }
0633 
0634     /* Do the top level last, so that the callbacks can use it as
0635        a cue to do final things like tlb flushes. */
0636     (*func)(mm, virt_to_page(pgd), PT_PGD);
0637 }
0638 
0639 static void xen_pgd_walk(struct mm_struct *mm,
0640              void (*func)(struct mm_struct *mm, struct page *,
0641                       enum pt_level),
0642              unsigned long limit)
0643 {
0644     __xen_pgd_walk(mm, mm->pgd, func, limit);
0645 }
0646 
0647 /* If we're using split pte locks, then take the page's lock and
0648    return a pointer to it.  Otherwise return NULL. */
0649 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
0650 {
0651     spinlock_t *ptl = NULL;
0652 
0653 #if USE_SPLIT_PTE_PTLOCKS
0654     ptl = ptlock_ptr(page);
0655     spin_lock_nest_lock(ptl, &mm->page_table_lock);
0656 #endif
0657 
0658     return ptl;
0659 }
0660 
0661 static void xen_pte_unlock(void *v)
0662 {
0663     spinlock_t *ptl = v;
0664     spin_unlock(ptl);
0665 }
0666 
0667 static void xen_do_pin(unsigned level, unsigned long pfn)
0668 {
0669     struct mmuext_op op;
0670 
0671     op.cmd = level;
0672     op.arg1.mfn = pfn_to_mfn(pfn);
0673 
0674     xen_extend_mmuext_op(&op);
0675 }
0676 
0677 static void xen_pin_page(struct mm_struct *mm, struct page *page,
0678              enum pt_level level)
0679 {
0680     unsigned pgfl = TestSetPagePinned(page);
0681 
0682     if (!pgfl) {
0683         void *pt = lowmem_page_address(page);
0684         unsigned long pfn = page_to_pfn(page);
0685         struct multicall_space mcs = __xen_mc_entry(0);
0686         spinlock_t *ptl;
0687 
0688         /*
0689          * We need to hold the pagetable lock between the time
0690          * we make the pagetable RO and when we actually pin
0691          * it.  If we don't, then other users may come in and
0692          * attempt to update the pagetable by writing it,
0693          * which will fail because the memory is RO but not
0694          * pinned, so Xen won't do the trap'n'emulate.
0695          *
0696          * If we're using split pte locks, we can't hold the
0697          * entire pagetable's worth of locks during the
0698          * traverse, because we may wrap the preempt count (8
0699          * bits).  The solution is to mark RO and pin each PTE
0700          * page while holding the lock.  This means the number
0701          * of locks we end up holding is never more than a
0702          * batch size (~32 entries, at present).
0703          *
0704          * If we're not using split pte locks, we needn't pin
0705          * the PTE pages independently, because we're
0706          * protected by the overall pagetable lock.
0707          */
0708         ptl = NULL;
0709         if (level == PT_PTE)
0710             ptl = xen_pte_lock(page, mm);
0711 
0712         MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
0713                     pfn_pte(pfn, PAGE_KERNEL_RO),
0714                     level == PT_PGD ? UVMF_TLB_FLUSH : 0);
0715 
0716         if (ptl) {
0717             xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
0718 
0719             /* Queue a deferred unlock for when this batch
0720                is completed. */
0721             xen_mc_callback(xen_pte_unlock, ptl);
0722         }
0723     }
0724 }
0725 
0726 /* This is called just after a mm has been created, but it has not
0727    been used yet.  We need to make sure that its pagetable is all
0728    read-only, and can be pinned. */
0729 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
0730 {
0731     pgd_t *user_pgd = xen_get_user_pgd(pgd);
0732 
0733     trace_xen_mmu_pgd_pin(mm, pgd);
0734 
0735     xen_mc_batch();
0736 
0737     __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
0738 
0739     xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
0740 
0741     if (user_pgd) {
0742         xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
0743         xen_do_pin(MMUEXT_PIN_L4_TABLE,
0744                PFN_DOWN(__pa(user_pgd)));
0745     }
0746 
0747     xen_mc_issue(0);
0748 }
0749 
0750 static void xen_pgd_pin(struct mm_struct *mm)
0751 {
0752     __xen_pgd_pin(mm, mm->pgd);
0753 }
0754 
0755 /*
0756  * On save, we need to pin all pagetables to make sure they get their
0757  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
0758  * them (unpinned pgds are not currently in use, probably because the
0759  * process is under construction or destruction).
0760  *
0761  * Expected to be called in stop_machine() ("equivalent to taking
0762  * every spinlock in the system"), so the locking doesn't really
0763  * matter all that much.
0764  */
0765 void xen_mm_pin_all(void)
0766 {
0767     struct page *page;
0768 
0769     spin_lock(&pgd_lock);
0770 
0771     list_for_each_entry(page, &pgd_list, lru) {
0772         if (!PagePinned(page)) {
0773             __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
0774             SetPageSavePinned(page);
0775         }
0776     }
0777 
0778     spin_unlock(&pgd_lock);
0779 }
0780 
0781 static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
0782                    enum pt_level level)
0783 {
0784     SetPagePinned(page);
0785 }
0786 
0787 /*
0788  * The init_mm pagetable is really pinned as soon as its created, but
0789  * that's before we have page structures to store the bits.  So do all
0790  * the book-keeping now once struct pages for allocated pages are
0791  * initialized. This happens only after memblock_free_all() is called.
0792  */
0793 static void __init xen_after_bootmem(void)
0794 {
0795     static_branch_enable(&xen_struct_pages_ready);
0796 #ifdef CONFIG_X86_VSYSCALL_EMULATION
0797     SetPagePinned(virt_to_page(level3_user_vsyscall));
0798 #endif
0799     xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
0800 }
0801 
0802 static void xen_unpin_page(struct mm_struct *mm, struct page *page,
0803                enum pt_level level)
0804 {
0805     unsigned pgfl = TestClearPagePinned(page);
0806 
0807     if (pgfl) {
0808         void *pt = lowmem_page_address(page);
0809         unsigned long pfn = page_to_pfn(page);
0810         spinlock_t *ptl = NULL;
0811         struct multicall_space mcs;
0812 
0813         /*
0814          * Do the converse to pin_page.  If we're using split
0815          * pte locks, we must be holding the lock for while
0816          * the pte page is unpinned but still RO to prevent
0817          * concurrent updates from seeing it in this
0818          * partially-pinned state.
0819          */
0820         if (level == PT_PTE) {
0821             ptl = xen_pte_lock(page, mm);
0822 
0823             if (ptl)
0824                 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
0825         }
0826 
0827         mcs = __xen_mc_entry(0);
0828 
0829         MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
0830                     pfn_pte(pfn, PAGE_KERNEL),
0831                     level == PT_PGD ? UVMF_TLB_FLUSH : 0);
0832 
0833         if (ptl) {
0834             /* unlock when batch completed */
0835             xen_mc_callback(xen_pte_unlock, ptl);
0836         }
0837     }
0838 }
0839 
0840 /* Release a pagetables pages back as normal RW */
0841 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
0842 {
0843     pgd_t *user_pgd = xen_get_user_pgd(pgd);
0844 
0845     trace_xen_mmu_pgd_unpin(mm, pgd);
0846 
0847     xen_mc_batch();
0848 
0849     xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
0850 
0851     if (user_pgd) {
0852         xen_do_pin(MMUEXT_UNPIN_TABLE,
0853                PFN_DOWN(__pa(user_pgd)));
0854         xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
0855     }
0856 
0857     __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
0858 
0859     xen_mc_issue(0);
0860 }
0861 
0862 static void xen_pgd_unpin(struct mm_struct *mm)
0863 {
0864     __xen_pgd_unpin(mm, mm->pgd);
0865 }
0866 
0867 /*
0868  * On resume, undo any pinning done at save, so that the rest of the
0869  * kernel doesn't see any unexpected pinned pagetables.
0870  */
0871 void xen_mm_unpin_all(void)
0872 {
0873     struct page *page;
0874 
0875     spin_lock(&pgd_lock);
0876 
0877     list_for_each_entry(page, &pgd_list, lru) {
0878         if (PageSavePinned(page)) {
0879             BUG_ON(!PagePinned(page));
0880             __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
0881             ClearPageSavePinned(page);
0882         }
0883     }
0884 
0885     spin_unlock(&pgd_lock);
0886 }
0887 
0888 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
0889 {
0890     spin_lock(&next->page_table_lock);
0891     xen_pgd_pin(next);
0892     spin_unlock(&next->page_table_lock);
0893 }
0894 
0895 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
0896 {
0897     spin_lock(&mm->page_table_lock);
0898     xen_pgd_pin(mm);
0899     spin_unlock(&mm->page_table_lock);
0900 }
0901 
0902 static void drop_mm_ref_this_cpu(void *info)
0903 {
0904     struct mm_struct *mm = info;
0905 
0906     if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
0907         leave_mm(smp_processor_id());
0908 
0909     /*
0910      * If this cpu still has a stale cr3 reference, then make sure
0911      * it has been flushed.
0912      */
0913     if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
0914         xen_mc_flush();
0915 }
0916 
0917 #ifdef CONFIG_SMP
0918 /*
0919  * Another cpu may still have their %cr3 pointing at the pagetable, so
0920  * we need to repoint it somewhere else before we can unpin it.
0921  */
0922 static void xen_drop_mm_ref(struct mm_struct *mm)
0923 {
0924     cpumask_var_t mask;
0925     unsigned cpu;
0926 
0927     drop_mm_ref_this_cpu(mm);
0928 
0929     /* Get the "official" set of cpus referring to our pagetable. */
0930     if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
0931         for_each_online_cpu(cpu) {
0932             if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
0933                 continue;
0934             smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
0935         }
0936         return;
0937     }
0938 
0939     /*
0940      * It's possible that a vcpu may have a stale reference to our
0941      * cr3, because its in lazy mode, and it hasn't yet flushed
0942      * its set of pending hypercalls yet.  In this case, we can
0943      * look at its actual current cr3 value, and force it to flush
0944      * if needed.
0945      */
0946     cpumask_clear(mask);
0947     for_each_online_cpu(cpu) {
0948         if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
0949             cpumask_set_cpu(cpu, mask);
0950     }
0951 
0952     smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
0953     free_cpumask_var(mask);
0954 }
0955 #else
0956 static void xen_drop_mm_ref(struct mm_struct *mm)
0957 {
0958     drop_mm_ref_this_cpu(mm);
0959 }
0960 #endif
0961 
0962 /*
0963  * While a process runs, Xen pins its pagetables, which means that the
0964  * hypervisor forces it to be read-only, and it controls all updates
0965  * to it.  This means that all pagetable updates have to go via the
0966  * hypervisor, which is moderately expensive.
0967  *
0968  * Since we're pulling the pagetable down, we switch to use init_mm,
0969  * unpin old process pagetable and mark it all read-write, which
0970  * allows further operations on it to be simple memory accesses.
0971  *
0972  * The only subtle point is that another CPU may be still using the
0973  * pagetable because of lazy tlb flushing.  This means we need need to
0974  * switch all CPUs off this pagetable before we can unpin it.
0975  */
0976 static void xen_exit_mmap(struct mm_struct *mm)
0977 {
0978     get_cpu();      /* make sure we don't move around */
0979     xen_drop_mm_ref(mm);
0980     put_cpu();
0981 
0982     spin_lock(&mm->page_table_lock);
0983 
0984     /* pgd may not be pinned in the error exit path of execve */
0985     if (xen_page_pinned(mm->pgd))
0986         xen_pgd_unpin(mm);
0987 
0988     spin_unlock(&mm->page_table_lock);
0989 }
0990 
0991 static void xen_post_allocator_init(void);
0992 
0993 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
0994 {
0995     struct mmuext_op op;
0996 
0997     op.cmd = cmd;
0998     op.arg1.mfn = pfn_to_mfn(pfn);
0999     if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1000         BUG();
1001 }
1002 
1003 static void __init xen_cleanhighmap(unsigned long vaddr,
1004                     unsigned long vaddr_end)
1005 {
1006     unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1007     pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1008 
1009     /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1010      * We include the PMD passed in on _both_ boundaries. */
1011     for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1012             pmd++, vaddr += PMD_SIZE) {
1013         if (pmd_none(*pmd))
1014             continue;
1015         if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1016             set_pmd(pmd, __pmd(0));
1017     }
1018     /* In case we did something silly, we should crash in this function
1019      * instead of somewhere later and be confusing. */
1020     xen_mc_flush();
1021 }
1022 
1023 /*
1024  * Make a page range writeable and free it.
1025  */
1026 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1027 {
1028     void *vaddr = __va(paddr);
1029     void *vaddr_end = vaddr + size;
1030 
1031     for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1032         make_lowmem_page_readwrite(vaddr);
1033 
1034     memblock_phys_free(paddr, size);
1035 }
1036 
1037 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1038 {
1039     unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1040 
1041     if (unpin)
1042         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1043     ClearPagePinned(virt_to_page(__va(pa)));
1044     xen_free_ro_pages(pa, PAGE_SIZE);
1045 }
1046 
1047 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1048 {
1049     unsigned long pa;
1050     pte_t *pte_tbl;
1051     int i;
1052 
1053     if (pmd_large(*pmd)) {
1054         pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1055         xen_free_ro_pages(pa, PMD_SIZE);
1056         return;
1057     }
1058 
1059     pte_tbl = pte_offset_kernel(pmd, 0);
1060     for (i = 0; i < PTRS_PER_PTE; i++) {
1061         if (pte_none(pte_tbl[i]))
1062             continue;
1063         pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1064         xen_free_ro_pages(pa, PAGE_SIZE);
1065     }
1066     set_pmd(pmd, __pmd(0));
1067     xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1068 }
1069 
1070 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1071 {
1072     unsigned long pa;
1073     pmd_t *pmd_tbl;
1074     int i;
1075 
1076     if (pud_large(*pud)) {
1077         pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1078         xen_free_ro_pages(pa, PUD_SIZE);
1079         return;
1080     }
1081 
1082     pmd_tbl = pmd_offset(pud, 0);
1083     for (i = 0; i < PTRS_PER_PMD; i++) {
1084         if (pmd_none(pmd_tbl[i]))
1085             continue;
1086         xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1087     }
1088     set_pud(pud, __pud(0));
1089     xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1090 }
1091 
1092 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1093 {
1094     unsigned long pa;
1095     pud_t *pud_tbl;
1096     int i;
1097 
1098     if (p4d_large(*p4d)) {
1099         pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1100         xen_free_ro_pages(pa, P4D_SIZE);
1101         return;
1102     }
1103 
1104     pud_tbl = pud_offset(p4d, 0);
1105     for (i = 0; i < PTRS_PER_PUD; i++) {
1106         if (pud_none(pud_tbl[i]))
1107             continue;
1108         xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1109     }
1110     set_p4d(p4d, __p4d(0));
1111     xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1112 }
1113 
1114 /*
1115  * Since it is well isolated we can (and since it is perhaps large we should)
1116  * also free the page tables mapping the initial P->M table.
1117  */
1118 static void __init xen_cleanmfnmap(unsigned long vaddr)
1119 {
1120     pgd_t *pgd;
1121     p4d_t *p4d;
1122     bool unpin;
1123 
1124     unpin = (vaddr == 2 * PGDIR_SIZE);
1125     vaddr &= PMD_MASK;
1126     pgd = pgd_offset_k(vaddr);
1127     p4d = p4d_offset(pgd, 0);
1128     if (!p4d_none(*p4d))
1129         xen_cleanmfnmap_p4d(p4d, unpin);
1130 }
1131 
1132 static void __init xen_pagetable_p2m_free(void)
1133 {
1134     unsigned long size;
1135     unsigned long addr;
1136 
1137     size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1138 
1139     /* No memory or already called. */
1140     if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1141         return;
1142 
1143     /* using __ka address and sticking INVALID_P2M_ENTRY! */
1144     memset((void *)xen_start_info->mfn_list, 0xff, size);
1145 
1146     addr = xen_start_info->mfn_list;
1147     /*
1148      * We could be in __ka space.
1149      * We roundup to the PMD, which means that if anybody at this stage is
1150      * using the __ka address of xen_start_info or
1151      * xen_start_info->shared_info they are in going to crash. Fortunately
1152      * we have already revectored in xen_setup_kernel_pagetable.
1153      */
1154     size = roundup(size, PMD_SIZE);
1155 
1156     if (addr >= __START_KERNEL_map) {
1157         xen_cleanhighmap(addr, addr + size);
1158         size = PAGE_ALIGN(xen_start_info->nr_pages *
1159                   sizeof(unsigned long));
1160         memblock_free((void *)addr, size);
1161     } else {
1162         xen_cleanmfnmap(addr);
1163     }
1164 }
1165 
1166 static void __init xen_pagetable_cleanhighmap(void)
1167 {
1168     unsigned long size;
1169     unsigned long addr;
1170 
1171     /* At this stage, cleanup_highmap has already cleaned __ka space
1172      * from _brk_limit way up to the max_pfn_mapped (which is the end of
1173      * the ramdisk). We continue on, erasing PMD entries that point to page
1174      * tables - do note that they are accessible at this stage via __va.
1175      * As Xen is aligning the memory end to a 4MB boundary, for good
1176      * measure we also round up to PMD_SIZE * 2 - which means that if
1177      * anybody is using __ka address to the initial boot-stack - and try
1178      * to use it - they are going to crash. The xen_start_info has been
1179      * taken care of already in xen_setup_kernel_pagetable. */
1180     addr = xen_start_info->pt_base;
1181     size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1182 
1183     xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1184     xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1185 }
1186 
1187 static void __init xen_pagetable_p2m_setup(void)
1188 {
1189     xen_vmalloc_p2m_tree();
1190 
1191     xen_pagetable_p2m_free();
1192 
1193     xen_pagetable_cleanhighmap();
1194 
1195     /* And revector! Bye bye old array */
1196     xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1197 }
1198 
1199 static void __init xen_pagetable_init(void)
1200 {
1201     /*
1202      * The majority of further PTE writes is to pagetables already
1203      * announced as such to Xen. Hence it is more efficient to use
1204      * hypercalls for these updates.
1205      */
1206     pv_ops.mmu.set_pte = __xen_set_pte;
1207 
1208     paging_init();
1209     xen_post_allocator_init();
1210 
1211     xen_pagetable_p2m_setup();
1212 
1213     /* Allocate and initialize top and mid mfn levels for p2m structure */
1214     xen_build_mfn_list_list();
1215 
1216     /* Remap memory freed due to conflicts with E820 map */
1217     xen_remap_memory();
1218     xen_setup_mfn_list_list();
1219 }
1220 
1221 static noinstr void xen_write_cr2(unsigned long cr2)
1222 {
1223     this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1224 }
1225 
1226 static noinline void xen_flush_tlb(void)
1227 {
1228     struct mmuext_op *op;
1229     struct multicall_space mcs;
1230 
1231     preempt_disable();
1232 
1233     mcs = xen_mc_entry(sizeof(*op));
1234 
1235     op = mcs.args;
1236     op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1237     MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1238 
1239     xen_mc_issue(PARAVIRT_LAZY_MMU);
1240 
1241     preempt_enable();
1242 }
1243 
1244 static void xen_flush_tlb_one_user(unsigned long addr)
1245 {
1246     struct mmuext_op *op;
1247     struct multicall_space mcs;
1248 
1249     trace_xen_mmu_flush_tlb_one_user(addr);
1250 
1251     preempt_disable();
1252 
1253     mcs = xen_mc_entry(sizeof(*op));
1254     op = mcs.args;
1255     op->cmd = MMUEXT_INVLPG_LOCAL;
1256     op->arg1.linear_addr = addr & PAGE_MASK;
1257     MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1258 
1259     xen_mc_issue(PARAVIRT_LAZY_MMU);
1260 
1261     preempt_enable();
1262 }
1263 
1264 static void xen_flush_tlb_multi(const struct cpumask *cpus,
1265                 const struct flush_tlb_info *info)
1266 {
1267     struct {
1268         struct mmuext_op op;
1269         DECLARE_BITMAP(mask, NR_CPUS);
1270     } *args;
1271     struct multicall_space mcs;
1272     const size_t mc_entry_size = sizeof(args->op) +
1273         sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1274 
1275     trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end);
1276 
1277     if (cpumask_empty(cpus))
1278         return;     /* nothing to do */
1279 
1280     mcs = xen_mc_entry(mc_entry_size);
1281     args = mcs.args;
1282     args->op.arg2.vcpumask = to_cpumask(args->mask);
1283 
1284     /* Remove any offline CPUs */
1285     cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1286 
1287     args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1288     if (info->end != TLB_FLUSH_ALL &&
1289         (info->end - info->start) <= PAGE_SIZE) {
1290         args->op.cmd = MMUEXT_INVLPG_MULTI;
1291         args->op.arg1.linear_addr = info->start;
1292     }
1293 
1294     MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1295 
1296     xen_mc_issue(PARAVIRT_LAZY_MMU);
1297 }
1298 
1299 static unsigned long xen_read_cr3(void)
1300 {
1301     return this_cpu_read(xen_cr3);
1302 }
1303 
1304 static void set_current_cr3(void *v)
1305 {
1306     this_cpu_write(xen_current_cr3, (unsigned long)v);
1307 }
1308 
1309 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1310 {
1311     struct mmuext_op op;
1312     unsigned long mfn;
1313 
1314     trace_xen_mmu_write_cr3(kernel, cr3);
1315 
1316     if (cr3)
1317         mfn = pfn_to_mfn(PFN_DOWN(cr3));
1318     else
1319         mfn = 0;
1320 
1321     WARN_ON(mfn == 0 && kernel);
1322 
1323     op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1324     op.arg1.mfn = mfn;
1325 
1326     xen_extend_mmuext_op(&op);
1327 
1328     if (kernel) {
1329         this_cpu_write(xen_cr3, cr3);
1330 
1331         /* Update xen_current_cr3 once the batch has actually
1332            been submitted. */
1333         xen_mc_callback(set_current_cr3, (void *)cr3);
1334     }
1335 }
1336 static void xen_write_cr3(unsigned long cr3)
1337 {
1338     pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1339 
1340     BUG_ON(preemptible());
1341 
1342     xen_mc_batch();  /* disables interrupts */
1343 
1344     /* Update while interrupts are disabled, so its atomic with
1345        respect to ipis */
1346     this_cpu_write(xen_cr3, cr3);
1347 
1348     __xen_write_cr3(true, cr3);
1349 
1350     if (user_pgd)
1351         __xen_write_cr3(false, __pa(user_pgd));
1352     else
1353         __xen_write_cr3(false, 0);
1354 
1355     xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1356 }
1357 
1358 /*
1359  * At the start of the day - when Xen launches a guest, it has already
1360  * built pagetables for the guest. We diligently look over them
1361  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1362  * init_top_pgt and its friends. Then when we are happy we load
1363  * the new init_top_pgt - and continue on.
1364  *
1365  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1366  * up the rest of the pagetables. When it has completed it loads the cr3.
1367  * N.B. that baremetal would start at 'start_kernel' (and the early
1368  * #PF handler would create bootstrap pagetables) - so we are running
1369  * with the same assumptions as what to do when write_cr3 is executed
1370  * at this point.
1371  *
1372  * Since there are no user-page tables at all, we have two variants
1373  * of xen_write_cr3 - the early bootup (this one), and the late one
1374  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1375  * the Linux kernel and user-space are both in ring 3 while the
1376  * hypervisor is in ring 0.
1377  */
1378 static void __init xen_write_cr3_init(unsigned long cr3)
1379 {
1380     BUG_ON(preemptible());
1381 
1382     xen_mc_batch();  /* disables interrupts */
1383 
1384     /* Update while interrupts are disabled, so its atomic with
1385        respect to ipis */
1386     this_cpu_write(xen_cr3, cr3);
1387 
1388     __xen_write_cr3(true, cr3);
1389 
1390     xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1391 }
1392 
1393 static int xen_pgd_alloc(struct mm_struct *mm)
1394 {
1395     pgd_t *pgd = mm->pgd;
1396     struct page *page = virt_to_page(pgd);
1397     pgd_t *user_pgd;
1398     int ret = -ENOMEM;
1399 
1400     BUG_ON(PagePinned(virt_to_page(pgd)));
1401     BUG_ON(page->private != 0);
1402 
1403     user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1404     page->private = (unsigned long)user_pgd;
1405 
1406     if (user_pgd != NULL) {
1407 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1408         user_pgd[pgd_index(VSYSCALL_ADDR)] =
1409             __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1410 #endif
1411         ret = 0;
1412     }
1413 
1414     BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1415 
1416     return ret;
1417 }
1418 
1419 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1420 {
1421     pgd_t *user_pgd = xen_get_user_pgd(pgd);
1422 
1423     if (user_pgd)
1424         free_page((unsigned long)user_pgd);
1425 }
1426 
1427 /*
1428  * Init-time set_pte while constructing initial pagetables, which
1429  * doesn't allow RO page table pages to be remapped RW.
1430  *
1431  * If there is no MFN for this PFN then this page is initially
1432  * ballooned out so clear the PTE (as in decrease_reservation() in
1433  * drivers/xen/balloon.c).
1434  *
1435  * Many of these PTE updates are done on unpinned and writable pages
1436  * and doing a hypercall for these is unnecessary and expensive.  At
1437  * this point it is rarely possible to tell if a page is pinned, so
1438  * mostly write the PTE directly and rely on Xen trapping and
1439  * emulating any updates as necessary.
1440  */
1441 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1442 {
1443     if (unlikely(is_early_ioremap_ptep(ptep)))
1444         __xen_set_pte(ptep, pte);
1445     else
1446         native_set_pte(ptep, pte);
1447 }
1448 
1449 __visible pte_t xen_make_pte_init(pteval_t pte)
1450 {
1451     unsigned long pfn;
1452 
1453     /*
1454      * Pages belonging to the initial p2m list mapped outside the default
1455      * address range must be mapped read-only. This region contains the
1456      * page tables for mapping the p2m list, too, and page tables MUST be
1457      * mapped read-only.
1458      */
1459     pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1460     if (xen_start_info->mfn_list < __START_KERNEL_map &&
1461         pfn >= xen_start_info->first_p2m_pfn &&
1462         pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1463         pte &= ~_PAGE_RW;
1464 
1465     pte = pte_pfn_to_mfn(pte);
1466     return native_make_pte(pte);
1467 }
1468 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1469 
1470 /* Early in boot, while setting up the initial pagetable, assume
1471    everything is pinned. */
1472 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1473 {
1474 #ifdef CONFIG_FLATMEM
1475     BUG_ON(mem_map);    /* should only be used early */
1476 #endif
1477     make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1478     pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1479 }
1480 
1481 /* Used for pmd and pud */
1482 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1483 {
1484 #ifdef CONFIG_FLATMEM
1485     BUG_ON(mem_map);    /* should only be used early */
1486 #endif
1487     make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1488 }
1489 
1490 /* Early release_pte assumes that all pts are pinned, since there's
1491    only init_mm and anything attached to that is pinned. */
1492 static void __init xen_release_pte_init(unsigned long pfn)
1493 {
1494     pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1495     make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1496 }
1497 
1498 static void __init xen_release_pmd_init(unsigned long pfn)
1499 {
1500     make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1501 }
1502 
1503 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1504 {
1505     struct multicall_space mcs;
1506     struct mmuext_op *op;
1507 
1508     mcs = __xen_mc_entry(sizeof(*op));
1509     op = mcs.args;
1510     op->cmd = cmd;
1511     op->arg1.mfn = pfn_to_mfn(pfn);
1512 
1513     MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1514 }
1515 
1516 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1517 {
1518     struct multicall_space mcs;
1519     unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1520 
1521     mcs = __xen_mc_entry(0);
1522     MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1523                 pfn_pte(pfn, prot), 0);
1524 }
1525 
1526 /* This needs to make sure the new pte page is pinned iff its being
1527    attached to a pinned pagetable. */
1528 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1529                     unsigned level)
1530 {
1531     bool pinned = xen_page_pinned(mm->pgd);
1532 
1533     trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1534 
1535     if (pinned) {
1536         struct page *page = pfn_to_page(pfn);
1537 
1538         pinned = false;
1539         if (static_branch_likely(&xen_struct_pages_ready)) {
1540             pinned = PagePinned(page);
1541             SetPagePinned(page);
1542         }
1543 
1544         xen_mc_batch();
1545 
1546         __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1547 
1548         if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned)
1549             __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1550 
1551         xen_mc_issue(PARAVIRT_LAZY_MMU);
1552     }
1553 }
1554 
1555 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1556 {
1557     xen_alloc_ptpage(mm, pfn, PT_PTE);
1558 }
1559 
1560 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1561 {
1562     xen_alloc_ptpage(mm, pfn, PT_PMD);
1563 }
1564 
1565 /* This should never happen until we're OK to use struct page */
1566 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1567 {
1568     struct page *page = pfn_to_page(pfn);
1569     bool pinned = PagePinned(page);
1570 
1571     trace_xen_mmu_release_ptpage(pfn, level, pinned);
1572 
1573     if (pinned) {
1574         xen_mc_batch();
1575 
1576         if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1577             __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1578 
1579         __set_pfn_prot(pfn, PAGE_KERNEL);
1580 
1581         xen_mc_issue(PARAVIRT_LAZY_MMU);
1582 
1583         ClearPagePinned(page);
1584     }
1585 }
1586 
1587 static void xen_release_pte(unsigned long pfn)
1588 {
1589     xen_release_ptpage(pfn, PT_PTE);
1590 }
1591 
1592 static void xen_release_pmd(unsigned long pfn)
1593 {
1594     xen_release_ptpage(pfn, PT_PMD);
1595 }
1596 
1597 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1598 {
1599     xen_alloc_ptpage(mm, pfn, PT_PUD);
1600 }
1601 
1602 static void xen_release_pud(unsigned long pfn)
1603 {
1604     xen_release_ptpage(pfn, PT_PUD);
1605 }
1606 
1607 /*
1608  * Like __va(), but returns address in the kernel mapping (which is
1609  * all we have until the physical memory mapping has been set up.
1610  */
1611 static void * __init __ka(phys_addr_t paddr)
1612 {
1613     return (void *)(paddr + __START_KERNEL_map);
1614 }
1615 
1616 /* Convert a machine address to physical address */
1617 static unsigned long __init m2p(phys_addr_t maddr)
1618 {
1619     phys_addr_t paddr;
1620 
1621     maddr &= XEN_PTE_MFN_MASK;
1622     paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1623 
1624     return paddr;
1625 }
1626 
1627 /* Convert a machine address to kernel virtual */
1628 static void * __init m2v(phys_addr_t maddr)
1629 {
1630     return __ka(m2p(maddr));
1631 }
1632 
1633 /* Set the page permissions on an identity-mapped pages */
1634 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1635                        unsigned long flags)
1636 {
1637     unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1638     pte_t pte = pfn_pte(pfn, prot);
1639 
1640     if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1641         BUG();
1642 }
1643 static void __init set_page_prot(void *addr, pgprot_t prot)
1644 {
1645     return set_page_prot_flags(addr, prot, UVMF_NONE);
1646 }
1647 
1648 void __init xen_setup_machphys_mapping(void)
1649 {
1650     struct xen_machphys_mapping mapping;
1651 
1652     if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1653         machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1654         machine_to_phys_nr = mapping.max_mfn + 1;
1655     } else {
1656         machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1657     }
1658 }
1659 
1660 static void __init convert_pfn_mfn(void *v)
1661 {
1662     pte_t *pte = v;
1663     int i;
1664 
1665     /* All levels are converted the same way, so just treat them
1666        as ptes. */
1667     for (i = 0; i < PTRS_PER_PTE; i++)
1668         pte[i] = xen_make_pte(pte[i].pte);
1669 }
1670 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1671                  unsigned long addr)
1672 {
1673     if (*pt_base == PFN_DOWN(__pa(addr))) {
1674         set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1675         clear_page((void *)addr);
1676         (*pt_base)++;
1677     }
1678     if (*pt_end == PFN_DOWN(__pa(addr))) {
1679         set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1680         clear_page((void *)addr);
1681         (*pt_end)--;
1682     }
1683 }
1684 /*
1685  * Set up the initial kernel pagetable.
1686  *
1687  * We can construct this by grafting the Xen provided pagetable into
1688  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1689  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1690  * kernel has a physical mapping to start with - but that's enough to
1691  * get __va working.  We need to fill in the rest of the physical
1692  * mapping once some sort of allocator has been set up.
1693  */
1694 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1695 {
1696     pud_t *l3;
1697     pmd_t *l2;
1698     unsigned long addr[3];
1699     unsigned long pt_base, pt_end;
1700     unsigned i;
1701 
1702     /* max_pfn_mapped is the last pfn mapped in the initial memory
1703      * mappings. Considering that on Xen after the kernel mappings we
1704      * have the mappings of some pages that don't exist in pfn space, we
1705      * set max_pfn_mapped to the last real pfn mapped. */
1706     if (xen_start_info->mfn_list < __START_KERNEL_map)
1707         max_pfn_mapped = xen_start_info->first_p2m_pfn;
1708     else
1709         max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1710 
1711     pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1712     pt_end = pt_base + xen_start_info->nr_pt_frames;
1713 
1714     /* Zap identity mapping */
1715     init_top_pgt[0] = __pgd(0);
1716 
1717     /* Pre-constructed entries are in pfn, so convert to mfn */
1718     /* L4[273] -> level3_ident_pgt  */
1719     /* L4[511] -> level3_kernel_pgt */
1720     convert_pfn_mfn(init_top_pgt);
1721 
1722     /* L3_i[0] -> level2_ident_pgt */
1723     convert_pfn_mfn(level3_ident_pgt);
1724     /* L3_k[510] -> level2_kernel_pgt */
1725     /* L3_k[511] -> level2_fixmap_pgt */
1726     convert_pfn_mfn(level3_kernel_pgt);
1727 
1728     /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1729     convert_pfn_mfn(level2_fixmap_pgt);
1730 
1731     /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1732     l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1733     l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1734 
1735     addr[0] = (unsigned long)pgd;
1736     addr[1] = (unsigned long)l3;
1737     addr[2] = (unsigned long)l2;
1738     /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1739      * Both L4[273][0] and L4[511][510] have entries that point to the same
1740      * L2 (PMD) tables. Meaning that if you modify it in __va space
1741      * it will be also modified in the __ka space! (But if you just
1742      * modify the PMD table to point to other PTE's or none, then you
1743      * are OK - which is what cleanup_highmap does) */
1744     copy_page(level2_ident_pgt, l2);
1745     /* Graft it onto L4[511][510] */
1746     copy_page(level2_kernel_pgt, l2);
1747 
1748     /*
1749      * Zap execute permission from the ident map. Due to the sharing of
1750      * L1 entries we need to do this in the L2.
1751      */
1752     if (__supported_pte_mask & _PAGE_NX) {
1753         for (i = 0; i < PTRS_PER_PMD; ++i) {
1754             if (pmd_none(level2_ident_pgt[i]))
1755                 continue;
1756             level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1757         }
1758     }
1759 
1760     /* Copy the initial P->M table mappings if necessary. */
1761     i = pgd_index(xen_start_info->mfn_list);
1762     if (i && i < pgd_index(__START_KERNEL_map))
1763         init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1764 
1765     /* Make pagetable pieces RO */
1766     set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1767     set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1768     set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1769     set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1770     set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1771     set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1772 
1773     for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1774         set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1775                   PAGE_KERNEL_RO);
1776     }
1777 
1778     /* Pin down new L4 */
1779     pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1780               PFN_DOWN(__pa_symbol(init_top_pgt)));
1781 
1782     /* Unpin Xen-provided one */
1783     pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1784 
1785 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1786     /* Pin user vsyscall L3 */
1787     set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1788     pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1789               PFN_DOWN(__pa_symbol(level3_user_vsyscall)));
1790 #endif
1791 
1792     /*
1793      * At this stage there can be no user pgd, and no page structure to
1794      * attach it to, so make sure we just set kernel pgd.
1795      */
1796     xen_mc_batch();
1797     __xen_write_cr3(true, __pa(init_top_pgt));
1798     xen_mc_issue(PARAVIRT_LAZY_CPU);
1799 
1800     /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1801      * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1802      * the initial domain. For guests using the toolstack, they are in:
1803      * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1804      * rip out the [L4] (pgd), but for guests we shave off three pages.
1805      */
1806     for (i = 0; i < ARRAY_SIZE(addr); i++)
1807         check_pt_base(&pt_base, &pt_end, addr[i]);
1808 
1809     /* Our (by three pages) smaller Xen pagetable that we are using */
1810     xen_pt_base = PFN_PHYS(pt_base);
1811     xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1812     memblock_reserve(xen_pt_base, xen_pt_size);
1813 
1814     /* Revector the xen_start_info */
1815     xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1816 }
1817 
1818 /*
1819  * Read a value from a physical address.
1820  */
1821 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1822 {
1823     unsigned long *vaddr;
1824     unsigned long val;
1825 
1826     vaddr = early_memremap_ro(addr, sizeof(val));
1827     val = *vaddr;
1828     early_memunmap(vaddr, sizeof(val));
1829     return val;
1830 }
1831 
1832 /*
1833  * Translate a virtual address to a physical one without relying on mapped
1834  * page tables. Don't rely on big pages being aligned in (guest) physical
1835  * space!
1836  */
1837 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1838 {
1839     phys_addr_t pa;
1840     pgd_t pgd;
1841     pud_t pud;
1842     pmd_t pmd;
1843     pte_t pte;
1844 
1845     pa = read_cr3_pa();
1846     pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1847                                sizeof(pgd)));
1848     if (!pgd_present(pgd))
1849         return 0;
1850 
1851     pa = pgd_val(pgd) & PTE_PFN_MASK;
1852     pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
1853                                sizeof(pud)));
1854     if (!pud_present(pud))
1855         return 0;
1856     pa = pud_val(pud) & PTE_PFN_MASK;
1857     if (pud_large(pud))
1858         return pa + (vaddr & ~PUD_MASK);
1859 
1860     pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
1861                                sizeof(pmd)));
1862     if (!pmd_present(pmd))
1863         return 0;
1864     pa = pmd_val(pmd) & PTE_PFN_MASK;
1865     if (pmd_large(pmd))
1866         return pa + (vaddr & ~PMD_MASK);
1867 
1868     pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
1869                                sizeof(pte)));
1870     if (!pte_present(pte))
1871         return 0;
1872     pa = pte_pfn(pte) << PAGE_SHIFT;
1873 
1874     return pa | (vaddr & ~PAGE_MASK);
1875 }
1876 
1877 /*
1878  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1879  * this area.
1880  */
1881 void __init xen_relocate_p2m(void)
1882 {
1883     phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1884     unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1885     int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1886     pte_t *pt;
1887     pmd_t *pmd;
1888     pud_t *pud;
1889     pgd_t *pgd;
1890     unsigned long *new_p2m;
1891 
1892     size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1893     n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1894     n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1895     n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1896     n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1897     n_frames = n_pte + n_pt + n_pmd + n_pud;
1898 
1899     new_area = xen_find_free_area(PFN_PHYS(n_frames));
1900     if (!new_area) {
1901         xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1902         BUG();
1903     }
1904 
1905     /*
1906      * Setup the page tables for addressing the new p2m list.
1907      * We have asked the hypervisor to map the p2m list at the user address
1908      * PUD_SIZE. It may have done so, or it may have used a kernel space
1909      * address depending on the Xen version.
1910      * To avoid any possible virtual address collision, just use
1911      * 2 * PUD_SIZE for the new area.
1912      */
1913     pud_phys = new_area;
1914     pmd_phys = pud_phys + PFN_PHYS(n_pud);
1915     pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1916     p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1917 
1918     pgd = __va(read_cr3_pa());
1919     new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1920     for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1921         pud = early_memremap(pud_phys, PAGE_SIZE);
1922         clear_page(pud);
1923         for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1924                 idx_pmd++) {
1925             pmd = early_memremap(pmd_phys, PAGE_SIZE);
1926             clear_page(pmd);
1927             for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1928                     idx_pt++) {
1929                 pt = early_memremap(pt_phys, PAGE_SIZE);
1930                 clear_page(pt);
1931                 for (idx_pte = 0;
1932                      idx_pte < min(n_pte, PTRS_PER_PTE);
1933                      idx_pte++) {
1934                     pt[idx_pte] = pfn_pte(p2m_pfn,
1935                                   PAGE_KERNEL);
1936                     p2m_pfn++;
1937                 }
1938                 n_pte -= PTRS_PER_PTE;
1939                 early_memunmap(pt, PAGE_SIZE);
1940                 make_lowmem_page_readonly(__va(pt_phys));
1941                 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
1942                         PFN_DOWN(pt_phys));
1943                 pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
1944                 pt_phys += PAGE_SIZE;
1945             }
1946             n_pt -= PTRS_PER_PMD;
1947             early_memunmap(pmd, PAGE_SIZE);
1948             make_lowmem_page_readonly(__va(pmd_phys));
1949             pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
1950                     PFN_DOWN(pmd_phys));
1951             pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
1952             pmd_phys += PAGE_SIZE;
1953         }
1954         n_pmd -= PTRS_PER_PUD;
1955         early_memunmap(pud, PAGE_SIZE);
1956         make_lowmem_page_readonly(__va(pud_phys));
1957         pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
1958         set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
1959         pud_phys += PAGE_SIZE;
1960     }
1961 
1962     /* Now copy the old p2m info to the new area. */
1963     memcpy(new_p2m, xen_p2m_addr, size);
1964     xen_p2m_addr = new_p2m;
1965 
1966     /* Release the old p2m list and set new list info. */
1967     p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
1968     BUG_ON(!p2m_pfn);
1969     p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
1970 
1971     if (xen_start_info->mfn_list < __START_KERNEL_map) {
1972         pfn = xen_start_info->first_p2m_pfn;
1973         pfn_end = xen_start_info->first_p2m_pfn +
1974               xen_start_info->nr_p2m_frames;
1975         set_pgd(pgd + 1, __pgd(0));
1976     } else {
1977         pfn = p2m_pfn;
1978         pfn_end = p2m_pfn_end;
1979     }
1980 
1981     memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
1982     while (pfn < pfn_end) {
1983         if (pfn == p2m_pfn) {
1984             pfn = p2m_pfn_end;
1985             continue;
1986         }
1987         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1988         pfn++;
1989     }
1990 
1991     xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1992     xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
1993     xen_start_info->nr_p2m_frames = n_frames;
1994 }
1995 
1996 void __init xen_reserve_special_pages(void)
1997 {
1998     phys_addr_t paddr;
1999 
2000     memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2001     if (xen_start_info->store_mfn) {
2002         paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2003         memblock_reserve(paddr, PAGE_SIZE);
2004     }
2005     if (!xen_initial_domain()) {
2006         paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2007         memblock_reserve(paddr, PAGE_SIZE);
2008     }
2009 }
2010 
2011 void __init xen_pt_check_e820(void)
2012 {
2013     if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2014         xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2015         BUG();
2016     }
2017 }
2018 
2019 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2020 
2021 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2022 {
2023     pte_t pte;
2024     unsigned long vaddr;
2025 
2026     phys >>= PAGE_SHIFT;
2027 
2028     switch (idx) {
2029     case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2030 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2031     case VSYSCALL_PAGE:
2032 #endif
2033         /* All local page mappings */
2034         pte = pfn_pte(phys, prot);
2035         break;
2036 
2037 #ifdef CONFIG_X86_LOCAL_APIC
2038     case FIX_APIC_BASE: /* maps dummy local APIC */
2039         pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2040         break;
2041 #endif
2042 
2043 #ifdef CONFIG_X86_IO_APIC
2044     case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2045         /*
2046          * We just don't map the IO APIC - all access is via
2047          * hypercalls.  Keep the address in the pte for reference.
2048          */
2049         pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2050         break;
2051 #endif
2052 
2053     case FIX_PARAVIRT_BOOTMAP:
2054         /* This is an MFN, but it isn't an IO mapping from the
2055            IO domain */
2056         pte = mfn_pte(phys, prot);
2057         break;
2058 
2059     default:
2060         /* By default, set_fixmap is used for hardware mappings */
2061         pte = mfn_pte(phys, prot);
2062         break;
2063     }
2064 
2065     vaddr = __fix_to_virt(idx);
2066     if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG))
2067         BUG();
2068 
2069 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2070     /* Replicate changes to map the vsyscall page into the user
2071        pagetable vsyscall mapping. */
2072     if (idx == VSYSCALL_PAGE)
2073         set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2074 #endif
2075 }
2076 
2077 static void __init xen_post_allocator_init(void)
2078 {
2079     pv_ops.mmu.set_pte = xen_set_pte;
2080     pv_ops.mmu.set_pmd = xen_set_pmd;
2081     pv_ops.mmu.set_pud = xen_set_pud;
2082     pv_ops.mmu.set_p4d = xen_set_p4d;
2083 
2084     /* This will work as long as patching hasn't happened yet
2085        (which it hasn't) */
2086     pv_ops.mmu.alloc_pte = xen_alloc_pte;
2087     pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2088     pv_ops.mmu.release_pte = xen_release_pte;
2089     pv_ops.mmu.release_pmd = xen_release_pmd;
2090     pv_ops.mmu.alloc_pud = xen_alloc_pud;
2091     pv_ops.mmu.release_pud = xen_release_pud;
2092     pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2093 
2094     pv_ops.mmu.write_cr3 = &xen_write_cr3;
2095 }
2096 
2097 static void xen_leave_lazy_mmu(void)
2098 {
2099     preempt_disable();
2100     xen_mc_flush();
2101     paravirt_leave_lazy_mmu();
2102     preempt_enable();
2103 }
2104 
2105 static const typeof(pv_ops) xen_mmu_ops __initconst = {
2106     .mmu = {
2107         .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2108         .write_cr2 = xen_write_cr2,
2109 
2110         .read_cr3 = xen_read_cr3,
2111         .write_cr3 = xen_write_cr3_init,
2112 
2113         .flush_tlb_user = xen_flush_tlb,
2114         .flush_tlb_kernel = xen_flush_tlb,
2115         .flush_tlb_one_user = xen_flush_tlb_one_user,
2116         .flush_tlb_multi = xen_flush_tlb_multi,
2117         .tlb_remove_table = tlb_remove_table,
2118 
2119         .pgd_alloc = xen_pgd_alloc,
2120         .pgd_free = xen_pgd_free,
2121 
2122         .alloc_pte = xen_alloc_pte_init,
2123         .release_pte = xen_release_pte_init,
2124         .alloc_pmd = xen_alloc_pmd_init,
2125         .release_pmd = xen_release_pmd_init,
2126 
2127         .set_pte = xen_set_pte_init,
2128         .set_pmd = xen_set_pmd_hyper,
2129 
2130         .ptep_modify_prot_start = xen_ptep_modify_prot_start,
2131         .ptep_modify_prot_commit = xen_ptep_modify_prot_commit,
2132 
2133         .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2134         .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2135 
2136         .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2137         .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2138 
2139         .set_pud = xen_set_pud_hyper,
2140 
2141         .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2142         .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2143 
2144         .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2145         .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2146         .set_p4d = xen_set_p4d_hyper,
2147 
2148         .alloc_pud = xen_alloc_pmd_init,
2149         .release_pud = xen_release_pmd_init,
2150 
2151 #if CONFIG_PGTABLE_LEVELS >= 5
2152         .p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2153         .make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2154 #endif
2155 
2156         .activate_mm = xen_activate_mm,
2157         .dup_mmap = xen_dup_mmap,
2158         .exit_mmap = xen_exit_mmap,
2159 
2160         .lazy_mode = {
2161             .enter = paravirt_enter_lazy_mmu,
2162             .leave = xen_leave_lazy_mmu,
2163             .flush = paravirt_flush_lazy_mmu,
2164         },
2165 
2166         .set_fixmap = xen_set_fixmap,
2167     },
2168 };
2169 
2170 void __init xen_init_mmu_ops(void)
2171 {
2172     x86_init.paging.pagetable_init = xen_pagetable_init;
2173     x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2174 
2175     pv_ops.mmu = xen_mmu_ops.mmu;
2176 
2177     memset(dummy_mapping, 0xff, PAGE_SIZE);
2178 }
2179 
2180 /* Protected by xen_reservation_lock. */
2181 #define MAX_CONTIG_ORDER 9 /* 2MB */
2182 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2183 
2184 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2185 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2186                 unsigned long *in_frames,
2187                 unsigned long *out_frames)
2188 {
2189     int i;
2190     struct multicall_space mcs;
2191 
2192     xen_mc_batch();
2193     for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2194         mcs = __xen_mc_entry(0);
2195 
2196         if (in_frames)
2197             in_frames[i] = virt_to_mfn(vaddr);
2198 
2199         MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2200         __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2201 
2202         if (out_frames)
2203             out_frames[i] = virt_to_pfn(vaddr);
2204     }
2205     xen_mc_issue(0);
2206 }
2207 
2208 /*
2209  * Update the pfn-to-mfn mappings for a virtual address range, either to
2210  * point to an array of mfns, or contiguously from a single starting
2211  * mfn.
2212  */
2213 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2214                      unsigned long *mfns,
2215                      unsigned long first_mfn)
2216 {
2217     unsigned i, limit;
2218     unsigned long mfn;
2219 
2220     xen_mc_batch();
2221 
2222     limit = 1u << order;
2223     for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2224         struct multicall_space mcs;
2225         unsigned flags;
2226 
2227         mcs = __xen_mc_entry(0);
2228         if (mfns)
2229             mfn = mfns[i];
2230         else
2231             mfn = first_mfn + i;
2232 
2233         if (i < (limit - 1))
2234             flags = 0;
2235         else {
2236             if (order == 0)
2237                 flags = UVMF_INVLPG | UVMF_ALL;
2238             else
2239                 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2240         }
2241 
2242         MULTI_update_va_mapping(mcs.mc, vaddr,
2243                 mfn_pte(mfn, PAGE_KERNEL), flags);
2244 
2245         set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2246     }
2247 
2248     xen_mc_issue(0);
2249 }
2250 
2251 /*
2252  * Perform the hypercall to exchange a region of our pfns to point to
2253  * memory with the required contiguous alignment.  Takes the pfns as
2254  * input, and populates mfns as output.
2255  *
2256  * Returns a success code indicating whether the hypervisor was able to
2257  * satisfy the request or not.
2258  */
2259 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2260                    unsigned long *pfns_in,
2261                    unsigned long extents_out,
2262                    unsigned int order_out,
2263                    unsigned long *mfns_out,
2264                    unsigned int address_bits)
2265 {
2266     long rc;
2267     int success;
2268 
2269     struct xen_memory_exchange exchange = {
2270         .in = {
2271             .nr_extents   = extents_in,
2272             .extent_order = order_in,
2273             .extent_start = pfns_in,
2274             .domid        = DOMID_SELF
2275         },
2276         .out = {
2277             .nr_extents   = extents_out,
2278             .extent_order = order_out,
2279             .extent_start = mfns_out,
2280             .address_bits = address_bits,
2281             .domid        = DOMID_SELF
2282         }
2283     };
2284 
2285     BUG_ON(extents_in << order_in != extents_out << order_out);
2286 
2287     rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2288     success = (exchange.nr_exchanged == extents_in);
2289 
2290     BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2291     BUG_ON(success && (rc != 0));
2292 
2293     return success;
2294 }
2295 
2296 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2297                  unsigned int address_bits,
2298                  dma_addr_t *dma_handle)
2299 {
2300     unsigned long *in_frames = discontig_frames, out_frame;
2301     unsigned long  flags;
2302     int            success;
2303     unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2304 
2305     /*
2306      * Currently an auto-translated guest will not perform I/O, nor will
2307      * it require PAE page directories below 4GB. Therefore any calls to
2308      * this function are redundant and can be ignored.
2309      */
2310 
2311     if (unlikely(order > MAX_CONTIG_ORDER))
2312         return -ENOMEM;
2313 
2314     memset((void *) vstart, 0, PAGE_SIZE << order);
2315 
2316     spin_lock_irqsave(&xen_reservation_lock, flags);
2317 
2318     /* 1. Zap current PTEs, remembering MFNs. */
2319     xen_zap_pfn_range(vstart, order, in_frames, NULL);
2320 
2321     /* 2. Get a new contiguous memory extent. */
2322     out_frame = virt_to_pfn(vstart);
2323     success = xen_exchange_memory(1UL << order, 0, in_frames,
2324                       1, order, &out_frame,
2325                       address_bits);
2326 
2327     /* 3. Map the new extent in place of old pages. */
2328     if (success)
2329         xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2330     else
2331         xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2332 
2333     spin_unlock_irqrestore(&xen_reservation_lock, flags);
2334 
2335     *dma_handle = virt_to_machine(vstart).maddr;
2336     return success ? 0 : -ENOMEM;
2337 }
2338 
2339 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2340 {
2341     unsigned long *out_frames = discontig_frames, in_frame;
2342     unsigned long  flags;
2343     int success;
2344     unsigned long vstart;
2345 
2346     if (unlikely(order > MAX_CONTIG_ORDER))
2347         return;
2348 
2349     vstart = (unsigned long)phys_to_virt(pstart);
2350     memset((void *) vstart, 0, PAGE_SIZE << order);
2351 
2352     spin_lock_irqsave(&xen_reservation_lock, flags);
2353 
2354     /* 1. Find start MFN of contiguous extent. */
2355     in_frame = virt_to_mfn(vstart);
2356 
2357     /* 2. Zap current PTEs. */
2358     xen_zap_pfn_range(vstart, order, NULL, out_frames);
2359 
2360     /* 3. Do the exchange for non-contiguous MFNs. */
2361     success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2362                     0, out_frames, 0);
2363 
2364     /* 4. Map new pages in place of old pages. */
2365     if (success)
2366         xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2367     else
2368         xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2369 
2370     spin_unlock_irqrestore(&xen_reservation_lock, flags);
2371 }
2372 
2373 static noinline void xen_flush_tlb_all(void)
2374 {
2375     struct mmuext_op *op;
2376     struct multicall_space mcs;
2377 
2378     preempt_disable();
2379 
2380     mcs = xen_mc_entry(sizeof(*op));
2381 
2382     op = mcs.args;
2383     op->cmd = MMUEXT_TLB_FLUSH_ALL;
2384     MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2385 
2386     xen_mc_issue(PARAVIRT_LAZY_MMU);
2387 
2388     preempt_enable();
2389 }
2390 
2391 #define REMAP_BATCH_SIZE 16
2392 
2393 struct remap_data {
2394     xen_pfn_t *pfn;
2395     bool contiguous;
2396     bool no_translate;
2397     pgprot_t prot;
2398     struct mmu_update *mmu_update;
2399 };
2400 
2401 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2402 {
2403     struct remap_data *rmd = data;
2404     pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2405 
2406     /*
2407      * If we have a contiguous range, just update the pfn itself,
2408      * else update pointer to be "next pfn".
2409      */
2410     if (rmd->contiguous)
2411         (*rmd->pfn)++;
2412     else
2413         rmd->pfn++;
2414 
2415     rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2416     rmd->mmu_update->ptr |= rmd->no_translate ?
2417         MMU_PT_UPDATE_NO_TRANSLATE :
2418         MMU_NORMAL_PT_UPDATE;
2419     rmd->mmu_update->val = pte_val_ma(pte);
2420     rmd->mmu_update++;
2421 
2422     return 0;
2423 }
2424 
2425 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2426           xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2427           unsigned int domid, bool no_translate)
2428 {
2429     int err = 0;
2430     struct remap_data rmd;
2431     struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2432     unsigned long range;
2433     int mapped = 0;
2434 
2435     BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2436 
2437     rmd.pfn = pfn;
2438     rmd.prot = prot;
2439     /*
2440      * We use the err_ptr to indicate if there we are doing a contiguous
2441      * mapping or a discontiguous mapping.
2442      */
2443     rmd.contiguous = !err_ptr;
2444     rmd.no_translate = no_translate;
2445 
2446     while (nr) {
2447         int index = 0;
2448         int done = 0;
2449         int batch = min(REMAP_BATCH_SIZE, nr);
2450         int batch_left = batch;
2451 
2452         range = (unsigned long)batch << PAGE_SHIFT;
2453 
2454         rmd.mmu_update = mmu_update;
2455         err = apply_to_page_range(vma->vm_mm, addr, range,
2456                       remap_area_pfn_pte_fn, &rmd);
2457         if (err)
2458             goto out;
2459 
2460         /*
2461          * We record the error for each page that gives an error, but
2462          * continue mapping until the whole set is done
2463          */
2464         do {
2465             int i;
2466 
2467             err = HYPERVISOR_mmu_update(&mmu_update[index],
2468                             batch_left, &done, domid);
2469 
2470             /*
2471              * @err_ptr may be the same buffer as @gfn, so
2472              * only clear it after each chunk of @gfn is
2473              * used.
2474              */
2475             if (err_ptr) {
2476                 for (i = index; i < index + done; i++)
2477                     err_ptr[i] = 0;
2478             }
2479             if (err < 0) {
2480                 if (!err_ptr)
2481                     goto out;
2482                 err_ptr[i] = err;
2483                 done++; /* Skip failed frame. */
2484             } else
2485                 mapped += done;
2486             batch_left -= done;
2487             index += done;
2488         } while (batch_left);
2489 
2490         nr -= batch;
2491         addr += range;
2492         if (err_ptr)
2493             err_ptr += batch;
2494         cond_resched();
2495     }
2496 out:
2497 
2498     xen_flush_tlb_all();
2499 
2500     return err < 0 ? err : mapped;
2501 }
2502 EXPORT_SYMBOL_GPL(xen_remap_pfn);
2503 
2504 #ifdef CONFIG_KEXEC_CORE
2505 phys_addr_t paddr_vmcoreinfo_note(void)
2506 {
2507     if (xen_pv_domain())
2508         return virt_to_machine(vmcoreinfo_note).maddr;
2509     else
2510         return __pa(vmcoreinfo_note);
2511 }
2512 #endif /* CONFIG_KEXEC_CORE */