0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/clockchips.h>
0010 #include <linux/slab.h>
0011
0012 #include <asm/uv/uv_mmrs.h>
0013 #include <asm/uv/uv_hub.h>
0014 #include <asm/uv/bios.h>
0015 #include <asm/uv/uv.h>
0016 #include <asm/apic.h>
0017 #include <asm/cpu.h>
0018
0019 #define RTC_NAME "sgi_rtc"
0020
0021 static u64 uv_read_rtc(struct clocksource *cs);
0022 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
0023 static int uv_rtc_shutdown(struct clock_event_device *evt);
0024
0025 static struct clocksource clocksource_uv = {
0026 .name = RTC_NAME,
0027 .rating = 299,
0028 .read = uv_read_rtc,
0029 .mask = (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
0030 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
0031 };
0032
0033 static struct clock_event_device clock_event_device_uv = {
0034 .name = RTC_NAME,
0035 .features = CLOCK_EVT_FEAT_ONESHOT,
0036 .shift = 20,
0037 .rating = 400,
0038 .irq = -1,
0039 .set_next_event = uv_rtc_next_event,
0040 .set_state_shutdown = uv_rtc_shutdown,
0041 .event_handler = NULL,
0042 };
0043
0044 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
0045
0046
0047 struct uv_rtc_timer_head {
0048 spinlock_t lock;
0049
0050 int next_cpu;
0051
0052 int ncpus;
0053 struct {
0054 int lcpu;
0055 u64 expires;
0056 } cpu[];
0057 };
0058
0059
0060
0061
0062 static struct uv_rtc_timer_head **blade_info __read_mostly;
0063
0064 static int uv_rtc_evt_enable;
0065
0066
0067
0068
0069
0070
0071 static void uv_rtc_send_IPI(int cpu)
0072 {
0073 unsigned long apicid, val;
0074 int pnode;
0075
0076 apicid = cpu_physical_id(cpu);
0077 pnode = uv_apicid_to_pnode(apicid);
0078 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
0079 (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
0080 (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
0081
0082 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
0083 }
0084
0085
0086 static int uv_intr_pending(int pnode)
0087 {
0088 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED2) &
0089 UVH_EVENT_OCCURRED2_RTC_1_MASK;
0090 }
0091
0092
0093 static int uv_setup_intr(int cpu, u64 expires)
0094 {
0095 u64 val;
0096 unsigned long apicid = cpu_physical_id(cpu);
0097 int pnode = uv_cpu_to_pnode(cpu);
0098
0099 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
0100 UVH_RTC1_INT_CONFIG_M_MASK);
0101 uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
0102
0103 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED2_ALIAS,
0104 UVH_EVENT_OCCURRED2_RTC_1_MASK);
0105
0106 val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
0107 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
0108
0109
0110 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
0111
0112 uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
0113
0114 if (uv_read_rtc(NULL) <= expires)
0115 return 0;
0116
0117 return !uv_intr_pending(pnode);
0118 }
0119
0120
0121
0122
0123
0124 static __init void uv_rtc_deallocate_timers(void)
0125 {
0126 int bid;
0127
0128 for_each_possible_blade(bid) {
0129 kfree(blade_info[bid]);
0130 }
0131 kfree(blade_info);
0132 }
0133
0134
0135 static __init int uv_rtc_allocate_timers(void)
0136 {
0137 int cpu;
0138
0139 blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
0140 if (!blade_info)
0141 return -ENOMEM;
0142
0143 for_each_present_cpu(cpu) {
0144 int nid = cpu_to_node(cpu);
0145 int bid = uv_cpu_to_blade_id(cpu);
0146 int bcpu = uv_cpu_blade_processor_id(cpu);
0147 struct uv_rtc_timer_head *head = blade_info[bid];
0148
0149 if (!head) {
0150 head = kmalloc_node(struct_size(head, cpu,
0151 uv_blade_nr_possible_cpus(bid)),
0152 GFP_KERNEL, nid);
0153 if (!head) {
0154 uv_rtc_deallocate_timers();
0155 return -ENOMEM;
0156 }
0157 spin_lock_init(&head->lock);
0158 head->ncpus = uv_blade_nr_possible_cpus(bid);
0159 head->next_cpu = -1;
0160 blade_info[bid] = head;
0161 }
0162
0163 head->cpu[bcpu].lcpu = cpu;
0164 head->cpu[bcpu].expires = ULLONG_MAX;
0165 }
0166
0167 return 0;
0168 }
0169
0170
0171 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
0172 {
0173 u64 lowest = ULLONG_MAX;
0174 int c, bcpu = -1;
0175
0176 head->next_cpu = -1;
0177 for (c = 0; c < head->ncpus; c++) {
0178 u64 exp = head->cpu[c].expires;
0179 if (exp < lowest) {
0180 bcpu = c;
0181 lowest = exp;
0182 }
0183 }
0184 if (bcpu >= 0) {
0185 head->next_cpu = bcpu;
0186 c = head->cpu[bcpu].lcpu;
0187 if (uv_setup_intr(c, lowest))
0188
0189 uv_rtc_send_IPI(c);
0190 } else {
0191 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
0192 UVH_RTC1_INT_CONFIG_M_MASK);
0193 }
0194 }
0195
0196
0197
0198
0199
0200
0201 static int uv_rtc_set_timer(int cpu, u64 expires)
0202 {
0203 int pnode = uv_cpu_to_pnode(cpu);
0204 int bid = uv_cpu_to_blade_id(cpu);
0205 struct uv_rtc_timer_head *head = blade_info[bid];
0206 int bcpu = uv_cpu_blade_processor_id(cpu);
0207 u64 *t = &head->cpu[bcpu].expires;
0208 unsigned long flags;
0209 int next_cpu;
0210
0211 spin_lock_irqsave(&head->lock, flags);
0212
0213 next_cpu = head->next_cpu;
0214 *t = expires;
0215
0216
0217 if (next_cpu < 0 || bcpu == next_cpu ||
0218 expires < head->cpu[next_cpu].expires) {
0219 head->next_cpu = bcpu;
0220 if (uv_setup_intr(cpu, expires)) {
0221 *t = ULLONG_MAX;
0222 uv_rtc_find_next_timer(head, pnode);
0223 spin_unlock_irqrestore(&head->lock, flags);
0224 return -ETIME;
0225 }
0226 }
0227
0228 spin_unlock_irqrestore(&head->lock, flags);
0229 return 0;
0230 }
0231
0232
0233
0234
0235
0236
0237 static int uv_rtc_unset_timer(int cpu, int force)
0238 {
0239 int pnode = uv_cpu_to_pnode(cpu);
0240 int bid = uv_cpu_to_blade_id(cpu);
0241 struct uv_rtc_timer_head *head = blade_info[bid];
0242 int bcpu = uv_cpu_blade_processor_id(cpu);
0243 u64 *t = &head->cpu[bcpu].expires;
0244 unsigned long flags;
0245 int rc = 0;
0246
0247 spin_lock_irqsave(&head->lock, flags);
0248
0249 if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
0250 rc = 1;
0251
0252 if (rc) {
0253 *t = ULLONG_MAX;
0254
0255 if (head->next_cpu == bcpu)
0256 uv_rtc_find_next_timer(head, pnode);
0257 }
0258
0259 spin_unlock_irqrestore(&head->lock, flags);
0260
0261 return rc;
0262 }
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276 static u64 uv_read_rtc(struct clocksource *cs)
0277 {
0278 unsigned long offset;
0279
0280 if (uv_get_min_hub_revision_id() == 1)
0281 offset = 0;
0282 else
0283 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
0284
0285 return (u64)uv_read_local_mmr(UVH_RTC | offset);
0286 }
0287
0288
0289
0290
0291 static int uv_rtc_next_event(unsigned long delta,
0292 struct clock_event_device *ced)
0293 {
0294 int ced_cpu = cpumask_first(ced->cpumask);
0295
0296 return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
0297 }
0298
0299
0300
0301
0302 static int uv_rtc_shutdown(struct clock_event_device *evt)
0303 {
0304 int ced_cpu = cpumask_first(evt->cpumask);
0305
0306 uv_rtc_unset_timer(ced_cpu, 1);
0307 return 0;
0308 }
0309
0310 static void uv_rtc_interrupt(void)
0311 {
0312 int cpu = smp_processor_id();
0313 struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
0314
0315 if (!ced || !ced->event_handler)
0316 return;
0317
0318 if (uv_rtc_unset_timer(cpu, 0) != 1)
0319 return;
0320
0321 ced->event_handler(ced);
0322 }
0323
0324 static int __init uv_enable_evt_rtc(char *str)
0325 {
0326 uv_rtc_evt_enable = 1;
0327
0328 return 1;
0329 }
0330 __setup("uvrtcevt", uv_enable_evt_rtc);
0331
0332 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
0333 {
0334 struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
0335
0336 *ced = clock_event_device_uv;
0337 ced->cpumask = cpumask_of(smp_processor_id());
0338 clockevents_register_device(ced);
0339 }
0340
0341 static __init int uv_rtc_setup_clock(void)
0342 {
0343 int rc;
0344
0345 if (!is_uv_system())
0346 return -ENODEV;
0347
0348 rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
0349 if (rc)
0350 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
0351 else
0352 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
0353 sn_rtc_cycles_per_second/(unsigned long)1E6);
0354
0355 if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
0356 return rc;
0357
0358
0359 rc = uv_rtc_allocate_timers();
0360 if (rc)
0361 goto error;
0362
0363 x86_platform_ipi_callback = uv_rtc_interrupt;
0364
0365 clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
0366 NSEC_PER_SEC, clock_event_device_uv.shift);
0367
0368 clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
0369 sn_rtc_cycles_per_second;
0370 clock_event_device_uv.min_delta_ticks = 1;
0371
0372 clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
0373 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
0374 clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
0375
0376 rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
0377 if (rc) {
0378 x86_platform_ipi_callback = NULL;
0379 uv_rtc_deallocate_timers();
0380 goto error;
0381 }
0382
0383 printk(KERN_INFO "UV RTC clockevents registered\n");
0384
0385 return 0;
0386
0387 error:
0388 clocksource_unregister(&clocksource_uv);
0389 printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
0390
0391 return rc;
0392 }
0393 arch_initcall(uv_rtc_setup_clock);