Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * BPF JIT compiler
0004  *
0005  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
0006  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
0007  */
0008 #include <linux/netdevice.h>
0009 #include <linux/filter.h>
0010 #include <linux/if_vlan.h>
0011 #include <linux/bpf.h>
0012 #include <linux/memory.h>
0013 #include <linux/sort.h>
0014 #include <asm/extable.h>
0015 #include <asm/set_memory.h>
0016 #include <asm/nospec-branch.h>
0017 #include <asm/text-patching.h>
0018 
0019 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
0020 {
0021     if (len == 1)
0022         *ptr = bytes;
0023     else if (len == 2)
0024         *(u16 *)ptr = bytes;
0025     else {
0026         *(u32 *)ptr = bytes;
0027         barrier();
0028     }
0029     return ptr + len;
0030 }
0031 
0032 #define EMIT(bytes, len) \
0033     do { prog = emit_code(prog, bytes, len); } while (0)
0034 
0035 #define EMIT1(b1)       EMIT(b1, 1)
0036 #define EMIT2(b1, b2)       EMIT((b1) + ((b2) << 8), 2)
0037 #define EMIT3(b1, b2, b3)   EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
0038 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
0039 
0040 #define EMIT1_off32(b1, off) \
0041     do { EMIT1(b1); EMIT(off, 4); } while (0)
0042 #define EMIT2_off32(b1, b2, off) \
0043     do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
0044 #define EMIT3_off32(b1, b2, b3, off) \
0045     do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
0046 #define EMIT4_off32(b1, b2, b3, b4, off) \
0047     do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
0048 
0049 #ifdef CONFIG_X86_KERNEL_IBT
0050 #define EMIT_ENDBR()    EMIT(gen_endbr(), 4)
0051 #else
0052 #define EMIT_ENDBR()
0053 #endif
0054 
0055 static bool is_imm8(int value)
0056 {
0057     return value <= 127 && value >= -128;
0058 }
0059 
0060 static bool is_simm32(s64 value)
0061 {
0062     return value == (s64)(s32)value;
0063 }
0064 
0065 static bool is_uimm32(u64 value)
0066 {
0067     return value == (u64)(u32)value;
0068 }
0069 
0070 /* mov dst, src */
0071 #define EMIT_mov(DST, SRC)                               \
0072     do {                                         \
0073         if (DST != SRC)                              \
0074             EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
0075     } while (0)
0076 
0077 static int bpf_size_to_x86_bytes(int bpf_size)
0078 {
0079     if (bpf_size == BPF_W)
0080         return 4;
0081     else if (bpf_size == BPF_H)
0082         return 2;
0083     else if (bpf_size == BPF_B)
0084         return 1;
0085     else if (bpf_size == BPF_DW)
0086         return 4; /* imm32 */
0087     else
0088         return 0;
0089 }
0090 
0091 /*
0092  * List of x86 cond jumps opcodes (. + s8)
0093  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
0094  */
0095 #define X86_JB  0x72
0096 #define X86_JAE 0x73
0097 #define X86_JE  0x74
0098 #define X86_JNE 0x75
0099 #define X86_JBE 0x76
0100 #define X86_JA  0x77
0101 #define X86_JL  0x7C
0102 #define X86_JGE 0x7D
0103 #define X86_JLE 0x7E
0104 #define X86_JG  0x7F
0105 
0106 /* Pick a register outside of BPF range for JIT internal work */
0107 #define AUX_REG (MAX_BPF_JIT_REG + 1)
0108 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
0109 
0110 /*
0111  * The following table maps BPF registers to x86-64 registers.
0112  *
0113  * x86-64 register R12 is unused, since if used as base address
0114  * register in load/store instructions, it always needs an
0115  * extra byte of encoding and is callee saved.
0116  *
0117  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
0118  * trampoline. x86-64 register R10 is used for blinding (if enabled).
0119  */
0120 static const int reg2hex[] = {
0121     [BPF_REG_0] = 0,  /* RAX */
0122     [BPF_REG_1] = 7,  /* RDI */
0123     [BPF_REG_2] = 6,  /* RSI */
0124     [BPF_REG_3] = 2,  /* RDX */
0125     [BPF_REG_4] = 1,  /* RCX */
0126     [BPF_REG_5] = 0,  /* R8  */
0127     [BPF_REG_6] = 3,  /* RBX callee saved */
0128     [BPF_REG_7] = 5,  /* R13 callee saved */
0129     [BPF_REG_8] = 6,  /* R14 callee saved */
0130     [BPF_REG_9] = 7,  /* R15 callee saved */
0131     [BPF_REG_FP] = 5, /* RBP readonly */
0132     [BPF_REG_AX] = 2, /* R10 temp register */
0133     [AUX_REG] = 3,    /* R11 temp register */
0134     [X86_REG_R9] = 1, /* R9 register, 6th function argument */
0135 };
0136 
0137 static const int reg2pt_regs[] = {
0138     [BPF_REG_0] = offsetof(struct pt_regs, ax),
0139     [BPF_REG_1] = offsetof(struct pt_regs, di),
0140     [BPF_REG_2] = offsetof(struct pt_regs, si),
0141     [BPF_REG_3] = offsetof(struct pt_regs, dx),
0142     [BPF_REG_4] = offsetof(struct pt_regs, cx),
0143     [BPF_REG_5] = offsetof(struct pt_regs, r8),
0144     [BPF_REG_6] = offsetof(struct pt_regs, bx),
0145     [BPF_REG_7] = offsetof(struct pt_regs, r13),
0146     [BPF_REG_8] = offsetof(struct pt_regs, r14),
0147     [BPF_REG_9] = offsetof(struct pt_regs, r15),
0148 };
0149 
0150 /*
0151  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
0152  * which need extra byte of encoding.
0153  * rax,rcx,...,rbp have simpler encoding
0154  */
0155 static bool is_ereg(u32 reg)
0156 {
0157     return (1 << reg) & (BIT(BPF_REG_5) |
0158                  BIT(AUX_REG) |
0159                  BIT(BPF_REG_7) |
0160                  BIT(BPF_REG_8) |
0161                  BIT(BPF_REG_9) |
0162                  BIT(X86_REG_R9) |
0163                  BIT(BPF_REG_AX));
0164 }
0165 
0166 /*
0167  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
0168  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
0169  * of encoding. al,cl,dl,bl have simpler encoding.
0170  */
0171 static bool is_ereg_8l(u32 reg)
0172 {
0173     return is_ereg(reg) ||
0174         (1 << reg) & (BIT(BPF_REG_1) |
0175               BIT(BPF_REG_2) |
0176               BIT(BPF_REG_FP));
0177 }
0178 
0179 static bool is_axreg(u32 reg)
0180 {
0181     return reg == BPF_REG_0;
0182 }
0183 
0184 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
0185 static u8 add_1mod(u8 byte, u32 reg)
0186 {
0187     if (is_ereg(reg))
0188         byte |= 1;
0189     return byte;
0190 }
0191 
0192 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
0193 {
0194     if (is_ereg(r1))
0195         byte |= 1;
0196     if (is_ereg(r2))
0197         byte |= 4;
0198     return byte;
0199 }
0200 
0201 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
0202 static u8 add_1reg(u8 byte, u32 dst_reg)
0203 {
0204     return byte + reg2hex[dst_reg];
0205 }
0206 
0207 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
0208 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
0209 {
0210     return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
0211 }
0212 
0213 /* Some 1-byte opcodes for binary ALU operations */
0214 static u8 simple_alu_opcodes[] = {
0215     [BPF_ADD] = 0x01,
0216     [BPF_SUB] = 0x29,
0217     [BPF_AND] = 0x21,
0218     [BPF_OR] = 0x09,
0219     [BPF_XOR] = 0x31,
0220     [BPF_LSH] = 0xE0,
0221     [BPF_RSH] = 0xE8,
0222     [BPF_ARSH] = 0xF8,
0223 };
0224 
0225 static void jit_fill_hole(void *area, unsigned int size)
0226 {
0227     /* Fill whole space with INT3 instructions */
0228     memset(area, 0xcc, size);
0229 }
0230 
0231 int bpf_arch_text_invalidate(void *dst, size_t len)
0232 {
0233     return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
0234 }
0235 
0236 struct jit_context {
0237     int cleanup_addr; /* Epilogue code offset */
0238 
0239     /*
0240      * Program specific offsets of labels in the code; these rely on the
0241      * JIT doing at least 2 passes, recording the position on the first
0242      * pass, only to generate the correct offset on the second pass.
0243      */
0244     int tail_call_direct_label;
0245     int tail_call_indirect_label;
0246 };
0247 
0248 /* Maximum number of bytes emitted while JITing one eBPF insn */
0249 #define BPF_MAX_INSN_SIZE   128
0250 #define BPF_INSN_SAFETY     64
0251 
0252 /* Number of bytes emit_patch() needs to generate instructions */
0253 #define X86_PATCH_SIZE      5
0254 /* Number of bytes that will be skipped on tailcall */
0255 #define X86_TAIL_CALL_OFFSET    (11 + ENDBR_INSN_SIZE)
0256 
0257 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
0258 {
0259     u8 *prog = *pprog;
0260 
0261     if (callee_regs_used[0])
0262         EMIT1(0x53);         /* push rbx */
0263     if (callee_regs_used[1])
0264         EMIT2(0x41, 0x55);   /* push r13 */
0265     if (callee_regs_used[2])
0266         EMIT2(0x41, 0x56);   /* push r14 */
0267     if (callee_regs_used[3])
0268         EMIT2(0x41, 0x57);   /* push r15 */
0269     *pprog = prog;
0270 }
0271 
0272 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
0273 {
0274     u8 *prog = *pprog;
0275 
0276     if (callee_regs_used[3])
0277         EMIT2(0x41, 0x5F);   /* pop r15 */
0278     if (callee_regs_used[2])
0279         EMIT2(0x41, 0x5E);   /* pop r14 */
0280     if (callee_regs_used[1])
0281         EMIT2(0x41, 0x5D);   /* pop r13 */
0282     if (callee_regs_used[0])
0283         EMIT1(0x5B);         /* pop rbx */
0284     *pprog = prog;
0285 }
0286 
0287 /*
0288  * Emit x86-64 prologue code for BPF program.
0289  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
0290  * while jumping to another program
0291  */
0292 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
0293               bool tail_call_reachable, bool is_subprog)
0294 {
0295     u8 *prog = *pprog;
0296 
0297     /* BPF trampoline can be made to work without these nops,
0298      * but let's waste 5 bytes for now and optimize later
0299      */
0300     EMIT_ENDBR();
0301     memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
0302     prog += X86_PATCH_SIZE;
0303     if (!ebpf_from_cbpf) {
0304         if (tail_call_reachable && !is_subprog)
0305             EMIT2(0x31, 0xC0); /* xor eax, eax */
0306         else
0307             EMIT2(0x66, 0x90); /* nop2 */
0308     }
0309     EMIT1(0x55);             /* push rbp */
0310     EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
0311 
0312     /* X86_TAIL_CALL_OFFSET is here */
0313     EMIT_ENDBR();
0314 
0315     /* sub rsp, rounded_stack_depth */
0316     if (stack_depth)
0317         EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
0318     if (tail_call_reachable)
0319         EMIT1(0x50);         /* push rax */
0320     *pprog = prog;
0321 }
0322 
0323 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
0324 {
0325     u8 *prog = *pprog;
0326     s64 offset;
0327 
0328     offset = func - (ip + X86_PATCH_SIZE);
0329     if (!is_simm32(offset)) {
0330         pr_err("Target call %p is out of range\n", func);
0331         return -ERANGE;
0332     }
0333     EMIT1_off32(opcode, offset);
0334     *pprog = prog;
0335     return 0;
0336 }
0337 
0338 static int emit_call(u8 **pprog, void *func, void *ip)
0339 {
0340     return emit_patch(pprog, func, ip, 0xE8);
0341 }
0342 
0343 static int emit_jump(u8 **pprog, void *func, void *ip)
0344 {
0345     return emit_patch(pprog, func, ip, 0xE9);
0346 }
0347 
0348 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
0349                 void *old_addr, void *new_addr)
0350 {
0351     const u8 *nop_insn = x86_nops[5];
0352     u8 old_insn[X86_PATCH_SIZE];
0353     u8 new_insn[X86_PATCH_SIZE];
0354     u8 *prog;
0355     int ret;
0356 
0357     memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
0358     if (old_addr) {
0359         prog = old_insn;
0360         ret = t == BPF_MOD_CALL ?
0361               emit_call(&prog, old_addr, ip) :
0362               emit_jump(&prog, old_addr, ip);
0363         if (ret)
0364             return ret;
0365     }
0366 
0367     memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
0368     if (new_addr) {
0369         prog = new_insn;
0370         ret = t == BPF_MOD_CALL ?
0371               emit_call(&prog, new_addr, ip) :
0372               emit_jump(&prog, new_addr, ip);
0373         if (ret)
0374             return ret;
0375     }
0376 
0377     ret = -EBUSY;
0378     mutex_lock(&text_mutex);
0379     if (memcmp(ip, old_insn, X86_PATCH_SIZE))
0380         goto out;
0381     ret = 1;
0382     if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
0383         text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
0384         ret = 0;
0385     }
0386 out:
0387     mutex_unlock(&text_mutex);
0388     return ret;
0389 }
0390 
0391 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
0392                void *old_addr, void *new_addr)
0393 {
0394     if (!is_kernel_text((long)ip) &&
0395         !is_bpf_text_address((long)ip))
0396         /* BPF poking in modules is not supported */
0397         return -EINVAL;
0398 
0399     /*
0400      * See emit_prologue(), for IBT builds the trampoline hook is preceded
0401      * with an ENDBR instruction.
0402      */
0403     if (is_endbr(*(u32 *)ip))
0404         ip += ENDBR_INSN_SIZE;
0405 
0406     return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
0407 }
0408 
0409 #define EMIT_LFENCE()   EMIT3(0x0F, 0xAE, 0xE8)
0410 
0411 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
0412 {
0413     u8 *prog = *pprog;
0414 
0415     if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
0416         EMIT_LFENCE();
0417         EMIT2(0xFF, 0xE0 + reg);
0418     } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
0419         OPTIMIZER_HIDE_VAR(reg);
0420         emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
0421     } else {
0422         EMIT2(0xFF, 0xE0 + reg);
0423     }
0424 
0425     *pprog = prog;
0426 }
0427 
0428 static void emit_return(u8 **pprog, u8 *ip)
0429 {
0430     u8 *prog = *pprog;
0431 
0432     if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
0433         emit_jump(&prog, &__x86_return_thunk, ip);
0434     } else {
0435         EMIT1(0xC3);        /* ret */
0436         if (IS_ENABLED(CONFIG_SLS))
0437             EMIT1(0xCC);    /* int3 */
0438     }
0439 
0440     *pprog = prog;
0441 }
0442 
0443 /*
0444  * Generate the following code:
0445  *
0446  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
0447  *   if (index >= array->map.max_entries)
0448  *     goto out;
0449  *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
0450  *     goto out;
0451  *   prog = array->ptrs[index];
0452  *   if (prog == NULL)
0453  *     goto out;
0454  *   goto *(prog->bpf_func + prologue_size);
0455  * out:
0456  */
0457 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
0458                     u32 stack_depth, u8 *ip,
0459                     struct jit_context *ctx)
0460 {
0461     int tcc_off = -4 - round_up(stack_depth, 8);
0462     u8 *prog = *pprog, *start = *pprog;
0463     int offset;
0464 
0465     /*
0466      * rdi - pointer to ctx
0467      * rsi - pointer to bpf_array
0468      * rdx - index in bpf_array
0469      */
0470 
0471     /*
0472      * if (index >= array->map.max_entries)
0473      *  goto out;
0474      */
0475     EMIT2(0x89, 0xD2);                        /* mov edx, edx */
0476     EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
0477           offsetof(struct bpf_array, map.max_entries));
0478 
0479     offset = ctx->tail_call_indirect_label - (prog + 2 - start);
0480     EMIT2(X86_JBE, offset);                   /* jbe out */
0481 
0482     /*
0483      * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
0484      *  goto out;
0485      */
0486     EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
0487     EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
0488 
0489     offset = ctx->tail_call_indirect_label - (prog + 2 - start);
0490     EMIT2(X86_JAE, offset);                   /* jae out */
0491     EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
0492     EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
0493 
0494     /* prog = array->ptrs[index]; */
0495     EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
0496             offsetof(struct bpf_array, ptrs));
0497 
0498     /*
0499      * if (prog == NULL)
0500      *  goto out;
0501      */
0502     EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
0503 
0504     offset = ctx->tail_call_indirect_label - (prog + 2 - start);
0505     EMIT2(X86_JE, offset);                    /* je out */
0506 
0507     pop_callee_regs(&prog, callee_regs_used);
0508 
0509     EMIT1(0x58);                              /* pop rax */
0510     if (stack_depth)
0511         EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
0512                 round_up(stack_depth, 8));
0513 
0514     /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
0515     EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
0516           offsetof(struct bpf_prog, bpf_func));
0517     EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
0518           X86_TAIL_CALL_OFFSET);
0519     /*
0520      * Now we're ready to jump into next BPF program
0521      * rdi == ctx (1st arg)
0522      * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
0523      */
0524     emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
0525 
0526     /* out: */
0527     ctx->tail_call_indirect_label = prog - start;
0528     *pprog = prog;
0529 }
0530 
0531 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
0532                       u8 **pprog, u8 *ip,
0533                       bool *callee_regs_used, u32 stack_depth,
0534                       struct jit_context *ctx)
0535 {
0536     int tcc_off = -4 - round_up(stack_depth, 8);
0537     u8 *prog = *pprog, *start = *pprog;
0538     int offset;
0539 
0540     /*
0541      * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
0542      *  goto out;
0543      */
0544     EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
0545     EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
0546 
0547     offset = ctx->tail_call_direct_label - (prog + 2 - start);
0548     EMIT2(X86_JAE, offset);                       /* jae out */
0549     EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
0550     EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
0551 
0552     poke->tailcall_bypass = ip + (prog - start);
0553     poke->adj_off = X86_TAIL_CALL_OFFSET;
0554     poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
0555     poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
0556 
0557     emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
0558           poke->tailcall_bypass);
0559 
0560     pop_callee_regs(&prog, callee_regs_used);
0561     EMIT1(0x58);                                  /* pop rax */
0562     if (stack_depth)
0563         EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
0564 
0565     memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
0566     prog += X86_PATCH_SIZE;
0567 
0568     /* out: */
0569     ctx->tail_call_direct_label = prog - start;
0570 
0571     *pprog = prog;
0572 }
0573 
0574 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
0575 {
0576     struct bpf_jit_poke_descriptor *poke;
0577     struct bpf_array *array;
0578     struct bpf_prog *target;
0579     int i, ret;
0580 
0581     for (i = 0; i < prog->aux->size_poke_tab; i++) {
0582         poke = &prog->aux->poke_tab[i];
0583         if (poke->aux && poke->aux != prog->aux)
0584             continue;
0585 
0586         WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
0587 
0588         if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
0589             continue;
0590 
0591         array = container_of(poke->tail_call.map, struct bpf_array, map);
0592         mutex_lock(&array->aux->poke_mutex);
0593         target = array->ptrs[poke->tail_call.key];
0594         if (target) {
0595             ret = __bpf_arch_text_poke(poke->tailcall_target,
0596                            BPF_MOD_JUMP, NULL,
0597                            (u8 *)target->bpf_func +
0598                            poke->adj_off);
0599             BUG_ON(ret < 0);
0600             ret = __bpf_arch_text_poke(poke->tailcall_bypass,
0601                            BPF_MOD_JUMP,
0602                            (u8 *)poke->tailcall_target +
0603                            X86_PATCH_SIZE, NULL);
0604             BUG_ON(ret < 0);
0605         }
0606         WRITE_ONCE(poke->tailcall_target_stable, true);
0607         mutex_unlock(&array->aux->poke_mutex);
0608     }
0609 }
0610 
0611 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
0612                u32 dst_reg, const u32 imm32)
0613 {
0614     u8 *prog = *pprog;
0615     u8 b1, b2, b3;
0616 
0617     /*
0618      * Optimization: if imm32 is positive, use 'mov %eax, imm32'
0619      * (which zero-extends imm32) to save 2 bytes.
0620      */
0621     if (sign_propagate && (s32)imm32 < 0) {
0622         /* 'mov %rax, imm32' sign extends imm32 */
0623         b1 = add_1mod(0x48, dst_reg);
0624         b2 = 0xC7;
0625         b3 = 0xC0;
0626         EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
0627         goto done;
0628     }
0629 
0630     /*
0631      * Optimization: if imm32 is zero, use 'xor %eax, %eax'
0632      * to save 3 bytes.
0633      */
0634     if (imm32 == 0) {
0635         if (is_ereg(dst_reg))
0636             EMIT1(add_2mod(0x40, dst_reg, dst_reg));
0637         b2 = 0x31; /* xor */
0638         b3 = 0xC0;
0639         EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
0640         goto done;
0641     }
0642 
0643     /* mov %eax, imm32 */
0644     if (is_ereg(dst_reg))
0645         EMIT1(add_1mod(0x40, dst_reg));
0646     EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
0647 done:
0648     *pprog = prog;
0649 }
0650 
0651 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
0652                const u32 imm32_hi, const u32 imm32_lo)
0653 {
0654     u8 *prog = *pprog;
0655 
0656     if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
0657         /*
0658          * For emitting plain u32, where sign bit must not be
0659          * propagated LLVM tends to load imm64 over mov32
0660          * directly, so save couple of bytes by just doing
0661          * 'mov %eax, imm32' instead.
0662          */
0663         emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
0664     } else {
0665         /* movabsq %rax, imm64 */
0666         EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
0667         EMIT(imm32_lo, 4);
0668         EMIT(imm32_hi, 4);
0669     }
0670 
0671     *pprog = prog;
0672 }
0673 
0674 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
0675 {
0676     u8 *prog = *pprog;
0677 
0678     if (is64) {
0679         /* mov dst, src */
0680         EMIT_mov(dst_reg, src_reg);
0681     } else {
0682         /* mov32 dst, src */
0683         if (is_ereg(dst_reg) || is_ereg(src_reg))
0684             EMIT1(add_2mod(0x40, dst_reg, src_reg));
0685         EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
0686     }
0687 
0688     *pprog = prog;
0689 }
0690 
0691 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
0692 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
0693 {
0694     u8 *prog = *pprog;
0695 
0696     if (is_imm8(off)) {
0697         /* 1-byte signed displacement.
0698          *
0699          * If off == 0 we could skip this and save one extra byte, but
0700          * special case of x86 R13 which always needs an offset is not
0701          * worth the hassle
0702          */
0703         EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
0704     } else {
0705         /* 4-byte signed displacement */
0706         EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
0707     }
0708     *pprog = prog;
0709 }
0710 
0711 /*
0712  * Emit a REX byte if it will be necessary to address these registers
0713  */
0714 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
0715 {
0716     u8 *prog = *pprog;
0717 
0718     if (is64)
0719         EMIT1(add_2mod(0x48, dst_reg, src_reg));
0720     else if (is_ereg(dst_reg) || is_ereg(src_reg))
0721         EMIT1(add_2mod(0x40, dst_reg, src_reg));
0722     *pprog = prog;
0723 }
0724 
0725 /*
0726  * Similar version of maybe_emit_mod() for a single register
0727  */
0728 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
0729 {
0730     u8 *prog = *pprog;
0731 
0732     if (is64)
0733         EMIT1(add_1mod(0x48, reg));
0734     else if (is_ereg(reg))
0735         EMIT1(add_1mod(0x40, reg));
0736     *pprog = prog;
0737 }
0738 
0739 /* LDX: dst_reg = *(u8*)(src_reg + off) */
0740 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
0741 {
0742     u8 *prog = *pprog;
0743 
0744     switch (size) {
0745     case BPF_B:
0746         /* Emit 'movzx rax, byte ptr [rax + off]' */
0747         EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
0748         break;
0749     case BPF_H:
0750         /* Emit 'movzx rax, word ptr [rax + off]' */
0751         EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
0752         break;
0753     case BPF_W:
0754         /* Emit 'mov eax, dword ptr [rax+0x14]' */
0755         if (is_ereg(dst_reg) || is_ereg(src_reg))
0756             EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
0757         else
0758             EMIT1(0x8B);
0759         break;
0760     case BPF_DW:
0761         /* Emit 'mov rax, qword ptr [rax+0x14]' */
0762         EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
0763         break;
0764     }
0765     emit_insn_suffix(&prog, src_reg, dst_reg, off);
0766     *pprog = prog;
0767 }
0768 
0769 /* STX: *(u8*)(dst_reg + off) = src_reg */
0770 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
0771 {
0772     u8 *prog = *pprog;
0773 
0774     switch (size) {
0775     case BPF_B:
0776         /* Emit 'mov byte ptr [rax + off], al' */
0777         if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
0778             /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
0779             EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
0780         else
0781             EMIT1(0x88);
0782         break;
0783     case BPF_H:
0784         if (is_ereg(dst_reg) || is_ereg(src_reg))
0785             EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
0786         else
0787             EMIT2(0x66, 0x89);
0788         break;
0789     case BPF_W:
0790         if (is_ereg(dst_reg) || is_ereg(src_reg))
0791             EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
0792         else
0793             EMIT1(0x89);
0794         break;
0795     case BPF_DW:
0796         EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
0797         break;
0798     }
0799     emit_insn_suffix(&prog, dst_reg, src_reg, off);
0800     *pprog = prog;
0801 }
0802 
0803 static int emit_atomic(u8 **pprog, u8 atomic_op,
0804                u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
0805 {
0806     u8 *prog = *pprog;
0807 
0808     EMIT1(0xF0); /* lock prefix */
0809 
0810     maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
0811 
0812     /* emit opcode */
0813     switch (atomic_op) {
0814     case BPF_ADD:
0815     case BPF_AND:
0816     case BPF_OR:
0817     case BPF_XOR:
0818         /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
0819         EMIT1(simple_alu_opcodes[atomic_op]);
0820         break;
0821     case BPF_ADD | BPF_FETCH:
0822         /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
0823         EMIT2(0x0F, 0xC1);
0824         break;
0825     case BPF_XCHG:
0826         /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
0827         EMIT1(0x87);
0828         break;
0829     case BPF_CMPXCHG:
0830         /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
0831         EMIT2(0x0F, 0xB1);
0832         break;
0833     default:
0834         pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
0835         return -EFAULT;
0836     }
0837 
0838     emit_insn_suffix(&prog, dst_reg, src_reg, off);
0839 
0840     *pprog = prog;
0841     return 0;
0842 }
0843 
0844 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
0845 {
0846     u32 reg = x->fixup >> 8;
0847 
0848     /* jump over faulting load and clear dest register */
0849     *(unsigned long *)((void *)regs + reg) = 0;
0850     regs->ip += x->fixup & 0xff;
0851     return true;
0852 }
0853 
0854 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
0855                  bool *regs_used, bool *tail_call_seen)
0856 {
0857     int i;
0858 
0859     for (i = 1; i <= insn_cnt; i++, insn++) {
0860         if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
0861             *tail_call_seen = true;
0862         if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
0863             regs_used[0] = true;
0864         if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
0865             regs_used[1] = true;
0866         if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
0867             regs_used[2] = true;
0868         if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
0869             regs_used[3] = true;
0870     }
0871 }
0872 
0873 static void emit_nops(u8 **pprog, int len)
0874 {
0875     u8 *prog = *pprog;
0876     int i, noplen;
0877 
0878     while (len > 0) {
0879         noplen = len;
0880 
0881         if (noplen > ASM_NOP_MAX)
0882             noplen = ASM_NOP_MAX;
0883 
0884         for (i = 0; i < noplen; i++)
0885             EMIT1(x86_nops[noplen][i]);
0886         len -= noplen;
0887     }
0888 
0889     *pprog = prog;
0890 }
0891 
0892 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
0893 
0894 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
0895           int oldproglen, struct jit_context *ctx, bool jmp_padding)
0896 {
0897     bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
0898     struct bpf_insn *insn = bpf_prog->insnsi;
0899     bool callee_regs_used[4] = {};
0900     int insn_cnt = bpf_prog->len;
0901     bool tail_call_seen = false;
0902     bool seen_exit = false;
0903     u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
0904     int i, excnt = 0;
0905     int ilen, proglen = 0;
0906     u8 *prog = temp;
0907     int err;
0908 
0909     detect_reg_usage(insn, insn_cnt, callee_regs_used,
0910              &tail_call_seen);
0911 
0912     /* tail call's presence in current prog implies it is reachable */
0913     tail_call_reachable |= tail_call_seen;
0914 
0915     emit_prologue(&prog, bpf_prog->aux->stack_depth,
0916               bpf_prog_was_classic(bpf_prog), tail_call_reachable,
0917               bpf_prog->aux->func_idx != 0);
0918     push_callee_regs(&prog, callee_regs_used);
0919 
0920     ilen = prog - temp;
0921     if (rw_image)
0922         memcpy(rw_image + proglen, temp, ilen);
0923     proglen += ilen;
0924     addrs[0] = proglen;
0925     prog = temp;
0926 
0927     for (i = 1; i <= insn_cnt; i++, insn++) {
0928         const s32 imm32 = insn->imm;
0929         u32 dst_reg = insn->dst_reg;
0930         u32 src_reg = insn->src_reg;
0931         u8 b2 = 0, b3 = 0;
0932         u8 *start_of_ldx;
0933         s64 jmp_offset;
0934         u8 jmp_cond;
0935         u8 *func;
0936         int nops;
0937 
0938         switch (insn->code) {
0939             /* ALU */
0940         case BPF_ALU | BPF_ADD | BPF_X:
0941         case BPF_ALU | BPF_SUB | BPF_X:
0942         case BPF_ALU | BPF_AND | BPF_X:
0943         case BPF_ALU | BPF_OR | BPF_X:
0944         case BPF_ALU | BPF_XOR | BPF_X:
0945         case BPF_ALU64 | BPF_ADD | BPF_X:
0946         case BPF_ALU64 | BPF_SUB | BPF_X:
0947         case BPF_ALU64 | BPF_AND | BPF_X:
0948         case BPF_ALU64 | BPF_OR | BPF_X:
0949         case BPF_ALU64 | BPF_XOR | BPF_X:
0950             maybe_emit_mod(&prog, dst_reg, src_reg,
0951                        BPF_CLASS(insn->code) == BPF_ALU64);
0952             b2 = simple_alu_opcodes[BPF_OP(insn->code)];
0953             EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
0954             break;
0955 
0956         case BPF_ALU64 | BPF_MOV | BPF_X:
0957         case BPF_ALU | BPF_MOV | BPF_X:
0958             emit_mov_reg(&prog,
0959                      BPF_CLASS(insn->code) == BPF_ALU64,
0960                      dst_reg, src_reg);
0961             break;
0962 
0963             /* neg dst */
0964         case BPF_ALU | BPF_NEG:
0965         case BPF_ALU64 | BPF_NEG:
0966             maybe_emit_1mod(&prog, dst_reg,
0967                     BPF_CLASS(insn->code) == BPF_ALU64);
0968             EMIT2(0xF7, add_1reg(0xD8, dst_reg));
0969             break;
0970 
0971         case BPF_ALU | BPF_ADD | BPF_K:
0972         case BPF_ALU | BPF_SUB | BPF_K:
0973         case BPF_ALU | BPF_AND | BPF_K:
0974         case BPF_ALU | BPF_OR | BPF_K:
0975         case BPF_ALU | BPF_XOR | BPF_K:
0976         case BPF_ALU64 | BPF_ADD | BPF_K:
0977         case BPF_ALU64 | BPF_SUB | BPF_K:
0978         case BPF_ALU64 | BPF_AND | BPF_K:
0979         case BPF_ALU64 | BPF_OR | BPF_K:
0980         case BPF_ALU64 | BPF_XOR | BPF_K:
0981             maybe_emit_1mod(&prog, dst_reg,
0982                     BPF_CLASS(insn->code) == BPF_ALU64);
0983 
0984             /*
0985              * b3 holds 'normal' opcode, b2 short form only valid
0986              * in case dst is eax/rax.
0987              */
0988             switch (BPF_OP(insn->code)) {
0989             case BPF_ADD:
0990                 b3 = 0xC0;
0991                 b2 = 0x05;
0992                 break;
0993             case BPF_SUB:
0994                 b3 = 0xE8;
0995                 b2 = 0x2D;
0996                 break;
0997             case BPF_AND:
0998                 b3 = 0xE0;
0999                 b2 = 0x25;
1000                 break;
1001             case BPF_OR:
1002                 b3 = 0xC8;
1003                 b2 = 0x0D;
1004                 break;
1005             case BPF_XOR:
1006                 b3 = 0xF0;
1007                 b2 = 0x35;
1008                 break;
1009             }
1010 
1011             if (is_imm8(imm32))
1012                 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1013             else if (is_axreg(dst_reg))
1014                 EMIT1_off32(b2, imm32);
1015             else
1016                 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1017             break;
1018 
1019         case BPF_ALU64 | BPF_MOV | BPF_K:
1020         case BPF_ALU | BPF_MOV | BPF_K:
1021             emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1022                        dst_reg, imm32);
1023             break;
1024 
1025         case BPF_LD | BPF_IMM | BPF_DW:
1026             emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1027             insn++;
1028             i++;
1029             break;
1030 
1031             /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1032         case BPF_ALU | BPF_MOD | BPF_X:
1033         case BPF_ALU | BPF_DIV | BPF_X:
1034         case BPF_ALU | BPF_MOD | BPF_K:
1035         case BPF_ALU | BPF_DIV | BPF_K:
1036         case BPF_ALU64 | BPF_MOD | BPF_X:
1037         case BPF_ALU64 | BPF_DIV | BPF_X:
1038         case BPF_ALU64 | BPF_MOD | BPF_K:
1039         case BPF_ALU64 | BPF_DIV | BPF_K: {
1040             bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1041 
1042             if (dst_reg != BPF_REG_0)
1043                 EMIT1(0x50); /* push rax */
1044             if (dst_reg != BPF_REG_3)
1045                 EMIT1(0x52); /* push rdx */
1046 
1047             if (BPF_SRC(insn->code) == BPF_X) {
1048                 if (src_reg == BPF_REG_0 ||
1049                     src_reg == BPF_REG_3) {
1050                     /* mov r11, src_reg */
1051                     EMIT_mov(AUX_REG, src_reg);
1052                     src_reg = AUX_REG;
1053                 }
1054             } else {
1055                 /* mov r11, imm32 */
1056                 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1057                 src_reg = AUX_REG;
1058             }
1059 
1060             if (dst_reg != BPF_REG_0)
1061                 /* mov rax, dst_reg */
1062                 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1063 
1064             /*
1065              * xor edx, edx
1066              * equivalent to 'xor rdx, rdx', but one byte less
1067              */
1068             EMIT2(0x31, 0xd2);
1069 
1070             /* div src_reg */
1071             maybe_emit_1mod(&prog, src_reg, is64);
1072             EMIT2(0xF7, add_1reg(0xF0, src_reg));
1073 
1074             if (BPF_OP(insn->code) == BPF_MOD &&
1075                 dst_reg != BPF_REG_3)
1076                 /* mov dst_reg, rdx */
1077                 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1078             else if (BPF_OP(insn->code) == BPF_DIV &&
1079                  dst_reg != BPF_REG_0)
1080                 /* mov dst_reg, rax */
1081                 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1082 
1083             if (dst_reg != BPF_REG_3)
1084                 EMIT1(0x5A); /* pop rdx */
1085             if (dst_reg != BPF_REG_0)
1086                 EMIT1(0x58); /* pop rax */
1087             break;
1088         }
1089 
1090         case BPF_ALU | BPF_MUL | BPF_K:
1091         case BPF_ALU64 | BPF_MUL | BPF_K:
1092             maybe_emit_mod(&prog, dst_reg, dst_reg,
1093                        BPF_CLASS(insn->code) == BPF_ALU64);
1094 
1095             if (is_imm8(imm32))
1096                 /* imul dst_reg, dst_reg, imm8 */
1097                 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1098                       imm32);
1099             else
1100                 /* imul dst_reg, dst_reg, imm32 */
1101                 EMIT2_off32(0x69,
1102                         add_2reg(0xC0, dst_reg, dst_reg),
1103                         imm32);
1104             break;
1105 
1106         case BPF_ALU | BPF_MUL | BPF_X:
1107         case BPF_ALU64 | BPF_MUL | BPF_X:
1108             maybe_emit_mod(&prog, src_reg, dst_reg,
1109                        BPF_CLASS(insn->code) == BPF_ALU64);
1110 
1111             /* imul dst_reg, src_reg */
1112             EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1113             break;
1114 
1115             /* Shifts */
1116         case BPF_ALU | BPF_LSH | BPF_K:
1117         case BPF_ALU | BPF_RSH | BPF_K:
1118         case BPF_ALU | BPF_ARSH | BPF_K:
1119         case BPF_ALU64 | BPF_LSH | BPF_K:
1120         case BPF_ALU64 | BPF_RSH | BPF_K:
1121         case BPF_ALU64 | BPF_ARSH | BPF_K:
1122             maybe_emit_1mod(&prog, dst_reg,
1123                     BPF_CLASS(insn->code) == BPF_ALU64);
1124 
1125             b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1126             if (imm32 == 1)
1127                 EMIT2(0xD1, add_1reg(b3, dst_reg));
1128             else
1129                 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1130             break;
1131 
1132         case BPF_ALU | BPF_LSH | BPF_X:
1133         case BPF_ALU | BPF_RSH | BPF_X:
1134         case BPF_ALU | BPF_ARSH | BPF_X:
1135         case BPF_ALU64 | BPF_LSH | BPF_X:
1136         case BPF_ALU64 | BPF_RSH | BPF_X:
1137         case BPF_ALU64 | BPF_ARSH | BPF_X:
1138 
1139             /* Check for bad case when dst_reg == rcx */
1140             if (dst_reg == BPF_REG_4) {
1141                 /* mov r11, dst_reg */
1142                 EMIT_mov(AUX_REG, dst_reg);
1143                 dst_reg = AUX_REG;
1144             }
1145 
1146             if (src_reg != BPF_REG_4) { /* common case */
1147                 EMIT1(0x51); /* push rcx */
1148 
1149                 /* mov rcx, src_reg */
1150                 EMIT_mov(BPF_REG_4, src_reg);
1151             }
1152 
1153             /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1154             maybe_emit_1mod(&prog, dst_reg,
1155                     BPF_CLASS(insn->code) == BPF_ALU64);
1156 
1157             b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1158             EMIT2(0xD3, add_1reg(b3, dst_reg));
1159 
1160             if (src_reg != BPF_REG_4)
1161                 EMIT1(0x59); /* pop rcx */
1162 
1163             if (insn->dst_reg == BPF_REG_4)
1164                 /* mov dst_reg, r11 */
1165                 EMIT_mov(insn->dst_reg, AUX_REG);
1166             break;
1167 
1168         case BPF_ALU | BPF_END | BPF_FROM_BE:
1169             switch (imm32) {
1170             case 16:
1171                 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1172                 EMIT1(0x66);
1173                 if (is_ereg(dst_reg))
1174                     EMIT1(0x41);
1175                 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1176 
1177                 /* Emit 'movzwl eax, ax' */
1178                 if (is_ereg(dst_reg))
1179                     EMIT3(0x45, 0x0F, 0xB7);
1180                 else
1181                     EMIT2(0x0F, 0xB7);
1182                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1183                 break;
1184             case 32:
1185                 /* Emit 'bswap eax' to swap lower 4 bytes */
1186                 if (is_ereg(dst_reg))
1187                     EMIT2(0x41, 0x0F);
1188                 else
1189                     EMIT1(0x0F);
1190                 EMIT1(add_1reg(0xC8, dst_reg));
1191                 break;
1192             case 64:
1193                 /* Emit 'bswap rax' to swap 8 bytes */
1194                 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1195                       add_1reg(0xC8, dst_reg));
1196                 break;
1197             }
1198             break;
1199 
1200         case BPF_ALU | BPF_END | BPF_FROM_LE:
1201             switch (imm32) {
1202             case 16:
1203                 /*
1204                  * Emit 'movzwl eax, ax' to zero extend 16-bit
1205                  * into 64 bit
1206                  */
1207                 if (is_ereg(dst_reg))
1208                     EMIT3(0x45, 0x0F, 0xB7);
1209                 else
1210                     EMIT2(0x0F, 0xB7);
1211                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1212                 break;
1213             case 32:
1214                 /* Emit 'mov eax, eax' to clear upper 32-bits */
1215                 if (is_ereg(dst_reg))
1216                     EMIT1(0x45);
1217                 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1218                 break;
1219             case 64:
1220                 /* nop */
1221                 break;
1222             }
1223             break;
1224 
1225             /* speculation barrier */
1226         case BPF_ST | BPF_NOSPEC:
1227             if (boot_cpu_has(X86_FEATURE_XMM2))
1228                 EMIT_LFENCE();
1229             break;
1230 
1231             /* ST: *(u8*)(dst_reg + off) = imm */
1232         case BPF_ST | BPF_MEM | BPF_B:
1233             if (is_ereg(dst_reg))
1234                 EMIT2(0x41, 0xC6);
1235             else
1236                 EMIT1(0xC6);
1237             goto st;
1238         case BPF_ST | BPF_MEM | BPF_H:
1239             if (is_ereg(dst_reg))
1240                 EMIT3(0x66, 0x41, 0xC7);
1241             else
1242                 EMIT2(0x66, 0xC7);
1243             goto st;
1244         case BPF_ST | BPF_MEM | BPF_W:
1245             if (is_ereg(dst_reg))
1246                 EMIT2(0x41, 0xC7);
1247             else
1248                 EMIT1(0xC7);
1249             goto st;
1250         case BPF_ST | BPF_MEM | BPF_DW:
1251             EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1252 
1253 st:         if (is_imm8(insn->off))
1254                 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1255             else
1256                 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1257 
1258             EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1259             break;
1260 
1261             /* STX: *(u8*)(dst_reg + off) = src_reg */
1262         case BPF_STX | BPF_MEM | BPF_B:
1263         case BPF_STX | BPF_MEM | BPF_H:
1264         case BPF_STX | BPF_MEM | BPF_W:
1265         case BPF_STX | BPF_MEM | BPF_DW:
1266             emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1267             break;
1268 
1269             /* LDX: dst_reg = *(u8*)(src_reg + off) */
1270         case BPF_LDX | BPF_MEM | BPF_B:
1271         case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1272         case BPF_LDX | BPF_MEM | BPF_H:
1273         case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1274         case BPF_LDX | BPF_MEM | BPF_W:
1275         case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1276         case BPF_LDX | BPF_MEM | BPF_DW:
1277         case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1278             if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1279                 /* Though the verifier prevents negative insn->off in BPF_PROBE_MEM
1280                  * add abs(insn->off) to the limit to make sure that negative
1281                  * offset won't be an issue.
1282                  * insn->off is s16, so it won't affect valid pointers.
1283                  */
1284                 u64 limit = TASK_SIZE_MAX + PAGE_SIZE + abs(insn->off);
1285                 u8 *end_of_jmp1, *end_of_jmp2;
1286 
1287                 /* Conservatively check that src_reg + insn->off is a kernel address:
1288                  * 1. src_reg + insn->off >= limit
1289                  * 2. src_reg + insn->off doesn't become small positive.
1290                  * Cannot do src_reg + insn->off >= limit in one branch,
1291                  * since it needs two spare registers, but JIT has only one.
1292                  */
1293 
1294                 /* movabsq r11, limit */
1295                 EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1296                 EMIT((u32)limit, 4);
1297                 EMIT(limit >> 32, 4);
1298                 /* cmp src_reg, r11 */
1299                 maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1300                 EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1301                 /* if unsigned '<' goto end_of_jmp2 */
1302                 EMIT2(X86_JB, 0);
1303                 end_of_jmp1 = prog;
1304 
1305                 /* mov r11, src_reg */
1306                 emit_mov_reg(&prog, true, AUX_REG, src_reg);
1307                 /* add r11, insn->off */
1308                 maybe_emit_1mod(&prog, AUX_REG, true);
1309                 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
1310                 /* jmp if not carry to start_of_ldx
1311                  * Otherwise ERR_PTR(-EINVAL) + 128 will be the user addr
1312                  * that has to be rejected.
1313                  */
1314                 EMIT2(0x73 /* JNC */, 0);
1315                 end_of_jmp2 = prog;
1316 
1317                 /* xor dst_reg, dst_reg */
1318                 emit_mov_imm32(&prog, false, dst_reg, 0);
1319                 /* jmp byte_after_ldx */
1320                 EMIT2(0xEB, 0);
1321 
1322                 /* populate jmp_offset for JB above to jump to xor dst_reg */
1323                 end_of_jmp1[-1] = end_of_jmp2 - end_of_jmp1;
1324                 /* populate jmp_offset for JNC above to jump to start_of_ldx */
1325                 start_of_ldx = prog;
1326                 end_of_jmp2[-1] = start_of_ldx - end_of_jmp2;
1327             }
1328             emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1329             if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1330                 struct exception_table_entry *ex;
1331                 u8 *_insn = image + proglen + (start_of_ldx - temp);
1332                 s64 delta;
1333 
1334                 /* populate jmp_offset for JMP above */
1335                 start_of_ldx[-1] = prog - start_of_ldx;
1336 
1337                 if (!bpf_prog->aux->extable)
1338                     break;
1339 
1340                 if (excnt >= bpf_prog->aux->num_exentries) {
1341                     pr_err("ex gen bug\n");
1342                     return -EFAULT;
1343                 }
1344                 ex = &bpf_prog->aux->extable[excnt++];
1345 
1346                 delta = _insn - (u8 *)&ex->insn;
1347                 if (!is_simm32(delta)) {
1348                     pr_err("extable->insn doesn't fit into 32-bit\n");
1349                     return -EFAULT;
1350                 }
1351                 /* switch ex to rw buffer for writes */
1352                 ex = (void *)rw_image + ((void *)ex - (void *)image);
1353 
1354                 ex->insn = delta;
1355 
1356                 ex->data = EX_TYPE_BPF;
1357 
1358                 if (dst_reg > BPF_REG_9) {
1359                     pr_err("verifier error\n");
1360                     return -EFAULT;
1361                 }
1362                 /*
1363                  * Compute size of x86 insn and its target dest x86 register.
1364                  * ex_handler_bpf() will use lower 8 bits to adjust
1365                  * pt_regs->ip to jump over this x86 instruction
1366                  * and upper bits to figure out which pt_regs to zero out.
1367                  * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1368                  * of 4 bytes will be ignored and rbx will be zero inited.
1369                  */
1370                 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1371             }
1372             break;
1373 
1374         case BPF_STX | BPF_ATOMIC | BPF_W:
1375         case BPF_STX | BPF_ATOMIC | BPF_DW:
1376             if (insn->imm == (BPF_AND | BPF_FETCH) ||
1377                 insn->imm == (BPF_OR | BPF_FETCH) ||
1378                 insn->imm == (BPF_XOR | BPF_FETCH)) {
1379                 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1380                 u32 real_src_reg = src_reg;
1381                 u32 real_dst_reg = dst_reg;
1382                 u8 *branch_target;
1383 
1384                 /*
1385                  * Can't be implemented with a single x86 insn.
1386                  * Need to do a CMPXCHG loop.
1387                  */
1388 
1389                 /* Will need RAX as a CMPXCHG operand so save R0 */
1390                 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1391                 if (src_reg == BPF_REG_0)
1392                     real_src_reg = BPF_REG_AX;
1393                 if (dst_reg == BPF_REG_0)
1394                     real_dst_reg = BPF_REG_AX;
1395 
1396                 branch_target = prog;
1397                 /* Load old value */
1398                 emit_ldx(&prog, BPF_SIZE(insn->code),
1399                      BPF_REG_0, real_dst_reg, insn->off);
1400                 /*
1401                  * Perform the (commutative) operation locally,
1402                  * put the result in the AUX_REG.
1403                  */
1404                 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1405                 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1406                 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1407                       add_2reg(0xC0, AUX_REG, real_src_reg));
1408                 /* Attempt to swap in new value */
1409                 err = emit_atomic(&prog, BPF_CMPXCHG,
1410                           real_dst_reg, AUX_REG,
1411                           insn->off,
1412                           BPF_SIZE(insn->code));
1413                 if (WARN_ON(err))
1414                     return err;
1415                 /*
1416                  * ZF tells us whether we won the race. If it's
1417                  * cleared we need to try again.
1418                  */
1419                 EMIT2(X86_JNE, -(prog - branch_target) - 2);
1420                 /* Return the pre-modification value */
1421                 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1422                 /* Restore R0 after clobbering RAX */
1423                 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1424                 break;
1425             }
1426 
1427             err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1428                       insn->off, BPF_SIZE(insn->code));
1429             if (err)
1430                 return err;
1431             break;
1432 
1433             /* call */
1434         case BPF_JMP | BPF_CALL:
1435             func = (u8 *) __bpf_call_base + imm32;
1436             if (tail_call_reachable) {
1437                 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1438                 EMIT3_off32(0x48, 0x8B, 0x85,
1439                         -round_up(bpf_prog->aux->stack_depth, 8) - 8);
1440                 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1441                     return -EINVAL;
1442             } else {
1443                 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1444                     return -EINVAL;
1445             }
1446             break;
1447 
1448         case BPF_JMP | BPF_TAIL_CALL:
1449             if (imm32)
1450                 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1451                               &prog, image + addrs[i - 1],
1452                               callee_regs_used,
1453                               bpf_prog->aux->stack_depth,
1454                               ctx);
1455             else
1456                 emit_bpf_tail_call_indirect(&prog,
1457                                 callee_regs_used,
1458                                 bpf_prog->aux->stack_depth,
1459                                 image + addrs[i - 1],
1460                                 ctx);
1461             break;
1462 
1463             /* cond jump */
1464         case BPF_JMP | BPF_JEQ | BPF_X:
1465         case BPF_JMP | BPF_JNE | BPF_X:
1466         case BPF_JMP | BPF_JGT | BPF_X:
1467         case BPF_JMP | BPF_JLT | BPF_X:
1468         case BPF_JMP | BPF_JGE | BPF_X:
1469         case BPF_JMP | BPF_JLE | BPF_X:
1470         case BPF_JMP | BPF_JSGT | BPF_X:
1471         case BPF_JMP | BPF_JSLT | BPF_X:
1472         case BPF_JMP | BPF_JSGE | BPF_X:
1473         case BPF_JMP | BPF_JSLE | BPF_X:
1474         case BPF_JMP32 | BPF_JEQ | BPF_X:
1475         case BPF_JMP32 | BPF_JNE | BPF_X:
1476         case BPF_JMP32 | BPF_JGT | BPF_X:
1477         case BPF_JMP32 | BPF_JLT | BPF_X:
1478         case BPF_JMP32 | BPF_JGE | BPF_X:
1479         case BPF_JMP32 | BPF_JLE | BPF_X:
1480         case BPF_JMP32 | BPF_JSGT | BPF_X:
1481         case BPF_JMP32 | BPF_JSLT | BPF_X:
1482         case BPF_JMP32 | BPF_JSGE | BPF_X:
1483         case BPF_JMP32 | BPF_JSLE | BPF_X:
1484             /* cmp dst_reg, src_reg */
1485             maybe_emit_mod(&prog, dst_reg, src_reg,
1486                        BPF_CLASS(insn->code) == BPF_JMP);
1487             EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1488             goto emit_cond_jmp;
1489 
1490         case BPF_JMP | BPF_JSET | BPF_X:
1491         case BPF_JMP32 | BPF_JSET | BPF_X:
1492             /* test dst_reg, src_reg */
1493             maybe_emit_mod(&prog, dst_reg, src_reg,
1494                        BPF_CLASS(insn->code) == BPF_JMP);
1495             EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1496             goto emit_cond_jmp;
1497 
1498         case BPF_JMP | BPF_JSET | BPF_K:
1499         case BPF_JMP32 | BPF_JSET | BPF_K:
1500             /* test dst_reg, imm32 */
1501             maybe_emit_1mod(&prog, dst_reg,
1502                     BPF_CLASS(insn->code) == BPF_JMP);
1503             EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1504             goto emit_cond_jmp;
1505 
1506         case BPF_JMP | BPF_JEQ | BPF_K:
1507         case BPF_JMP | BPF_JNE | BPF_K:
1508         case BPF_JMP | BPF_JGT | BPF_K:
1509         case BPF_JMP | BPF_JLT | BPF_K:
1510         case BPF_JMP | BPF_JGE | BPF_K:
1511         case BPF_JMP | BPF_JLE | BPF_K:
1512         case BPF_JMP | BPF_JSGT | BPF_K:
1513         case BPF_JMP | BPF_JSLT | BPF_K:
1514         case BPF_JMP | BPF_JSGE | BPF_K:
1515         case BPF_JMP | BPF_JSLE | BPF_K:
1516         case BPF_JMP32 | BPF_JEQ | BPF_K:
1517         case BPF_JMP32 | BPF_JNE | BPF_K:
1518         case BPF_JMP32 | BPF_JGT | BPF_K:
1519         case BPF_JMP32 | BPF_JLT | BPF_K:
1520         case BPF_JMP32 | BPF_JGE | BPF_K:
1521         case BPF_JMP32 | BPF_JLE | BPF_K:
1522         case BPF_JMP32 | BPF_JSGT | BPF_K:
1523         case BPF_JMP32 | BPF_JSLT | BPF_K:
1524         case BPF_JMP32 | BPF_JSGE | BPF_K:
1525         case BPF_JMP32 | BPF_JSLE | BPF_K:
1526             /* test dst_reg, dst_reg to save one extra byte */
1527             if (imm32 == 0) {
1528                 maybe_emit_mod(&prog, dst_reg, dst_reg,
1529                            BPF_CLASS(insn->code) == BPF_JMP);
1530                 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1531                 goto emit_cond_jmp;
1532             }
1533 
1534             /* cmp dst_reg, imm8/32 */
1535             maybe_emit_1mod(&prog, dst_reg,
1536                     BPF_CLASS(insn->code) == BPF_JMP);
1537 
1538             if (is_imm8(imm32))
1539                 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1540             else
1541                 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1542 
1543 emit_cond_jmp:      /* Convert BPF opcode to x86 */
1544             switch (BPF_OP(insn->code)) {
1545             case BPF_JEQ:
1546                 jmp_cond = X86_JE;
1547                 break;
1548             case BPF_JSET:
1549             case BPF_JNE:
1550                 jmp_cond = X86_JNE;
1551                 break;
1552             case BPF_JGT:
1553                 /* GT is unsigned '>', JA in x86 */
1554                 jmp_cond = X86_JA;
1555                 break;
1556             case BPF_JLT:
1557                 /* LT is unsigned '<', JB in x86 */
1558                 jmp_cond = X86_JB;
1559                 break;
1560             case BPF_JGE:
1561                 /* GE is unsigned '>=', JAE in x86 */
1562                 jmp_cond = X86_JAE;
1563                 break;
1564             case BPF_JLE:
1565                 /* LE is unsigned '<=', JBE in x86 */
1566                 jmp_cond = X86_JBE;
1567                 break;
1568             case BPF_JSGT:
1569                 /* Signed '>', GT in x86 */
1570                 jmp_cond = X86_JG;
1571                 break;
1572             case BPF_JSLT:
1573                 /* Signed '<', LT in x86 */
1574                 jmp_cond = X86_JL;
1575                 break;
1576             case BPF_JSGE:
1577                 /* Signed '>=', GE in x86 */
1578                 jmp_cond = X86_JGE;
1579                 break;
1580             case BPF_JSLE:
1581                 /* Signed '<=', LE in x86 */
1582                 jmp_cond = X86_JLE;
1583                 break;
1584             default: /* to silence GCC warning */
1585                 return -EFAULT;
1586             }
1587             jmp_offset = addrs[i + insn->off] - addrs[i];
1588             if (is_imm8(jmp_offset)) {
1589                 if (jmp_padding) {
1590                     /* To keep the jmp_offset valid, the extra bytes are
1591                      * padded before the jump insn, so we subtract the
1592                      * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1593                      *
1594                      * If the previous pass already emits an imm8
1595                      * jmp_cond, then this BPF insn won't shrink, so
1596                      * "nops" is 0.
1597                      *
1598                      * On the other hand, if the previous pass emits an
1599                      * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1600                      * keep the image from shrinking further.
1601                      *
1602                      * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1603                      *     is 2 bytes, so the size difference is 4 bytes.
1604                      */
1605                     nops = INSN_SZ_DIFF - 2;
1606                     if (nops != 0 && nops != 4) {
1607                         pr_err("unexpected jmp_cond padding: %d bytes\n",
1608                                nops);
1609                         return -EFAULT;
1610                     }
1611                     emit_nops(&prog, nops);
1612                 }
1613                 EMIT2(jmp_cond, jmp_offset);
1614             } else if (is_simm32(jmp_offset)) {
1615                 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1616             } else {
1617                 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1618                 return -EFAULT;
1619             }
1620 
1621             break;
1622 
1623         case BPF_JMP | BPF_JA:
1624             if (insn->off == -1)
1625                 /* -1 jmp instructions will always jump
1626                  * backwards two bytes. Explicitly handling
1627                  * this case avoids wasting too many passes
1628                  * when there are long sequences of replaced
1629                  * dead code.
1630                  */
1631                 jmp_offset = -2;
1632             else
1633                 jmp_offset = addrs[i + insn->off] - addrs[i];
1634 
1635             if (!jmp_offset) {
1636                 /*
1637                  * If jmp_padding is enabled, the extra nops will
1638                  * be inserted. Otherwise, optimize out nop jumps.
1639                  */
1640                 if (jmp_padding) {
1641                     /* There are 3 possible conditions.
1642                      * (1) This BPF_JA is already optimized out in
1643                      *     the previous run, so there is no need
1644                      *     to pad any extra byte (0 byte).
1645                      * (2) The previous pass emits an imm8 jmp,
1646                      *     so we pad 2 bytes to match the previous
1647                      *     insn size.
1648                      * (3) Similarly, the previous pass emits an
1649                      *     imm32 jmp, and 5 bytes is padded.
1650                      */
1651                     nops = INSN_SZ_DIFF;
1652                     if (nops != 0 && nops != 2 && nops != 5) {
1653                         pr_err("unexpected nop jump padding: %d bytes\n",
1654                                nops);
1655                         return -EFAULT;
1656                     }
1657                     emit_nops(&prog, nops);
1658                 }
1659                 break;
1660             }
1661 emit_jmp:
1662             if (is_imm8(jmp_offset)) {
1663                 if (jmp_padding) {
1664                     /* To avoid breaking jmp_offset, the extra bytes
1665                      * are padded before the actual jmp insn, so
1666                      * 2 bytes is subtracted from INSN_SZ_DIFF.
1667                      *
1668                      * If the previous pass already emits an imm8
1669                      * jmp, there is nothing to pad (0 byte).
1670                      *
1671                      * If it emits an imm32 jmp (5 bytes) previously
1672                      * and now an imm8 jmp (2 bytes), then we pad
1673                      * (5 - 2 = 3) bytes to stop the image from
1674                      * shrinking further.
1675                      */
1676                     nops = INSN_SZ_DIFF - 2;
1677                     if (nops != 0 && nops != 3) {
1678                         pr_err("unexpected jump padding: %d bytes\n",
1679                                nops);
1680                         return -EFAULT;
1681                     }
1682                     emit_nops(&prog, INSN_SZ_DIFF - 2);
1683                 }
1684                 EMIT2(0xEB, jmp_offset);
1685             } else if (is_simm32(jmp_offset)) {
1686                 EMIT1_off32(0xE9, jmp_offset);
1687             } else {
1688                 pr_err("jmp gen bug %llx\n", jmp_offset);
1689                 return -EFAULT;
1690             }
1691             break;
1692 
1693         case BPF_JMP | BPF_EXIT:
1694             if (seen_exit) {
1695                 jmp_offset = ctx->cleanup_addr - addrs[i];
1696                 goto emit_jmp;
1697             }
1698             seen_exit = true;
1699             /* Update cleanup_addr */
1700             ctx->cleanup_addr = proglen;
1701             pop_callee_regs(&prog, callee_regs_used);
1702             EMIT1(0xC9);         /* leave */
1703             emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1704             break;
1705 
1706         default:
1707             /*
1708              * By design x86-64 JIT should support all BPF instructions.
1709              * This error will be seen if new instruction was added
1710              * to the interpreter, but not to the JIT, or if there is
1711              * junk in bpf_prog.
1712              */
1713             pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1714             return -EINVAL;
1715         }
1716 
1717         ilen = prog - temp;
1718         if (ilen > BPF_MAX_INSN_SIZE) {
1719             pr_err("bpf_jit: fatal insn size error\n");
1720             return -EFAULT;
1721         }
1722 
1723         if (image) {
1724             /*
1725              * When populating the image, assert that:
1726              *
1727              *  i) We do not write beyond the allocated space, and
1728              * ii) addrs[i] did not change from the prior run, in order
1729              *     to validate assumptions made for computing branch
1730              *     displacements.
1731              */
1732             if (unlikely(proglen + ilen > oldproglen ||
1733                      proglen + ilen != addrs[i])) {
1734                 pr_err("bpf_jit: fatal error\n");
1735                 return -EFAULT;
1736             }
1737             memcpy(rw_image + proglen, temp, ilen);
1738         }
1739         proglen += ilen;
1740         addrs[i] = proglen;
1741         prog = temp;
1742     }
1743 
1744     if (image && excnt != bpf_prog->aux->num_exentries) {
1745         pr_err("extable is not populated\n");
1746         return -EFAULT;
1747     }
1748     return proglen;
1749 }
1750 
1751 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1752               int stack_size)
1753 {
1754     int i;
1755     /* Store function arguments to stack.
1756      * For a function that accepts two pointers the sequence will be:
1757      * mov QWORD PTR [rbp-0x10],rdi
1758      * mov QWORD PTR [rbp-0x8],rsi
1759      */
1760     for (i = 0; i < min(nr_args, 6); i++)
1761         emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1762              BPF_REG_FP,
1763              i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1764              -(stack_size - i * 8));
1765 }
1766 
1767 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1768              int stack_size)
1769 {
1770     int i;
1771 
1772     /* Restore function arguments from stack.
1773      * For a function that accepts two pointers the sequence will be:
1774      * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1775      * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1776      */
1777     for (i = 0; i < min(nr_args, 6); i++)
1778         emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1779              i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1780              BPF_REG_FP,
1781              -(stack_size - i * 8));
1782 }
1783 
1784 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1785                struct bpf_tramp_link *l, int stack_size,
1786                int run_ctx_off, bool save_ret)
1787 {
1788     void (*exit)(struct bpf_prog *prog, u64 start,
1789              struct bpf_tramp_run_ctx *run_ctx) = __bpf_prog_exit;
1790     u64 (*enter)(struct bpf_prog *prog,
1791              struct bpf_tramp_run_ctx *run_ctx) = __bpf_prog_enter;
1792     u8 *prog = *pprog;
1793     u8 *jmp_insn;
1794     int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
1795     struct bpf_prog *p = l->link.prog;
1796     u64 cookie = l->cookie;
1797 
1798     /* mov rdi, cookie */
1799     emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
1800 
1801     /* Prepare struct bpf_tramp_run_ctx.
1802      *
1803      * bpf_tramp_run_ctx is already preserved by
1804      * arch_prepare_bpf_trampoline().
1805      *
1806      * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
1807      */
1808     emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
1809 
1810     if (p->aux->sleepable) {
1811         enter = __bpf_prog_enter_sleepable;
1812         exit = __bpf_prog_exit_sleepable;
1813     } else if (p->expected_attach_type == BPF_LSM_CGROUP) {
1814         enter = __bpf_prog_enter_lsm_cgroup;
1815         exit = __bpf_prog_exit_lsm_cgroup;
1816     }
1817 
1818     /* arg1: mov rdi, progs[i] */
1819     emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1820     /* arg2: lea rsi, [rbp - ctx_cookie_off] */
1821     EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
1822 
1823     if (emit_call(&prog, enter, prog))
1824         return -EINVAL;
1825     /* remember prog start time returned by __bpf_prog_enter */
1826     emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1827 
1828     /* if (__bpf_prog_enter*(prog) == 0)
1829      *  goto skip_exec_of_prog;
1830      */
1831     EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
1832     /* emit 2 nops that will be replaced with JE insn */
1833     jmp_insn = prog;
1834     emit_nops(&prog, 2);
1835 
1836     /* arg1: lea rdi, [rbp - stack_size] */
1837     EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1838     /* arg2: progs[i]->insnsi for interpreter */
1839     if (!p->jited)
1840         emit_mov_imm64(&prog, BPF_REG_2,
1841                    (long) p->insnsi >> 32,
1842                    (u32) (long) p->insnsi);
1843     /* call JITed bpf program or interpreter */
1844     if (emit_call(&prog, p->bpf_func, prog))
1845         return -EINVAL;
1846 
1847     /*
1848      * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1849      * of the previous call which is then passed on the stack to
1850      * the next BPF program.
1851      *
1852      * BPF_TRAMP_FENTRY trampoline may need to return the return
1853      * value of BPF_PROG_TYPE_STRUCT_OPS prog.
1854      */
1855     if (save_ret)
1856         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1857 
1858     /* replace 2 nops with JE insn, since jmp target is known */
1859     jmp_insn[0] = X86_JE;
1860     jmp_insn[1] = prog - jmp_insn - 2;
1861 
1862     /* arg1: mov rdi, progs[i] */
1863     emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1864     /* arg2: mov rsi, rbx <- start time in nsec */
1865     emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1866     /* arg3: lea rdx, [rbp - run_ctx_off] */
1867     EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
1868     if (emit_call(&prog, exit, prog))
1869         return -EINVAL;
1870 
1871     *pprog = prog;
1872     return 0;
1873 }
1874 
1875 static void emit_align(u8 **pprog, u32 align)
1876 {
1877     u8 *target, *prog = *pprog;
1878 
1879     target = PTR_ALIGN(prog, align);
1880     if (target != prog)
1881         emit_nops(&prog, target - prog);
1882 
1883     *pprog = prog;
1884 }
1885 
1886 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1887 {
1888     u8 *prog = *pprog;
1889     s64 offset;
1890 
1891     offset = func - (ip + 2 + 4);
1892     if (!is_simm32(offset)) {
1893         pr_err("Target %p is out of range\n", func);
1894         return -EINVAL;
1895     }
1896     EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1897     *pprog = prog;
1898     return 0;
1899 }
1900 
1901 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1902               struct bpf_tramp_links *tl, int stack_size,
1903               int run_ctx_off, bool save_ret)
1904 {
1905     int i;
1906     u8 *prog = *pprog;
1907 
1908     for (i = 0; i < tl->nr_links; i++) {
1909         if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
1910                     run_ctx_off, save_ret))
1911             return -EINVAL;
1912     }
1913     *pprog = prog;
1914     return 0;
1915 }
1916 
1917 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1918                   struct bpf_tramp_links *tl, int stack_size,
1919                   int run_ctx_off, u8 **branches)
1920 {
1921     u8 *prog = *pprog;
1922     int i;
1923 
1924     /* The first fmod_ret program will receive a garbage return value.
1925      * Set this to 0 to avoid confusing the program.
1926      */
1927     emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1928     emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1929     for (i = 0; i < tl->nr_links; i++) {
1930         if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
1931             return -EINVAL;
1932 
1933         /* mod_ret prog stored return value into [rbp - 8]. Emit:
1934          * if (*(u64 *)(rbp - 8) !=  0)
1935          *  goto do_fexit;
1936          */
1937         /* cmp QWORD PTR [rbp - 0x8], 0x0 */
1938         EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1939 
1940         /* Save the location of the branch and Generate 6 nops
1941          * (4 bytes for an offset and 2 bytes for the jump) These nops
1942          * are replaced with a conditional jump once do_fexit (i.e. the
1943          * start of the fexit invocation) is finalized.
1944          */
1945         branches[i] = prog;
1946         emit_nops(&prog, 4 + 2);
1947     }
1948 
1949     *pprog = prog;
1950     return 0;
1951 }
1952 
1953 /* Example:
1954  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1955  * its 'struct btf_func_model' will be nr_args=2
1956  * The assembly code when eth_type_trans is executing after trampoline:
1957  *
1958  * push rbp
1959  * mov rbp, rsp
1960  * sub rsp, 16                     // space for skb and dev
1961  * push rbx                        // temp regs to pass start time
1962  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1963  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1964  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1965  * mov rbx, rax                    // remember start time in bpf stats are enabled
1966  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1967  * call addr_of_jited_FENTRY_prog
1968  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1969  * mov rsi, rbx                    // prog start time
1970  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1971  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1972  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1973  * pop rbx
1974  * leave
1975  * ret
1976  *
1977  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1978  * replaced with 'call generated_bpf_trampoline'. When it returns
1979  * eth_type_trans will continue executing with original skb and dev pointers.
1980  *
1981  * The assembly code when eth_type_trans is called from trampoline:
1982  *
1983  * push rbp
1984  * mov rbp, rsp
1985  * sub rsp, 24                     // space for skb, dev, return value
1986  * push rbx                        // temp regs to pass start time
1987  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1988  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1989  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1990  * mov rbx, rax                    // remember start time if bpf stats are enabled
1991  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1992  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1993  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1994  * mov rsi, rbx                    // prog start time
1995  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1996  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1997  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1998  * call eth_type_trans+5           // execute body of eth_type_trans
1999  * mov qword ptr [rbp - 8], rax    // save return value
2000  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2001  * mov rbx, rax                    // remember start time in bpf stats are enabled
2002  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2003  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2004  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2005  * mov rsi, rbx                    // prog start time
2006  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2007  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2008  * pop rbx
2009  * leave
2010  * add rsp, 8                      // skip eth_type_trans's frame
2011  * ret                             // return to its caller
2012  */
2013 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2014                 const struct btf_func_model *m, u32 flags,
2015                 struct bpf_tramp_links *tlinks,
2016                 void *orig_call)
2017 {
2018     int ret, i, nr_args = m->nr_args;
2019     int regs_off, ip_off, args_off, stack_size = nr_args * 8, run_ctx_off;
2020     struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2021     struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2022     struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2023     u8 **branches = NULL;
2024     u8 *prog;
2025     bool save_ret;
2026 
2027     /* x86-64 supports up to 6 arguments. 7+ can be added in the future */
2028     if (nr_args > 6)
2029         return -ENOTSUPP;
2030 
2031     /* Generated trampoline stack layout:
2032      *
2033      * RBP + 8         [ return address  ]
2034      * RBP + 0         [ RBP             ]
2035      *
2036      * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2037      *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2038      *
2039      *                 [ reg_argN        ]  always
2040      *                 [ ...             ]
2041      * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2042      *
2043      * RBP - args_off  [ args count      ]  always
2044      *
2045      * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2046      *
2047      * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2048      */
2049 
2050     /* room for return value of orig_call or fentry prog */
2051     save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2052     if (save_ret)
2053         stack_size += 8;
2054 
2055     regs_off = stack_size;
2056 
2057     /* args count  */
2058     stack_size += 8;
2059     args_off = stack_size;
2060 
2061     if (flags & BPF_TRAMP_F_IP_ARG)
2062         stack_size += 8; /* room for IP address argument */
2063 
2064     ip_off = stack_size;
2065 
2066     stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2067     run_ctx_off = stack_size;
2068 
2069     if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2070         /* skip patched call instruction and point orig_call to actual
2071          * body of the kernel function.
2072          */
2073         if (is_endbr(*(u32 *)orig_call))
2074             orig_call += ENDBR_INSN_SIZE;
2075         orig_call += X86_PATCH_SIZE;
2076     }
2077 
2078     prog = image;
2079 
2080     EMIT_ENDBR();
2081     EMIT1(0x55);         /* push rbp */
2082     EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2083     EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
2084     EMIT1(0x53);         /* push rbx */
2085 
2086     /* Store number of arguments of the traced function:
2087      *   mov rax, nr_args
2088      *   mov QWORD PTR [rbp - args_off], rax
2089      */
2090     emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_args);
2091     emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -args_off);
2092 
2093     if (flags & BPF_TRAMP_F_IP_ARG) {
2094         /* Store IP address of the traced function:
2095          * mov rax, QWORD PTR [rbp + 8]
2096          * sub rax, X86_PATCH_SIZE
2097          * mov QWORD PTR [rbp - ip_off], rax
2098          */
2099         emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2100         EMIT4(0x48, 0x83, 0xe8, X86_PATCH_SIZE);
2101         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2102     }
2103 
2104     save_regs(m, &prog, nr_args, regs_off);
2105 
2106     if (flags & BPF_TRAMP_F_CALL_ORIG) {
2107         /* arg1: mov rdi, im */
2108         emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2109         if (emit_call(&prog, __bpf_tramp_enter, prog)) {
2110             ret = -EINVAL;
2111             goto cleanup;
2112         }
2113     }
2114 
2115     if (fentry->nr_links)
2116         if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2117                    flags & BPF_TRAMP_F_RET_FENTRY_RET))
2118             return -EINVAL;
2119 
2120     if (fmod_ret->nr_links) {
2121         branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2122                    GFP_KERNEL);
2123         if (!branches)
2124             return -ENOMEM;
2125 
2126         if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2127                        run_ctx_off, branches)) {
2128             ret = -EINVAL;
2129             goto cleanup;
2130         }
2131     }
2132 
2133     if (flags & BPF_TRAMP_F_CALL_ORIG) {
2134         restore_regs(m, &prog, nr_args, regs_off);
2135 
2136         if (flags & BPF_TRAMP_F_ORIG_STACK) {
2137             emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2138             EMIT2(0xff, 0xd0); /* call *rax */
2139         } else {
2140             /* call original function */
2141             if (emit_call(&prog, orig_call, prog)) {
2142                 ret = -EINVAL;
2143                 goto cleanup;
2144             }
2145         }
2146         /* remember return value in a stack for bpf prog to access */
2147         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2148         im->ip_after_call = prog;
2149         memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2150         prog += X86_PATCH_SIZE;
2151     }
2152 
2153     if (fmod_ret->nr_links) {
2154         /* From Intel 64 and IA-32 Architectures Optimization
2155          * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2156          * Coding Rule 11: All branch targets should be 16-byte
2157          * aligned.
2158          */
2159         emit_align(&prog, 16);
2160         /* Update the branches saved in invoke_bpf_mod_ret with the
2161          * aligned address of do_fexit.
2162          */
2163         for (i = 0; i < fmod_ret->nr_links; i++)
2164             emit_cond_near_jump(&branches[i], prog, branches[i],
2165                         X86_JNE);
2166     }
2167 
2168     if (fexit->nr_links)
2169         if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2170             ret = -EINVAL;
2171             goto cleanup;
2172         }
2173 
2174     if (flags & BPF_TRAMP_F_RESTORE_REGS)
2175         restore_regs(m, &prog, nr_args, regs_off);
2176 
2177     /* This needs to be done regardless. If there were fmod_ret programs,
2178      * the return value is only updated on the stack and still needs to be
2179      * restored to R0.
2180      */
2181     if (flags & BPF_TRAMP_F_CALL_ORIG) {
2182         im->ip_epilogue = prog;
2183         /* arg1: mov rdi, im */
2184         emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2185         if (emit_call(&prog, __bpf_tramp_exit, prog)) {
2186             ret = -EINVAL;
2187             goto cleanup;
2188         }
2189     }
2190     /* restore return value of orig_call or fentry prog back into RAX */
2191     if (save_ret)
2192         emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2193 
2194     EMIT1(0x5B); /* pop rbx */
2195     EMIT1(0xC9); /* leave */
2196     if (flags & BPF_TRAMP_F_SKIP_FRAME)
2197         /* skip our return address and return to parent */
2198         EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2199     emit_return(&prog, prog);
2200     /* Make sure the trampoline generation logic doesn't overflow */
2201     if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2202         ret = -EFAULT;
2203         goto cleanup;
2204     }
2205     ret = prog - (u8 *)image;
2206 
2207 cleanup:
2208     kfree(branches);
2209     return ret;
2210 }
2211 
2212 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
2213 {
2214     u8 *jg_reloc, *prog = *pprog;
2215     int pivot, err, jg_bytes = 1;
2216     s64 jg_offset;
2217 
2218     if (a == b) {
2219         /* Leaf node of recursion, i.e. not a range of indices
2220          * anymore.
2221          */
2222         EMIT1(add_1mod(0x48, BPF_REG_3));   /* cmp rdx,func */
2223         if (!is_simm32(progs[a]))
2224             return -1;
2225         EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2226                 progs[a]);
2227         err = emit_cond_near_jump(&prog,    /* je func */
2228                       (void *)progs[a], prog,
2229                       X86_JE);
2230         if (err)
2231             return err;
2232 
2233         emit_indirect_jump(&prog, 2 /* rdx */, prog);
2234 
2235         *pprog = prog;
2236         return 0;
2237     }
2238 
2239     /* Not a leaf node, so we pivot, and recursively descend into
2240      * the lower and upper ranges.
2241      */
2242     pivot = (b - a) / 2;
2243     EMIT1(add_1mod(0x48, BPF_REG_3));       /* cmp rdx,func */
2244     if (!is_simm32(progs[a + pivot]))
2245         return -1;
2246     EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2247 
2248     if (pivot > 2) {                /* jg upper_part */
2249         /* Require near jump. */
2250         jg_bytes = 4;
2251         EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2252     } else {
2253         EMIT2(X86_JG, 0);
2254     }
2255     jg_reloc = prog;
2256 
2257     err = emit_bpf_dispatcher(&prog, a, a + pivot,  /* emit lower_part */
2258                   progs);
2259     if (err)
2260         return err;
2261 
2262     /* From Intel 64 and IA-32 Architectures Optimization
2263      * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2264      * Coding Rule 11: All branch targets should be 16-byte
2265      * aligned.
2266      */
2267     emit_align(&prog, 16);
2268     jg_offset = prog - jg_reloc;
2269     emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2270 
2271     err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
2272                   b, progs);
2273     if (err)
2274         return err;
2275 
2276     *pprog = prog;
2277     return 0;
2278 }
2279 
2280 static int cmp_ips(const void *a, const void *b)
2281 {
2282     const s64 *ipa = a;
2283     const s64 *ipb = b;
2284 
2285     if (*ipa > *ipb)
2286         return 1;
2287     if (*ipa < *ipb)
2288         return -1;
2289     return 0;
2290 }
2291 
2292 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
2293 {
2294     u8 *prog = image;
2295 
2296     sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2297     return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
2298 }
2299 
2300 struct x64_jit_data {
2301     struct bpf_binary_header *rw_header;
2302     struct bpf_binary_header *header;
2303     int *addrs;
2304     u8 *image;
2305     int proglen;
2306     struct jit_context ctx;
2307 };
2308 
2309 #define MAX_PASSES 20
2310 #define PADDING_PASSES (MAX_PASSES - 5)
2311 
2312 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2313 {
2314     struct bpf_binary_header *rw_header = NULL;
2315     struct bpf_binary_header *header = NULL;
2316     struct bpf_prog *tmp, *orig_prog = prog;
2317     struct x64_jit_data *jit_data;
2318     int proglen, oldproglen = 0;
2319     struct jit_context ctx = {};
2320     bool tmp_blinded = false;
2321     bool extra_pass = false;
2322     bool padding = false;
2323     u8 *rw_image = NULL;
2324     u8 *image = NULL;
2325     int *addrs;
2326     int pass;
2327     int i;
2328 
2329     if (!prog->jit_requested)
2330         return orig_prog;
2331 
2332     tmp = bpf_jit_blind_constants(prog);
2333     /*
2334      * If blinding was requested and we failed during blinding,
2335      * we must fall back to the interpreter.
2336      */
2337     if (IS_ERR(tmp))
2338         return orig_prog;
2339     if (tmp != prog) {
2340         tmp_blinded = true;
2341         prog = tmp;
2342     }
2343 
2344     jit_data = prog->aux->jit_data;
2345     if (!jit_data) {
2346         jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2347         if (!jit_data) {
2348             prog = orig_prog;
2349             goto out;
2350         }
2351         prog->aux->jit_data = jit_data;
2352     }
2353     addrs = jit_data->addrs;
2354     if (addrs) {
2355         ctx = jit_data->ctx;
2356         oldproglen = jit_data->proglen;
2357         image = jit_data->image;
2358         header = jit_data->header;
2359         rw_header = jit_data->rw_header;
2360         rw_image = (void *)rw_header + ((void *)image - (void *)header);
2361         extra_pass = true;
2362         padding = true;
2363         goto skip_init_addrs;
2364     }
2365     addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2366     if (!addrs) {
2367         prog = orig_prog;
2368         goto out_addrs;
2369     }
2370 
2371     /*
2372      * Before first pass, make a rough estimation of addrs[]
2373      * each BPF instruction is translated to less than 64 bytes
2374      */
2375     for (proglen = 0, i = 0; i <= prog->len; i++) {
2376         proglen += 64;
2377         addrs[i] = proglen;
2378     }
2379     ctx.cleanup_addr = proglen;
2380 skip_init_addrs:
2381 
2382     /*
2383      * JITed image shrinks with every pass and the loop iterates
2384      * until the image stops shrinking. Very large BPF programs
2385      * may converge on the last pass. In such case do one more
2386      * pass to emit the final image.
2387      */
2388     for (pass = 0; pass < MAX_PASSES || image; pass++) {
2389         if (!padding && pass >= PADDING_PASSES)
2390             padding = true;
2391         proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2392         if (proglen <= 0) {
2393 out_image:
2394             image = NULL;
2395             if (header) {
2396                 bpf_arch_text_copy(&header->size, &rw_header->size,
2397                            sizeof(rw_header->size));
2398                 bpf_jit_binary_pack_free(header, rw_header);
2399             }
2400             /* Fall back to interpreter mode */
2401             prog = orig_prog;
2402             if (extra_pass) {
2403                 prog->bpf_func = NULL;
2404                 prog->jited = 0;
2405                 prog->jited_len = 0;
2406             }
2407             goto out_addrs;
2408         }
2409         if (image) {
2410             if (proglen != oldproglen) {
2411                 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2412                        proglen, oldproglen);
2413                 goto out_image;
2414             }
2415             break;
2416         }
2417         if (proglen == oldproglen) {
2418             /*
2419              * The number of entries in extable is the number of BPF_LDX
2420              * insns that access kernel memory via "pointer to BTF type".
2421              * The verifier changed their opcode from LDX|MEM|size
2422              * to LDX|PROBE_MEM|size to make JITing easier.
2423              */
2424             u32 align = __alignof__(struct exception_table_entry);
2425             u32 extable_size = prog->aux->num_exentries *
2426                 sizeof(struct exception_table_entry);
2427 
2428             /* allocate module memory for x86 insns and extable */
2429             header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2430                                &image, align, &rw_header, &rw_image,
2431                                jit_fill_hole);
2432             if (!header) {
2433                 prog = orig_prog;
2434                 goto out_addrs;
2435             }
2436             prog->aux->extable = (void *) image + roundup(proglen, align);
2437         }
2438         oldproglen = proglen;
2439         cond_resched();
2440     }
2441 
2442     if (bpf_jit_enable > 1)
2443         bpf_jit_dump(prog->len, proglen, pass + 1, image);
2444 
2445     if (image) {
2446         if (!prog->is_func || extra_pass) {
2447             /*
2448              * bpf_jit_binary_pack_finalize fails in two scenarios:
2449              *   1) header is not pointing to proper module memory;
2450              *   2) the arch doesn't support bpf_arch_text_copy().
2451              *
2452              * Both cases are serious bugs and justify WARN_ON.
2453              */
2454             if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2455                 /* header has been freed */
2456                 header = NULL;
2457                 goto out_image;
2458             }
2459 
2460             bpf_tail_call_direct_fixup(prog);
2461         } else {
2462             jit_data->addrs = addrs;
2463             jit_data->ctx = ctx;
2464             jit_data->proglen = proglen;
2465             jit_data->image = image;
2466             jit_data->header = header;
2467             jit_data->rw_header = rw_header;
2468         }
2469         prog->bpf_func = (void *)image;
2470         prog->jited = 1;
2471         prog->jited_len = proglen;
2472     } else {
2473         prog = orig_prog;
2474     }
2475 
2476     if (!image || !prog->is_func || extra_pass) {
2477         if (image)
2478             bpf_prog_fill_jited_linfo(prog, addrs + 1);
2479 out_addrs:
2480         kvfree(addrs);
2481         kfree(jit_data);
2482         prog->aux->jit_data = NULL;
2483     }
2484 out:
2485     if (tmp_blinded)
2486         bpf_jit_prog_release_other(prog, prog == orig_prog ?
2487                        tmp : orig_prog);
2488     return prog;
2489 }
2490 
2491 bool bpf_jit_supports_kfunc_call(void)
2492 {
2493     return true;
2494 }
2495 
2496 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2497 {
2498     if (text_poke_copy(dst, src, len) == NULL)
2499         return ERR_PTR(-EINVAL);
2500     return dst;
2501 }
2502 
2503 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2504 bool bpf_jit_supports_subprog_tailcalls(void)
2505 {
2506     return true;
2507 }
2508 
2509 void bpf_jit_free(struct bpf_prog *prog)
2510 {
2511     if (prog->jited) {
2512         struct x64_jit_data *jit_data = prog->aux->jit_data;
2513         struct bpf_binary_header *hdr;
2514 
2515         /*
2516          * If we fail the final pass of JIT (from jit_subprogs),
2517          * the program may not be finalized yet. Call finalize here
2518          * before freeing it.
2519          */
2520         if (jit_data) {
2521             bpf_jit_binary_pack_finalize(prog, jit_data->header,
2522                              jit_data->rw_header);
2523             kvfree(jit_data->addrs);
2524             kfree(jit_data);
2525         }
2526         hdr = bpf_jit_binary_pack_hdr(prog);
2527         bpf_jit_binary_pack_free(hdr, NULL);
2528         WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2529     }
2530 
2531     bpf_prog_unlock_free(prog);
2532 }