Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 #include <linux/init.h>
0003 
0004 #include <linux/mm.h>
0005 #include <linux/spinlock.h>
0006 #include <linux/smp.h>
0007 #include <linux/interrupt.h>
0008 #include <linux/export.h>
0009 #include <linux/cpu.h>
0010 #include <linux/debugfs.h>
0011 #include <linux/sched/smt.h>
0012 #include <linux/task_work.h>
0013 
0014 #include <asm/tlbflush.h>
0015 #include <asm/mmu_context.h>
0016 #include <asm/nospec-branch.h>
0017 #include <asm/cache.h>
0018 #include <asm/cacheflush.h>
0019 #include <asm/apic.h>
0020 #include <asm/perf_event.h>
0021 
0022 #include "mm_internal.h"
0023 
0024 #ifdef CONFIG_PARAVIRT
0025 # define STATIC_NOPV
0026 #else
0027 # define STATIC_NOPV            static
0028 # define __flush_tlb_local      native_flush_tlb_local
0029 # define __flush_tlb_global     native_flush_tlb_global
0030 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
0031 # define __flush_tlb_multi(msk, info)   native_flush_tlb_multi(msk, info)
0032 #endif
0033 
0034 /*
0035  *  TLB flushing, formerly SMP-only
0036  *      c/o Linus Torvalds.
0037  *
0038  *  These mean you can really definitely utterly forget about
0039  *  writing to user space from interrupts. (Its not allowed anyway).
0040  *
0041  *  Optimizations Manfred Spraul <manfred@colorfullife.com>
0042  *
0043  *  More scalable flush, from Andi Kleen
0044  *
0045  *  Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
0046  */
0047 
0048 /*
0049  * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
0050  * stored in cpu_tlb_state.last_user_mm_spec.
0051  */
0052 #define LAST_USER_MM_IBPB   0x1UL
0053 #define LAST_USER_MM_L1D_FLUSH  0x2UL
0054 #define LAST_USER_MM_SPEC_MASK  (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
0055 
0056 /* Bits to set when tlbstate and flush is (re)initialized */
0057 #define LAST_USER_MM_INIT   LAST_USER_MM_IBPB
0058 
0059 /*
0060  * The x86 feature is called PCID (Process Context IDentifier). It is similar
0061  * to what is traditionally called ASID on the RISC processors.
0062  *
0063  * We don't use the traditional ASID implementation, where each process/mm gets
0064  * its own ASID and flush/restart when we run out of ASID space.
0065  *
0066  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
0067  * that came by on this CPU, allowing cheaper switch_mm between processes on
0068  * this CPU.
0069  *
0070  * We end up with different spaces for different things. To avoid confusion we
0071  * use different names for each of them:
0072  *
0073  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
0074  *         the canonical identifier for an mm
0075  *
0076  * kPCID - [1, TLB_NR_DYN_ASIDS]
0077  *         the value we write into the PCID part of CR3; corresponds to the
0078  *         ASID+1, because PCID 0 is special.
0079  *
0080  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
0081  *         for KPTI each mm has two address spaces and thus needs two
0082  *         PCID values, but we can still do with a single ASID denomination
0083  *         for each mm. Corresponds to kPCID + 2048.
0084  *
0085  */
0086 
0087 /* There are 12 bits of space for ASIDS in CR3 */
0088 #define CR3_HW_ASID_BITS        12
0089 
0090 /*
0091  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
0092  * user/kernel switches
0093  */
0094 #ifdef CONFIG_PAGE_TABLE_ISOLATION
0095 # define PTI_CONSUMED_PCID_BITS 1
0096 #else
0097 # define PTI_CONSUMED_PCID_BITS 0
0098 #endif
0099 
0100 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
0101 
0102 /*
0103  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
0104  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
0105  * use by non-PCID-aware users.
0106  */
0107 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
0108 
0109 /*
0110  * Given @asid, compute kPCID
0111  */
0112 static inline u16 kern_pcid(u16 asid)
0113 {
0114     VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
0115 
0116 #ifdef CONFIG_PAGE_TABLE_ISOLATION
0117     /*
0118      * Make sure that the dynamic ASID space does not conflict with the
0119      * bit we are using to switch between user and kernel ASIDs.
0120      */
0121     BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
0122 
0123     /*
0124      * The ASID being passed in here should have respected the
0125      * MAX_ASID_AVAILABLE and thus never have the switch bit set.
0126      */
0127     VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
0128 #endif
0129     /*
0130      * The dynamically-assigned ASIDs that get passed in are small
0131      * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
0132      * so do not bother to clear it.
0133      *
0134      * If PCID is on, ASID-aware code paths put the ASID+1 into the
0135      * PCID bits.  This serves two purposes.  It prevents a nasty
0136      * situation in which PCID-unaware code saves CR3, loads some other
0137      * value (with PCID == 0), and then restores CR3, thus corrupting
0138      * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
0139      * that any bugs involving loading a PCID-enabled CR3 with
0140      * CR4.PCIDE off will trigger deterministically.
0141      */
0142     return asid + 1;
0143 }
0144 
0145 /*
0146  * Given @asid, compute uPCID
0147  */
0148 static inline u16 user_pcid(u16 asid)
0149 {
0150     u16 ret = kern_pcid(asid);
0151 #ifdef CONFIG_PAGE_TABLE_ISOLATION
0152     ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
0153 #endif
0154     return ret;
0155 }
0156 
0157 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
0158 {
0159     if (static_cpu_has(X86_FEATURE_PCID)) {
0160         return __sme_pa(pgd) | kern_pcid(asid);
0161     } else {
0162         VM_WARN_ON_ONCE(asid != 0);
0163         return __sme_pa(pgd);
0164     }
0165 }
0166 
0167 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
0168 {
0169     VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
0170     /*
0171      * Use boot_cpu_has() instead of this_cpu_has() as this function
0172      * might be called during early boot. This should work even after
0173      * boot because all CPU's the have same capabilities:
0174      */
0175     VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
0176     return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
0177 }
0178 
0179 /*
0180  * We get here when we do something requiring a TLB invalidation
0181  * but could not go invalidate all of the contexts.  We do the
0182  * necessary invalidation by clearing out the 'ctx_id' which
0183  * forces a TLB flush when the context is loaded.
0184  */
0185 static void clear_asid_other(void)
0186 {
0187     u16 asid;
0188 
0189     /*
0190      * This is only expected to be set if we have disabled
0191      * kernel _PAGE_GLOBAL pages.
0192      */
0193     if (!static_cpu_has(X86_FEATURE_PTI)) {
0194         WARN_ON_ONCE(1);
0195         return;
0196     }
0197 
0198     for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
0199         /* Do not need to flush the current asid */
0200         if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
0201             continue;
0202         /*
0203          * Make sure the next time we go to switch to
0204          * this asid, we do a flush:
0205          */
0206         this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
0207     }
0208     this_cpu_write(cpu_tlbstate.invalidate_other, false);
0209 }
0210 
0211 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
0212 
0213 
0214 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
0215                 u16 *new_asid, bool *need_flush)
0216 {
0217     u16 asid;
0218 
0219     if (!static_cpu_has(X86_FEATURE_PCID)) {
0220         *new_asid = 0;
0221         *need_flush = true;
0222         return;
0223     }
0224 
0225     if (this_cpu_read(cpu_tlbstate.invalidate_other))
0226         clear_asid_other();
0227 
0228     for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
0229         if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
0230             next->context.ctx_id)
0231             continue;
0232 
0233         *new_asid = asid;
0234         *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
0235                    next_tlb_gen);
0236         return;
0237     }
0238 
0239     /*
0240      * We don't currently own an ASID slot on this CPU.
0241      * Allocate a slot.
0242      */
0243     *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
0244     if (*new_asid >= TLB_NR_DYN_ASIDS) {
0245         *new_asid = 0;
0246         this_cpu_write(cpu_tlbstate.next_asid, 1);
0247     }
0248     *need_flush = true;
0249 }
0250 
0251 /*
0252  * Given an ASID, flush the corresponding user ASID.  We can delay this
0253  * until the next time we switch to it.
0254  *
0255  * See SWITCH_TO_USER_CR3.
0256  */
0257 static inline void invalidate_user_asid(u16 asid)
0258 {
0259     /* There is no user ASID if address space separation is off */
0260     if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
0261         return;
0262 
0263     /*
0264      * We only have a single ASID if PCID is off and the CR3
0265      * write will have flushed it.
0266      */
0267     if (!cpu_feature_enabled(X86_FEATURE_PCID))
0268         return;
0269 
0270     if (!static_cpu_has(X86_FEATURE_PTI))
0271         return;
0272 
0273     __set_bit(kern_pcid(asid),
0274           (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
0275 }
0276 
0277 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
0278 {
0279     unsigned long new_mm_cr3;
0280 
0281     if (need_flush) {
0282         invalidate_user_asid(new_asid);
0283         new_mm_cr3 = build_cr3(pgdir, new_asid);
0284     } else {
0285         new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
0286     }
0287 
0288     /*
0289      * Caution: many callers of this function expect
0290      * that load_cr3() is serializing and orders TLB
0291      * fills with respect to the mm_cpumask writes.
0292      */
0293     write_cr3(new_mm_cr3);
0294 }
0295 
0296 void leave_mm(int cpu)
0297 {
0298     struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
0299 
0300     /*
0301      * It's plausible that we're in lazy TLB mode while our mm is init_mm.
0302      * If so, our callers still expect us to flush the TLB, but there
0303      * aren't any user TLB entries in init_mm to worry about.
0304      *
0305      * This needs to happen before any other sanity checks due to
0306      * intel_idle's shenanigans.
0307      */
0308     if (loaded_mm == &init_mm)
0309         return;
0310 
0311     /* Warn if we're not lazy. */
0312     WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
0313 
0314     switch_mm(NULL, &init_mm, NULL);
0315 }
0316 EXPORT_SYMBOL_GPL(leave_mm);
0317 
0318 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
0319            struct task_struct *tsk)
0320 {
0321     unsigned long flags;
0322 
0323     local_irq_save(flags);
0324     switch_mm_irqs_off(prev, next, tsk);
0325     local_irq_restore(flags);
0326 }
0327 
0328 /*
0329  * Invoked from return to user/guest by a task that opted-in to L1D
0330  * flushing but ended up running on an SMT enabled core due to wrong
0331  * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
0332  * contract which this task requested.
0333  */
0334 static void l1d_flush_force_sigbus(struct callback_head *ch)
0335 {
0336     force_sig(SIGBUS);
0337 }
0338 
0339 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
0340                 struct task_struct *next)
0341 {
0342     /* Flush L1D if the outgoing task requests it */
0343     if (prev_mm & LAST_USER_MM_L1D_FLUSH)
0344         wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
0345 
0346     /* Check whether the incoming task opted in for L1D flush */
0347     if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
0348         return;
0349 
0350     /*
0351      * Validate that it is not running on an SMT sibling as this would
0352      * make the excercise pointless because the siblings share L1D. If
0353      * it runs on a SMT sibling, notify it with SIGBUS on return to
0354      * user/guest
0355      */
0356     if (this_cpu_read(cpu_info.smt_active)) {
0357         clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
0358         next->l1d_flush_kill.func = l1d_flush_force_sigbus;
0359         task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
0360     }
0361 }
0362 
0363 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
0364 {
0365     unsigned long next_tif = read_task_thread_flags(next);
0366     unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
0367 
0368     /*
0369      * Ensure that the bit shift above works as expected and the two flags
0370      * end up in bit 0 and 1.
0371      */
0372     BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
0373 
0374     return (unsigned long)next->mm | spec_bits;
0375 }
0376 
0377 static void cond_mitigation(struct task_struct *next)
0378 {
0379     unsigned long prev_mm, next_mm;
0380 
0381     if (!next || !next->mm)
0382         return;
0383 
0384     next_mm = mm_mangle_tif_spec_bits(next);
0385     prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
0386 
0387     /*
0388      * Avoid user/user BTB poisoning by flushing the branch predictor
0389      * when switching between processes. This stops one process from
0390      * doing Spectre-v2 attacks on another.
0391      *
0392      * Both, the conditional and the always IBPB mode use the mm
0393      * pointer to avoid the IBPB when switching between tasks of the
0394      * same process. Using the mm pointer instead of mm->context.ctx_id
0395      * opens a hypothetical hole vs. mm_struct reuse, which is more or
0396      * less impossible to control by an attacker. Aside of that it
0397      * would only affect the first schedule so the theoretically
0398      * exposed data is not really interesting.
0399      */
0400     if (static_branch_likely(&switch_mm_cond_ibpb)) {
0401         /*
0402          * This is a bit more complex than the always mode because
0403          * it has to handle two cases:
0404          *
0405          * 1) Switch from a user space task (potential attacker)
0406          *    which has TIF_SPEC_IB set to a user space task
0407          *    (potential victim) which has TIF_SPEC_IB not set.
0408          *
0409          * 2) Switch from a user space task (potential attacker)
0410          *    which has TIF_SPEC_IB not set to a user space task
0411          *    (potential victim) which has TIF_SPEC_IB set.
0412          *
0413          * This could be done by unconditionally issuing IBPB when
0414          * a task which has TIF_SPEC_IB set is either scheduled in
0415          * or out. Though that results in two flushes when:
0416          *
0417          * - the same user space task is scheduled out and later
0418          *   scheduled in again and only a kernel thread ran in
0419          *   between.
0420          *
0421          * - a user space task belonging to the same process is
0422          *   scheduled in after a kernel thread ran in between
0423          *
0424          * - a user space task belonging to the same process is
0425          *   scheduled in immediately.
0426          *
0427          * Optimize this with reasonably small overhead for the
0428          * above cases. Mangle the TIF_SPEC_IB bit into the mm
0429          * pointer of the incoming task which is stored in
0430          * cpu_tlbstate.last_user_mm_spec for comparison.
0431          *
0432          * Issue IBPB only if the mm's are different and one or
0433          * both have the IBPB bit set.
0434          */
0435         if (next_mm != prev_mm &&
0436             (next_mm | prev_mm) & LAST_USER_MM_IBPB)
0437             indirect_branch_prediction_barrier();
0438     }
0439 
0440     if (static_branch_unlikely(&switch_mm_always_ibpb)) {
0441         /*
0442          * Only flush when switching to a user space task with a
0443          * different context than the user space task which ran
0444          * last on this CPU.
0445          */
0446         if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
0447                     (unsigned long)next->mm)
0448             indirect_branch_prediction_barrier();
0449     }
0450 
0451     if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
0452         /*
0453          * Flush L1D when the outgoing task requested it and/or
0454          * check whether the incoming task requested L1D flushing
0455          * and ended up on an SMT sibling.
0456          */
0457         if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
0458             l1d_flush_evaluate(prev_mm, next_mm, next);
0459     }
0460 
0461     this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
0462 }
0463 
0464 #ifdef CONFIG_PERF_EVENTS
0465 static inline void cr4_update_pce_mm(struct mm_struct *mm)
0466 {
0467     if (static_branch_unlikely(&rdpmc_always_available_key) ||
0468         (!static_branch_unlikely(&rdpmc_never_available_key) &&
0469          atomic_read(&mm->context.perf_rdpmc_allowed))) {
0470         /*
0471          * Clear the existing dirty counters to
0472          * prevent the leak for an RDPMC task.
0473          */
0474         perf_clear_dirty_counters();
0475         cr4_set_bits_irqsoff(X86_CR4_PCE);
0476     } else
0477         cr4_clear_bits_irqsoff(X86_CR4_PCE);
0478 }
0479 
0480 void cr4_update_pce(void *ignored)
0481 {
0482     cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
0483 }
0484 
0485 #else
0486 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
0487 #endif
0488 
0489 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
0490             struct task_struct *tsk)
0491 {
0492     struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
0493     u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
0494     bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
0495     unsigned cpu = smp_processor_id();
0496     u64 next_tlb_gen;
0497     bool need_flush;
0498     u16 new_asid;
0499 
0500     /*
0501      * NB: The scheduler will call us with prev == next when switching
0502      * from lazy TLB mode to normal mode if active_mm isn't changing.
0503      * When this happens, we don't assume that CR3 (and hence
0504      * cpu_tlbstate.loaded_mm) matches next.
0505      *
0506      * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
0507      */
0508 
0509     /* We don't want flush_tlb_func() to run concurrently with us. */
0510     if (IS_ENABLED(CONFIG_PROVE_LOCKING))
0511         WARN_ON_ONCE(!irqs_disabled());
0512 
0513     /*
0514      * Verify that CR3 is what we think it is.  This will catch
0515      * hypothetical buggy code that directly switches to swapper_pg_dir
0516      * without going through leave_mm() / switch_mm_irqs_off() or that
0517      * does something like write_cr3(read_cr3_pa()).
0518      *
0519      * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
0520      * isn't free.
0521      */
0522 #ifdef CONFIG_DEBUG_VM
0523     if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
0524         /*
0525          * If we were to BUG here, we'd be very likely to kill
0526          * the system so hard that we don't see the call trace.
0527          * Try to recover instead by ignoring the error and doing
0528          * a global flush to minimize the chance of corruption.
0529          *
0530          * (This is far from being a fully correct recovery.
0531          *  Architecturally, the CPU could prefetch something
0532          *  back into an incorrect ASID slot and leave it there
0533          *  to cause trouble down the road.  It's better than
0534          *  nothing, though.)
0535          */
0536         __flush_tlb_all();
0537     }
0538 #endif
0539     if (was_lazy)
0540         this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
0541 
0542     /*
0543      * The membarrier system call requires a full memory barrier and
0544      * core serialization before returning to user-space, after
0545      * storing to rq->curr, when changing mm.  This is because
0546      * membarrier() sends IPIs to all CPUs that are in the target mm
0547      * to make them issue memory barriers.  However, if another CPU
0548      * switches to/from the target mm concurrently with
0549      * membarrier(), it can cause that CPU not to receive an IPI
0550      * when it really should issue a memory barrier.  Writing to CR3
0551      * provides that full memory barrier and core serializing
0552      * instruction.
0553      */
0554     if (real_prev == next) {
0555         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
0556                next->context.ctx_id);
0557 
0558         /*
0559          * Even in lazy TLB mode, the CPU should stay set in the
0560          * mm_cpumask. The TLB shootdown code can figure out from
0561          * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
0562          */
0563         if (WARN_ON_ONCE(real_prev != &init_mm &&
0564                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
0565             cpumask_set_cpu(cpu, mm_cpumask(next));
0566 
0567         /*
0568          * If the CPU is not in lazy TLB mode, we are just switching
0569          * from one thread in a process to another thread in the same
0570          * process. No TLB flush required.
0571          */
0572         if (!was_lazy)
0573             return;
0574 
0575         /*
0576          * Read the tlb_gen to check whether a flush is needed.
0577          * If the TLB is up to date, just use it.
0578          * The barrier synchronizes with the tlb_gen increment in
0579          * the TLB shootdown code.
0580          */
0581         smp_mb();
0582         next_tlb_gen = atomic64_read(&next->context.tlb_gen);
0583         if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
0584                 next_tlb_gen)
0585             return;
0586 
0587         /*
0588          * TLB contents went out of date while we were in lazy
0589          * mode. Fall through to the TLB switching code below.
0590          */
0591         new_asid = prev_asid;
0592         need_flush = true;
0593     } else {
0594         /*
0595          * Apply process to process speculation vulnerability
0596          * mitigations if applicable.
0597          */
0598         cond_mitigation(tsk);
0599 
0600         /*
0601          * Stop remote flushes for the previous mm.
0602          * Skip kernel threads; we never send init_mm TLB flushing IPIs,
0603          * but the bitmap manipulation can cause cache line contention.
0604          */
0605         if (real_prev != &init_mm) {
0606             VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
0607                         mm_cpumask(real_prev)));
0608             cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
0609         }
0610 
0611         /*
0612          * Start remote flushes and then read tlb_gen.
0613          */
0614         if (next != &init_mm)
0615             cpumask_set_cpu(cpu, mm_cpumask(next));
0616         next_tlb_gen = atomic64_read(&next->context.tlb_gen);
0617 
0618         choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
0619 
0620         /* Let nmi_uaccess_okay() know that we're changing CR3. */
0621         this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
0622         barrier();
0623     }
0624 
0625     if (need_flush) {
0626         this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
0627         this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
0628         load_new_mm_cr3(next->pgd, new_asid, true);
0629 
0630         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
0631     } else {
0632         /* The new ASID is already up to date. */
0633         load_new_mm_cr3(next->pgd, new_asid, false);
0634 
0635         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
0636     }
0637 
0638     /* Make sure we write CR3 before loaded_mm. */
0639     barrier();
0640 
0641     this_cpu_write(cpu_tlbstate.loaded_mm, next);
0642     this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
0643 
0644     if (next != real_prev) {
0645         cr4_update_pce_mm(next);
0646         switch_ldt(real_prev, next);
0647     }
0648 }
0649 
0650 /*
0651  * Please ignore the name of this function.  It should be called
0652  * switch_to_kernel_thread().
0653  *
0654  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
0655  * kernel thread or other context without an mm.  Acceptable implementations
0656  * include doing nothing whatsoever, switching to init_mm, or various clever
0657  * lazy tricks to try to minimize TLB flushes.
0658  *
0659  * The scheduler reserves the right to call enter_lazy_tlb() several times
0660  * in a row.  It will notify us that we're going back to a real mm by
0661  * calling switch_mm_irqs_off().
0662  */
0663 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
0664 {
0665     if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
0666         return;
0667 
0668     this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
0669 }
0670 
0671 /*
0672  * Call this when reinitializing a CPU.  It fixes the following potential
0673  * problems:
0674  *
0675  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
0676  *   because the CPU was taken down and came back up with CR3's PCID
0677  *   bits clear.  CPU hotplug can do this.
0678  *
0679  * - The TLB contains junk in slots corresponding to inactive ASIDs.
0680  *
0681  * - The CPU went so far out to lunch that it may have missed a TLB
0682  *   flush.
0683  */
0684 void initialize_tlbstate_and_flush(void)
0685 {
0686     int i;
0687     struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
0688     u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
0689     unsigned long cr3 = __read_cr3();
0690 
0691     /* Assert that CR3 already references the right mm. */
0692     WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
0693 
0694     /*
0695      * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
0696      * doesn't work like other CR4 bits because it can only be set from
0697      * long mode.)
0698      */
0699     WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
0700         !(cr4_read_shadow() & X86_CR4_PCIDE));
0701 
0702     /* Force ASID 0 and force a TLB flush. */
0703     write_cr3(build_cr3(mm->pgd, 0));
0704 
0705     /* Reinitialize tlbstate. */
0706     this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
0707     this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
0708     this_cpu_write(cpu_tlbstate.next_asid, 1);
0709     this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
0710     this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
0711 
0712     for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
0713         this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
0714 }
0715 
0716 /*
0717  * flush_tlb_func()'s memory ordering requirement is that any
0718  * TLB fills that happen after we flush the TLB are ordered after we
0719  * read active_mm's tlb_gen.  We don't need any explicit barriers
0720  * because all x86 flush operations are serializing and the
0721  * atomic64_read operation won't be reordered by the compiler.
0722  */
0723 static void flush_tlb_func(void *info)
0724 {
0725     /*
0726      * We have three different tlb_gen values in here.  They are:
0727      *
0728      * - mm_tlb_gen:     the latest generation.
0729      * - local_tlb_gen:  the generation that this CPU has already caught
0730      *                   up to.
0731      * - f->new_tlb_gen: the generation that the requester of the flush
0732      *                   wants us to catch up to.
0733      */
0734     const struct flush_tlb_info *f = info;
0735     struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
0736     u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
0737     u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
0738     bool local = smp_processor_id() == f->initiating_cpu;
0739     unsigned long nr_invalidate = 0;
0740     u64 mm_tlb_gen;
0741 
0742     /* This code cannot presently handle being reentered. */
0743     VM_WARN_ON(!irqs_disabled());
0744 
0745     if (!local) {
0746         inc_irq_stat(irq_tlb_count);
0747         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
0748 
0749         /* Can only happen on remote CPUs */
0750         if (f->mm && f->mm != loaded_mm)
0751             return;
0752     }
0753 
0754     if (unlikely(loaded_mm == &init_mm))
0755         return;
0756 
0757     VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
0758            loaded_mm->context.ctx_id);
0759 
0760     if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
0761         /*
0762          * We're in lazy mode.  We need to at least flush our
0763          * paging-structure cache to avoid speculatively reading
0764          * garbage into our TLB.  Since switching to init_mm is barely
0765          * slower than a minimal flush, just switch to init_mm.
0766          *
0767          * This should be rare, with native_flush_tlb_multi() skipping
0768          * IPIs to lazy TLB mode CPUs.
0769          */
0770         switch_mm_irqs_off(NULL, &init_mm, NULL);
0771         return;
0772     }
0773 
0774     if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
0775              f->new_tlb_gen <= local_tlb_gen)) {
0776         /*
0777          * The TLB is already up to date in respect to f->new_tlb_gen.
0778          * While the core might be still behind mm_tlb_gen, checking
0779          * mm_tlb_gen unnecessarily would have negative caching effects
0780          * so avoid it.
0781          */
0782         return;
0783     }
0784 
0785     /*
0786      * Defer mm_tlb_gen reading as long as possible to avoid cache
0787      * contention.
0788      */
0789     mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
0790 
0791     if (unlikely(local_tlb_gen == mm_tlb_gen)) {
0792         /*
0793          * There's nothing to do: we're already up to date.  This can
0794          * happen if two concurrent flushes happen -- the first flush to
0795          * be handled can catch us all the way up, leaving no work for
0796          * the second flush.
0797          */
0798         goto done;
0799     }
0800 
0801     WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
0802     WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
0803 
0804     /*
0805      * If we get to this point, we know that our TLB is out of date.
0806      * This does not strictly imply that we need to flush (it's
0807      * possible that f->new_tlb_gen <= local_tlb_gen), but we're
0808      * going to need to flush in the very near future, so we might
0809      * as well get it over with.
0810      *
0811      * The only question is whether to do a full or partial flush.
0812      *
0813      * We do a partial flush if requested and two extra conditions
0814      * are met:
0815      *
0816      * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
0817      *    we've always done all needed flushes to catch up to
0818      *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
0819      *    f->new_tlb_gen == 3, then we know that the flush needed to bring
0820      *    us up to date for tlb_gen 3 is the partial flush we're
0821      *    processing.
0822      *
0823      *    As an example of why this check is needed, suppose that there
0824      *    are two concurrent flushes.  The first is a full flush that
0825      *    changes context.tlb_gen from 1 to 2.  The second is a partial
0826      *    flush that changes context.tlb_gen from 2 to 3.  If they get
0827      *    processed on this CPU in reverse order, we'll see
0828      *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
0829      *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
0830      *    3, we'd be break the invariant: we'd update local_tlb_gen above
0831      *    1 without the full flush that's needed for tlb_gen 2.
0832      *
0833      * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
0834      *    Partial TLB flushes are not all that much cheaper than full TLB
0835      *    flushes, so it seems unlikely that it would be a performance win
0836      *    to do a partial flush if that won't bring our TLB fully up to
0837      *    date.  By doing a full flush instead, we can increase
0838      *    local_tlb_gen all the way to mm_tlb_gen and we can probably
0839      *    avoid another flush in the very near future.
0840      */
0841     if (f->end != TLB_FLUSH_ALL &&
0842         f->new_tlb_gen == local_tlb_gen + 1 &&
0843         f->new_tlb_gen == mm_tlb_gen) {
0844         /* Partial flush */
0845         unsigned long addr = f->start;
0846 
0847         /* Partial flush cannot have invalid generations */
0848         VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
0849 
0850         /* Partial flush must have valid mm */
0851         VM_WARN_ON(f->mm == NULL);
0852 
0853         nr_invalidate = (f->end - f->start) >> f->stride_shift;
0854 
0855         while (addr < f->end) {
0856             flush_tlb_one_user(addr);
0857             addr += 1UL << f->stride_shift;
0858         }
0859         if (local)
0860             count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
0861     } else {
0862         /* Full flush. */
0863         nr_invalidate = TLB_FLUSH_ALL;
0864 
0865         flush_tlb_local();
0866         if (local)
0867             count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
0868     }
0869 
0870     /* Both paths above update our state to mm_tlb_gen. */
0871     this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
0872 
0873     /* Tracing is done in a unified manner to reduce the code size */
0874 done:
0875     trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
0876                 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
0877                           TLB_LOCAL_MM_SHOOTDOWN,
0878             nr_invalidate);
0879 }
0880 
0881 static bool tlb_is_not_lazy(int cpu, void *data)
0882 {
0883     return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
0884 }
0885 
0886 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
0887 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
0888 
0889 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
0890                      const struct flush_tlb_info *info)
0891 {
0892     /*
0893      * Do accounting and tracing. Note that there are (and have always been)
0894      * cases in which a remote TLB flush will be traced, but eventually
0895      * would not happen.
0896      */
0897     count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
0898     if (info->end == TLB_FLUSH_ALL)
0899         trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
0900     else
0901         trace_tlb_flush(TLB_REMOTE_SEND_IPI,
0902                 (info->end - info->start) >> PAGE_SHIFT);
0903 
0904     /*
0905      * If no page tables were freed, we can skip sending IPIs to
0906      * CPUs in lazy TLB mode. They will flush the CPU themselves
0907      * at the next context switch.
0908      *
0909      * However, if page tables are getting freed, we need to send the
0910      * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
0911      * up on the new contents of what used to be page tables, while
0912      * doing a speculative memory access.
0913      */
0914     if (info->freed_tables)
0915         on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
0916     else
0917         on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
0918                 (void *)info, 1, cpumask);
0919 }
0920 
0921 void flush_tlb_multi(const struct cpumask *cpumask,
0922               const struct flush_tlb_info *info)
0923 {
0924     __flush_tlb_multi(cpumask, info);
0925 }
0926 
0927 /*
0928  * See Documentation/x86/tlb.rst for details.  We choose 33
0929  * because it is large enough to cover the vast majority (at
0930  * least 95%) of allocations, and is small enough that we are
0931  * confident it will not cause too much overhead.  Each single
0932  * flush is about 100 ns, so this caps the maximum overhead at
0933  * _about_ 3,000 ns.
0934  *
0935  * This is in units of pages.
0936  */
0937 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
0938 
0939 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
0940 
0941 #ifdef CONFIG_DEBUG_VM
0942 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
0943 #endif
0944 
0945 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
0946             unsigned long start, unsigned long end,
0947             unsigned int stride_shift, bool freed_tables,
0948             u64 new_tlb_gen)
0949 {
0950     struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
0951 
0952 #ifdef CONFIG_DEBUG_VM
0953     /*
0954      * Ensure that the following code is non-reentrant and flush_tlb_info
0955      * is not overwritten. This means no TLB flushing is initiated by
0956      * interrupt handlers and machine-check exception handlers.
0957      */
0958     BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
0959 #endif
0960 
0961     info->start     = start;
0962     info->end       = end;
0963     info->mm        = mm;
0964     info->stride_shift  = stride_shift;
0965     info->freed_tables  = freed_tables;
0966     info->new_tlb_gen   = new_tlb_gen;
0967     info->initiating_cpu    = smp_processor_id();
0968 
0969     return info;
0970 }
0971 
0972 static void put_flush_tlb_info(void)
0973 {
0974 #ifdef CONFIG_DEBUG_VM
0975     /* Complete reentrancy prevention checks */
0976     barrier();
0977     this_cpu_dec(flush_tlb_info_idx);
0978 #endif
0979 }
0980 
0981 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
0982                 unsigned long end, unsigned int stride_shift,
0983                 bool freed_tables)
0984 {
0985     struct flush_tlb_info *info;
0986     u64 new_tlb_gen;
0987     int cpu;
0988 
0989     cpu = get_cpu();
0990 
0991     /* Should we flush just the requested range? */
0992     if ((end == TLB_FLUSH_ALL) ||
0993         ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
0994         start = 0;
0995         end = TLB_FLUSH_ALL;
0996     }
0997 
0998     /* This is also a barrier that synchronizes with switch_mm(). */
0999     new_tlb_gen = inc_mm_tlb_gen(mm);
1000 
1001     info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1002                   new_tlb_gen);
1003 
1004     /*
1005      * flush_tlb_multi() is not optimized for the common case in which only
1006      * a local TLB flush is needed. Optimize this use-case by calling
1007      * flush_tlb_func_local() directly in this case.
1008      */
1009     if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1010         flush_tlb_multi(mm_cpumask(mm), info);
1011     } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1012         lockdep_assert_irqs_enabled();
1013         local_irq_disable();
1014         flush_tlb_func(info);
1015         local_irq_enable();
1016     }
1017 
1018     put_flush_tlb_info();
1019     put_cpu();
1020 }
1021 
1022 
1023 static void do_flush_tlb_all(void *info)
1024 {
1025     count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1026     __flush_tlb_all();
1027 }
1028 
1029 void flush_tlb_all(void)
1030 {
1031     count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1032     on_each_cpu(do_flush_tlb_all, NULL, 1);
1033 }
1034 
1035 static void do_kernel_range_flush(void *info)
1036 {
1037     struct flush_tlb_info *f = info;
1038     unsigned long addr;
1039 
1040     /* flush range by one by one 'invlpg' */
1041     for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1042         flush_tlb_one_kernel(addr);
1043 }
1044 
1045 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1046 {
1047     /* Balance as user space task's flush, a bit conservative */
1048     if (end == TLB_FLUSH_ALL ||
1049         (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1050         on_each_cpu(do_flush_tlb_all, NULL, 1);
1051     } else {
1052         struct flush_tlb_info *info;
1053 
1054         preempt_disable();
1055         info = get_flush_tlb_info(NULL, start, end, 0, false,
1056                       TLB_GENERATION_INVALID);
1057 
1058         on_each_cpu(do_kernel_range_flush, info, 1);
1059 
1060         put_flush_tlb_info();
1061         preempt_enable();
1062     }
1063 }
1064 
1065 /*
1066  * This can be used from process context to figure out what the value of
1067  * CR3 is without needing to do a (slow) __read_cr3().
1068  *
1069  * It's intended to be used for code like KVM that sneakily changes CR3
1070  * and needs to restore it.  It needs to be used very carefully.
1071  */
1072 unsigned long __get_current_cr3_fast(void)
1073 {
1074     unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1075         this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1076 
1077     /* For now, be very restrictive about when this can be called. */
1078     VM_WARN_ON(in_nmi() || preemptible());
1079 
1080     VM_BUG_ON(cr3 != __read_cr3());
1081     return cr3;
1082 }
1083 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1084 
1085 /*
1086  * Flush one page in the kernel mapping
1087  */
1088 void flush_tlb_one_kernel(unsigned long addr)
1089 {
1090     count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1091 
1092     /*
1093      * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1094      * paravirt equivalent.  Even with PCID, this is sufficient: we only
1095      * use PCID if we also use global PTEs for the kernel mapping, and
1096      * INVLPG flushes global translations across all address spaces.
1097      *
1098      * If PTI is on, then the kernel is mapped with non-global PTEs, and
1099      * __flush_tlb_one_user() will flush the given address for the current
1100      * kernel address space and for its usermode counterpart, but it does
1101      * not flush it for other address spaces.
1102      */
1103     flush_tlb_one_user(addr);
1104 
1105     if (!static_cpu_has(X86_FEATURE_PTI))
1106         return;
1107 
1108     /*
1109      * See above.  We need to propagate the flush to all other address
1110      * spaces.  In principle, we only need to propagate it to kernelmode
1111      * address spaces, but the extra bookkeeping we would need is not
1112      * worth it.
1113      */
1114     this_cpu_write(cpu_tlbstate.invalidate_other, true);
1115 }
1116 
1117 /*
1118  * Flush one page in the user mapping
1119  */
1120 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1121 {
1122     u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1123 
1124     asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1125 
1126     if (!static_cpu_has(X86_FEATURE_PTI))
1127         return;
1128 
1129     /*
1130      * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1131      * Just use invalidate_user_asid() in case we are called early.
1132      */
1133     if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1134         invalidate_user_asid(loaded_mm_asid);
1135     else
1136         invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1137 }
1138 
1139 void flush_tlb_one_user(unsigned long addr)
1140 {
1141     __flush_tlb_one_user(addr);
1142 }
1143 
1144 /*
1145  * Flush everything
1146  */
1147 STATIC_NOPV void native_flush_tlb_global(void)
1148 {
1149     unsigned long flags;
1150 
1151     if (static_cpu_has(X86_FEATURE_INVPCID)) {
1152         /*
1153          * Using INVPCID is considerably faster than a pair of writes
1154          * to CR4 sandwiched inside an IRQ flag save/restore.
1155          *
1156          * Note, this works with CR4.PCIDE=0 or 1.
1157          */
1158         invpcid_flush_all();
1159         return;
1160     }
1161 
1162     /*
1163      * Read-modify-write to CR4 - protect it from preemption and
1164      * from interrupts. (Use the raw variant because this code can
1165      * be called from deep inside debugging code.)
1166      */
1167     raw_local_irq_save(flags);
1168 
1169     __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1170 
1171     raw_local_irq_restore(flags);
1172 }
1173 
1174 /*
1175  * Flush the entire current user mapping
1176  */
1177 STATIC_NOPV void native_flush_tlb_local(void)
1178 {
1179     /*
1180      * Preemption or interrupts must be disabled to protect the access
1181      * to the per CPU variable and to prevent being preempted between
1182      * read_cr3() and write_cr3().
1183      */
1184     WARN_ON_ONCE(preemptible());
1185 
1186     invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1187 
1188     /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1189     native_write_cr3(__native_read_cr3());
1190 }
1191 
1192 void flush_tlb_local(void)
1193 {
1194     __flush_tlb_local();
1195 }
1196 
1197 /*
1198  * Flush everything
1199  */
1200 void __flush_tlb_all(void)
1201 {
1202     /*
1203      * This is to catch users with enabled preemption and the PGE feature
1204      * and don't trigger the warning in __native_flush_tlb().
1205      */
1206     VM_WARN_ON_ONCE(preemptible());
1207 
1208     if (boot_cpu_has(X86_FEATURE_PGE)) {
1209         __flush_tlb_global();
1210     } else {
1211         /*
1212          * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1213          */
1214         flush_tlb_local();
1215     }
1216 }
1217 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1218 
1219 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1220 {
1221     struct flush_tlb_info *info;
1222 
1223     int cpu = get_cpu();
1224 
1225     info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1226                   TLB_GENERATION_INVALID);
1227     /*
1228      * flush_tlb_multi() is not optimized for the common case in which only
1229      * a local TLB flush is needed. Optimize this use-case by calling
1230      * flush_tlb_func_local() directly in this case.
1231      */
1232     if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1233         flush_tlb_multi(&batch->cpumask, info);
1234     } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1235         lockdep_assert_irqs_enabled();
1236         local_irq_disable();
1237         flush_tlb_func(info);
1238         local_irq_enable();
1239     }
1240 
1241     cpumask_clear(&batch->cpumask);
1242 
1243     put_flush_tlb_info();
1244     put_cpu();
1245 }
1246 
1247 /*
1248  * Blindly accessing user memory from NMI context can be dangerous
1249  * if we're in the middle of switching the current user task or
1250  * switching the loaded mm.  It can also be dangerous if we
1251  * interrupted some kernel code that was temporarily using a
1252  * different mm.
1253  */
1254 bool nmi_uaccess_okay(void)
1255 {
1256     struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1257     struct mm_struct *current_mm = current->mm;
1258 
1259     VM_WARN_ON_ONCE(!loaded_mm);
1260 
1261     /*
1262      * The condition we want to check is
1263      * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1264      * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1265      * is supposed to be reasonably fast.
1266      *
1267      * Instead, we check the almost equivalent but somewhat conservative
1268      * condition below, and we rely on the fact that switch_mm_irqs_off()
1269      * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1270      */
1271     if (loaded_mm != current_mm)
1272         return false;
1273 
1274     VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1275 
1276     return true;
1277 }
1278 
1279 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1280                  size_t count, loff_t *ppos)
1281 {
1282     char buf[32];
1283     unsigned int len;
1284 
1285     len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1286     return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1287 }
1288 
1289 static ssize_t tlbflush_write_file(struct file *file,
1290          const char __user *user_buf, size_t count, loff_t *ppos)
1291 {
1292     char buf[32];
1293     ssize_t len;
1294     int ceiling;
1295 
1296     len = min(count, sizeof(buf) - 1);
1297     if (copy_from_user(buf, user_buf, len))
1298         return -EFAULT;
1299 
1300     buf[len] = '\0';
1301     if (kstrtoint(buf, 0, &ceiling))
1302         return -EINVAL;
1303 
1304     if (ceiling < 0)
1305         return -EINVAL;
1306 
1307     tlb_single_page_flush_ceiling = ceiling;
1308     return count;
1309 }
1310 
1311 static const struct file_operations fops_tlbflush = {
1312     .read = tlbflush_read_file,
1313     .write = tlbflush_write_file,
1314     .llseek = default_llseek,
1315 };
1316 
1317 static int __init create_tlb_single_page_flush_ceiling(void)
1318 {
1319     debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1320                 arch_debugfs_dir, NULL, &fops_tlbflush);
1321     return 0;
1322 }
1323 late_initcall(create_tlb_single_page_flush_ceiling);