0001
0002 #include <linux/mm.h>
0003 #include <linux/gfp.h>
0004 #include <linux/hugetlb.h>
0005 #include <asm/pgalloc.h>
0006 #include <asm/tlb.h>
0007 #include <asm/fixmap.h>
0008 #include <asm/mtrr.h>
0009
0010 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
0011 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
0012 EXPORT_SYMBOL(physical_mask);
0013 #endif
0014
0015 #ifdef CONFIG_HIGHPTE
0016 #define PGTABLE_HIGHMEM __GFP_HIGHMEM
0017 #else
0018 #define PGTABLE_HIGHMEM 0
0019 #endif
0020
0021 #ifndef CONFIG_PARAVIRT
0022 static inline
0023 void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
0024 {
0025 tlb_remove_page(tlb, table);
0026 }
0027 #endif
0028
0029 gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
0030
0031 pgtable_t pte_alloc_one(struct mm_struct *mm)
0032 {
0033 return __pte_alloc_one(mm, __userpte_alloc_gfp);
0034 }
0035
0036 static int __init setup_userpte(char *arg)
0037 {
0038 if (!arg)
0039 return -EINVAL;
0040
0041
0042
0043
0044
0045 if (strcmp(arg, "nohigh") == 0)
0046 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
0047 else
0048 return -EINVAL;
0049 return 0;
0050 }
0051 early_param("userpte", setup_userpte);
0052
0053 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
0054 {
0055 pgtable_pte_page_dtor(pte);
0056 paravirt_release_pte(page_to_pfn(pte));
0057 paravirt_tlb_remove_table(tlb, pte);
0058 }
0059
0060 #if CONFIG_PGTABLE_LEVELS > 2
0061 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
0062 {
0063 struct page *page = virt_to_page(pmd);
0064 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
0065
0066
0067
0068
0069 #ifdef CONFIG_X86_PAE
0070 tlb->need_flush_all = 1;
0071 #endif
0072 pgtable_pmd_page_dtor(page);
0073 paravirt_tlb_remove_table(tlb, page);
0074 }
0075
0076 #if CONFIG_PGTABLE_LEVELS > 3
0077 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
0078 {
0079 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
0080 paravirt_tlb_remove_table(tlb, virt_to_page(pud));
0081 }
0082
0083 #if CONFIG_PGTABLE_LEVELS > 4
0084 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
0085 {
0086 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
0087 paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
0088 }
0089 #endif
0090 #endif
0091 #endif
0092
0093 static inline void pgd_list_add(pgd_t *pgd)
0094 {
0095 struct page *page = virt_to_page(pgd);
0096
0097 list_add(&page->lru, &pgd_list);
0098 }
0099
0100 static inline void pgd_list_del(pgd_t *pgd)
0101 {
0102 struct page *page = virt_to_page(pgd);
0103
0104 list_del(&page->lru);
0105 }
0106
0107 #define UNSHARED_PTRS_PER_PGD \
0108 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
0109 #define MAX_UNSHARED_PTRS_PER_PGD \
0110 max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
0111
0112
0113 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
0114 {
0115 virt_to_page(pgd)->pt_mm = mm;
0116 }
0117
0118 struct mm_struct *pgd_page_get_mm(struct page *page)
0119 {
0120 return page->pt_mm;
0121 }
0122
0123 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
0124 {
0125
0126
0127
0128 if (CONFIG_PGTABLE_LEVELS == 2 ||
0129 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
0130 CONFIG_PGTABLE_LEVELS >= 4) {
0131 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
0132 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
0133 KERNEL_PGD_PTRS);
0134 }
0135
0136
0137 if (!SHARED_KERNEL_PMD) {
0138 pgd_set_mm(pgd, mm);
0139 pgd_list_add(pgd);
0140 }
0141 }
0142
0143 static void pgd_dtor(pgd_t *pgd)
0144 {
0145 if (SHARED_KERNEL_PMD)
0146 return;
0147
0148 spin_lock(&pgd_lock);
0149 pgd_list_del(pgd);
0150 spin_unlock(&pgd_lock);
0151 }
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164 #ifdef CONFIG_X86_PAE
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
0177 #define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
0178
0179
0180
0181
0182
0183
0184 #define PREALLOCATED_USER_PMDS (boot_cpu_has(X86_FEATURE_PTI) ? \
0185 KERNEL_PGD_PTRS : 0)
0186 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
0187
0188 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
0189 {
0190 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
0191
0192
0193
0194 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
0195
0196
0197
0198
0199
0200
0201
0202 flush_tlb_mm(mm);
0203 }
0204 #else
0205
0206
0207 #define PREALLOCATED_PMDS 0
0208 #define MAX_PREALLOCATED_PMDS 0
0209 #define PREALLOCATED_USER_PMDS 0
0210 #define MAX_PREALLOCATED_USER_PMDS 0
0211 #endif
0212
0213 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
0214 {
0215 int i;
0216
0217 for (i = 0; i < count; i++)
0218 if (pmds[i]) {
0219 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
0220 free_page((unsigned long)pmds[i]);
0221 mm_dec_nr_pmds(mm);
0222 }
0223 }
0224
0225 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
0226 {
0227 int i;
0228 bool failed = false;
0229 gfp_t gfp = GFP_PGTABLE_USER;
0230
0231 if (mm == &init_mm)
0232 gfp &= ~__GFP_ACCOUNT;
0233
0234 for (i = 0; i < count; i++) {
0235 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
0236 if (!pmd)
0237 failed = true;
0238 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
0239 free_page((unsigned long)pmd);
0240 pmd = NULL;
0241 failed = true;
0242 }
0243 if (pmd)
0244 mm_inc_nr_pmds(mm);
0245 pmds[i] = pmd;
0246 }
0247
0248 if (failed) {
0249 free_pmds(mm, pmds, count);
0250 return -ENOMEM;
0251 }
0252
0253 return 0;
0254 }
0255
0256
0257
0258
0259
0260
0261
0262 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
0263 {
0264 pgd_t pgd = *pgdp;
0265
0266 if (pgd_val(pgd) != 0) {
0267 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
0268
0269 pgd_clear(pgdp);
0270
0271 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
0272 pmd_free(mm, pmd);
0273 mm_dec_nr_pmds(mm);
0274 }
0275 }
0276
0277 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
0278 {
0279 int i;
0280
0281 for (i = 0; i < PREALLOCATED_PMDS; i++)
0282 mop_up_one_pmd(mm, &pgdp[i]);
0283
0284 #ifdef CONFIG_PAGE_TABLE_ISOLATION
0285
0286 if (!boot_cpu_has(X86_FEATURE_PTI))
0287 return;
0288
0289 pgdp = kernel_to_user_pgdp(pgdp);
0290
0291 for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
0292 mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
0293 #endif
0294 }
0295
0296 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
0297 {
0298 p4d_t *p4d;
0299 pud_t *pud;
0300 int i;
0301
0302 if (PREALLOCATED_PMDS == 0)
0303 return;
0304
0305 p4d = p4d_offset(pgd, 0);
0306 pud = pud_offset(p4d, 0);
0307
0308 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
0309 pmd_t *pmd = pmds[i];
0310
0311 if (i >= KERNEL_PGD_BOUNDARY)
0312 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
0313 sizeof(pmd_t) * PTRS_PER_PMD);
0314
0315 pud_populate(mm, pud, pmd);
0316 }
0317 }
0318
0319 #ifdef CONFIG_PAGE_TABLE_ISOLATION
0320 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
0321 pgd_t *k_pgd, pmd_t *pmds[])
0322 {
0323 pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
0324 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
0325 p4d_t *u_p4d;
0326 pud_t *u_pud;
0327 int i;
0328
0329 u_p4d = p4d_offset(u_pgd, 0);
0330 u_pud = pud_offset(u_p4d, 0);
0331
0332 s_pgd += KERNEL_PGD_BOUNDARY;
0333 u_pud += KERNEL_PGD_BOUNDARY;
0334
0335 for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
0336 pmd_t *pmd = pmds[i];
0337
0338 memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
0339 sizeof(pmd_t) * PTRS_PER_PMD);
0340
0341 pud_populate(mm, u_pud, pmd);
0342 }
0343
0344 }
0345 #else
0346 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
0347 pgd_t *k_pgd, pmd_t *pmds[])
0348 {
0349 }
0350 #endif
0351
0352
0353
0354
0355
0356
0357
0358 #ifdef CONFIG_X86_PAE
0359
0360 #include <linux/slab.h>
0361
0362 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
0363 #define PGD_ALIGN 32
0364
0365 static struct kmem_cache *pgd_cache;
0366
0367 void __init pgtable_cache_init(void)
0368 {
0369
0370
0371
0372
0373 if (!SHARED_KERNEL_PMD)
0374 return;
0375
0376
0377
0378
0379
0380
0381
0382 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
0383 SLAB_PANIC, NULL);
0384 }
0385
0386 static inline pgd_t *_pgd_alloc(void)
0387 {
0388
0389
0390
0391
0392 if (!SHARED_KERNEL_PMD)
0393 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
0394 PGD_ALLOCATION_ORDER);
0395
0396
0397
0398
0399
0400 return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
0401 }
0402
0403 static inline void _pgd_free(pgd_t *pgd)
0404 {
0405 if (!SHARED_KERNEL_PMD)
0406 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
0407 else
0408 kmem_cache_free(pgd_cache, pgd);
0409 }
0410 #else
0411
0412 static inline pgd_t *_pgd_alloc(void)
0413 {
0414 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
0415 PGD_ALLOCATION_ORDER);
0416 }
0417
0418 static inline void _pgd_free(pgd_t *pgd)
0419 {
0420 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
0421 }
0422 #endif
0423
0424 pgd_t *pgd_alloc(struct mm_struct *mm)
0425 {
0426 pgd_t *pgd;
0427 pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
0428 pmd_t *pmds[MAX_PREALLOCATED_PMDS];
0429
0430 pgd = _pgd_alloc();
0431
0432 if (pgd == NULL)
0433 goto out;
0434
0435 mm->pgd = pgd;
0436
0437 if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
0438 goto out_free_pgd;
0439
0440 if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
0441 goto out_free_pmds;
0442
0443 if (paravirt_pgd_alloc(mm) != 0)
0444 goto out_free_user_pmds;
0445
0446
0447
0448
0449
0450
0451 spin_lock(&pgd_lock);
0452
0453 pgd_ctor(mm, pgd);
0454 pgd_prepopulate_pmd(mm, pgd, pmds);
0455 pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
0456
0457 spin_unlock(&pgd_lock);
0458
0459 return pgd;
0460
0461 out_free_user_pmds:
0462 free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
0463 out_free_pmds:
0464 free_pmds(mm, pmds, PREALLOCATED_PMDS);
0465 out_free_pgd:
0466 _pgd_free(pgd);
0467 out:
0468 return NULL;
0469 }
0470
0471 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
0472 {
0473 pgd_mop_up_pmds(mm, pgd);
0474 pgd_dtor(pgd);
0475 paravirt_pgd_free(mm, pgd);
0476 _pgd_free(pgd);
0477 }
0478
0479
0480
0481
0482
0483
0484
0485
0486 int ptep_set_access_flags(struct vm_area_struct *vma,
0487 unsigned long address, pte_t *ptep,
0488 pte_t entry, int dirty)
0489 {
0490 int changed = !pte_same(*ptep, entry);
0491
0492 if (changed && dirty)
0493 set_pte(ptep, entry);
0494
0495 return changed;
0496 }
0497
0498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0499 int pmdp_set_access_flags(struct vm_area_struct *vma,
0500 unsigned long address, pmd_t *pmdp,
0501 pmd_t entry, int dirty)
0502 {
0503 int changed = !pmd_same(*pmdp, entry);
0504
0505 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
0506
0507 if (changed && dirty) {
0508 set_pmd(pmdp, entry);
0509
0510
0511
0512
0513
0514
0515 }
0516
0517 return changed;
0518 }
0519
0520 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
0521 pud_t *pudp, pud_t entry, int dirty)
0522 {
0523 int changed = !pud_same(*pudp, entry);
0524
0525 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
0526
0527 if (changed && dirty) {
0528 set_pud(pudp, entry);
0529
0530
0531
0532
0533
0534
0535 }
0536
0537 return changed;
0538 }
0539 #endif
0540
0541 int ptep_test_and_clear_young(struct vm_area_struct *vma,
0542 unsigned long addr, pte_t *ptep)
0543 {
0544 int ret = 0;
0545
0546 if (pte_young(*ptep))
0547 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
0548 (unsigned long *) &ptep->pte);
0549
0550 return ret;
0551 }
0552
0553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0554 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
0555 unsigned long addr, pmd_t *pmdp)
0556 {
0557 int ret = 0;
0558
0559 if (pmd_young(*pmdp))
0560 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
0561 (unsigned long *)pmdp);
0562
0563 return ret;
0564 }
0565 int pudp_test_and_clear_young(struct vm_area_struct *vma,
0566 unsigned long addr, pud_t *pudp)
0567 {
0568 int ret = 0;
0569
0570 if (pud_young(*pudp))
0571 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
0572 (unsigned long *)pudp);
0573
0574 return ret;
0575 }
0576 #endif
0577
0578 int ptep_clear_flush_young(struct vm_area_struct *vma,
0579 unsigned long address, pte_t *ptep)
0580 {
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594 return ptep_test_and_clear_young(vma, address, ptep);
0595 }
0596
0597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0598 int pmdp_clear_flush_young(struct vm_area_struct *vma,
0599 unsigned long address, pmd_t *pmdp)
0600 {
0601 int young;
0602
0603 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
0604
0605 young = pmdp_test_and_clear_young(vma, address, pmdp);
0606 if (young)
0607 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
0608
0609 return young;
0610 }
0611
0612 pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
0613 pmd_t *pmdp)
0614 {
0615
0616
0617
0618
0619 return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
0620 }
0621 #endif
0622
0623
0624
0625
0626
0627
0628
0629
0630 void __init reserve_top_address(unsigned long reserve)
0631 {
0632 #ifdef CONFIG_X86_32
0633 BUG_ON(fixmaps_set > 0);
0634 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
0635 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
0636 -reserve, __FIXADDR_TOP + PAGE_SIZE);
0637 #endif
0638 }
0639
0640 int fixmaps_set;
0641
0642 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
0643 {
0644 unsigned long address = __fix_to_virt(idx);
0645
0646 #ifdef CONFIG_X86_64
0647
0648
0649
0650
0651 BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
0652 (FIXMAP_PMD_NUM * PTRS_PER_PTE));
0653 #endif
0654
0655 if (idx >= __end_of_fixed_addresses) {
0656 BUG();
0657 return;
0658 }
0659 set_pte_vaddr(address, pte);
0660 fixmaps_set++;
0661 }
0662
0663 void native_set_fixmap(unsigned idx,
0664 phys_addr_t phys, pgprot_t flags)
0665 {
0666
0667 pgprot_val(flags) &= __default_kernel_pte_mask;
0668
0669 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
0670 }
0671
0672 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
0673 #ifdef CONFIG_X86_5LEVEL
0674
0675
0676
0677
0678
0679 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
0680 {
0681 return 0;
0682 }
0683
0684
0685
0686
0687
0688
0689 void p4d_clear_huge(p4d_t *p4d)
0690 {
0691 }
0692 #endif
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
0713 {
0714 u8 mtrr, uniform;
0715
0716 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
0717 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
0718 (mtrr != MTRR_TYPE_WRBACK))
0719 return 0;
0720
0721
0722 if (pud_present(*pud) && !pud_huge(*pud))
0723 return 0;
0724
0725 set_pte((pte_t *)pud, pfn_pte(
0726 (u64)addr >> PAGE_SHIFT,
0727 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
0728
0729 return 1;
0730 }
0731
0732
0733
0734
0735
0736
0737
0738
0739 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
0740 {
0741 u8 mtrr, uniform;
0742
0743 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
0744 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
0745 (mtrr != MTRR_TYPE_WRBACK)) {
0746 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
0747 __func__, addr, addr + PMD_SIZE);
0748 return 0;
0749 }
0750
0751
0752 if (pmd_present(*pmd) && !pmd_huge(*pmd))
0753 return 0;
0754
0755 set_pte((pte_t *)pmd, pfn_pte(
0756 (u64)addr >> PAGE_SHIFT,
0757 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
0758
0759 return 1;
0760 }
0761
0762
0763
0764
0765
0766
0767 int pud_clear_huge(pud_t *pud)
0768 {
0769 if (pud_large(*pud)) {
0770 pud_clear(pud);
0771 return 1;
0772 }
0773
0774 return 0;
0775 }
0776
0777
0778
0779
0780
0781
0782 int pmd_clear_huge(pmd_t *pmd)
0783 {
0784 if (pmd_large(*pmd)) {
0785 pmd_clear(pmd);
0786 return 1;
0787 }
0788
0789 return 0;
0790 }
0791
0792 #ifdef CONFIG_X86_64
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
0804 {
0805 pmd_t *pmd, *pmd_sv;
0806 pte_t *pte;
0807 int i;
0808
0809 pmd = pud_pgtable(*pud);
0810 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
0811 if (!pmd_sv)
0812 return 0;
0813
0814 for (i = 0; i < PTRS_PER_PMD; i++) {
0815 pmd_sv[i] = pmd[i];
0816 if (!pmd_none(pmd[i]))
0817 pmd_clear(&pmd[i]);
0818 }
0819
0820 pud_clear(pud);
0821
0822
0823 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
0824
0825 for (i = 0; i < PTRS_PER_PMD; i++) {
0826 if (!pmd_none(pmd_sv[i])) {
0827 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
0828 free_page((unsigned long)pte);
0829 }
0830 }
0831
0832 free_page((unsigned long)pmd_sv);
0833
0834 pgtable_pmd_page_dtor(virt_to_page(pmd));
0835 free_page((unsigned long)pmd);
0836
0837 return 1;
0838 }
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
0849 {
0850 pte_t *pte;
0851
0852 pte = (pte_t *)pmd_page_vaddr(*pmd);
0853 pmd_clear(pmd);
0854
0855
0856 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
0857
0858 free_page((unsigned long)pte);
0859
0860 return 1;
0861 }
0862
0863 #else
0864
0865
0866
0867
0868
0869 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
0870 {
0871 return pmd_none(*pmd);
0872 }
0873
0874 #endif
0875 #endif