Back to home page

OSCL-LXR

 
 

    


0001 #include <linux/gfp.h>
0002 #include <linux/initrd.h>
0003 #include <linux/ioport.h>
0004 #include <linux/swap.h>
0005 #include <linux/memblock.h>
0006 #include <linux/swapfile.h>
0007 #include <linux/swapops.h>
0008 #include <linux/kmemleak.h>
0009 #include <linux/sched/task.h>
0010 
0011 #include <asm/set_memory.h>
0012 #include <asm/e820/api.h>
0013 #include <asm/init.h>
0014 #include <asm/page.h>
0015 #include <asm/page_types.h>
0016 #include <asm/sections.h>
0017 #include <asm/setup.h>
0018 #include <asm/tlbflush.h>
0019 #include <asm/tlb.h>
0020 #include <asm/proto.h>
0021 #include <asm/dma.h>        /* for MAX_DMA_PFN */
0022 #include <asm/microcode.h>
0023 #include <asm/kaslr.h>
0024 #include <asm/hypervisor.h>
0025 #include <asm/cpufeature.h>
0026 #include <asm/pti.h>
0027 #include <asm/text-patching.h>
0028 #include <asm/memtype.h>
0029 
0030 /*
0031  * We need to define the tracepoints somewhere, and tlb.c
0032  * is only compiled when SMP=y.
0033  */
0034 #include <trace/events/tlb.h>
0035 
0036 #include "mm_internal.h"
0037 
0038 /*
0039  * Tables translating between page_cache_type_t and pte encoding.
0040  *
0041  * The default values are defined statically as minimal supported mode;
0042  * WC and WT fall back to UC-.  pat_init() updates these values to support
0043  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
0044  * for the details.  Note, __early_ioremap() used during early boot-time
0045  * takes pgprot_t (pte encoding) and does not use these tables.
0046  *
0047  *   Index into __cachemode2pte_tbl[] is the cachemode.
0048  *
0049  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
0050  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
0051  */
0052 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
0053     [_PAGE_CACHE_MODE_WB      ] = 0         | 0        ,
0054     [_PAGE_CACHE_MODE_WC      ] = 0         | _PAGE_PCD,
0055     [_PAGE_CACHE_MODE_UC_MINUS] = 0         | _PAGE_PCD,
0056     [_PAGE_CACHE_MODE_UC      ] = _PAGE_PWT | _PAGE_PCD,
0057     [_PAGE_CACHE_MODE_WT      ] = 0         | _PAGE_PCD,
0058     [_PAGE_CACHE_MODE_WP      ] = 0         | _PAGE_PCD,
0059 };
0060 
0061 unsigned long cachemode2protval(enum page_cache_mode pcm)
0062 {
0063     if (likely(pcm == 0))
0064         return 0;
0065     return __cachemode2pte_tbl[pcm];
0066 }
0067 EXPORT_SYMBOL(cachemode2protval);
0068 
0069 static uint8_t __pte2cachemode_tbl[8] = {
0070     [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
0071     [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
0072     [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
0073     [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
0074     [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
0075     [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
0076     [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
0077     [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
0078 };
0079 
0080 /*
0081  * Check that the write-protect PAT entry is set for write-protect.
0082  * To do this without making assumptions how PAT has been set up (Xen has
0083  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
0084  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
0085  * bits will select a cache mode of WP or better), and then translate the
0086  * protection bits back into the cache mode using __pte2cm_idx() and the
0087  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
0088  */
0089 bool x86_has_pat_wp(void)
0090 {
0091     uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
0092 
0093     return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
0094 }
0095 
0096 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
0097 {
0098     unsigned long masked;
0099 
0100     masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
0101     if (likely(masked == 0))
0102         return 0;
0103     return __pte2cachemode_tbl[__pte2cm_idx(masked)];
0104 }
0105 
0106 static unsigned long __initdata pgt_buf_start;
0107 static unsigned long __initdata pgt_buf_end;
0108 static unsigned long __initdata pgt_buf_top;
0109 
0110 static unsigned long min_pfn_mapped;
0111 
0112 static bool __initdata can_use_brk_pgt = true;
0113 
0114 /*
0115  * Pages returned are already directly mapped.
0116  *
0117  * Changing that is likely to break Xen, see commit:
0118  *
0119  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
0120  *
0121  * for detailed information.
0122  */
0123 __ref void *alloc_low_pages(unsigned int num)
0124 {
0125     unsigned long pfn;
0126     int i;
0127 
0128     if (after_bootmem) {
0129         unsigned int order;
0130 
0131         order = get_order((unsigned long)num << PAGE_SHIFT);
0132         return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
0133     }
0134 
0135     if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
0136         unsigned long ret = 0;
0137 
0138         if (min_pfn_mapped < max_pfn_mapped) {
0139             ret = memblock_phys_alloc_range(
0140                     PAGE_SIZE * num, PAGE_SIZE,
0141                     min_pfn_mapped << PAGE_SHIFT,
0142                     max_pfn_mapped << PAGE_SHIFT);
0143         }
0144         if (!ret && can_use_brk_pgt)
0145             ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
0146 
0147         if (!ret)
0148             panic("alloc_low_pages: can not alloc memory");
0149 
0150         pfn = ret >> PAGE_SHIFT;
0151     } else {
0152         pfn = pgt_buf_end;
0153         pgt_buf_end += num;
0154     }
0155 
0156     for (i = 0; i < num; i++) {
0157         void *adr;
0158 
0159         adr = __va((pfn + i) << PAGE_SHIFT);
0160         clear_page(adr);
0161     }
0162 
0163     return __va(pfn << PAGE_SHIFT);
0164 }
0165 
0166 /*
0167  * By default need to be able to allocate page tables below PGD firstly for
0168  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
0169  * With KASLR memory randomization, depending on the machine e820 memory and the
0170  * PUD alignment, twice that many pages may be needed when KASLR memory
0171  * randomization is enabled.
0172  */
0173 
0174 #ifndef CONFIG_X86_5LEVEL
0175 #define INIT_PGD_PAGE_TABLES    3
0176 #else
0177 #define INIT_PGD_PAGE_TABLES    4
0178 #endif
0179 
0180 #ifndef CONFIG_RANDOMIZE_MEMORY
0181 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
0182 #else
0183 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
0184 #endif
0185 
0186 #define INIT_PGT_BUF_SIZE   (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
0187 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
0188 void  __init early_alloc_pgt_buf(void)
0189 {
0190     unsigned long tables = INIT_PGT_BUF_SIZE;
0191     phys_addr_t base;
0192 
0193     base = __pa(extend_brk(tables, PAGE_SIZE));
0194 
0195     pgt_buf_start = base >> PAGE_SHIFT;
0196     pgt_buf_end = pgt_buf_start;
0197     pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
0198 }
0199 
0200 int after_bootmem;
0201 
0202 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
0203 
0204 struct map_range {
0205     unsigned long start;
0206     unsigned long end;
0207     unsigned page_size_mask;
0208 };
0209 
0210 static int page_size_mask;
0211 
0212 /*
0213  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
0214  * enable and PPro Global page enable), so that any CPU's that boot
0215  * up after us can get the correct flags. Invoked on the boot CPU.
0216  */
0217 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
0218 {
0219     mmu_cr4_features |= mask;
0220     if (trampoline_cr4_features)
0221         *trampoline_cr4_features = mmu_cr4_features;
0222     cr4_set_bits(mask);
0223 }
0224 
0225 static void __init probe_page_size_mask(void)
0226 {
0227     /*
0228      * For pagealloc debugging, identity mapping will use small pages.
0229      * This will simplify cpa(), which otherwise needs to support splitting
0230      * large pages into small in interrupt context, etc.
0231      */
0232     if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
0233         page_size_mask |= 1 << PG_LEVEL_2M;
0234     else
0235         direct_gbpages = 0;
0236 
0237     /* Enable PSE if available */
0238     if (boot_cpu_has(X86_FEATURE_PSE))
0239         cr4_set_bits_and_update_boot(X86_CR4_PSE);
0240 
0241     /* Enable PGE if available */
0242     __supported_pte_mask &= ~_PAGE_GLOBAL;
0243     if (boot_cpu_has(X86_FEATURE_PGE)) {
0244         cr4_set_bits_and_update_boot(X86_CR4_PGE);
0245         __supported_pte_mask |= _PAGE_GLOBAL;
0246     }
0247 
0248     /* By the default is everything supported: */
0249     __default_kernel_pte_mask = __supported_pte_mask;
0250     /* Except when with PTI where the kernel is mostly non-Global: */
0251     if (cpu_feature_enabled(X86_FEATURE_PTI))
0252         __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
0253 
0254     /* Enable 1 GB linear kernel mappings if available: */
0255     if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
0256         printk(KERN_INFO "Using GB pages for direct mapping\n");
0257         page_size_mask |= 1 << PG_LEVEL_1G;
0258     } else {
0259         direct_gbpages = 0;
0260     }
0261 }
0262 
0263 static void setup_pcid(void)
0264 {
0265     if (!IS_ENABLED(CONFIG_X86_64))
0266         return;
0267 
0268     if (!boot_cpu_has(X86_FEATURE_PCID))
0269         return;
0270 
0271     if (boot_cpu_has(X86_FEATURE_PGE)) {
0272         /*
0273          * This can't be cr4_set_bits_and_update_boot() -- the
0274          * trampoline code can't handle CR4.PCIDE and it wouldn't
0275          * do any good anyway.  Despite the name,
0276          * cr4_set_bits_and_update_boot() doesn't actually cause
0277          * the bits in question to remain set all the way through
0278          * the secondary boot asm.
0279          *
0280          * Instead, we brute-force it and set CR4.PCIDE manually in
0281          * start_secondary().
0282          */
0283         cr4_set_bits(X86_CR4_PCIDE);
0284 
0285         /*
0286          * INVPCID's single-context modes (2/3) only work if we set
0287          * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
0288          * on systems that have X86_CR4_PCIDE clear, or that have
0289          * no INVPCID support at all.
0290          */
0291         if (boot_cpu_has(X86_FEATURE_INVPCID))
0292             setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
0293     } else {
0294         /*
0295          * flush_tlb_all(), as currently implemented, won't work if
0296          * PCID is on but PGE is not.  Since that combination
0297          * doesn't exist on real hardware, there's no reason to try
0298          * to fully support it, but it's polite to avoid corrupting
0299          * data if we're on an improperly configured VM.
0300          */
0301         setup_clear_cpu_cap(X86_FEATURE_PCID);
0302     }
0303 }
0304 
0305 #ifdef CONFIG_X86_32
0306 #define NR_RANGE_MR 3
0307 #else /* CONFIG_X86_64 */
0308 #define NR_RANGE_MR 5
0309 #endif
0310 
0311 static int __meminit save_mr(struct map_range *mr, int nr_range,
0312                  unsigned long start_pfn, unsigned long end_pfn,
0313                  unsigned long page_size_mask)
0314 {
0315     if (start_pfn < end_pfn) {
0316         if (nr_range >= NR_RANGE_MR)
0317             panic("run out of range for init_memory_mapping\n");
0318         mr[nr_range].start = start_pfn<<PAGE_SHIFT;
0319         mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
0320         mr[nr_range].page_size_mask = page_size_mask;
0321         nr_range++;
0322     }
0323 
0324     return nr_range;
0325 }
0326 
0327 /*
0328  * adjust the page_size_mask for small range to go with
0329  *  big page size instead small one if nearby are ram too.
0330  */
0331 static void __ref adjust_range_page_size_mask(struct map_range *mr,
0332                              int nr_range)
0333 {
0334     int i;
0335 
0336     for (i = 0; i < nr_range; i++) {
0337         if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
0338             !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
0339             unsigned long start = round_down(mr[i].start, PMD_SIZE);
0340             unsigned long end = round_up(mr[i].end, PMD_SIZE);
0341 
0342 #ifdef CONFIG_X86_32
0343             if ((end >> PAGE_SHIFT) > max_low_pfn)
0344                 continue;
0345 #endif
0346 
0347             if (memblock_is_region_memory(start, end - start))
0348                 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
0349         }
0350         if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
0351             !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
0352             unsigned long start = round_down(mr[i].start, PUD_SIZE);
0353             unsigned long end = round_up(mr[i].end, PUD_SIZE);
0354 
0355             if (memblock_is_region_memory(start, end - start))
0356                 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
0357         }
0358     }
0359 }
0360 
0361 static const char *page_size_string(struct map_range *mr)
0362 {
0363     static const char str_1g[] = "1G";
0364     static const char str_2m[] = "2M";
0365     static const char str_4m[] = "4M";
0366     static const char str_4k[] = "4k";
0367 
0368     if (mr->page_size_mask & (1<<PG_LEVEL_1G))
0369         return str_1g;
0370     /*
0371      * 32-bit without PAE has a 4M large page size.
0372      * PG_LEVEL_2M is misnamed, but we can at least
0373      * print out the right size in the string.
0374      */
0375     if (IS_ENABLED(CONFIG_X86_32) &&
0376         !IS_ENABLED(CONFIG_X86_PAE) &&
0377         mr->page_size_mask & (1<<PG_LEVEL_2M))
0378         return str_4m;
0379 
0380     if (mr->page_size_mask & (1<<PG_LEVEL_2M))
0381         return str_2m;
0382 
0383     return str_4k;
0384 }
0385 
0386 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
0387                      unsigned long start,
0388                      unsigned long end)
0389 {
0390     unsigned long start_pfn, end_pfn, limit_pfn;
0391     unsigned long pfn;
0392     int i;
0393 
0394     limit_pfn = PFN_DOWN(end);
0395 
0396     /* head if not big page alignment ? */
0397     pfn = start_pfn = PFN_DOWN(start);
0398 #ifdef CONFIG_X86_32
0399     /*
0400      * Don't use a large page for the first 2/4MB of memory
0401      * because there are often fixed size MTRRs in there
0402      * and overlapping MTRRs into large pages can cause
0403      * slowdowns.
0404      */
0405     if (pfn == 0)
0406         end_pfn = PFN_DOWN(PMD_SIZE);
0407     else
0408         end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
0409 #else /* CONFIG_X86_64 */
0410     end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
0411 #endif
0412     if (end_pfn > limit_pfn)
0413         end_pfn = limit_pfn;
0414     if (start_pfn < end_pfn) {
0415         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
0416         pfn = end_pfn;
0417     }
0418 
0419     /* big page (2M) range */
0420     start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
0421 #ifdef CONFIG_X86_32
0422     end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
0423 #else /* CONFIG_X86_64 */
0424     end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
0425     if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
0426         end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
0427 #endif
0428 
0429     if (start_pfn < end_pfn) {
0430         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
0431                 page_size_mask & (1<<PG_LEVEL_2M));
0432         pfn = end_pfn;
0433     }
0434 
0435 #ifdef CONFIG_X86_64
0436     /* big page (1G) range */
0437     start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
0438     end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
0439     if (start_pfn < end_pfn) {
0440         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
0441                 page_size_mask &
0442                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
0443         pfn = end_pfn;
0444     }
0445 
0446     /* tail is not big page (1G) alignment */
0447     start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
0448     end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
0449     if (start_pfn < end_pfn) {
0450         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
0451                 page_size_mask & (1<<PG_LEVEL_2M));
0452         pfn = end_pfn;
0453     }
0454 #endif
0455 
0456     /* tail is not big page (2M) alignment */
0457     start_pfn = pfn;
0458     end_pfn = limit_pfn;
0459     nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
0460 
0461     if (!after_bootmem)
0462         adjust_range_page_size_mask(mr, nr_range);
0463 
0464     /* try to merge same page size and continuous */
0465     for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
0466         unsigned long old_start;
0467         if (mr[i].end != mr[i+1].start ||
0468             mr[i].page_size_mask != mr[i+1].page_size_mask)
0469             continue;
0470         /* move it */
0471         old_start = mr[i].start;
0472         memmove(&mr[i], &mr[i+1],
0473             (nr_range - 1 - i) * sizeof(struct map_range));
0474         mr[i--].start = old_start;
0475         nr_range--;
0476     }
0477 
0478     for (i = 0; i < nr_range; i++)
0479         pr_debug(" [mem %#010lx-%#010lx] page %s\n",
0480                 mr[i].start, mr[i].end - 1,
0481                 page_size_string(&mr[i]));
0482 
0483     return nr_range;
0484 }
0485 
0486 struct range pfn_mapped[E820_MAX_ENTRIES];
0487 int nr_pfn_mapped;
0488 
0489 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
0490 {
0491     nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
0492                          nr_pfn_mapped, start_pfn, end_pfn);
0493     nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
0494 
0495     max_pfn_mapped = max(max_pfn_mapped, end_pfn);
0496 
0497     if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
0498         max_low_pfn_mapped = max(max_low_pfn_mapped,
0499                      min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
0500 }
0501 
0502 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
0503 {
0504     int i;
0505 
0506     for (i = 0; i < nr_pfn_mapped; i++)
0507         if ((start_pfn >= pfn_mapped[i].start) &&
0508             (end_pfn <= pfn_mapped[i].end))
0509             return true;
0510 
0511     return false;
0512 }
0513 
0514 /*
0515  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
0516  * This runs before bootmem is initialized and gets pages directly from
0517  * the physical memory. To access them they are temporarily mapped.
0518  */
0519 unsigned long __ref init_memory_mapping(unsigned long start,
0520                     unsigned long end, pgprot_t prot)
0521 {
0522     struct map_range mr[NR_RANGE_MR];
0523     unsigned long ret = 0;
0524     int nr_range, i;
0525 
0526     pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
0527            start, end - 1);
0528 
0529     memset(mr, 0, sizeof(mr));
0530     nr_range = split_mem_range(mr, 0, start, end);
0531 
0532     for (i = 0; i < nr_range; i++)
0533         ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
0534                            mr[i].page_size_mask,
0535                            prot);
0536 
0537     add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
0538 
0539     return ret >> PAGE_SHIFT;
0540 }
0541 
0542 /*
0543  * We need to iterate through the E820 memory map and create direct mappings
0544  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
0545  * create direct mappings for all pfns from [0 to max_low_pfn) and
0546  * [4GB to max_pfn) because of possible memory holes in high addresses
0547  * that cannot be marked as UC by fixed/variable range MTRRs.
0548  * Depending on the alignment of E820 ranges, this may possibly result
0549  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
0550  *
0551  * init_mem_mapping() calls init_range_memory_mapping() with big range.
0552  * That range would have hole in the middle or ends, and only ram parts
0553  * will be mapped in init_range_memory_mapping().
0554  */
0555 static unsigned long __init init_range_memory_mapping(
0556                        unsigned long r_start,
0557                        unsigned long r_end)
0558 {
0559     unsigned long start_pfn, end_pfn;
0560     unsigned long mapped_ram_size = 0;
0561     int i;
0562 
0563     for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
0564         u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
0565         u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
0566         if (start >= end)
0567             continue;
0568 
0569         /*
0570          * if it is overlapping with brk pgt, we need to
0571          * alloc pgt buf from memblock instead.
0572          */
0573         can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
0574                     min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
0575         init_memory_mapping(start, end, PAGE_KERNEL);
0576         mapped_ram_size += end - start;
0577         can_use_brk_pgt = true;
0578     }
0579 
0580     return mapped_ram_size;
0581 }
0582 
0583 static unsigned long __init get_new_step_size(unsigned long step_size)
0584 {
0585     /*
0586      * Initial mapped size is PMD_SIZE (2M).
0587      * We can not set step_size to be PUD_SIZE (1G) yet.
0588      * In worse case, when we cross the 1G boundary, and
0589      * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
0590      * to map 1G range with PTE. Hence we use one less than the
0591      * difference of page table level shifts.
0592      *
0593      * Don't need to worry about overflow in the top-down case, on 32bit,
0594      * when step_size is 0, round_down() returns 0 for start, and that
0595      * turns it into 0x100000000ULL.
0596      * In the bottom-up case, round_up(x, 0) returns 0 though too, which
0597      * needs to be taken into consideration by the code below.
0598      */
0599     return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
0600 }
0601 
0602 /**
0603  * memory_map_top_down - Map [map_start, map_end) top down
0604  * @map_start: start address of the target memory range
0605  * @map_end: end address of the target memory range
0606  *
0607  * This function will setup direct mapping for memory range
0608  * [map_start, map_end) in top-down. That said, the page tables
0609  * will be allocated at the end of the memory, and we map the
0610  * memory in top-down.
0611  */
0612 static void __init memory_map_top_down(unsigned long map_start,
0613                        unsigned long map_end)
0614 {
0615     unsigned long real_end, last_start;
0616     unsigned long step_size;
0617     unsigned long addr;
0618     unsigned long mapped_ram_size = 0;
0619 
0620     /*
0621      * Systems that have many reserved areas near top of the memory,
0622      * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
0623      * require lots of 4K mappings which may exhaust pgt_buf.
0624      * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
0625      * there is enough mapped memory that can be allocated from
0626      * memblock.
0627      */
0628     addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
0629                      map_end);
0630     memblock_phys_free(addr, PMD_SIZE);
0631     real_end = addr + PMD_SIZE;
0632 
0633     /* step_size need to be small so pgt_buf from BRK could cover it */
0634     step_size = PMD_SIZE;
0635     max_pfn_mapped = 0; /* will get exact value next */
0636     min_pfn_mapped = real_end >> PAGE_SHIFT;
0637     last_start = real_end;
0638 
0639     /*
0640      * We start from the top (end of memory) and go to the bottom.
0641      * The memblock_find_in_range() gets us a block of RAM from the
0642      * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
0643      * for page table.
0644      */
0645     while (last_start > map_start) {
0646         unsigned long start;
0647 
0648         if (last_start > step_size) {
0649             start = round_down(last_start - 1, step_size);
0650             if (start < map_start)
0651                 start = map_start;
0652         } else
0653             start = map_start;
0654         mapped_ram_size += init_range_memory_mapping(start,
0655                             last_start);
0656         last_start = start;
0657         min_pfn_mapped = last_start >> PAGE_SHIFT;
0658         if (mapped_ram_size >= step_size)
0659             step_size = get_new_step_size(step_size);
0660     }
0661 
0662     if (real_end < map_end)
0663         init_range_memory_mapping(real_end, map_end);
0664 }
0665 
0666 /**
0667  * memory_map_bottom_up - Map [map_start, map_end) bottom up
0668  * @map_start: start address of the target memory range
0669  * @map_end: end address of the target memory range
0670  *
0671  * This function will setup direct mapping for memory range
0672  * [map_start, map_end) in bottom-up. Since we have limited the
0673  * bottom-up allocation above the kernel, the page tables will
0674  * be allocated just above the kernel and we map the memory
0675  * in [map_start, map_end) in bottom-up.
0676  */
0677 static void __init memory_map_bottom_up(unsigned long map_start,
0678                     unsigned long map_end)
0679 {
0680     unsigned long next, start;
0681     unsigned long mapped_ram_size = 0;
0682     /* step_size need to be small so pgt_buf from BRK could cover it */
0683     unsigned long step_size = PMD_SIZE;
0684 
0685     start = map_start;
0686     min_pfn_mapped = start >> PAGE_SHIFT;
0687 
0688     /*
0689      * We start from the bottom (@map_start) and go to the top (@map_end).
0690      * The memblock_find_in_range() gets us a block of RAM from the
0691      * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
0692      * for page table.
0693      */
0694     while (start < map_end) {
0695         if (step_size && map_end - start > step_size) {
0696             next = round_up(start + 1, step_size);
0697             if (next > map_end)
0698                 next = map_end;
0699         } else {
0700             next = map_end;
0701         }
0702 
0703         mapped_ram_size += init_range_memory_mapping(start, next);
0704         start = next;
0705 
0706         if (mapped_ram_size >= step_size)
0707             step_size = get_new_step_size(step_size);
0708     }
0709 }
0710 
0711 /*
0712  * The real mode trampoline, which is required for bootstrapping CPUs
0713  * occupies only a small area under the low 1MB.  See reserve_real_mode()
0714  * for details.
0715  *
0716  * If KASLR is disabled the first PGD entry of the direct mapping is copied
0717  * to map the real mode trampoline.
0718  *
0719  * If KASLR is enabled, copy only the PUD which covers the low 1MB
0720  * area. This limits the randomization granularity to 1GB for both 4-level
0721  * and 5-level paging.
0722  */
0723 static void __init init_trampoline(void)
0724 {
0725 #ifdef CONFIG_X86_64
0726     /*
0727      * The code below will alias kernel page-tables in the user-range of the
0728      * address space, including the Global bit. So global TLB entries will
0729      * be created when using the trampoline page-table.
0730      */
0731     if (!kaslr_memory_enabled())
0732         trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
0733     else
0734         init_trampoline_kaslr();
0735 #endif
0736 }
0737 
0738 void __init init_mem_mapping(void)
0739 {
0740     unsigned long end;
0741 
0742     pti_check_boottime_disable();
0743     probe_page_size_mask();
0744     setup_pcid();
0745 
0746 #ifdef CONFIG_X86_64
0747     end = max_pfn << PAGE_SHIFT;
0748 #else
0749     end = max_low_pfn << PAGE_SHIFT;
0750 #endif
0751 
0752     /* the ISA range is always mapped regardless of memory holes */
0753     init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
0754 
0755     /* Init the trampoline, possibly with KASLR memory offset */
0756     init_trampoline();
0757 
0758     /*
0759      * If the allocation is in bottom-up direction, we setup direct mapping
0760      * in bottom-up, otherwise we setup direct mapping in top-down.
0761      */
0762     if (memblock_bottom_up()) {
0763         unsigned long kernel_end = __pa_symbol(_end);
0764 
0765         /*
0766          * we need two separate calls here. This is because we want to
0767          * allocate page tables above the kernel. So we first map
0768          * [kernel_end, end) to make memory above the kernel be mapped
0769          * as soon as possible. And then use page tables allocated above
0770          * the kernel to map [ISA_END_ADDRESS, kernel_end).
0771          */
0772         memory_map_bottom_up(kernel_end, end);
0773         memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
0774     } else {
0775         memory_map_top_down(ISA_END_ADDRESS, end);
0776     }
0777 
0778 #ifdef CONFIG_X86_64
0779     if (max_pfn > max_low_pfn) {
0780         /* can we preserve max_low_pfn ?*/
0781         max_low_pfn = max_pfn;
0782     }
0783 #else
0784     early_ioremap_page_table_range_init();
0785 #endif
0786 
0787     load_cr3(swapper_pg_dir);
0788     __flush_tlb_all();
0789 
0790     x86_init.hyper.init_mem_mapping();
0791 
0792     early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
0793 }
0794 
0795 /*
0796  * Initialize an mm_struct to be used during poking and a pointer to be used
0797  * during patching.
0798  */
0799 void __init poking_init(void)
0800 {
0801     spinlock_t *ptl;
0802     pte_t *ptep;
0803 
0804     poking_mm = copy_init_mm();
0805     BUG_ON(!poking_mm);
0806 
0807     /*
0808      * Randomize the poking address, but make sure that the following page
0809      * will be mapped at the same PMD. We need 2 pages, so find space for 3,
0810      * and adjust the address if the PMD ends after the first one.
0811      */
0812     poking_addr = TASK_UNMAPPED_BASE;
0813     if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
0814         poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
0815             (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
0816 
0817     if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
0818         poking_addr += PAGE_SIZE;
0819 
0820     /*
0821      * We need to trigger the allocation of the page-tables that will be
0822      * needed for poking now. Later, poking may be performed in an atomic
0823      * section, which might cause allocation to fail.
0824      */
0825     ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
0826     BUG_ON(!ptep);
0827     pte_unmap_unlock(ptep, ptl);
0828 }
0829 
0830 /*
0831  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
0832  * is valid. The argument is a physical page number.
0833  *
0834  * On x86, access has to be given to the first megabyte of RAM because that
0835  * area traditionally contains BIOS code and data regions used by X, dosemu,
0836  * and similar apps. Since they map the entire memory range, the whole range
0837  * must be allowed (for mapping), but any areas that would otherwise be
0838  * disallowed are flagged as being "zero filled" instead of rejected.
0839  * Access has to be given to non-kernel-ram areas as well, these contain the
0840  * PCI mmio resources as well as potential bios/acpi data regions.
0841  */
0842 int devmem_is_allowed(unsigned long pagenr)
0843 {
0844     if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
0845                 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
0846             != REGION_DISJOINT) {
0847         /*
0848          * For disallowed memory regions in the low 1MB range,
0849          * request that the page be shown as all zeros.
0850          */
0851         if (pagenr < 256)
0852             return 2;
0853 
0854         return 0;
0855     }
0856 
0857     /*
0858      * This must follow RAM test, since System RAM is considered a
0859      * restricted resource under CONFIG_STRICT_DEVMEM.
0860      */
0861     if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
0862         /* Low 1MB bypasses iomem restrictions. */
0863         if (pagenr < 256)
0864             return 1;
0865 
0866         return 0;
0867     }
0868 
0869     return 1;
0870 }
0871 
0872 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
0873 {
0874     unsigned long begin_aligned, end_aligned;
0875 
0876     /* Make sure boundaries are page aligned */
0877     begin_aligned = PAGE_ALIGN(begin);
0878     end_aligned   = end & PAGE_MASK;
0879 
0880     if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
0881         begin = begin_aligned;
0882         end   = end_aligned;
0883     }
0884 
0885     if (begin >= end)
0886         return;
0887 
0888     /*
0889      * If debugging page accesses then do not free this memory but
0890      * mark them not present - any buggy init-section access will
0891      * create a kernel page fault:
0892      */
0893     if (debug_pagealloc_enabled()) {
0894         pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
0895             begin, end - 1);
0896         /*
0897          * Inform kmemleak about the hole in the memory since the
0898          * corresponding pages will be unmapped.
0899          */
0900         kmemleak_free_part((void *)begin, end - begin);
0901         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
0902     } else {
0903         /*
0904          * We just marked the kernel text read only above, now that
0905          * we are going to free part of that, we need to make that
0906          * writeable and non-executable first.
0907          */
0908         set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
0909         set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
0910 
0911         free_reserved_area((void *)begin, (void *)end,
0912                    POISON_FREE_INITMEM, what);
0913     }
0914 }
0915 
0916 /*
0917  * begin/end can be in the direct map or the "high kernel mapping"
0918  * used for the kernel image only.  free_init_pages() will do the
0919  * right thing for either kind of address.
0920  */
0921 void free_kernel_image_pages(const char *what, void *begin, void *end)
0922 {
0923     unsigned long begin_ul = (unsigned long)begin;
0924     unsigned long end_ul = (unsigned long)end;
0925     unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
0926 
0927     free_init_pages(what, begin_ul, end_ul);
0928 
0929     /*
0930      * PTI maps some of the kernel into userspace.  For performance,
0931      * this includes some kernel areas that do not contain secrets.
0932      * Those areas might be adjacent to the parts of the kernel image
0933      * being freed, which may contain secrets.  Remove the "high kernel
0934      * image mapping" for these freed areas, ensuring they are not even
0935      * potentially vulnerable to Meltdown regardless of the specific
0936      * optimizations PTI is currently using.
0937      *
0938      * The "noalias" prevents unmapping the direct map alias which is
0939      * needed to access the freed pages.
0940      *
0941      * This is only valid for 64bit kernels. 32bit has only one mapping
0942      * which can't be treated in this way for obvious reasons.
0943      */
0944     if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
0945         set_memory_np_noalias(begin_ul, len_pages);
0946 }
0947 
0948 void __ref free_initmem(void)
0949 {
0950     e820__reallocate_tables();
0951 
0952     mem_encrypt_free_decrypted_mem();
0953 
0954     free_kernel_image_pages("unused kernel image (initmem)",
0955                 &__init_begin, &__init_end);
0956 }
0957 
0958 #ifdef CONFIG_BLK_DEV_INITRD
0959 void __init free_initrd_mem(unsigned long start, unsigned long end)
0960 {
0961     /*
0962      * end could be not aligned, and We can not align that,
0963      * decompressor could be confused by aligned initrd_end
0964      * We already reserve the end partial page before in
0965      *   - i386_start_kernel()
0966      *   - x86_64_start_kernel()
0967      *   - relocate_initrd()
0968      * So here We can do PAGE_ALIGN() safely to get partial page to be freed
0969      */
0970     free_init_pages("initrd", start, PAGE_ALIGN(end));
0971 }
0972 #endif
0973 
0974 /*
0975  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
0976  * and pass it to the MM layer - to help it set zone watermarks more
0977  * accurately.
0978  *
0979  * Done on 64-bit systems only for the time being, although 32-bit systems
0980  * might benefit from this as well.
0981  */
0982 void __init memblock_find_dma_reserve(void)
0983 {
0984 #ifdef CONFIG_X86_64
0985     u64 nr_pages = 0, nr_free_pages = 0;
0986     unsigned long start_pfn, end_pfn;
0987     phys_addr_t start_addr, end_addr;
0988     int i;
0989     u64 u;
0990 
0991     /*
0992      * Iterate over all memory ranges (free and reserved ones alike),
0993      * to calculate the total number of pages in the first 16 MB of RAM:
0994      */
0995     nr_pages = 0;
0996     for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
0997         start_pfn = min(start_pfn, MAX_DMA_PFN);
0998         end_pfn   = min(end_pfn,   MAX_DMA_PFN);
0999 
1000         nr_pages += end_pfn - start_pfn;
1001     }
1002 
1003     /*
1004      * Iterate over free memory ranges to calculate the number of free
1005      * pages in the DMA zone, while not counting potential partial
1006      * pages at the beginning or the end of the range:
1007      */
1008     nr_free_pages = 0;
1009     for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1010         start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1011         end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1012 
1013         if (start_pfn < end_pfn)
1014             nr_free_pages += end_pfn - start_pfn;
1015     }
1016 
1017     set_dma_reserve(nr_pages - nr_free_pages);
1018 #endif
1019 }
1020 
1021 void __init zone_sizes_init(void)
1022 {
1023     unsigned long max_zone_pfns[MAX_NR_ZONES];
1024 
1025     memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1026 
1027 #ifdef CONFIG_ZONE_DMA
1028     max_zone_pfns[ZONE_DMA]     = min(MAX_DMA_PFN, max_low_pfn);
1029 #endif
1030 #ifdef CONFIG_ZONE_DMA32
1031     max_zone_pfns[ZONE_DMA32]   = min(MAX_DMA32_PFN, max_low_pfn);
1032 #endif
1033     max_zone_pfns[ZONE_NORMAL]  = max_low_pfn;
1034 #ifdef CONFIG_HIGHMEM
1035     max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1036 #endif
1037 
1038     free_area_init(max_zone_pfns);
1039 }
1040 
1041 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1042     .loaded_mm = &init_mm,
1043     .next_asid = 1,
1044     .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
1045 };
1046 
1047 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1048 {
1049     /* entry 0 MUST be WB (hardwired to speed up translations) */
1050     BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1051 
1052     __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1053     __pte2cachemode_tbl[entry] = cache;
1054 }
1055 
1056 #ifdef CONFIG_SWAP
1057 unsigned long max_swapfile_size(void)
1058 {
1059     unsigned long pages;
1060 
1061     pages = generic_max_swapfile_size();
1062 
1063     if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1064         /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1065         unsigned long long l1tf_limit = l1tf_pfn_limit();
1066         /*
1067          * We encode swap offsets also with 3 bits below those for pfn
1068          * which makes the usable limit higher.
1069          */
1070 #if CONFIG_PGTABLE_LEVELS > 2
1071         l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1072 #endif
1073         pages = min_t(unsigned long long, l1tf_limit, pages);
1074     }
1075     return pages;
1076 }
1077 #endif