Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Kernel-based Virtual Machine driver for Linux
0004  *
0005  * derived from drivers/kvm/kvm_main.c
0006  *
0007  * Copyright (C) 2006 Qumranet, Inc.
0008  * Copyright (C) 2008 Qumranet, Inc.
0009  * Copyright IBM Corporation, 2008
0010  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
0011  *
0012  * Authors:
0013  *   Avi Kivity   <avi@qumranet.com>
0014  *   Yaniv Kamay  <yaniv@qumranet.com>
0015  *   Amit Shah    <amit.shah@qumranet.com>
0016  *   Ben-Ami Yassour <benami@il.ibm.com>
0017  */
0018 
0019 #include <linux/kvm_host.h>
0020 #include "irq.h"
0021 #include "ioapic.h"
0022 #include "mmu.h"
0023 #include "i8254.h"
0024 #include "tss.h"
0025 #include "kvm_cache_regs.h"
0026 #include "kvm_emulate.h"
0027 #include "x86.h"
0028 #include "cpuid.h"
0029 #include "pmu.h"
0030 #include "hyperv.h"
0031 #include "lapic.h"
0032 #include "xen.h"
0033 
0034 #include <linux/clocksource.h>
0035 #include <linux/interrupt.h>
0036 #include <linux/kvm.h>
0037 #include <linux/fs.h>
0038 #include <linux/vmalloc.h>
0039 #include <linux/export.h>
0040 #include <linux/moduleparam.h>
0041 #include <linux/mman.h>
0042 #include <linux/highmem.h>
0043 #include <linux/iommu.h>
0044 #include <linux/cpufreq.h>
0045 #include <linux/user-return-notifier.h>
0046 #include <linux/srcu.h>
0047 #include <linux/slab.h>
0048 #include <linux/perf_event.h>
0049 #include <linux/uaccess.h>
0050 #include <linux/hash.h>
0051 #include <linux/pci.h>
0052 #include <linux/timekeeper_internal.h>
0053 #include <linux/pvclock_gtod.h>
0054 #include <linux/kvm_irqfd.h>
0055 #include <linux/irqbypass.h>
0056 #include <linux/sched/stat.h>
0057 #include <linux/sched/isolation.h>
0058 #include <linux/mem_encrypt.h>
0059 #include <linux/entry-kvm.h>
0060 #include <linux/suspend.h>
0061 
0062 #include <trace/events/kvm.h>
0063 
0064 #include <asm/debugreg.h>
0065 #include <asm/msr.h>
0066 #include <asm/desc.h>
0067 #include <asm/mce.h>
0068 #include <asm/pkru.h>
0069 #include <linux/kernel_stat.h>
0070 #include <asm/fpu/api.h>
0071 #include <asm/fpu/xcr.h>
0072 #include <asm/fpu/xstate.h>
0073 #include <asm/pvclock.h>
0074 #include <asm/div64.h>
0075 #include <asm/irq_remapping.h>
0076 #include <asm/mshyperv.h>
0077 #include <asm/hypervisor.h>
0078 #include <asm/tlbflush.h>
0079 #include <asm/intel_pt.h>
0080 #include <asm/emulate_prefix.h>
0081 #include <asm/sgx.h>
0082 #include <clocksource/hyperv_timer.h>
0083 
0084 #define CREATE_TRACE_POINTS
0085 #include "trace.h"
0086 
0087 #define MAX_IO_MSRS 256
0088 #define KVM_MAX_MCE_BANKS 32
0089 
0090 struct kvm_caps kvm_caps __read_mostly = {
0091     .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
0092 };
0093 EXPORT_SYMBOL_GPL(kvm_caps);
0094 
0095 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
0096 
0097 #define emul_to_vcpu(ctxt) \
0098     ((struct kvm_vcpu *)(ctxt)->vcpu)
0099 
0100 /* EFER defaults:
0101  * - enable syscall per default because its emulated by KVM
0102  * - enable LME and LMA per default on 64 bit KVM
0103  */
0104 #ifdef CONFIG_X86_64
0105 static
0106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
0107 #else
0108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
0109 #endif
0110 
0111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
0112 
0113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
0114 
0115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
0116 
0117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
0118                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
0119 
0120 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
0121 static void process_nmi(struct kvm_vcpu *vcpu);
0122 static void process_smi(struct kvm_vcpu *vcpu);
0123 static void enter_smm(struct kvm_vcpu *vcpu);
0124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
0125 static void store_regs(struct kvm_vcpu *vcpu);
0126 static int sync_regs(struct kvm_vcpu *vcpu);
0127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
0128 
0129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
0130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
0131 
0132 struct kvm_x86_ops kvm_x86_ops __read_mostly;
0133 
0134 #define KVM_X86_OP(func)                         \
0135     DEFINE_STATIC_CALL_NULL(kvm_x86_##func,              \
0136                 *(((struct kvm_x86_ops *)0)->func));
0137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
0138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
0139 #include <asm/kvm-x86-ops.h>
0140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
0141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
0142 
0143 static bool __read_mostly ignore_msrs = 0;
0144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
0145 
0146 bool __read_mostly report_ignored_msrs = true;
0147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
0148 EXPORT_SYMBOL_GPL(report_ignored_msrs);
0149 
0150 unsigned int min_timer_period_us = 200;
0151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
0152 
0153 static bool __read_mostly kvmclock_periodic_sync = true;
0154 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
0155 
0156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
0157 static u32 __read_mostly tsc_tolerance_ppm = 250;
0158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
0159 
0160 /*
0161  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
0162  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
0163  * advancement entirely.  Any other value is used as-is and disables adaptive
0164  * tuning, i.e. allows privileged userspace to set an exact advancement time.
0165  */
0166 static int __read_mostly lapic_timer_advance_ns = -1;
0167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
0168 
0169 static bool __read_mostly vector_hashing = true;
0170 module_param(vector_hashing, bool, S_IRUGO);
0171 
0172 bool __read_mostly enable_vmware_backdoor = false;
0173 module_param(enable_vmware_backdoor, bool, S_IRUGO);
0174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
0175 
0176 static bool __read_mostly force_emulation_prefix = false;
0177 module_param(force_emulation_prefix, bool, S_IRUGO);
0178 
0179 int __read_mostly pi_inject_timer = -1;
0180 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
0181 
0182 /* Enable/disable PMU virtualization */
0183 bool __read_mostly enable_pmu = true;
0184 EXPORT_SYMBOL_GPL(enable_pmu);
0185 module_param(enable_pmu, bool, 0444);
0186 
0187 bool __read_mostly eager_page_split = true;
0188 module_param(eager_page_split, bool, 0644);
0189 
0190 /*
0191  * Restoring the host value for MSRs that are only consumed when running in
0192  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
0193  * returns to userspace, i.e. the kernel can run with the guest's value.
0194  */
0195 #define KVM_MAX_NR_USER_RETURN_MSRS 16
0196 
0197 struct kvm_user_return_msrs {
0198     struct user_return_notifier urn;
0199     bool registered;
0200     struct kvm_user_return_msr_values {
0201         u64 host;
0202         u64 curr;
0203     } values[KVM_MAX_NR_USER_RETURN_MSRS];
0204 };
0205 
0206 u32 __read_mostly kvm_nr_uret_msrs;
0207 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
0208 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
0209 static struct kvm_user_return_msrs __percpu *user_return_msrs;
0210 
0211 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
0212                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
0213                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
0214                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
0215 
0216 u64 __read_mostly host_efer;
0217 EXPORT_SYMBOL_GPL(host_efer);
0218 
0219 bool __read_mostly allow_smaller_maxphyaddr = 0;
0220 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
0221 
0222 bool __read_mostly enable_apicv = true;
0223 EXPORT_SYMBOL_GPL(enable_apicv);
0224 
0225 u64 __read_mostly host_xss;
0226 EXPORT_SYMBOL_GPL(host_xss);
0227 
0228 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
0229     KVM_GENERIC_VM_STATS(),
0230     STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
0231     STATS_DESC_COUNTER(VM, mmu_pte_write),
0232     STATS_DESC_COUNTER(VM, mmu_pde_zapped),
0233     STATS_DESC_COUNTER(VM, mmu_flooded),
0234     STATS_DESC_COUNTER(VM, mmu_recycled),
0235     STATS_DESC_COUNTER(VM, mmu_cache_miss),
0236     STATS_DESC_ICOUNTER(VM, mmu_unsync),
0237     STATS_DESC_ICOUNTER(VM, pages_4k),
0238     STATS_DESC_ICOUNTER(VM, pages_2m),
0239     STATS_DESC_ICOUNTER(VM, pages_1g),
0240     STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
0241     STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
0242     STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
0243 };
0244 
0245 const struct kvm_stats_header kvm_vm_stats_header = {
0246     .name_size = KVM_STATS_NAME_SIZE,
0247     .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
0248     .id_offset = sizeof(struct kvm_stats_header),
0249     .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
0250     .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
0251                sizeof(kvm_vm_stats_desc),
0252 };
0253 
0254 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
0255     KVM_GENERIC_VCPU_STATS(),
0256     STATS_DESC_COUNTER(VCPU, pf_taken),
0257     STATS_DESC_COUNTER(VCPU, pf_fixed),
0258     STATS_DESC_COUNTER(VCPU, pf_emulate),
0259     STATS_DESC_COUNTER(VCPU, pf_spurious),
0260     STATS_DESC_COUNTER(VCPU, pf_fast),
0261     STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
0262     STATS_DESC_COUNTER(VCPU, pf_guest),
0263     STATS_DESC_COUNTER(VCPU, tlb_flush),
0264     STATS_DESC_COUNTER(VCPU, invlpg),
0265     STATS_DESC_COUNTER(VCPU, exits),
0266     STATS_DESC_COUNTER(VCPU, io_exits),
0267     STATS_DESC_COUNTER(VCPU, mmio_exits),
0268     STATS_DESC_COUNTER(VCPU, signal_exits),
0269     STATS_DESC_COUNTER(VCPU, irq_window_exits),
0270     STATS_DESC_COUNTER(VCPU, nmi_window_exits),
0271     STATS_DESC_COUNTER(VCPU, l1d_flush),
0272     STATS_DESC_COUNTER(VCPU, halt_exits),
0273     STATS_DESC_COUNTER(VCPU, request_irq_exits),
0274     STATS_DESC_COUNTER(VCPU, irq_exits),
0275     STATS_DESC_COUNTER(VCPU, host_state_reload),
0276     STATS_DESC_COUNTER(VCPU, fpu_reload),
0277     STATS_DESC_COUNTER(VCPU, insn_emulation),
0278     STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
0279     STATS_DESC_COUNTER(VCPU, hypercalls),
0280     STATS_DESC_COUNTER(VCPU, irq_injections),
0281     STATS_DESC_COUNTER(VCPU, nmi_injections),
0282     STATS_DESC_COUNTER(VCPU, req_event),
0283     STATS_DESC_COUNTER(VCPU, nested_run),
0284     STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
0285     STATS_DESC_COUNTER(VCPU, directed_yield_successful),
0286     STATS_DESC_COUNTER(VCPU, preemption_reported),
0287     STATS_DESC_COUNTER(VCPU, preemption_other),
0288     STATS_DESC_IBOOLEAN(VCPU, guest_mode),
0289     STATS_DESC_COUNTER(VCPU, notify_window_exits),
0290 };
0291 
0292 const struct kvm_stats_header kvm_vcpu_stats_header = {
0293     .name_size = KVM_STATS_NAME_SIZE,
0294     .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
0295     .id_offset = sizeof(struct kvm_stats_header),
0296     .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
0297     .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
0298                sizeof(kvm_vcpu_stats_desc),
0299 };
0300 
0301 u64 __read_mostly host_xcr0;
0302 
0303 static struct kmem_cache *x86_emulator_cache;
0304 
0305 /*
0306  * When called, it means the previous get/set msr reached an invalid msr.
0307  * Return true if we want to ignore/silent this failed msr access.
0308  */
0309 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
0310 {
0311     const char *op = write ? "wrmsr" : "rdmsr";
0312 
0313     if (ignore_msrs) {
0314         if (report_ignored_msrs)
0315             kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
0316                       op, msr, data);
0317         /* Mask the error */
0318         return true;
0319     } else {
0320         kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
0321                       op, msr, data);
0322         return false;
0323     }
0324 }
0325 
0326 static struct kmem_cache *kvm_alloc_emulator_cache(void)
0327 {
0328     unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
0329     unsigned int size = sizeof(struct x86_emulate_ctxt);
0330 
0331     return kmem_cache_create_usercopy("x86_emulator", size,
0332                       __alignof__(struct x86_emulate_ctxt),
0333                       SLAB_ACCOUNT, useroffset,
0334                       size - useroffset, NULL);
0335 }
0336 
0337 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
0338 
0339 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
0340 {
0341     int i;
0342     for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
0343         vcpu->arch.apf.gfns[i] = ~0;
0344 }
0345 
0346 static void kvm_on_user_return(struct user_return_notifier *urn)
0347 {
0348     unsigned slot;
0349     struct kvm_user_return_msrs *msrs
0350         = container_of(urn, struct kvm_user_return_msrs, urn);
0351     struct kvm_user_return_msr_values *values;
0352     unsigned long flags;
0353 
0354     /*
0355      * Disabling irqs at this point since the following code could be
0356      * interrupted and executed through kvm_arch_hardware_disable()
0357      */
0358     local_irq_save(flags);
0359     if (msrs->registered) {
0360         msrs->registered = false;
0361         user_return_notifier_unregister(urn);
0362     }
0363     local_irq_restore(flags);
0364     for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
0365         values = &msrs->values[slot];
0366         if (values->host != values->curr) {
0367             wrmsrl(kvm_uret_msrs_list[slot], values->host);
0368             values->curr = values->host;
0369         }
0370     }
0371 }
0372 
0373 static int kvm_probe_user_return_msr(u32 msr)
0374 {
0375     u64 val;
0376     int ret;
0377 
0378     preempt_disable();
0379     ret = rdmsrl_safe(msr, &val);
0380     if (ret)
0381         goto out;
0382     ret = wrmsrl_safe(msr, val);
0383 out:
0384     preempt_enable();
0385     return ret;
0386 }
0387 
0388 int kvm_add_user_return_msr(u32 msr)
0389 {
0390     BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
0391 
0392     if (kvm_probe_user_return_msr(msr))
0393         return -1;
0394 
0395     kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
0396     return kvm_nr_uret_msrs++;
0397 }
0398 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
0399 
0400 int kvm_find_user_return_msr(u32 msr)
0401 {
0402     int i;
0403 
0404     for (i = 0; i < kvm_nr_uret_msrs; ++i) {
0405         if (kvm_uret_msrs_list[i] == msr)
0406             return i;
0407     }
0408     return -1;
0409 }
0410 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
0411 
0412 static void kvm_user_return_msr_cpu_online(void)
0413 {
0414     unsigned int cpu = smp_processor_id();
0415     struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
0416     u64 value;
0417     int i;
0418 
0419     for (i = 0; i < kvm_nr_uret_msrs; ++i) {
0420         rdmsrl_safe(kvm_uret_msrs_list[i], &value);
0421         msrs->values[i].host = value;
0422         msrs->values[i].curr = value;
0423     }
0424 }
0425 
0426 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
0427 {
0428     unsigned int cpu = smp_processor_id();
0429     struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
0430     int err;
0431 
0432     value = (value & mask) | (msrs->values[slot].host & ~mask);
0433     if (value == msrs->values[slot].curr)
0434         return 0;
0435     err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
0436     if (err)
0437         return 1;
0438 
0439     msrs->values[slot].curr = value;
0440     if (!msrs->registered) {
0441         msrs->urn.on_user_return = kvm_on_user_return;
0442         user_return_notifier_register(&msrs->urn);
0443         msrs->registered = true;
0444     }
0445     return 0;
0446 }
0447 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
0448 
0449 static void drop_user_return_notifiers(void)
0450 {
0451     unsigned int cpu = smp_processor_id();
0452     struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
0453 
0454     if (msrs->registered)
0455         kvm_on_user_return(&msrs->urn);
0456 }
0457 
0458 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
0459 {
0460     return vcpu->arch.apic_base;
0461 }
0462 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
0463 
0464 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
0465 {
0466     return kvm_apic_mode(kvm_get_apic_base(vcpu));
0467 }
0468 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
0469 
0470 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
0471 {
0472     enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
0473     enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
0474     u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
0475         (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
0476 
0477     if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
0478         return 1;
0479     if (!msr_info->host_initiated) {
0480         if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
0481             return 1;
0482         if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
0483             return 1;
0484     }
0485 
0486     kvm_lapic_set_base(vcpu, msr_info->data);
0487     kvm_recalculate_apic_map(vcpu->kvm);
0488     return 0;
0489 }
0490 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
0491 
0492 /*
0493  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
0494  *
0495  * Hardware virtualization extension instructions may fault if a reboot turns
0496  * off virtualization while processes are running.  Usually after catching the
0497  * fault we just panic; during reboot instead the instruction is ignored.
0498  */
0499 noinstr void kvm_spurious_fault(void)
0500 {
0501     /* Fault while not rebooting.  We want the trace. */
0502     BUG_ON(!kvm_rebooting);
0503 }
0504 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
0505 
0506 #define EXCPT_BENIGN        0
0507 #define EXCPT_CONTRIBUTORY  1
0508 #define EXCPT_PF        2
0509 
0510 static int exception_class(int vector)
0511 {
0512     switch (vector) {
0513     case PF_VECTOR:
0514         return EXCPT_PF;
0515     case DE_VECTOR:
0516     case TS_VECTOR:
0517     case NP_VECTOR:
0518     case SS_VECTOR:
0519     case GP_VECTOR:
0520         return EXCPT_CONTRIBUTORY;
0521     default:
0522         break;
0523     }
0524     return EXCPT_BENIGN;
0525 }
0526 
0527 #define EXCPT_FAULT     0
0528 #define EXCPT_TRAP      1
0529 #define EXCPT_ABORT     2
0530 #define EXCPT_INTERRUPT     3
0531 
0532 static int exception_type(int vector)
0533 {
0534     unsigned int mask;
0535 
0536     if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
0537         return EXCPT_INTERRUPT;
0538 
0539     mask = 1 << vector;
0540 
0541     /* #DB is trap, as instruction watchpoints are handled elsewhere */
0542     if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
0543         return EXCPT_TRAP;
0544 
0545     if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
0546         return EXCPT_ABORT;
0547 
0548     /* Reserved exceptions will result in fault */
0549     return EXCPT_FAULT;
0550 }
0551 
0552 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
0553 {
0554     unsigned nr = vcpu->arch.exception.nr;
0555     bool has_payload = vcpu->arch.exception.has_payload;
0556     unsigned long payload = vcpu->arch.exception.payload;
0557 
0558     if (!has_payload)
0559         return;
0560 
0561     switch (nr) {
0562     case DB_VECTOR:
0563         /*
0564          * "Certain debug exceptions may clear bit 0-3.  The
0565          * remaining contents of the DR6 register are never
0566          * cleared by the processor".
0567          */
0568         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
0569         /*
0570          * In order to reflect the #DB exception payload in guest
0571          * dr6, three components need to be considered: active low
0572          * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
0573          * DR6_BS and DR6_BT)
0574          * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
0575          * In the target guest dr6:
0576          * FIXED_1 bits should always be set.
0577          * Active low bits should be cleared if 1-setting in payload.
0578          * Active high bits should be set if 1-setting in payload.
0579          *
0580          * Note, the payload is compatible with the pending debug
0581          * exceptions/exit qualification under VMX, that active_low bits
0582          * are active high in payload.
0583          * So they need to be flipped for DR6.
0584          */
0585         vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
0586         vcpu->arch.dr6 |= payload;
0587         vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
0588 
0589         /*
0590          * The #DB payload is defined as compatible with the 'pending
0591          * debug exceptions' field under VMX, not DR6. While bit 12 is
0592          * defined in the 'pending debug exceptions' field (enabled
0593          * breakpoint), it is reserved and must be zero in DR6.
0594          */
0595         vcpu->arch.dr6 &= ~BIT(12);
0596         break;
0597     case PF_VECTOR:
0598         vcpu->arch.cr2 = payload;
0599         break;
0600     }
0601 
0602     vcpu->arch.exception.has_payload = false;
0603     vcpu->arch.exception.payload = 0;
0604 }
0605 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
0606 
0607 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
0608         unsigned nr, bool has_error, u32 error_code,
0609             bool has_payload, unsigned long payload, bool reinject)
0610 {
0611     u32 prev_nr;
0612     int class1, class2;
0613 
0614     kvm_make_request(KVM_REQ_EVENT, vcpu);
0615 
0616     if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
0617     queue:
0618         if (reinject) {
0619             /*
0620              * On vmentry, vcpu->arch.exception.pending is only
0621              * true if an event injection was blocked by
0622              * nested_run_pending.  In that case, however,
0623              * vcpu_enter_guest requests an immediate exit,
0624              * and the guest shouldn't proceed far enough to
0625              * need reinjection.
0626              */
0627             WARN_ON_ONCE(vcpu->arch.exception.pending);
0628             vcpu->arch.exception.injected = true;
0629             if (WARN_ON_ONCE(has_payload)) {
0630                 /*
0631                  * A reinjected event has already
0632                  * delivered its payload.
0633                  */
0634                 has_payload = false;
0635                 payload = 0;
0636             }
0637         } else {
0638             vcpu->arch.exception.pending = true;
0639             vcpu->arch.exception.injected = false;
0640         }
0641         vcpu->arch.exception.has_error_code = has_error;
0642         vcpu->arch.exception.nr = nr;
0643         vcpu->arch.exception.error_code = error_code;
0644         vcpu->arch.exception.has_payload = has_payload;
0645         vcpu->arch.exception.payload = payload;
0646         if (!is_guest_mode(vcpu))
0647             kvm_deliver_exception_payload(vcpu);
0648         return;
0649     }
0650 
0651     /* to check exception */
0652     prev_nr = vcpu->arch.exception.nr;
0653     if (prev_nr == DF_VECTOR) {
0654         /* triple fault -> shutdown */
0655         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
0656         return;
0657     }
0658     class1 = exception_class(prev_nr);
0659     class2 = exception_class(nr);
0660     if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
0661         || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
0662         /*
0663          * Generate double fault per SDM Table 5-5.  Set
0664          * exception.pending = true so that the double fault
0665          * can trigger a nested vmexit.
0666          */
0667         vcpu->arch.exception.pending = true;
0668         vcpu->arch.exception.injected = false;
0669         vcpu->arch.exception.has_error_code = true;
0670         vcpu->arch.exception.nr = DF_VECTOR;
0671         vcpu->arch.exception.error_code = 0;
0672         vcpu->arch.exception.has_payload = false;
0673         vcpu->arch.exception.payload = 0;
0674     } else
0675         /* replace previous exception with a new one in a hope
0676            that instruction re-execution will regenerate lost
0677            exception */
0678         goto queue;
0679 }
0680 
0681 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
0682 {
0683     kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
0684 }
0685 EXPORT_SYMBOL_GPL(kvm_queue_exception);
0686 
0687 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
0688 {
0689     kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
0690 }
0691 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
0692 
0693 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
0694                unsigned long payload)
0695 {
0696     kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
0697 }
0698 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
0699 
0700 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
0701                     u32 error_code, unsigned long payload)
0702 {
0703     kvm_multiple_exception(vcpu, nr, true, error_code,
0704                    true, payload, false);
0705 }
0706 
0707 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
0708 {
0709     if (err)
0710         kvm_inject_gp(vcpu, 0);
0711     else
0712         return kvm_skip_emulated_instruction(vcpu);
0713 
0714     return 1;
0715 }
0716 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
0717 
0718 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
0719 {
0720     if (err) {
0721         kvm_inject_gp(vcpu, 0);
0722         return 1;
0723     }
0724 
0725     return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
0726                        EMULTYPE_COMPLETE_USER_EXIT);
0727 }
0728 
0729 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
0730 {
0731     ++vcpu->stat.pf_guest;
0732     vcpu->arch.exception.nested_apf =
0733         is_guest_mode(vcpu) && fault->async_page_fault;
0734     if (vcpu->arch.exception.nested_apf) {
0735         vcpu->arch.apf.nested_apf_token = fault->address;
0736         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
0737     } else {
0738         kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
0739                     fault->address);
0740     }
0741 }
0742 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
0743 
0744 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
0745 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
0746                     struct x86_exception *fault)
0747 {
0748     struct kvm_mmu *fault_mmu;
0749     WARN_ON_ONCE(fault->vector != PF_VECTOR);
0750 
0751     fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
0752                            vcpu->arch.walk_mmu;
0753 
0754     /*
0755      * Invalidate the TLB entry for the faulting address, if it exists,
0756      * else the access will fault indefinitely (and to emulate hardware).
0757      */
0758     if ((fault->error_code & PFERR_PRESENT_MASK) &&
0759         !(fault->error_code & PFERR_RSVD_MASK))
0760         kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
0761                        fault_mmu->root.hpa);
0762 
0763     /*
0764      * A workaround for KVM's bad exception handling.  If KVM injected an
0765      * exception into L2, and L2 encountered a #PF while vectoring the
0766      * injected exception, manually check to see if L1 wants to intercept
0767      * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
0768      * In all other cases, defer the check to nested_ops->check_events(),
0769      * which will correctly handle priority (this does not).  Note, other
0770      * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
0771      * most problematic, e.g. when L0 and L1 are both intercepting #PF for
0772      * shadow paging.
0773      *
0774      * TODO: Rewrite exception handling to track injected and pending
0775      *       (VM-Exit) exceptions separately.
0776      */
0777     if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
0778         kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
0779         return true;
0780 
0781     fault_mmu->inject_page_fault(vcpu, fault);
0782     return false;
0783 }
0784 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
0785 
0786 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
0787 {
0788     atomic_inc(&vcpu->arch.nmi_queued);
0789     kvm_make_request(KVM_REQ_NMI, vcpu);
0790 }
0791 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
0792 
0793 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
0794 {
0795     kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
0796 }
0797 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
0798 
0799 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
0800 {
0801     kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
0802 }
0803 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
0804 
0805 /*
0806  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
0807  * a #GP and return false.
0808  */
0809 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
0810 {
0811     if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
0812         return true;
0813     kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
0814     return false;
0815 }
0816 EXPORT_SYMBOL_GPL(kvm_require_cpl);
0817 
0818 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
0819 {
0820     if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
0821         return true;
0822 
0823     kvm_queue_exception(vcpu, UD_VECTOR);
0824     return false;
0825 }
0826 EXPORT_SYMBOL_GPL(kvm_require_dr);
0827 
0828 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
0829 {
0830     return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
0831 }
0832 
0833 /*
0834  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
0835  */
0836 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
0837 {
0838     struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
0839     gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
0840     gpa_t real_gpa;
0841     int i;
0842     int ret;
0843     u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
0844 
0845     /*
0846      * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
0847      * to an L1 GPA.
0848      */
0849     real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
0850                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
0851     if (real_gpa == INVALID_GPA)
0852         return 0;
0853 
0854     /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
0855     ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
0856                        cr3 & GENMASK(11, 5), sizeof(pdpte));
0857     if (ret < 0)
0858         return 0;
0859 
0860     for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
0861         if ((pdpte[i] & PT_PRESENT_MASK) &&
0862             (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
0863             return 0;
0864         }
0865     }
0866 
0867     /*
0868      * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
0869      * Shadow page roots need to be reconstructed instead.
0870      */
0871     if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
0872         kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
0873 
0874     memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
0875     kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
0876     kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
0877     vcpu->arch.pdptrs_from_userspace = false;
0878 
0879     return 1;
0880 }
0881 EXPORT_SYMBOL_GPL(load_pdptrs);
0882 
0883 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
0884 {
0885     if ((cr0 ^ old_cr0) & X86_CR0_PG) {
0886         kvm_clear_async_pf_completion_queue(vcpu);
0887         kvm_async_pf_hash_reset(vcpu);
0888 
0889         /*
0890          * Clearing CR0.PG is defined to flush the TLB from the guest's
0891          * perspective.
0892          */
0893         if (!(cr0 & X86_CR0_PG))
0894             kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
0895     }
0896 
0897     if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
0898         kvm_mmu_reset_context(vcpu);
0899 
0900     if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
0901         kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
0902         !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
0903         kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
0904 }
0905 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
0906 
0907 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
0908 {
0909     unsigned long old_cr0 = kvm_read_cr0(vcpu);
0910 
0911     cr0 |= X86_CR0_ET;
0912 
0913 #ifdef CONFIG_X86_64
0914     if (cr0 & 0xffffffff00000000UL)
0915         return 1;
0916 #endif
0917 
0918     cr0 &= ~CR0_RESERVED_BITS;
0919 
0920     if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
0921         return 1;
0922 
0923     if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
0924         return 1;
0925 
0926 #ifdef CONFIG_X86_64
0927     if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
0928         (cr0 & X86_CR0_PG)) {
0929         int cs_db, cs_l;
0930 
0931         if (!is_pae(vcpu))
0932             return 1;
0933         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
0934         if (cs_l)
0935             return 1;
0936     }
0937 #endif
0938     if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
0939         is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
0940         !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
0941         return 1;
0942 
0943     if (!(cr0 & X86_CR0_PG) &&
0944         (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
0945         return 1;
0946 
0947     static_call(kvm_x86_set_cr0)(vcpu, cr0);
0948 
0949     kvm_post_set_cr0(vcpu, old_cr0, cr0);
0950 
0951     return 0;
0952 }
0953 EXPORT_SYMBOL_GPL(kvm_set_cr0);
0954 
0955 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
0956 {
0957     (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
0958 }
0959 EXPORT_SYMBOL_GPL(kvm_lmsw);
0960 
0961 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
0962 {
0963     if (vcpu->arch.guest_state_protected)
0964         return;
0965 
0966     if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
0967 
0968         if (vcpu->arch.xcr0 != host_xcr0)
0969             xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
0970 
0971         if (vcpu->arch.xsaves_enabled &&
0972             vcpu->arch.ia32_xss != host_xss)
0973             wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
0974     }
0975 
0976 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
0977     if (static_cpu_has(X86_FEATURE_PKU) &&
0978         vcpu->arch.pkru != vcpu->arch.host_pkru &&
0979         ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
0980          kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
0981         write_pkru(vcpu->arch.pkru);
0982 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
0983 }
0984 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
0985 
0986 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
0987 {
0988     if (vcpu->arch.guest_state_protected)
0989         return;
0990 
0991 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
0992     if (static_cpu_has(X86_FEATURE_PKU) &&
0993         ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
0994          kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
0995         vcpu->arch.pkru = rdpkru();
0996         if (vcpu->arch.pkru != vcpu->arch.host_pkru)
0997             write_pkru(vcpu->arch.host_pkru);
0998     }
0999 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1000 
1001     if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1002 
1003         if (vcpu->arch.xcr0 != host_xcr0)
1004             xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1005 
1006         if (vcpu->arch.xsaves_enabled &&
1007             vcpu->arch.ia32_xss != host_xss)
1008             wrmsrl(MSR_IA32_XSS, host_xss);
1009     }
1010 
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1013 
1014 #ifdef CONFIG_X86_64
1015 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1016 {
1017     return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1018 }
1019 #endif
1020 
1021 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1022 {
1023     u64 xcr0 = xcr;
1024     u64 old_xcr0 = vcpu->arch.xcr0;
1025     u64 valid_bits;
1026 
1027     /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1028     if (index != XCR_XFEATURE_ENABLED_MASK)
1029         return 1;
1030     if (!(xcr0 & XFEATURE_MASK_FP))
1031         return 1;
1032     if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1033         return 1;
1034 
1035     /*
1036      * Do not allow the guest to set bits that we do not support
1037      * saving.  However, xcr0 bit 0 is always set, even if the
1038      * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1039      */
1040     valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1041     if (xcr0 & ~valid_bits)
1042         return 1;
1043 
1044     if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1045         (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1046         return 1;
1047 
1048     if (xcr0 & XFEATURE_MASK_AVX512) {
1049         if (!(xcr0 & XFEATURE_MASK_YMM))
1050             return 1;
1051         if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1052             return 1;
1053     }
1054 
1055     if ((xcr0 & XFEATURE_MASK_XTILE) &&
1056         ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1057         return 1;
1058 
1059     vcpu->arch.xcr0 = xcr0;
1060 
1061     if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1062         kvm_update_cpuid_runtime(vcpu);
1063     return 0;
1064 }
1065 
1066 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1067 {
1068     /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1069     if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1070         __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1071         kvm_inject_gp(vcpu, 0);
1072         return 1;
1073     }
1074 
1075     return kvm_skip_emulated_instruction(vcpu);
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1078 
1079 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1080 {
1081     if (cr4 & cr4_reserved_bits)
1082         return false;
1083 
1084     if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1085         return false;
1086 
1087     return true;
1088 }
1089 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1090 
1091 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1092 {
1093     return __kvm_is_valid_cr4(vcpu, cr4) &&
1094            static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1095 }
1096 
1097 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1098 {
1099     if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1100         kvm_mmu_reset_context(vcpu);
1101 
1102     /*
1103      * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1104      * according to the SDM; however, stale prev_roots could be reused
1105      * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1106      * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1107      * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1108      * so fall through.
1109      */
1110     if (!tdp_enabled &&
1111         (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1112         kvm_mmu_unload(vcpu);
1113 
1114     /*
1115      * The TLB has to be flushed for all PCIDs if any of the following
1116      * (architecturally required) changes happen:
1117      * - CR4.PCIDE is changed from 1 to 0
1118      * - CR4.PGE is toggled
1119      *
1120      * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1121      */
1122     if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1123         (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1124         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1125 
1126     /*
1127      * The TLB has to be flushed for the current PCID if any of the
1128      * following (architecturally required) changes happen:
1129      * - CR4.SMEP is changed from 0 to 1
1130      * - CR4.PAE is toggled
1131      */
1132     else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1133          ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1134         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1135 
1136 }
1137 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1138 
1139 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1140 {
1141     unsigned long old_cr4 = kvm_read_cr4(vcpu);
1142 
1143     if (!kvm_is_valid_cr4(vcpu, cr4))
1144         return 1;
1145 
1146     if (is_long_mode(vcpu)) {
1147         if (!(cr4 & X86_CR4_PAE))
1148             return 1;
1149         if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1150             return 1;
1151     } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1152            && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1153            && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1154         return 1;
1155 
1156     if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1157         if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1158             return 1;
1159 
1160         /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1161         if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1162             return 1;
1163     }
1164 
1165     static_call(kvm_x86_set_cr4)(vcpu, cr4);
1166 
1167     kvm_post_set_cr4(vcpu, old_cr4, cr4);
1168 
1169     return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1172 
1173 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1174 {
1175     struct kvm_mmu *mmu = vcpu->arch.mmu;
1176     unsigned long roots_to_free = 0;
1177     int i;
1178 
1179     /*
1180      * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1181      * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1182      * also via the emulator.  KVM's TDP page tables are not in the scope of
1183      * the invalidation, but the guest's TLB entries need to be flushed as
1184      * the CPU may have cached entries in its TLB for the target PCID.
1185      */
1186     if (unlikely(tdp_enabled)) {
1187         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1188         return;
1189     }
1190 
1191     /*
1192      * If neither the current CR3 nor any of the prev_roots use the given
1193      * PCID, then nothing needs to be done here because a resync will
1194      * happen anyway before switching to any other CR3.
1195      */
1196     if (kvm_get_active_pcid(vcpu) == pcid) {
1197         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1198         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1199     }
1200 
1201     /*
1202      * If PCID is disabled, there is no need to free prev_roots even if the
1203      * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1204      * with PCIDE=0.
1205      */
1206     if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1207         return;
1208 
1209     for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1210         if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1211             roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1212 
1213     kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1214 }
1215 
1216 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1217 {
1218     bool skip_tlb_flush = false;
1219     unsigned long pcid = 0;
1220 #ifdef CONFIG_X86_64
1221     bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1222 
1223     if (pcid_enabled) {
1224         skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1225         cr3 &= ~X86_CR3_PCID_NOFLUSH;
1226         pcid = cr3 & X86_CR3_PCID_MASK;
1227     }
1228 #endif
1229 
1230     /* PDPTRs are always reloaded for PAE paging. */
1231     if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1232         goto handle_tlb_flush;
1233 
1234     /*
1235      * Do not condition the GPA check on long mode, this helper is used to
1236      * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1237      * the current vCPU mode is accurate.
1238      */
1239     if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1240         return 1;
1241 
1242     if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1243         return 1;
1244 
1245     if (cr3 != kvm_read_cr3(vcpu))
1246         kvm_mmu_new_pgd(vcpu, cr3);
1247 
1248     vcpu->arch.cr3 = cr3;
1249     kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1250     /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1251 
1252 handle_tlb_flush:
1253     /*
1254      * A load of CR3 that flushes the TLB flushes only the current PCID,
1255      * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1256      * moot point in the end because _disabling_ PCID will flush all PCIDs,
1257      * and it's impossible to use a non-zero PCID when PCID is disabled,
1258      * i.e. only PCID=0 can be relevant.
1259      */
1260     if (!skip_tlb_flush)
1261         kvm_invalidate_pcid(vcpu, pcid);
1262 
1263     return 0;
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1266 
1267 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1268 {
1269     if (cr8 & CR8_RESERVED_BITS)
1270         return 1;
1271     if (lapic_in_kernel(vcpu))
1272         kvm_lapic_set_tpr(vcpu, cr8);
1273     else
1274         vcpu->arch.cr8 = cr8;
1275     return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1278 
1279 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1280 {
1281     if (lapic_in_kernel(vcpu))
1282         return kvm_lapic_get_cr8(vcpu);
1283     else
1284         return vcpu->arch.cr8;
1285 }
1286 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1287 
1288 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1289 {
1290     int i;
1291 
1292     if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1293         for (i = 0; i < KVM_NR_DB_REGS; i++)
1294             vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1295     }
1296 }
1297 
1298 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1299 {
1300     unsigned long dr7;
1301 
1302     if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1303         dr7 = vcpu->arch.guest_debug_dr7;
1304     else
1305         dr7 = vcpu->arch.dr7;
1306     static_call(kvm_x86_set_dr7)(vcpu, dr7);
1307     vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1308     if (dr7 & DR7_BP_EN_MASK)
1309         vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1310 }
1311 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1312 
1313 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1314 {
1315     u64 fixed = DR6_FIXED_1;
1316 
1317     if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1318         fixed |= DR6_RTM;
1319 
1320     if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1321         fixed |= DR6_BUS_LOCK;
1322     return fixed;
1323 }
1324 
1325 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1326 {
1327     size_t size = ARRAY_SIZE(vcpu->arch.db);
1328 
1329     switch (dr) {
1330     case 0 ... 3:
1331         vcpu->arch.db[array_index_nospec(dr, size)] = val;
1332         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1333             vcpu->arch.eff_db[dr] = val;
1334         break;
1335     case 4:
1336     case 6:
1337         if (!kvm_dr6_valid(val))
1338             return 1; /* #GP */
1339         vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1340         break;
1341     case 5:
1342     default: /* 7 */
1343         if (!kvm_dr7_valid(val))
1344             return 1; /* #GP */
1345         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1346         kvm_update_dr7(vcpu);
1347         break;
1348     }
1349 
1350     return 0;
1351 }
1352 EXPORT_SYMBOL_GPL(kvm_set_dr);
1353 
1354 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1355 {
1356     size_t size = ARRAY_SIZE(vcpu->arch.db);
1357 
1358     switch (dr) {
1359     case 0 ... 3:
1360         *val = vcpu->arch.db[array_index_nospec(dr, size)];
1361         break;
1362     case 4:
1363     case 6:
1364         *val = vcpu->arch.dr6;
1365         break;
1366     case 5:
1367     default: /* 7 */
1368         *val = vcpu->arch.dr7;
1369         break;
1370     }
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_get_dr);
1373 
1374 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1375 {
1376     u32 ecx = kvm_rcx_read(vcpu);
1377     u64 data;
1378 
1379     if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1380         kvm_inject_gp(vcpu, 0);
1381         return 1;
1382     }
1383 
1384     kvm_rax_write(vcpu, (u32)data);
1385     kvm_rdx_write(vcpu, data >> 32);
1386     return kvm_skip_emulated_instruction(vcpu);
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1389 
1390 /*
1391  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1392  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1393  *
1394  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1395  * extract the supported MSRs from the related const lists.
1396  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1397  * capabilities of the host cpu. This capabilities test skips MSRs that are
1398  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1399  * may depend on host virtualization features rather than host cpu features.
1400  */
1401 
1402 static const u32 msrs_to_save_all[] = {
1403     MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1404     MSR_STAR,
1405 #ifdef CONFIG_X86_64
1406     MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1407 #endif
1408     MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1409     MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1410     MSR_IA32_SPEC_CTRL,
1411     MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1412     MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1413     MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1414     MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1415     MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1416     MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1417     MSR_IA32_UMWAIT_CONTROL,
1418 
1419     MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1420     MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1421     MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1422     MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1423     MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1424     MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1425     MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1426     MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1427     MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1428     MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1429     MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1430     MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1431     MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1432     MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1433     MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1434     MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1435     MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1436     MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1437     MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1438     MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1439     MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1440     MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1441     MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1442 
1443     MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1444     MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1445     MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1446     MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1447     MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1448     MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1449     MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1450 };
1451 
1452 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1453 static unsigned num_msrs_to_save;
1454 
1455 static const u32 emulated_msrs_all[] = {
1456     MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1457     MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1458     HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1459     HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1460     HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1461     HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1462     HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1463     HV_X64_MSR_RESET,
1464     HV_X64_MSR_VP_INDEX,
1465     HV_X64_MSR_VP_RUNTIME,
1466     HV_X64_MSR_SCONTROL,
1467     HV_X64_MSR_STIMER0_CONFIG,
1468     HV_X64_MSR_VP_ASSIST_PAGE,
1469     HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1470     HV_X64_MSR_TSC_EMULATION_STATUS,
1471     HV_X64_MSR_SYNDBG_OPTIONS,
1472     HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1473     HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1474     HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1475 
1476     MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1477     MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1478 
1479     MSR_IA32_TSC_ADJUST,
1480     MSR_IA32_TSC_DEADLINE,
1481     MSR_IA32_ARCH_CAPABILITIES,
1482     MSR_IA32_PERF_CAPABILITIES,
1483     MSR_IA32_MISC_ENABLE,
1484     MSR_IA32_MCG_STATUS,
1485     MSR_IA32_MCG_CTL,
1486     MSR_IA32_MCG_EXT_CTL,
1487     MSR_IA32_SMBASE,
1488     MSR_SMI_COUNT,
1489     MSR_PLATFORM_INFO,
1490     MSR_MISC_FEATURES_ENABLES,
1491     MSR_AMD64_VIRT_SPEC_CTRL,
1492     MSR_AMD64_TSC_RATIO,
1493     MSR_IA32_POWER_CTL,
1494     MSR_IA32_UCODE_REV,
1495 
1496     /*
1497      * The following list leaves out MSRs whose values are determined
1498      * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1499      * We always support the "true" VMX control MSRs, even if the host
1500      * processor does not, so I am putting these registers here rather
1501      * than in msrs_to_save_all.
1502      */
1503     MSR_IA32_VMX_BASIC,
1504     MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1505     MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1506     MSR_IA32_VMX_TRUE_EXIT_CTLS,
1507     MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1508     MSR_IA32_VMX_MISC,
1509     MSR_IA32_VMX_CR0_FIXED0,
1510     MSR_IA32_VMX_CR4_FIXED0,
1511     MSR_IA32_VMX_VMCS_ENUM,
1512     MSR_IA32_VMX_PROCBASED_CTLS2,
1513     MSR_IA32_VMX_EPT_VPID_CAP,
1514     MSR_IA32_VMX_VMFUNC,
1515 
1516     MSR_K7_HWCR,
1517     MSR_KVM_POLL_CONTROL,
1518 };
1519 
1520 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1521 static unsigned num_emulated_msrs;
1522 
1523 /*
1524  * List of msr numbers which are used to expose MSR-based features that
1525  * can be used by a hypervisor to validate requested CPU features.
1526  */
1527 static const u32 msr_based_features_all[] = {
1528     MSR_IA32_VMX_BASIC,
1529     MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1530     MSR_IA32_VMX_PINBASED_CTLS,
1531     MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1532     MSR_IA32_VMX_PROCBASED_CTLS,
1533     MSR_IA32_VMX_TRUE_EXIT_CTLS,
1534     MSR_IA32_VMX_EXIT_CTLS,
1535     MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1536     MSR_IA32_VMX_ENTRY_CTLS,
1537     MSR_IA32_VMX_MISC,
1538     MSR_IA32_VMX_CR0_FIXED0,
1539     MSR_IA32_VMX_CR0_FIXED1,
1540     MSR_IA32_VMX_CR4_FIXED0,
1541     MSR_IA32_VMX_CR4_FIXED1,
1542     MSR_IA32_VMX_VMCS_ENUM,
1543     MSR_IA32_VMX_PROCBASED_CTLS2,
1544     MSR_IA32_VMX_EPT_VPID_CAP,
1545     MSR_IA32_VMX_VMFUNC,
1546 
1547     MSR_F10H_DECFG,
1548     MSR_IA32_UCODE_REV,
1549     MSR_IA32_ARCH_CAPABILITIES,
1550     MSR_IA32_PERF_CAPABILITIES,
1551 };
1552 
1553 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1554 static unsigned int num_msr_based_features;
1555 
1556 /*
1557  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1558  * does not yet virtualize. These include:
1559  *   10 - MISC_PACKAGE_CTRLS
1560  *   11 - ENERGY_FILTERING_CTL
1561  *   12 - DOITM
1562  *   18 - FB_CLEAR_CTRL
1563  *   21 - XAPIC_DISABLE_STATUS
1564  *   23 - OVERCLOCKING_STATUS
1565  */
1566 
1567 #define KVM_SUPPORTED_ARCH_CAP \
1568     (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1569      ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1570      ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1571      ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1572      ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1573 
1574 static u64 kvm_get_arch_capabilities(void)
1575 {
1576     u64 data = 0;
1577 
1578     if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1579         rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1580         data &= KVM_SUPPORTED_ARCH_CAP;
1581     }
1582 
1583     /*
1584      * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1585      * the nested hypervisor runs with NX huge pages.  If it is not,
1586      * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1587      * L1 guests, so it need not worry about its own (L2) guests.
1588      */
1589     data |= ARCH_CAP_PSCHANGE_MC_NO;
1590 
1591     /*
1592      * If we're doing cache flushes (either "always" or "cond")
1593      * we will do one whenever the guest does a vmlaunch/vmresume.
1594      * If an outer hypervisor is doing the cache flush for us
1595      * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1596      * capability to the guest too, and if EPT is disabled we're not
1597      * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1598      * require a nested hypervisor to do a flush of its own.
1599      */
1600     if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1601         data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1602 
1603     if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1604         data |= ARCH_CAP_RDCL_NO;
1605     if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1606         data |= ARCH_CAP_SSB_NO;
1607     if (!boot_cpu_has_bug(X86_BUG_MDS))
1608         data |= ARCH_CAP_MDS_NO;
1609 
1610     if (!boot_cpu_has(X86_FEATURE_RTM)) {
1611         /*
1612          * If RTM=0 because the kernel has disabled TSX, the host might
1613          * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1614          * and therefore knows that there cannot be TAA) but keep
1615          * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1616          * and we want to allow migrating those guests to tsx=off hosts.
1617          */
1618         data &= ~ARCH_CAP_TAA_NO;
1619     } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1620         data |= ARCH_CAP_TAA_NO;
1621     } else {
1622         /*
1623          * Nothing to do here; we emulate TSX_CTRL if present on the
1624          * host so the guest can choose between disabling TSX or
1625          * using VERW to clear CPU buffers.
1626          */
1627     }
1628 
1629     return data;
1630 }
1631 
1632 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1633 {
1634     switch (msr->index) {
1635     case MSR_IA32_ARCH_CAPABILITIES:
1636         msr->data = kvm_get_arch_capabilities();
1637         break;
1638     case MSR_IA32_UCODE_REV:
1639         rdmsrl_safe(msr->index, &msr->data);
1640         break;
1641     default:
1642         return static_call(kvm_x86_get_msr_feature)(msr);
1643     }
1644     return 0;
1645 }
1646 
1647 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1648 {
1649     struct kvm_msr_entry msr;
1650     int r;
1651 
1652     msr.index = index;
1653     r = kvm_get_msr_feature(&msr);
1654 
1655     if (r == KVM_MSR_RET_INVALID) {
1656         /* Unconditionally clear the output for simplicity */
1657         *data = 0;
1658         if (kvm_msr_ignored_check(index, 0, false))
1659             r = 0;
1660     }
1661 
1662     if (r)
1663         return r;
1664 
1665     *data = msr.data;
1666 
1667     return 0;
1668 }
1669 
1670 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1671 {
1672     if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1673         return false;
1674 
1675     if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1676         return false;
1677 
1678     if (efer & (EFER_LME | EFER_LMA) &&
1679         !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1680         return false;
1681 
1682     if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1683         return false;
1684 
1685     return true;
1686 
1687 }
1688 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1689 {
1690     if (efer & efer_reserved_bits)
1691         return false;
1692 
1693     return __kvm_valid_efer(vcpu, efer);
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1696 
1697 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1698 {
1699     u64 old_efer = vcpu->arch.efer;
1700     u64 efer = msr_info->data;
1701     int r;
1702 
1703     if (efer & efer_reserved_bits)
1704         return 1;
1705 
1706     if (!msr_info->host_initiated) {
1707         if (!__kvm_valid_efer(vcpu, efer))
1708             return 1;
1709 
1710         if (is_paging(vcpu) &&
1711             (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1712             return 1;
1713     }
1714 
1715     efer &= ~EFER_LMA;
1716     efer |= vcpu->arch.efer & EFER_LMA;
1717 
1718     r = static_call(kvm_x86_set_efer)(vcpu, efer);
1719     if (r) {
1720         WARN_ON(r > 0);
1721         return r;
1722     }
1723 
1724     if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1725         kvm_mmu_reset_context(vcpu);
1726 
1727     return 0;
1728 }
1729 
1730 void kvm_enable_efer_bits(u64 mask)
1731 {
1732        efer_reserved_bits &= ~mask;
1733 }
1734 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1735 
1736 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1737 {
1738     struct kvm_x86_msr_filter *msr_filter;
1739     struct msr_bitmap_range *ranges;
1740     struct kvm *kvm = vcpu->kvm;
1741     bool allowed;
1742     int idx;
1743     u32 i;
1744 
1745     /* x2APIC MSRs do not support filtering. */
1746     if (index >= 0x800 && index <= 0x8ff)
1747         return true;
1748 
1749     idx = srcu_read_lock(&kvm->srcu);
1750 
1751     msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1752     if (!msr_filter) {
1753         allowed = true;
1754         goto out;
1755     }
1756 
1757     allowed = msr_filter->default_allow;
1758     ranges = msr_filter->ranges;
1759 
1760     for (i = 0; i < msr_filter->count; i++) {
1761         u32 start = ranges[i].base;
1762         u32 end = start + ranges[i].nmsrs;
1763         u32 flags = ranges[i].flags;
1764         unsigned long *bitmap = ranges[i].bitmap;
1765 
1766         if ((index >= start) && (index < end) && (flags & type)) {
1767             allowed = !!test_bit(index - start, bitmap);
1768             break;
1769         }
1770     }
1771 
1772 out:
1773     srcu_read_unlock(&kvm->srcu, idx);
1774 
1775     return allowed;
1776 }
1777 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1778 
1779 /*
1780  * Write @data into the MSR specified by @index.  Select MSR specific fault
1781  * checks are bypassed if @host_initiated is %true.
1782  * Returns 0 on success, non-0 otherwise.
1783  * Assumes vcpu_load() was already called.
1784  */
1785 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1786              bool host_initiated)
1787 {
1788     struct msr_data msr;
1789 
1790     switch (index) {
1791     case MSR_FS_BASE:
1792     case MSR_GS_BASE:
1793     case MSR_KERNEL_GS_BASE:
1794     case MSR_CSTAR:
1795     case MSR_LSTAR:
1796         if (is_noncanonical_address(data, vcpu))
1797             return 1;
1798         break;
1799     case MSR_IA32_SYSENTER_EIP:
1800     case MSR_IA32_SYSENTER_ESP:
1801         /*
1802          * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1803          * non-canonical address is written on Intel but not on
1804          * AMD (which ignores the top 32-bits, because it does
1805          * not implement 64-bit SYSENTER).
1806          *
1807          * 64-bit code should hence be able to write a non-canonical
1808          * value on AMD.  Making the address canonical ensures that
1809          * vmentry does not fail on Intel after writing a non-canonical
1810          * value, and that something deterministic happens if the guest
1811          * invokes 64-bit SYSENTER.
1812          */
1813         data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1814         break;
1815     case MSR_TSC_AUX:
1816         if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1817             return 1;
1818 
1819         if (!host_initiated &&
1820             !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1821             !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1822             return 1;
1823 
1824         /*
1825          * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1826          * incomplete and conflicting architectural behavior.  Current
1827          * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1828          * reserved and always read as zeros.  Enforce Intel's reserved
1829          * bits check if and only if the guest CPU is Intel, and clear
1830          * the bits in all other cases.  This ensures cross-vendor
1831          * migration will provide consistent behavior for the guest.
1832          */
1833         if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1834             return 1;
1835 
1836         data = (u32)data;
1837         break;
1838     }
1839 
1840     msr.data = data;
1841     msr.index = index;
1842     msr.host_initiated = host_initiated;
1843 
1844     return static_call(kvm_x86_set_msr)(vcpu, &msr);
1845 }
1846 
1847 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1848                      u32 index, u64 data, bool host_initiated)
1849 {
1850     int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1851 
1852     if (ret == KVM_MSR_RET_INVALID)
1853         if (kvm_msr_ignored_check(index, data, true))
1854             ret = 0;
1855 
1856     return ret;
1857 }
1858 
1859 /*
1860  * Read the MSR specified by @index into @data.  Select MSR specific fault
1861  * checks are bypassed if @host_initiated is %true.
1862  * Returns 0 on success, non-0 otherwise.
1863  * Assumes vcpu_load() was already called.
1864  */
1865 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1866           bool host_initiated)
1867 {
1868     struct msr_data msr;
1869     int ret;
1870 
1871     switch (index) {
1872     case MSR_TSC_AUX:
1873         if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1874             return 1;
1875 
1876         if (!host_initiated &&
1877             !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1878             !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1879             return 1;
1880         break;
1881     }
1882 
1883     msr.index = index;
1884     msr.host_initiated = host_initiated;
1885 
1886     ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1887     if (!ret)
1888         *data = msr.data;
1889     return ret;
1890 }
1891 
1892 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1893                      u32 index, u64 *data, bool host_initiated)
1894 {
1895     int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1896 
1897     if (ret == KVM_MSR_RET_INVALID) {
1898         /* Unconditionally clear *data for simplicity */
1899         *data = 0;
1900         if (kvm_msr_ignored_check(index, 0, false))
1901             ret = 0;
1902     }
1903 
1904     return ret;
1905 }
1906 
1907 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1908 {
1909     if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1910         return KVM_MSR_RET_FILTERED;
1911     return kvm_get_msr_ignored_check(vcpu, index, data, false);
1912 }
1913 
1914 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1915 {
1916     if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1917         return KVM_MSR_RET_FILTERED;
1918     return kvm_set_msr_ignored_check(vcpu, index, data, false);
1919 }
1920 
1921 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1922 {
1923     return kvm_get_msr_ignored_check(vcpu, index, data, false);
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_get_msr);
1926 
1927 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1928 {
1929     return kvm_set_msr_ignored_check(vcpu, index, data, false);
1930 }
1931 EXPORT_SYMBOL_GPL(kvm_set_msr);
1932 
1933 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1934 {
1935     if (!vcpu->run->msr.error) {
1936         kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1937         kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1938     }
1939 }
1940 
1941 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1942 {
1943     return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1944 }
1945 
1946 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1947 {
1948     complete_userspace_rdmsr(vcpu);
1949     return complete_emulated_msr_access(vcpu);
1950 }
1951 
1952 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1953 {
1954     return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1955 }
1956 
1957 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1958 {
1959     complete_userspace_rdmsr(vcpu);
1960     return complete_fast_msr_access(vcpu);
1961 }
1962 
1963 static u64 kvm_msr_reason(int r)
1964 {
1965     switch (r) {
1966     case KVM_MSR_RET_INVALID:
1967         return KVM_MSR_EXIT_REASON_UNKNOWN;
1968     case KVM_MSR_RET_FILTERED:
1969         return KVM_MSR_EXIT_REASON_FILTER;
1970     default:
1971         return KVM_MSR_EXIT_REASON_INVAL;
1972     }
1973 }
1974 
1975 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1976                   u32 exit_reason, u64 data,
1977                   int (*completion)(struct kvm_vcpu *vcpu),
1978                   int r)
1979 {
1980     u64 msr_reason = kvm_msr_reason(r);
1981 
1982     /* Check if the user wanted to know about this MSR fault */
1983     if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1984         return 0;
1985 
1986     vcpu->run->exit_reason = exit_reason;
1987     vcpu->run->msr.error = 0;
1988     memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1989     vcpu->run->msr.reason = msr_reason;
1990     vcpu->run->msr.index = index;
1991     vcpu->run->msr.data = data;
1992     vcpu->arch.complete_userspace_io = completion;
1993 
1994     return 1;
1995 }
1996 
1997 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1998 {
1999     u32 ecx = kvm_rcx_read(vcpu);
2000     u64 data;
2001     int r;
2002 
2003     r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2004 
2005     if (!r) {
2006         trace_kvm_msr_read(ecx, data);
2007 
2008         kvm_rax_write(vcpu, data & -1u);
2009         kvm_rdx_write(vcpu, (data >> 32) & -1u);
2010     } else {
2011         /* MSR read failed? See if we should ask user space */
2012         if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2013                        complete_fast_rdmsr, r))
2014             return 0;
2015         trace_kvm_msr_read_ex(ecx);
2016     }
2017 
2018     return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2019 }
2020 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2021 
2022 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2023 {
2024     u32 ecx = kvm_rcx_read(vcpu);
2025     u64 data = kvm_read_edx_eax(vcpu);
2026     int r;
2027 
2028     r = kvm_set_msr_with_filter(vcpu, ecx, data);
2029 
2030     if (!r) {
2031         trace_kvm_msr_write(ecx, data);
2032     } else {
2033         /* MSR write failed? See if we should ask user space */
2034         if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2035                        complete_fast_msr_access, r))
2036             return 0;
2037         /* Signal all other negative errors to userspace */
2038         if (r < 0)
2039             return r;
2040         trace_kvm_msr_write_ex(ecx, data);
2041     }
2042 
2043     return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2046 
2047 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2048 {
2049     return kvm_skip_emulated_instruction(vcpu);
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2052 
2053 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2054 {
2055     /* Treat an INVD instruction as a NOP and just skip it. */
2056     return kvm_emulate_as_nop(vcpu);
2057 }
2058 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2059 
2060 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2061 {
2062     kvm_queue_exception(vcpu, UD_VECTOR);
2063     return 1;
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2066 
2067 
2068 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2069 {
2070     if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2071         !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2072         return kvm_handle_invalid_op(vcpu);
2073 
2074     pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2075     return kvm_emulate_as_nop(vcpu);
2076 }
2077 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2078 {
2079     return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2082 
2083 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2084 {
2085     return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2086 }
2087 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2088 
2089 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2090 {
2091     xfer_to_guest_mode_prepare();
2092     return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2093         xfer_to_guest_mode_work_pending();
2094 }
2095 
2096 /*
2097  * The fast path for frequent and performance sensitive wrmsr emulation,
2098  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2099  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2100  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2101  * other cases which must be called after interrupts are enabled on the host.
2102  */
2103 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2104 {
2105     if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2106         return 1;
2107 
2108     if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2109         ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2110         ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2111         ((u32)(data >> 32) != X2APIC_BROADCAST))
2112         return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2113 
2114     return 1;
2115 }
2116 
2117 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2118 {
2119     if (!kvm_can_use_hv_timer(vcpu))
2120         return 1;
2121 
2122     kvm_set_lapic_tscdeadline_msr(vcpu, data);
2123     return 0;
2124 }
2125 
2126 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2127 {
2128     u32 msr = kvm_rcx_read(vcpu);
2129     u64 data;
2130     fastpath_t ret = EXIT_FASTPATH_NONE;
2131 
2132     switch (msr) {
2133     case APIC_BASE_MSR + (APIC_ICR >> 4):
2134         data = kvm_read_edx_eax(vcpu);
2135         if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2136             kvm_skip_emulated_instruction(vcpu);
2137             ret = EXIT_FASTPATH_EXIT_HANDLED;
2138         }
2139         break;
2140     case MSR_IA32_TSC_DEADLINE:
2141         data = kvm_read_edx_eax(vcpu);
2142         if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2143             kvm_skip_emulated_instruction(vcpu);
2144             ret = EXIT_FASTPATH_REENTER_GUEST;
2145         }
2146         break;
2147     default:
2148         break;
2149     }
2150 
2151     if (ret != EXIT_FASTPATH_NONE)
2152         trace_kvm_msr_write(msr, data);
2153 
2154     return ret;
2155 }
2156 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2157 
2158 /*
2159  * Adapt set_msr() to msr_io()'s calling convention
2160  */
2161 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2162 {
2163     return kvm_get_msr_ignored_check(vcpu, index, data, true);
2164 }
2165 
2166 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2167 {
2168     return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2169 }
2170 
2171 #ifdef CONFIG_X86_64
2172 struct pvclock_clock {
2173     int vclock_mode;
2174     u64 cycle_last;
2175     u64 mask;
2176     u32 mult;
2177     u32 shift;
2178     u64 base_cycles;
2179     u64 offset;
2180 };
2181 
2182 struct pvclock_gtod_data {
2183     seqcount_t  seq;
2184 
2185     struct pvclock_clock clock; /* extract of a clocksource struct */
2186     struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2187 
2188     ktime_t     offs_boot;
2189     u64     wall_time_sec;
2190 };
2191 
2192 static struct pvclock_gtod_data pvclock_gtod_data;
2193 
2194 static void update_pvclock_gtod(struct timekeeper *tk)
2195 {
2196     struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2197 
2198     write_seqcount_begin(&vdata->seq);
2199 
2200     /* copy pvclock gtod data */
2201     vdata->clock.vclock_mode    = tk->tkr_mono.clock->vdso_clock_mode;
2202     vdata->clock.cycle_last     = tk->tkr_mono.cycle_last;
2203     vdata->clock.mask       = tk->tkr_mono.mask;
2204     vdata->clock.mult       = tk->tkr_mono.mult;
2205     vdata->clock.shift      = tk->tkr_mono.shift;
2206     vdata->clock.base_cycles    = tk->tkr_mono.xtime_nsec;
2207     vdata->clock.offset     = tk->tkr_mono.base;
2208 
2209     vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2210     vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2211     vdata->raw_clock.mask       = tk->tkr_raw.mask;
2212     vdata->raw_clock.mult       = tk->tkr_raw.mult;
2213     vdata->raw_clock.shift      = tk->tkr_raw.shift;
2214     vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2215     vdata->raw_clock.offset     = tk->tkr_raw.base;
2216 
2217     vdata->wall_time_sec            = tk->xtime_sec;
2218 
2219     vdata->offs_boot        = tk->offs_boot;
2220 
2221     write_seqcount_end(&vdata->seq);
2222 }
2223 
2224 static s64 get_kvmclock_base_ns(void)
2225 {
2226     /* Count up from boot time, but with the frequency of the raw clock.  */
2227     return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2228 }
2229 #else
2230 static s64 get_kvmclock_base_ns(void)
2231 {
2232     /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2233     return ktime_get_boottime_ns();
2234 }
2235 #endif
2236 
2237 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2238 {
2239     int version;
2240     int r;
2241     struct pvclock_wall_clock wc;
2242     u32 wc_sec_hi;
2243     u64 wall_nsec;
2244 
2245     if (!wall_clock)
2246         return;
2247 
2248     r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2249     if (r)
2250         return;
2251 
2252     if (version & 1)
2253         ++version;  /* first time write, random junk */
2254 
2255     ++version;
2256 
2257     if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2258         return;
2259 
2260     /*
2261      * The guest calculates current wall clock time by adding
2262      * system time (updated by kvm_guest_time_update below) to the
2263      * wall clock specified here.  We do the reverse here.
2264      */
2265     wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2266 
2267     wc.nsec = do_div(wall_nsec, 1000000000);
2268     wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2269     wc.version = version;
2270 
2271     kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2272 
2273     if (sec_hi_ofs) {
2274         wc_sec_hi = wall_nsec >> 32;
2275         kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2276                 &wc_sec_hi, sizeof(wc_sec_hi));
2277     }
2278 
2279     version++;
2280     kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2281 }
2282 
2283 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2284                   bool old_msr, bool host_initiated)
2285 {
2286     struct kvm_arch *ka = &vcpu->kvm->arch;
2287 
2288     if (vcpu->vcpu_id == 0 && !host_initiated) {
2289         if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2290             kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2291 
2292         ka->boot_vcpu_runs_old_kvmclock = old_msr;
2293     }
2294 
2295     vcpu->arch.time = system_time;
2296     kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2297 
2298     /* we verify if the enable bit is set... */
2299     if (system_time & 1) {
2300         kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2301                       KVM_HOST_USES_PFN, system_time & ~1ULL,
2302                       sizeof(struct pvclock_vcpu_time_info));
2303     } else {
2304         kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2305     }
2306 
2307     return;
2308 }
2309 
2310 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2311 {
2312     do_shl32_div32(dividend, divisor);
2313     return dividend;
2314 }
2315 
2316 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2317                    s8 *pshift, u32 *pmultiplier)
2318 {
2319     uint64_t scaled64;
2320     int32_t  shift = 0;
2321     uint64_t tps64;
2322     uint32_t tps32;
2323 
2324     tps64 = base_hz;
2325     scaled64 = scaled_hz;
2326     while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2327         tps64 >>= 1;
2328         shift--;
2329     }
2330 
2331     tps32 = (uint32_t)tps64;
2332     while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2333         if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2334             scaled64 >>= 1;
2335         else
2336             tps32 <<= 1;
2337         shift++;
2338     }
2339 
2340     *pshift = shift;
2341     *pmultiplier = div_frac(scaled64, tps32);
2342 }
2343 
2344 #ifdef CONFIG_X86_64
2345 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2346 #endif
2347 
2348 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2349 static unsigned long max_tsc_khz;
2350 
2351 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2352 {
2353     u64 v = (u64)khz * (1000000 + ppm);
2354     do_div(v, 1000000);
2355     return v;
2356 }
2357 
2358 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2359 
2360 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2361 {
2362     u64 ratio;
2363 
2364     /* Guest TSC same frequency as host TSC? */
2365     if (!scale) {
2366         kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2367         return 0;
2368     }
2369 
2370     /* TSC scaling supported? */
2371     if (!kvm_caps.has_tsc_control) {
2372         if (user_tsc_khz > tsc_khz) {
2373             vcpu->arch.tsc_catchup = 1;
2374             vcpu->arch.tsc_always_catchup = 1;
2375             return 0;
2376         } else {
2377             pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2378             return -1;
2379         }
2380     }
2381 
2382     /* TSC scaling required  - calculate ratio */
2383     ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2384                 user_tsc_khz, tsc_khz);
2385 
2386     if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2387         pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2388                         user_tsc_khz);
2389         return -1;
2390     }
2391 
2392     kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2393     return 0;
2394 }
2395 
2396 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2397 {
2398     u32 thresh_lo, thresh_hi;
2399     int use_scaling = 0;
2400 
2401     /* tsc_khz can be zero if TSC calibration fails */
2402     if (user_tsc_khz == 0) {
2403         /* set tsc_scaling_ratio to a safe value */
2404         kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2405         return -1;
2406     }
2407 
2408     /* Compute a scale to convert nanoseconds in TSC cycles */
2409     kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2410                &vcpu->arch.virtual_tsc_shift,
2411                &vcpu->arch.virtual_tsc_mult);
2412     vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2413 
2414     /*
2415      * Compute the variation in TSC rate which is acceptable
2416      * within the range of tolerance and decide if the
2417      * rate being applied is within that bounds of the hardware
2418      * rate.  If so, no scaling or compensation need be done.
2419      */
2420     thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2421     thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2422     if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2423         pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2424         use_scaling = 1;
2425     }
2426     return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2427 }
2428 
2429 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2430 {
2431     u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2432                       vcpu->arch.virtual_tsc_mult,
2433                       vcpu->arch.virtual_tsc_shift);
2434     tsc += vcpu->arch.this_tsc_write;
2435     return tsc;
2436 }
2437 
2438 #ifdef CONFIG_X86_64
2439 static inline int gtod_is_based_on_tsc(int mode)
2440 {
2441     return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2442 }
2443 #endif
2444 
2445 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2446 {
2447 #ifdef CONFIG_X86_64
2448     bool vcpus_matched;
2449     struct kvm_arch *ka = &vcpu->kvm->arch;
2450     struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2451 
2452     vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2453              atomic_read(&vcpu->kvm->online_vcpus));
2454 
2455     /*
2456      * Once the masterclock is enabled, always perform request in
2457      * order to update it.
2458      *
2459      * In order to enable masterclock, the host clocksource must be TSC
2460      * and the vcpus need to have matched TSCs.  When that happens,
2461      * perform request to enable masterclock.
2462      */
2463     if (ka->use_master_clock ||
2464         (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2465         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2466 
2467     trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2468                 atomic_read(&vcpu->kvm->online_vcpus),
2469                     ka->use_master_clock, gtod->clock.vclock_mode);
2470 #endif
2471 }
2472 
2473 /*
2474  * Multiply tsc by a fixed point number represented by ratio.
2475  *
2476  * The most significant 64-N bits (mult) of ratio represent the
2477  * integral part of the fixed point number; the remaining N bits
2478  * (frac) represent the fractional part, ie. ratio represents a fixed
2479  * point number (mult + frac * 2^(-N)).
2480  *
2481  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2482  */
2483 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2484 {
2485     return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2486 }
2487 
2488 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2489 {
2490     u64 _tsc = tsc;
2491 
2492     if (ratio != kvm_caps.default_tsc_scaling_ratio)
2493         _tsc = __scale_tsc(ratio, tsc);
2494 
2495     return _tsc;
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2498 
2499 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2500 {
2501     u64 tsc;
2502 
2503     tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2504 
2505     return target_tsc - tsc;
2506 }
2507 
2508 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2509 {
2510     return vcpu->arch.l1_tsc_offset +
2511         kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2512 }
2513 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2514 
2515 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2516 {
2517     u64 nested_offset;
2518 
2519     if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2520         nested_offset = l1_offset;
2521     else
2522         nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2523                         kvm_caps.tsc_scaling_ratio_frac_bits);
2524 
2525     nested_offset += l2_offset;
2526     return nested_offset;
2527 }
2528 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2529 
2530 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2531 {
2532     if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2533         return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2534                        kvm_caps.tsc_scaling_ratio_frac_bits);
2535 
2536     return l1_multiplier;
2537 }
2538 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2539 
2540 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2541 {
2542     trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2543                    vcpu->arch.l1_tsc_offset,
2544                    l1_offset);
2545 
2546     vcpu->arch.l1_tsc_offset = l1_offset;
2547 
2548     /*
2549      * If we are here because L1 chose not to trap WRMSR to TSC then
2550      * according to the spec this should set L1's TSC (as opposed to
2551      * setting L1's offset for L2).
2552      */
2553     if (is_guest_mode(vcpu))
2554         vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2555             l1_offset,
2556             static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2557             static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2558     else
2559         vcpu->arch.tsc_offset = l1_offset;
2560 
2561     static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2562 }
2563 
2564 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2565 {
2566     vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2567 
2568     /* Userspace is changing the multiplier while L2 is active */
2569     if (is_guest_mode(vcpu))
2570         vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2571             l1_multiplier,
2572             static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2573     else
2574         vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2575 
2576     if (kvm_caps.has_tsc_control)
2577         static_call(kvm_x86_write_tsc_multiplier)(
2578             vcpu, vcpu->arch.tsc_scaling_ratio);
2579 }
2580 
2581 static inline bool kvm_check_tsc_unstable(void)
2582 {
2583 #ifdef CONFIG_X86_64
2584     /*
2585      * TSC is marked unstable when we're running on Hyper-V,
2586      * 'TSC page' clocksource is good.
2587      */
2588     if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2589         return false;
2590 #endif
2591     return check_tsc_unstable();
2592 }
2593 
2594 /*
2595  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2596  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2597  * participates in.
2598  */
2599 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2600                   u64 ns, bool matched)
2601 {
2602     struct kvm *kvm = vcpu->kvm;
2603 
2604     lockdep_assert_held(&kvm->arch.tsc_write_lock);
2605 
2606     /*
2607      * We also track th most recent recorded KHZ, write and time to
2608      * allow the matching interval to be extended at each write.
2609      */
2610     kvm->arch.last_tsc_nsec = ns;
2611     kvm->arch.last_tsc_write = tsc;
2612     kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2613     kvm->arch.last_tsc_offset = offset;
2614 
2615     vcpu->arch.last_guest_tsc = tsc;
2616 
2617     kvm_vcpu_write_tsc_offset(vcpu, offset);
2618 
2619     if (!matched) {
2620         /*
2621          * We split periods of matched TSC writes into generations.
2622          * For each generation, we track the original measured
2623          * nanosecond time, offset, and write, so if TSCs are in
2624          * sync, we can match exact offset, and if not, we can match
2625          * exact software computation in compute_guest_tsc()
2626          *
2627          * These values are tracked in kvm->arch.cur_xxx variables.
2628          */
2629         kvm->arch.cur_tsc_generation++;
2630         kvm->arch.cur_tsc_nsec = ns;
2631         kvm->arch.cur_tsc_write = tsc;
2632         kvm->arch.cur_tsc_offset = offset;
2633         kvm->arch.nr_vcpus_matched_tsc = 0;
2634     } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2635         kvm->arch.nr_vcpus_matched_tsc++;
2636     }
2637 
2638     /* Keep track of which generation this VCPU has synchronized to */
2639     vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2640     vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2641     vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2642 
2643     kvm_track_tsc_matching(vcpu);
2644 }
2645 
2646 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2647 {
2648     struct kvm *kvm = vcpu->kvm;
2649     u64 offset, ns, elapsed;
2650     unsigned long flags;
2651     bool matched = false;
2652     bool synchronizing = false;
2653 
2654     raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2655     offset = kvm_compute_l1_tsc_offset(vcpu, data);
2656     ns = get_kvmclock_base_ns();
2657     elapsed = ns - kvm->arch.last_tsc_nsec;
2658 
2659     if (vcpu->arch.virtual_tsc_khz) {
2660         if (data == 0) {
2661             /*
2662              * detection of vcpu initialization -- need to sync
2663              * with other vCPUs. This particularly helps to keep
2664              * kvm_clock stable after CPU hotplug
2665              */
2666             synchronizing = true;
2667         } else {
2668             u64 tsc_exp = kvm->arch.last_tsc_write +
2669                         nsec_to_cycles(vcpu, elapsed);
2670             u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2671             /*
2672              * Special case: TSC write with a small delta (1 second)
2673              * of virtual cycle time against real time is
2674              * interpreted as an attempt to synchronize the CPU.
2675              */
2676             synchronizing = data < tsc_exp + tsc_hz &&
2677                     data + tsc_hz > tsc_exp;
2678         }
2679     }
2680 
2681     /*
2682      * For a reliable TSC, we can match TSC offsets, and for an unstable
2683      * TSC, we add elapsed time in this computation.  We could let the
2684      * compensation code attempt to catch up if we fall behind, but
2685      * it's better to try to match offsets from the beginning.
2686          */
2687     if (synchronizing &&
2688         vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2689         if (!kvm_check_tsc_unstable()) {
2690             offset = kvm->arch.cur_tsc_offset;
2691         } else {
2692             u64 delta = nsec_to_cycles(vcpu, elapsed);
2693             data += delta;
2694             offset = kvm_compute_l1_tsc_offset(vcpu, data);
2695         }
2696         matched = true;
2697     }
2698 
2699     __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2700     raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2701 }
2702 
2703 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2704                        s64 adjustment)
2705 {
2706     u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2707     kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2708 }
2709 
2710 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2711 {
2712     if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2713         WARN_ON(adjustment < 0);
2714     adjustment = kvm_scale_tsc((u64) adjustment,
2715                    vcpu->arch.l1_tsc_scaling_ratio);
2716     adjust_tsc_offset_guest(vcpu, adjustment);
2717 }
2718 
2719 #ifdef CONFIG_X86_64
2720 
2721 static u64 read_tsc(void)
2722 {
2723     u64 ret = (u64)rdtsc_ordered();
2724     u64 last = pvclock_gtod_data.clock.cycle_last;
2725 
2726     if (likely(ret >= last))
2727         return ret;
2728 
2729     /*
2730      * GCC likes to generate cmov here, but this branch is extremely
2731      * predictable (it's just a function of time and the likely is
2732      * very likely) and there's a data dependence, so force GCC
2733      * to generate a branch instead.  I don't barrier() because
2734      * we don't actually need a barrier, and if this function
2735      * ever gets inlined it will generate worse code.
2736      */
2737     asm volatile ("");
2738     return last;
2739 }
2740 
2741 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2742               int *mode)
2743 {
2744     long v;
2745     u64 tsc_pg_val;
2746 
2747     switch (clock->vclock_mode) {
2748     case VDSO_CLOCKMODE_HVCLOCK:
2749         tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2750                           tsc_timestamp);
2751         if (tsc_pg_val != U64_MAX) {
2752             /* TSC page valid */
2753             *mode = VDSO_CLOCKMODE_HVCLOCK;
2754             v = (tsc_pg_val - clock->cycle_last) &
2755                 clock->mask;
2756         } else {
2757             /* TSC page invalid */
2758             *mode = VDSO_CLOCKMODE_NONE;
2759         }
2760         break;
2761     case VDSO_CLOCKMODE_TSC:
2762         *mode = VDSO_CLOCKMODE_TSC;
2763         *tsc_timestamp = read_tsc();
2764         v = (*tsc_timestamp - clock->cycle_last) &
2765             clock->mask;
2766         break;
2767     default:
2768         *mode = VDSO_CLOCKMODE_NONE;
2769     }
2770 
2771     if (*mode == VDSO_CLOCKMODE_NONE)
2772         *tsc_timestamp = v = 0;
2773 
2774     return v * clock->mult;
2775 }
2776 
2777 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2778 {
2779     struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2780     unsigned long seq;
2781     int mode;
2782     u64 ns;
2783 
2784     do {
2785         seq = read_seqcount_begin(&gtod->seq);
2786         ns = gtod->raw_clock.base_cycles;
2787         ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2788         ns >>= gtod->raw_clock.shift;
2789         ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2790     } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2791     *t = ns;
2792 
2793     return mode;
2794 }
2795 
2796 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2797 {
2798     struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2799     unsigned long seq;
2800     int mode;
2801     u64 ns;
2802 
2803     do {
2804         seq = read_seqcount_begin(&gtod->seq);
2805         ts->tv_sec = gtod->wall_time_sec;
2806         ns = gtod->clock.base_cycles;
2807         ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2808         ns >>= gtod->clock.shift;
2809     } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2810 
2811     ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2812     ts->tv_nsec = ns;
2813 
2814     return mode;
2815 }
2816 
2817 /* returns true if host is using TSC based clocksource */
2818 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2819 {
2820     /* checked again under seqlock below */
2821     if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2822         return false;
2823 
2824     return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2825                               tsc_timestamp));
2826 }
2827 
2828 /* returns true if host is using TSC based clocksource */
2829 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2830                        u64 *tsc_timestamp)
2831 {
2832     /* checked again under seqlock below */
2833     if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2834         return false;
2835 
2836     return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2837 }
2838 #endif
2839 
2840 /*
2841  *
2842  * Assuming a stable TSC across physical CPUS, and a stable TSC
2843  * across virtual CPUs, the following condition is possible.
2844  * Each numbered line represents an event visible to both
2845  * CPUs at the next numbered event.
2846  *
2847  * "timespecX" represents host monotonic time. "tscX" represents
2848  * RDTSC value.
2849  *
2850  *      VCPU0 on CPU0       |   VCPU1 on CPU1
2851  *
2852  * 1.  read timespec0,tsc0
2853  * 2.                   | timespec1 = timespec0 + N
2854  *                  | tsc1 = tsc0 + M
2855  * 3. transition to guest       | transition to guest
2856  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2857  * 5.                       | ret1 = timespec1 + (rdtsc - tsc1)
2858  *                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2859  *
2860  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2861  *
2862  *  - ret0 < ret1
2863  *  - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2864  *      ...
2865  *  - 0 < N - M => M < N
2866  *
2867  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2868  * always the case (the difference between two distinct xtime instances
2869  * might be smaller then the difference between corresponding TSC reads,
2870  * when updating guest vcpus pvclock areas).
2871  *
2872  * To avoid that problem, do not allow visibility of distinct
2873  * system_timestamp/tsc_timestamp values simultaneously: use a master
2874  * copy of host monotonic time values. Update that master copy
2875  * in lockstep.
2876  *
2877  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2878  *
2879  */
2880 
2881 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2882 {
2883 #ifdef CONFIG_X86_64
2884     struct kvm_arch *ka = &kvm->arch;
2885     int vclock_mode;
2886     bool host_tsc_clocksource, vcpus_matched;
2887 
2888     lockdep_assert_held(&kvm->arch.tsc_write_lock);
2889     vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2890             atomic_read(&kvm->online_vcpus));
2891 
2892     /*
2893      * If the host uses TSC clock, then passthrough TSC as stable
2894      * to the guest.
2895      */
2896     host_tsc_clocksource = kvm_get_time_and_clockread(
2897                     &ka->master_kernel_ns,
2898                     &ka->master_cycle_now);
2899 
2900     ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2901                 && !ka->backwards_tsc_observed
2902                 && !ka->boot_vcpu_runs_old_kvmclock;
2903 
2904     if (ka->use_master_clock)
2905         atomic_set(&kvm_guest_has_master_clock, 1);
2906 
2907     vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2908     trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2909                     vcpus_matched);
2910 #endif
2911 }
2912 
2913 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2914 {
2915     kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2916 }
2917 
2918 static void __kvm_start_pvclock_update(struct kvm *kvm)
2919 {
2920     raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2921     write_seqcount_begin(&kvm->arch.pvclock_sc);
2922 }
2923 
2924 static void kvm_start_pvclock_update(struct kvm *kvm)
2925 {
2926     kvm_make_mclock_inprogress_request(kvm);
2927 
2928     /* no guest entries from this point */
2929     __kvm_start_pvclock_update(kvm);
2930 }
2931 
2932 static void kvm_end_pvclock_update(struct kvm *kvm)
2933 {
2934     struct kvm_arch *ka = &kvm->arch;
2935     struct kvm_vcpu *vcpu;
2936     unsigned long i;
2937 
2938     write_seqcount_end(&ka->pvclock_sc);
2939     raw_spin_unlock_irq(&ka->tsc_write_lock);
2940     kvm_for_each_vcpu(i, vcpu, kvm)
2941         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2942 
2943     /* guest entries allowed */
2944     kvm_for_each_vcpu(i, vcpu, kvm)
2945         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2946 }
2947 
2948 static void kvm_update_masterclock(struct kvm *kvm)
2949 {
2950     kvm_hv_request_tsc_page_update(kvm);
2951     kvm_start_pvclock_update(kvm);
2952     pvclock_update_vm_gtod_copy(kvm);
2953     kvm_end_pvclock_update(kvm);
2954 }
2955 
2956 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2957 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2958 {
2959     struct kvm_arch *ka = &kvm->arch;
2960     struct pvclock_vcpu_time_info hv_clock;
2961 
2962     /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2963     get_cpu();
2964 
2965     data->flags = 0;
2966     if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2967 #ifdef CONFIG_X86_64
2968         struct timespec64 ts;
2969 
2970         if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2971             data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2972             data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2973         } else
2974 #endif
2975         data->host_tsc = rdtsc();
2976 
2977         data->flags |= KVM_CLOCK_TSC_STABLE;
2978         hv_clock.tsc_timestamp = ka->master_cycle_now;
2979         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2980         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2981                    &hv_clock.tsc_shift,
2982                    &hv_clock.tsc_to_system_mul);
2983         data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2984     } else {
2985         data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2986     }
2987 
2988     put_cpu();
2989 }
2990 
2991 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2992 {
2993     struct kvm_arch *ka = &kvm->arch;
2994     unsigned seq;
2995 
2996     do {
2997         seq = read_seqcount_begin(&ka->pvclock_sc);
2998         __get_kvmclock(kvm, data);
2999     } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3000 }
3001 
3002 u64 get_kvmclock_ns(struct kvm *kvm)
3003 {
3004     struct kvm_clock_data data;
3005 
3006     get_kvmclock(kvm, &data);
3007     return data.clock;
3008 }
3009 
3010 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3011                     struct gfn_to_pfn_cache *gpc,
3012                     unsigned int offset)
3013 {
3014     struct kvm_vcpu_arch *vcpu = &v->arch;
3015     struct pvclock_vcpu_time_info *guest_hv_clock;
3016     unsigned long flags;
3017 
3018     read_lock_irqsave(&gpc->lock, flags);
3019     while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3020                        offset + sizeof(*guest_hv_clock))) {
3021         read_unlock_irqrestore(&gpc->lock, flags);
3022 
3023         if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3024                          offset + sizeof(*guest_hv_clock)))
3025             return;
3026 
3027         read_lock_irqsave(&gpc->lock, flags);
3028     }
3029 
3030     guest_hv_clock = (void *)(gpc->khva + offset);
3031 
3032     /*
3033      * This VCPU is paused, but it's legal for a guest to read another
3034      * VCPU's kvmclock, so we really have to follow the specification where
3035      * it says that version is odd if data is being modified, and even after
3036      * it is consistent.
3037      */
3038 
3039     guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3040     smp_wmb();
3041 
3042     /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3043     vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3044 
3045     if (vcpu->pvclock_set_guest_stopped_request) {
3046         vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3047         vcpu->pvclock_set_guest_stopped_request = false;
3048     }
3049 
3050     memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3051     smp_wmb();
3052 
3053     guest_hv_clock->version = ++vcpu->hv_clock.version;
3054 
3055     mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3056     read_unlock_irqrestore(&gpc->lock, flags);
3057 
3058     trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3059 }
3060 
3061 static int kvm_guest_time_update(struct kvm_vcpu *v)
3062 {
3063     unsigned long flags, tgt_tsc_khz;
3064     unsigned seq;
3065     struct kvm_vcpu_arch *vcpu = &v->arch;
3066     struct kvm_arch *ka = &v->kvm->arch;
3067     s64 kernel_ns;
3068     u64 tsc_timestamp, host_tsc;
3069     u8 pvclock_flags;
3070     bool use_master_clock;
3071 
3072     kernel_ns = 0;
3073     host_tsc = 0;
3074 
3075     /*
3076      * If the host uses TSC clock, then passthrough TSC as stable
3077      * to the guest.
3078      */
3079     do {
3080         seq = read_seqcount_begin(&ka->pvclock_sc);
3081         use_master_clock = ka->use_master_clock;
3082         if (use_master_clock) {
3083             host_tsc = ka->master_cycle_now;
3084             kernel_ns = ka->master_kernel_ns;
3085         }
3086     } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3087 
3088     /* Keep irq disabled to prevent changes to the clock */
3089     local_irq_save(flags);
3090     tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3091     if (unlikely(tgt_tsc_khz == 0)) {
3092         local_irq_restore(flags);
3093         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3094         return 1;
3095     }
3096     if (!use_master_clock) {
3097         host_tsc = rdtsc();
3098         kernel_ns = get_kvmclock_base_ns();
3099     }
3100 
3101     tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3102 
3103     /*
3104      * We may have to catch up the TSC to match elapsed wall clock
3105      * time for two reasons, even if kvmclock is used.
3106      *   1) CPU could have been running below the maximum TSC rate
3107      *   2) Broken TSC compensation resets the base at each VCPU
3108      *      entry to avoid unknown leaps of TSC even when running
3109      *      again on the same CPU.  This may cause apparent elapsed
3110      *      time to disappear, and the guest to stand still or run
3111      *  very slowly.
3112      */
3113     if (vcpu->tsc_catchup) {
3114         u64 tsc = compute_guest_tsc(v, kernel_ns);
3115         if (tsc > tsc_timestamp) {
3116             adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3117             tsc_timestamp = tsc;
3118         }
3119     }
3120 
3121     local_irq_restore(flags);
3122 
3123     /* With all the info we got, fill in the values */
3124 
3125     if (kvm_caps.has_tsc_control)
3126         tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3127                         v->arch.l1_tsc_scaling_ratio);
3128 
3129     if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3130         kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3131                    &vcpu->hv_clock.tsc_shift,
3132                    &vcpu->hv_clock.tsc_to_system_mul);
3133         vcpu->hw_tsc_khz = tgt_tsc_khz;
3134     }
3135 
3136     vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3137     vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3138     vcpu->last_guest_tsc = tsc_timestamp;
3139 
3140     /* If the host uses TSC clocksource, then it is stable */
3141     pvclock_flags = 0;
3142     if (use_master_clock)
3143         pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3144 
3145     vcpu->hv_clock.flags = pvclock_flags;
3146 
3147     if (vcpu->pv_time.active)
3148         kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3149     if (vcpu->xen.vcpu_info_cache.active)
3150         kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3151                     offsetof(struct compat_vcpu_info, time));
3152     if (vcpu->xen.vcpu_time_info_cache.active)
3153         kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3154     kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3155     return 0;
3156 }
3157 
3158 /*
3159  * kvmclock updates which are isolated to a given vcpu, such as
3160  * vcpu->cpu migration, should not allow system_timestamp from
3161  * the rest of the vcpus to remain static. Otherwise ntp frequency
3162  * correction applies to one vcpu's system_timestamp but not
3163  * the others.
3164  *
3165  * So in those cases, request a kvmclock update for all vcpus.
3166  * We need to rate-limit these requests though, as they can
3167  * considerably slow guests that have a large number of vcpus.
3168  * The time for a remote vcpu to update its kvmclock is bound
3169  * by the delay we use to rate-limit the updates.
3170  */
3171 
3172 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3173 
3174 static void kvmclock_update_fn(struct work_struct *work)
3175 {
3176     unsigned long i;
3177     struct delayed_work *dwork = to_delayed_work(work);
3178     struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3179                        kvmclock_update_work);
3180     struct kvm *kvm = container_of(ka, struct kvm, arch);
3181     struct kvm_vcpu *vcpu;
3182 
3183     kvm_for_each_vcpu(i, vcpu, kvm) {
3184         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3185         kvm_vcpu_kick(vcpu);
3186     }
3187 }
3188 
3189 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3190 {
3191     struct kvm *kvm = v->kvm;
3192 
3193     kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3194     schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3195                     KVMCLOCK_UPDATE_DELAY);
3196 }
3197 
3198 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3199 
3200 static void kvmclock_sync_fn(struct work_struct *work)
3201 {
3202     struct delayed_work *dwork = to_delayed_work(work);
3203     struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3204                        kvmclock_sync_work);
3205     struct kvm *kvm = container_of(ka, struct kvm, arch);
3206 
3207     if (!kvmclock_periodic_sync)
3208         return;
3209 
3210     schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3211     schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3212                     KVMCLOCK_SYNC_PERIOD);
3213 }
3214 
3215 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3216 static bool is_mci_control_msr(u32 msr)
3217 {
3218     return (msr & 3) == 0;
3219 }
3220 static bool is_mci_status_msr(u32 msr)
3221 {
3222     return (msr & 3) == 1;
3223 }
3224 
3225 /*
3226  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3227  */
3228 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3229 {
3230     /* McStatusWrEn enabled? */
3231     if (guest_cpuid_is_amd_or_hygon(vcpu))
3232         return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3233 
3234     return false;
3235 }
3236 
3237 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3238 {
3239     u64 mcg_cap = vcpu->arch.mcg_cap;
3240     unsigned bank_num = mcg_cap & 0xff;
3241     u32 msr = msr_info->index;
3242     u64 data = msr_info->data;
3243     u32 offset, last_msr;
3244 
3245     switch (msr) {
3246     case MSR_IA32_MCG_STATUS:
3247         vcpu->arch.mcg_status = data;
3248         break;
3249     case MSR_IA32_MCG_CTL:
3250         if (!(mcg_cap & MCG_CTL_P) &&
3251             (data || !msr_info->host_initiated))
3252             return 1;
3253         if (data != 0 && data != ~(u64)0)
3254             return 1;
3255         vcpu->arch.mcg_ctl = data;
3256         break;
3257     case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3258         last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3259         if (msr > last_msr)
3260             return 1;
3261 
3262         if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3263             return 1;
3264         /* An attempt to write a 1 to a reserved bit raises #GP */
3265         if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3266             return 1;
3267         offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3268                         last_msr + 1 - MSR_IA32_MC0_CTL2);
3269         vcpu->arch.mci_ctl2_banks[offset] = data;
3270         break;
3271     case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3272         last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3273         if (msr > last_msr)
3274             return 1;
3275 
3276         /*
3277          * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3278          * values are architecturally undefined.  But, some Linux
3279          * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3280          * issue on AMD K8s, allow bit 10 to be clear when setting all
3281          * other bits in order to avoid an uncaught #GP in the guest.
3282          *
3283          * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3284          * single-bit ECC data errors.
3285          */
3286         if (is_mci_control_msr(msr) &&
3287             data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3288             return 1;
3289 
3290         /*
3291          * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3292          * AMD-based CPUs allow non-zero values, but if and only if
3293          * HWCR[McStatusWrEn] is set.
3294          */
3295         if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3296             data != 0 && !can_set_mci_status(vcpu))
3297             return 1;
3298 
3299         offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3300                         last_msr + 1 - MSR_IA32_MC0_CTL);
3301         vcpu->arch.mce_banks[offset] = data;
3302         break;
3303     default:
3304         return 1;
3305     }
3306     return 0;
3307 }
3308 
3309 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3310 {
3311     u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3312 
3313     return (vcpu->arch.apf.msr_en_val & mask) == mask;
3314 }
3315 
3316 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3317 {
3318     gpa_t gpa = data & ~0x3f;
3319 
3320     /* Bits 4:5 are reserved, Should be zero */
3321     if (data & 0x30)
3322         return 1;
3323 
3324     if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3325         (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3326         return 1;
3327 
3328     if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3329         (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3330         return 1;
3331 
3332     if (!lapic_in_kernel(vcpu))
3333         return data ? 1 : 0;
3334 
3335     vcpu->arch.apf.msr_en_val = data;
3336 
3337     if (!kvm_pv_async_pf_enabled(vcpu)) {
3338         kvm_clear_async_pf_completion_queue(vcpu);
3339         kvm_async_pf_hash_reset(vcpu);
3340         return 0;
3341     }
3342 
3343     if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3344                     sizeof(u64)))
3345         return 1;
3346 
3347     vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3348     vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3349 
3350     kvm_async_pf_wakeup_all(vcpu);
3351 
3352     return 0;
3353 }
3354 
3355 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3356 {
3357     /* Bits 8-63 are reserved */
3358     if (data >> 8)
3359         return 1;
3360 
3361     if (!lapic_in_kernel(vcpu))
3362         return 1;
3363 
3364     vcpu->arch.apf.msr_int_val = data;
3365 
3366     vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3367 
3368     return 0;
3369 }
3370 
3371 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3372 {
3373     kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3374     vcpu->arch.time = 0;
3375 }
3376 
3377 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3378 {
3379     ++vcpu->stat.tlb_flush;
3380     static_call(kvm_x86_flush_tlb_all)(vcpu);
3381 }
3382 
3383 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3384 {
3385     ++vcpu->stat.tlb_flush;
3386 
3387     if (!tdp_enabled) {
3388         /*
3389          * A TLB flush on behalf of the guest is equivalent to
3390          * INVPCID(all), toggling CR4.PGE, etc., which requires
3391          * a forced sync of the shadow page tables.  Ensure all the
3392          * roots are synced and the guest TLB in hardware is clean.
3393          */
3394         kvm_mmu_sync_roots(vcpu);
3395         kvm_mmu_sync_prev_roots(vcpu);
3396     }
3397 
3398     static_call(kvm_x86_flush_tlb_guest)(vcpu);
3399 }
3400 
3401 
3402 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3403 {
3404     ++vcpu->stat.tlb_flush;
3405     static_call(kvm_x86_flush_tlb_current)(vcpu);
3406 }
3407 
3408 /*
3409  * Service "local" TLB flush requests, which are specific to the current MMU
3410  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3411  * TLB flushes that are targeted at an MMU context also need to be serviced
3412  * prior before nested VM-Enter/VM-Exit.
3413  */
3414 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3415 {
3416     if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3417         kvm_vcpu_flush_tlb_current(vcpu);
3418 
3419     if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3420         kvm_vcpu_flush_tlb_guest(vcpu);
3421 }
3422 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3423 
3424 static void record_steal_time(struct kvm_vcpu *vcpu)
3425 {
3426     struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3427     struct kvm_steal_time __user *st;
3428     struct kvm_memslots *slots;
3429     gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3430     u64 steal;
3431     u32 version;
3432 
3433     if (kvm_xen_msr_enabled(vcpu->kvm)) {
3434         kvm_xen_runstate_set_running(vcpu);
3435         return;
3436     }
3437 
3438     if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3439         return;
3440 
3441     if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3442         return;
3443 
3444     slots = kvm_memslots(vcpu->kvm);
3445 
3446     if (unlikely(slots->generation != ghc->generation ||
3447              gpa != ghc->gpa ||
3448              kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3449         /* We rely on the fact that it fits in a single page. */
3450         BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3451 
3452         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3453             kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3454             return;
3455     }
3456 
3457     st = (struct kvm_steal_time __user *)ghc->hva;
3458     /*
3459      * Doing a TLB flush here, on the guest's behalf, can avoid
3460      * expensive IPIs.
3461      */
3462     if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3463         u8 st_preempted = 0;
3464         int err = -EFAULT;
3465 
3466         if (!user_access_begin(st, sizeof(*st)))
3467             return;
3468 
3469         asm volatile("1: xchgb %0, %2\n"
3470                  "xor %1, %1\n"
3471                  "2:\n"
3472                  _ASM_EXTABLE_UA(1b, 2b)
3473                  : "+q" (st_preempted),
3474                    "+&r" (err),
3475                    "+m" (st->preempted));
3476         if (err)
3477             goto out;
3478 
3479         user_access_end();
3480 
3481         vcpu->arch.st.preempted = 0;
3482 
3483         trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3484                        st_preempted & KVM_VCPU_FLUSH_TLB);
3485         if (st_preempted & KVM_VCPU_FLUSH_TLB)
3486             kvm_vcpu_flush_tlb_guest(vcpu);
3487 
3488         if (!user_access_begin(st, sizeof(*st)))
3489             goto dirty;
3490     } else {
3491         if (!user_access_begin(st, sizeof(*st)))
3492             return;
3493 
3494         unsafe_put_user(0, &st->preempted, out);
3495         vcpu->arch.st.preempted = 0;
3496     }
3497 
3498     unsafe_get_user(version, &st->version, out);
3499     if (version & 1)
3500         version += 1;  /* first time write, random junk */
3501 
3502     version += 1;
3503     unsafe_put_user(version, &st->version, out);
3504 
3505     smp_wmb();
3506 
3507     unsafe_get_user(steal, &st->steal, out);
3508     steal += current->sched_info.run_delay -
3509         vcpu->arch.st.last_steal;
3510     vcpu->arch.st.last_steal = current->sched_info.run_delay;
3511     unsafe_put_user(steal, &st->steal, out);
3512 
3513     version += 1;
3514     unsafe_put_user(version, &st->version, out);
3515 
3516  out:
3517     user_access_end();
3518  dirty:
3519     mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3520 }
3521 
3522 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3523 {
3524     bool pr = false;
3525     u32 msr = msr_info->index;
3526     u64 data = msr_info->data;
3527 
3528     if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3529         return kvm_xen_write_hypercall_page(vcpu, data);
3530 
3531     switch (msr) {
3532     case MSR_AMD64_NB_CFG:
3533     case MSR_IA32_UCODE_WRITE:
3534     case MSR_VM_HSAVE_PA:
3535     case MSR_AMD64_PATCH_LOADER:
3536     case MSR_AMD64_BU_CFG2:
3537     case MSR_AMD64_DC_CFG:
3538     case MSR_F15H_EX_CFG:
3539         break;
3540 
3541     case MSR_IA32_UCODE_REV:
3542         if (msr_info->host_initiated)
3543             vcpu->arch.microcode_version = data;
3544         break;
3545     case MSR_IA32_ARCH_CAPABILITIES:
3546         if (!msr_info->host_initiated)
3547             return 1;
3548         vcpu->arch.arch_capabilities = data;
3549         break;
3550     case MSR_IA32_PERF_CAPABILITIES: {
3551         struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3552 
3553         if (!msr_info->host_initiated)
3554             return 1;
3555         if (kvm_get_msr_feature(&msr_ent))
3556             return 1;
3557         if (data & ~msr_ent.data)
3558             return 1;
3559 
3560         vcpu->arch.perf_capabilities = data;
3561         kvm_pmu_refresh(vcpu);
3562         return 0;
3563     }
3564     case MSR_EFER:
3565         return set_efer(vcpu, msr_info);
3566     case MSR_K7_HWCR:
3567         data &= ~(u64)0x40; /* ignore flush filter disable */
3568         data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3569         data &= ~(u64)0x8;  /* ignore TLB cache disable */
3570 
3571         /* Handle McStatusWrEn */
3572         if (data == BIT_ULL(18)) {
3573             vcpu->arch.msr_hwcr = data;
3574         } else if (data != 0) {
3575             vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3576                     data);
3577             return 1;
3578         }
3579         break;
3580     case MSR_FAM10H_MMIO_CONF_BASE:
3581         if (data != 0) {
3582             vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3583                     "0x%llx\n", data);
3584             return 1;
3585         }
3586         break;
3587     case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3588     case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3589         return kvm_mtrr_set_msr(vcpu, msr, data);
3590     case MSR_IA32_APICBASE:
3591         return kvm_set_apic_base(vcpu, msr_info);
3592     case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3593         return kvm_x2apic_msr_write(vcpu, msr, data);
3594     case MSR_IA32_TSC_DEADLINE:
3595         kvm_set_lapic_tscdeadline_msr(vcpu, data);
3596         break;
3597     case MSR_IA32_TSC_ADJUST:
3598         if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3599             if (!msr_info->host_initiated) {
3600                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3601                 adjust_tsc_offset_guest(vcpu, adj);
3602                 /* Before back to guest, tsc_timestamp must be adjusted
3603                  * as well, otherwise guest's percpu pvclock time could jump.
3604                  */
3605                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3606             }
3607             vcpu->arch.ia32_tsc_adjust_msr = data;
3608         }
3609         break;
3610     case MSR_IA32_MISC_ENABLE: {
3611         u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3612 
3613         if (!msr_info->host_initiated) {
3614             /* RO bits */
3615             if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3616                 return 1;
3617 
3618             /* R bits, i.e. writes are ignored, but don't fault. */
3619             data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3620             data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3621         }
3622 
3623         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3624             ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3625             if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3626                 return 1;
3627             vcpu->arch.ia32_misc_enable_msr = data;
3628             kvm_update_cpuid_runtime(vcpu);
3629         } else {
3630             vcpu->arch.ia32_misc_enable_msr = data;
3631         }
3632         break;
3633     }
3634     case MSR_IA32_SMBASE:
3635         if (!msr_info->host_initiated)
3636             return 1;
3637         vcpu->arch.smbase = data;
3638         break;
3639     case MSR_IA32_POWER_CTL:
3640         vcpu->arch.msr_ia32_power_ctl = data;
3641         break;
3642     case MSR_IA32_TSC:
3643         if (msr_info->host_initiated) {
3644             kvm_synchronize_tsc(vcpu, data);
3645         } else {
3646             u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3647             adjust_tsc_offset_guest(vcpu, adj);
3648             vcpu->arch.ia32_tsc_adjust_msr += adj;
3649         }
3650         break;
3651     case MSR_IA32_XSS:
3652         if (!msr_info->host_initiated &&
3653             !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3654             return 1;
3655         /*
3656          * KVM supports exposing PT to the guest, but does not support
3657          * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3658          * XSAVES/XRSTORS to save/restore PT MSRs.
3659          */
3660         if (data & ~kvm_caps.supported_xss)
3661             return 1;
3662         vcpu->arch.ia32_xss = data;
3663         kvm_update_cpuid_runtime(vcpu);
3664         break;
3665     case MSR_SMI_COUNT:
3666         if (!msr_info->host_initiated)
3667             return 1;
3668         vcpu->arch.smi_count = data;
3669         break;
3670     case MSR_KVM_WALL_CLOCK_NEW:
3671         if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3672             return 1;
3673 
3674         vcpu->kvm->arch.wall_clock = data;
3675         kvm_write_wall_clock(vcpu->kvm, data, 0);
3676         break;
3677     case MSR_KVM_WALL_CLOCK:
3678         if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3679             return 1;
3680 
3681         vcpu->kvm->arch.wall_clock = data;
3682         kvm_write_wall_clock(vcpu->kvm, data, 0);
3683         break;
3684     case MSR_KVM_SYSTEM_TIME_NEW:
3685         if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3686             return 1;
3687 
3688         kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3689         break;
3690     case MSR_KVM_SYSTEM_TIME:
3691         if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3692             return 1;
3693 
3694         kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3695         break;
3696     case MSR_KVM_ASYNC_PF_EN:
3697         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3698             return 1;
3699 
3700         if (kvm_pv_enable_async_pf(vcpu, data))
3701             return 1;
3702         break;
3703     case MSR_KVM_ASYNC_PF_INT:
3704         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3705             return 1;
3706 
3707         if (kvm_pv_enable_async_pf_int(vcpu, data))
3708             return 1;
3709         break;
3710     case MSR_KVM_ASYNC_PF_ACK:
3711         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3712             return 1;
3713         if (data & 0x1) {
3714             vcpu->arch.apf.pageready_pending = false;
3715             kvm_check_async_pf_completion(vcpu);
3716         }
3717         break;
3718     case MSR_KVM_STEAL_TIME:
3719         if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3720             return 1;
3721 
3722         if (unlikely(!sched_info_on()))
3723             return 1;
3724 
3725         if (data & KVM_STEAL_RESERVED_MASK)
3726             return 1;
3727 
3728         vcpu->arch.st.msr_val = data;
3729 
3730         if (!(data & KVM_MSR_ENABLED))
3731             break;
3732 
3733         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3734 
3735         break;
3736     case MSR_KVM_PV_EOI_EN:
3737         if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3738             return 1;
3739 
3740         if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3741             return 1;
3742         break;
3743 
3744     case MSR_KVM_POLL_CONTROL:
3745         if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3746             return 1;
3747 
3748         /* only enable bit supported */
3749         if (data & (-1ULL << 1))
3750             return 1;
3751 
3752         vcpu->arch.msr_kvm_poll_control = data;
3753         break;
3754 
3755     case MSR_IA32_MCG_CTL:
3756     case MSR_IA32_MCG_STATUS:
3757     case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3758     case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3759         return set_msr_mce(vcpu, msr_info);
3760 
3761     case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3762     case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3763         pr = true;
3764         fallthrough;
3765     case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3766     case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3767         if (kvm_pmu_is_valid_msr(vcpu, msr))
3768             return kvm_pmu_set_msr(vcpu, msr_info);
3769 
3770         if (pr || data != 0)
3771             vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3772                     "0x%x data 0x%llx\n", msr, data);
3773         break;
3774     case MSR_K7_CLK_CTL:
3775         /*
3776          * Ignore all writes to this no longer documented MSR.
3777          * Writes are only relevant for old K7 processors,
3778          * all pre-dating SVM, but a recommended workaround from
3779          * AMD for these chips. It is possible to specify the
3780          * affected processor models on the command line, hence
3781          * the need to ignore the workaround.
3782          */
3783         break;
3784     case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3785     case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3786     case HV_X64_MSR_SYNDBG_OPTIONS:
3787     case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3788     case HV_X64_MSR_CRASH_CTL:
3789     case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3790     case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3791     case HV_X64_MSR_TSC_EMULATION_CONTROL:
3792     case HV_X64_MSR_TSC_EMULATION_STATUS:
3793         return kvm_hv_set_msr_common(vcpu, msr, data,
3794                          msr_info->host_initiated);
3795     case MSR_IA32_BBL_CR_CTL3:
3796         /* Drop writes to this legacy MSR -- see rdmsr
3797          * counterpart for further detail.
3798          */
3799         if (report_ignored_msrs)
3800             vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3801                 msr, data);
3802         break;
3803     case MSR_AMD64_OSVW_ID_LENGTH:
3804         if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3805             return 1;
3806         vcpu->arch.osvw.length = data;
3807         break;
3808     case MSR_AMD64_OSVW_STATUS:
3809         if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3810             return 1;
3811         vcpu->arch.osvw.status = data;
3812         break;
3813     case MSR_PLATFORM_INFO:
3814         if (!msr_info->host_initiated ||
3815             (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3816              cpuid_fault_enabled(vcpu)))
3817             return 1;
3818         vcpu->arch.msr_platform_info = data;
3819         break;
3820     case MSR_MISC_FEATURES_ENABLES:
3821         if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3822             (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3823              !supports_cpuid_fault(vcpu)))
3824             return 1;
3825         vcpu->arch.msr_misc_features_enables = data;
3826         break;
3827 #ifdef CONFIG_X86_64
3828     case MSR_IA32_XFD:
3829         if (!msr_info->host_initiated &&
3830             !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3831             return 1;
3832 
3833         if (data & ~kvm_guest_supported_xfd(vcpu))
3834             return 1;
3835 
3836         fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3837         break;
3838     case MSR_IA32_XFD_ERR:
3839         if (!msr_info->host_initiated &&
3840             !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3841             return 1;
3842 
3843         if (data & ~kvm_guest_supported_xfd(vcpu))
3844             return 1;
3845 
3846         vcpu->arch.guest_fpu.xfd_err = data;
3847         break;
3848 #endif
3849     case MSR_IA32_PEBS_ENABLE:
3850     case MSR_IA32_DS_AREA:
3851     case MSR_PEBS_DATA_CFG:
3852     case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3853         if (kvm_pmu_is_valid_msr(vcpu, msr))
3854             return kvm_pmu_set_msr(vcpu, msr_info);
3855         /*
3856          * Userspace is allowed to write '0' to MSRs that KVM reports
3857          * as to-be-saved, even if an MSRs isn't fully supported.
3858          */
3859         return !msr_info->host_initiated || data;
3860     default:
3861         if (kvm_pmu_is_valid_msr(vcpu, msr))
3862             return kvm_pmu_set_msr(vcpu, msr_info);
3863         return KVM_MSR_RET_INVALID;
3864     }
3865     return 0;
3866 }
3867 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3868 
3869 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3870 {
3871     u64 data;
3872     u64 mcg_cap = vcpu->arch.mcg_cap;
3873     unsigned bank_num = mcg_cap & 0xff;
3874     u32 offset, last_msr;
3875 
3876     switch (msr) {
3877     case MSR_IA32_P5_MC_ADDR:
3878     case MSR_IA32_P5_MC_TYPE:
3879         data = 0;
3880         break;
3881     case MSR_IA32_MCG_CAP:
3882         data = vcpu->arch.mcg_cap;
3883         break;
3884     case MSR_IA32_MCG_CTL:
3885         if (!(mcg_cap & MCG_CTL_P) && !host)
3886             return 1;
3887         data = vcpu->arch.mcg_ctl;
3888         break;
3889     case MSR_IA32_MCG_STATUS:
3890         data = vcpu->arch.mcg_status;
3891         break;
3892     case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3893         last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3894         if (msr > last_msr)
3895             return 1;
3896 
3897         if (!(mcg_cap & MCG_CMCI_P) && !host)
3898             return 1;
3899         offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3900                         last_msr + 1 - MSR_IA32_MC0_CTL2);
3901         data = vcpu->arch.mci_ctl2_banks[offset];
3902         break;
3903     case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3904         last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3905         if (msr > last_msr)
3906             return 1;
3907 
3908         offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3909                         last_msr + 1 - MSR_IA32_MC0_CTL);
3910         data = vcpu->arch.mce_banks[offset];
3911         break;
3912     default:
3913         return 1;
3914     }
3915     *pdata = data;
3916     return 0;
3917 }
3918 
3919 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3920 {
3921     switch (msr_info->index) {
3922     case MSR_IA32_PLATFORM_ID:
3923     case MSR_IA32_EBL_CR_POWERON:
3924     case MSR_IA32_LASTBRANCHFROMIP:
3925     case MSR_IA32_LASTBRANCHTOIP:
3926     case MSR_IA32_LASTINTFROMIP:
3927     case MSR_IA32_LASTINTTOIP:
3928     case MSR_AMD64_SYSCFG:
3929     case MSR_K8_TSEG_ADDR:
3930     case MSR_K8_TSEG_MASK:
3931     case MSR_VM_HSAVE_PA:
3932     case MSR_K8_INT_PENDING_MSG:
3933     case MSR_AMD64_NB_CFG:
3934     case MSR_FAM10H_MMIO_CONF_BASE:
3935     case MSR_AMD64_BU_CFG2:
3936     case MSR_IA32_PERF_CTL:
3937     case MSR_AMD64_DC_CFG:
3938     case MSR_F15H_EX_CFG:
3939     /*
3940      * Intel Sandy Bridge CPUs must support the RAPL (running average power
3941      * limit) MSRs. Just return 0, as we do not want to expose the host
3942      * data here. Do not conditionalize this on CPUID, as KVM does not do
3943      * so for existing CPU-specific MSRs.
3944      */
3945     case MSR_RAPL_POWER_UNIT:
3946     case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3947     case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3948     case MSR_PKG_ENERGY_STATUS: /* Total package */
3949     case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3950         msr_info->data = 0;
3951         break;
3952     case MSR_IA32_PEBS_ENABLE:
3953     case MSR_IA32_DS_AREA:
3954     case MSR_PEBS_DATA_CFG:
3955     case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3956         if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3957             return kvm_pmu_get_msr(vcpu, msr_info);
3958         /*
3959          * Userspace is allowed to read MSRs that KVM reports as
3960          * to-be-saved, even if an MSR isn't fully supported.
3961          */
3962         if (!msr_info->host_initiated)
3963             return 1;
3964         msr_info->data = 0;
3965         break;
3966     case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3967     case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3968     case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3969     case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3970         if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3971             return kvm_pmu_get_msr(vcpu, msr_info);
3972         msr_info->data = 0;
3973         break;
3974     case MSR_IA32_UCODE_REV:
3975         msr_info->data = vcpu->arch.microcode_version;
3976         break;
3977     case MSR_IA32_ARCH_CAPABILITIES:
3978         if (!msr_info->host_initiated &&
3979             !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3980             return 1;
3981         msr_info->data = vcpu->arch.arch_capabilities;
3982         break;
3983     case MSR_IA32_PERF_CAPABILITIES:
3984         if (!msr_info->host_initiated &&
3985             !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3986             return 1;
3987         msr_info->data = vcpu->arch.perf_capabilities;
3988         break;
3989     case MSR_IA32_POWER_CTL:
3990         msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3991         break;
3992     case MSR_IA32_TSC: {
3993         /*
3994          * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3995          * even when not intercepted. AMD manual doesn't explicitly
3996          * state this but appears to behave the same.
3997          *
3998          * On userspace reads and writes, however, we unconditionally
3999          * return L1's TSC value to ensure backwards-compatible
4000          * behavior for migration.
4001          */
4002         u64 offset, ratio;
4003 
4004         if (msr_info->host_initiated) {
4005             offset = vcpu->arch.l1_tsc_offset;
4006             ratio = vcpu->arch.l1_tsc_scaling_ratio;
4007         } else {
4008             offset = vcpu->arch.tsc_offset;
4009             ratio = vcpu->arch.tsc_scaling_ratio;
4010         }
4011 
4012         msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4013         break;
4014     }
4015     case MSR_MTRRcap:
4016     case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4017     case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4018         return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4019     case 0xcd: /* fsb frequency */
4020         msr_info->data = 3;
4021         break;
4022         /*
4023          * MSR_EBC_FREQUENCY_ID
4024          * Conservative value valid for even the basic CPU models.
4025          * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4026          * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4027          * and 266MHz for model 3, or 4. Set Core Clock
4028          * Frequency to System Bus Frequency Ratio to 1 (bits
4029          * 31:24) even though these are only valid for CPU
4030          * models > 2, however guests may end up dividing or
4031          * multiplying by zero otherwise.
4032          */
4033     case MSR_EBC_FREQUENCY_ID:
4034         msr_info->data = 1 << 24;
4035         break;
4036     case MSR_IA32_APICBASE:
4037         msr_info->data = kvm_get_apic_base(vcpu);
4038         break;
4039     case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4040         return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4041     case MSR_IA32_TSC_DEADLINE:
4042         msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4043         break;
4044     case MSR_IA32_TSC_ADJUST:
4045         msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4046         break;
4047     case MSR_IA32_MISC_ENABLE:
4048         msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4049         break;
4050     case MSR_IA32_SMBASE:
4051         if (!msr_info->host_initiated)
4052             return 1;
4053         msr_info->data = vcpu->arch.smbase;
4054         break;
4055     case MSR_SMI_COUNT:
4056         msr_info->data = vcpu->arch.smi_count;
4057         break;
4058     case MSR_IA32_PERF_STATUS:
4059         /* TSC increment by tick */
4060         msr_info->data = 1000ULL;
4061         /* CPU multiplier */
4062         msr_info->data |= (((uint64_t)4ULL) << 40);
4063         break;
4064     case MSR_EFER:
4065         msr_info->data = vcpu->arch.efer;
4066         break;
4067     case MSR_KVM_WALL_CLOCK:
4068         if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4069             return 1;
4070 
4071         msr_info->data = vcpu->kvm->arch.wall_clock;
4072         break;
4073     case MSR_KVM_WALL_CLOCK_NEW:
4074         if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4075             return 1;
4076 
4077         msr_info->data = vcpu->kvm->arch.wall_clock;
4078         break;
4079     case MSR_KVM_SYSTEM_TIME:
4080         if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4081             return 1;
4082 
4083         msr_info->data = vcpu->arch.time;
4084         break;
4085     case MSR_KVM_SYSTEM_TIME_NEW:
4086         if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4087             return 1;
4088 
4089         msr_info->data = vcpu->arch.time;
4090         break;
4091     case MSR_KVM_ASYNC_PF_EN:
4092         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4093             return 1;
4094 
4095         msr_info->data = vcpu->arch.apf.msr_en_val;
4096         break;
4097     case MSR_KVM_ASYNC_PF_INT:
4098         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4099             return 1;
4100 
4101         msr_info->data = vcpu->arch.apf.msr_int_val;
4102         break;
4103     case MSR_KVM_ASYNC_PF_ACK:
4104         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4105             return 1;
4106 
4107         msr_info->data = 0;
4108         break;
4109     case MSR_KVM_STEAL_TIME:
4110         if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4111             return 1;
4112 
4113         msr_info->data = vcpu->arch.st.msr_val;
4114         break;
4115     case MSR_KVM_PV_EOI_EN:
4116         if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4117             return 1;
4118 
4119         msr_info->data = vcpu->arch.pv_eoi.msr_val;
4120         break;
4121     case MSR_KVM_POLL_CONTROL:
4122         if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4123             return 1;
4124 
4125         msr_info->data = vcpu->arch.msr_kvm_poll_control;
4126         break;
4127     case MSR_IA32_P5_MC_ADDR:
4128     case MSR_IA32_P5_MC_TYPE:
4129     case MSR_IA32_MCG_CAP:
4130     case MSR_IA32_MCG_CTL:
4131     case MSR_IA32_MCG_STATUS:
4132     case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4133     case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4134         return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4135                    msr_info->host_initiated);
4136     case MSR_IA32_XSS:
4137         if (!msr_info->host_initiated &&
4138             !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4139             return 1;
4140         msr_info->data = vcpu->arch.ia32_xss;
4141         break;
4142     case MSR_K7_CLK_CTL:
4143         /*
4144          * Provide expected ramp-up count for K7. All other
4145          * are set to zero, indicating minimum divisors for
4146          * every field.
4147          *
4148          * This prevents guest kernels on AMD host with CPU
4149          * type 6, model 8 and higher from exploding due to
4150          * the rdmsr failing.
4151          */
4152         msr_info->data = 0x20000000;
4153         break;
4154     case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4155     case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4156     case HV_X64_MSR_SYNDBG_OPTIONS:
4157     case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4158     case HV_X64_MSR_CRASH_CTL:
4159     case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4160     case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4161     case HV_X64_MSR_TSC_EMULATION_CONTROL:
4162     case HV_X64_MSR_TSC_EMULATION_STATUS:
4163         return kvm_hv_get_msr_common(vcpu,
4164                          msr_info->index, &msr_info->data,
4165                          msr_info->host_initiated);
4166     case MSR_IA32_BBL_CR_CTL3:
4167         /* This legacy MSR exists but isn't fully documented in current
4168          * silicon.  It is however accessed by winxp in very narrow
4169          * scenarios where it sets bit #19, itself documented as
4170          * a "reserved" bit.  Best effort attempt to source coherent
4171          * read data here should the balance of the register be
4172          * interpreted by the guest:
4173          *
4174          * L2 cache control register 3: 64GB range, 256KB size,
4175          * enabled, latency 0x1, configured
4176          */
4177         msr_info->data = 0xbe702111;
4178         break;
4179     case MSR_AMD64_OSVW_ID_LENGTH:
4180         if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4181             return 1;
4182         msr_info->data = vcpu->arch.osvw.length;
4183         break;
4184     case MSR_AMD64_OSVW_STATUS:
4185         if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4186             return 1;
4187         msr_info->data = vcpu->arch.osvw.status;
4188         break;
4189     case MSR_PLATFORM_INFO:
4190         if (!msr_info->host_initiated &&
4191             !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4192             return 1;
4193         msr_info->data = vcpu->arch.msr_platform_info;
4194         break;
4195     case MSR_MISC_FEATURES_ENABLES:
4196         msr_info->data = vcpu->arch.msr_misc_features_enables;
4197         break;
4198     case MSR_K7_HWCR:
4199         msr_info->data = vcpu->arch.msr_hwcr;
4200         break;
4201 #ifdef CONFIG_X86_64
4202     case MSR_IA32_XFD:
4203         if (!msr_info->host_initiated &&
4204             !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4205             return 1;
4206 
4207         msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4208         break;
4209     case MSR_IA32_XFD_ERR:
4210         if (!msr_info->host_initiated &&
4211             !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4212             return 1;
4213 
4214         msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4215         break;
4216 #endif
4217     default:
4218         if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4219             return kvm_pmu_get_msr(vcpu, msr_info);
4220         return KVM_MSR_RET_INVALID;
4221     }
4222     return 0;
4223 }
4224 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4225 
4226 /*
4227  * Read or write a bunch of msrs. All parameters are kernel addresses.
4228  *
4229  * @return number of msrs set successfully.
4230  */
4231 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4232             struct kvm_msr_entry *entries,
4233             int (*do_msr)(struct kvm_vcpu *vcpu,
4234                   unsigned index, u64 *data))
4235 {
4236     int i;
4237 
4238     for (i = 0; i < msrs->nmsrs; ++i)
4239         if (do_msr(vcpu, entries[i].index, &entries[i].data))
4240             break;
4241 
4242     return i;
4243 }
4244 
4245 /*
4246  * Read or write a bunch of msrs. Parameters are user addresses.
4247  *
4248  * @return number of msrs set successfully.
4249  */
4250 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4251           int (*do_msr)(struct kvm_vcpu *vcpu,
4252                 unsigned index, u64 *data),
4253           int writeback)
4254 {
4255     struct kvm_msrs msrs;
4256     struct kvm_msr_entry *entries;
4257     int r, n;
4258     unsigned size;
4259 
4260     r = -EFAULT;
4261     if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4262         goto out;
4263 
4264     r = -E2BIG;
4265     if (msrs.nmsrs >= MAX_IO_MSRS)
4266         goto out;
4267 
4268     size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4269     entries = memdup_user(user_msrs->entries, size);
4270     if (IS_ERR(entries)) {
4271         r = PTR_ERR(entries);
4272         goto out;
4273     }
4274 
4275     r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4276     if (r < 0)
4277         goto out_free;
4278 
4279     r = -EFAULT;
4280     if (writeback && copy_to_user(user_msrs->entries, entries, size))
4281         goto out_free;
4282 
4283     r = n;
4284 
4285 out_free:
4286     kfree(entries);
4287 out:
4288     return r;
4289 }
4290 
4291 static inline bool kvm_can_mwait_in_guest(void)
4292 {
4293     return boot_cpu_has(X86_FEATURE_MWAIT) &&
4294         !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4295         boot_cpu_has(X86_FEATURE_ARAT);
4296 }
4297 
4298 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4299                         struct kvm_cpuid2 __user *cpuid_arg)
4300 {
4301     struct kvm_cpuid2 cpuid;
4302     int r;
4303 
4304     r = -EFAULT;
4305     if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4306         return r;
4307 
4308     r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4309     if (r)
4310         return r;
4311 
4312     r = -EFAULT;
4313     if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4314         return r;
4315 
4316     return 0;
4317 }
4318 
4319 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4320 {
4321     int r = 0;
4322 
4323     switch (ext) {
4324     case KVM_CAP_IRQCHIP:
4325     case KVM_CAP_HLT:
4326     case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4327     case KVM_CAP_SET_TSS_ADDR:
4328     case KVM_CAP_EXT_CPUID:
4329     case KVM_CAP_EXT_EMUL_CPUID:
4330     case KVM_CAP_CLOCKSOURCE:
4331     case KVM_CAP_PIT:
4332     case KVM_CAP_NOP_IO_DELAY:
4333     case KVM_CAP_MP_STATE:
4334     case KVM_CAP_SYNC_MMU:
4335     case KVM_CAP_USER_NMI:
4336     case KVM_CAP_REINJECT_CONTROL:
4337     case KVM_CAP_IRQ_INJECT_STATUS:
4338     case KVM_CAP_IOEVENTFD:
4339     case KVM_CAP_IOEVENTFD_NO_LENGTH:
4340     case KVM_CAP_PIT2:
4341     case KVM_CAP_PIT_STATE2:
4342     case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4343     case KVM_CAP_VCPU_EVENTS:
4344     case KVM_CAP_HYPERV:
4345     case KVM_CAP_HYPERV_VAPIC:
4346     case KVM_CAP_HYPERV_SPIN:
4347     case KVM_CAP_HYPERV_SYNIC:
4348     case KVM_CAP_HYPERV_SYNIC2:
4349     case KVM_CAP_HYPERV_VP_INDEX:
4350     case KVM_CAP_HYPERV_EVENTFD:
4351     case KVM_CAP_HYPERV_TLBFLUSH:
4352     case KVM_CAP_HYPERV_SEND_IPI:
4353     case KVM_CAP_HYPERV_CPUID:
4354     case KVM_CAP_HYPERV_ENFORCE_CPUID:
4355     case KVM_CAP_SYS_HYPERV_CPUID:
4356     case KVM_CAP_PCI_SEGMENT:
4357     case KVM_CAP_DEBUGREGS:
4358     case KVM_CAP_X86_ROBUST_SINGLESTEP:
4359     case KVM_CAP_XSAVE:
4360     case KVM_CAP_ASYNC_PF:
4361     case KVM_CAP_ASYNC_PF_INT:
4362     case KVM_CAP_GET_TSC_KHZ:
4363     case KVM_CAP_KVMCLOCK_CTRL:
4364     case KVM_CAP_READONLY_MEM:
4365     case KVM_CAP_HYPERV_TIME:
4366     case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4367     case KVM_CAP_TSC_DEADLINE_TIMER:
4368     case KVM_CAP_DISABLE_QUIRKS:
4369     case KVM_CAP_SET_BOOT_CPU_ID:
4370     case KVM_CAP_SPLIT_IRQCHIP:
4371     case KVM_CAP_IMMEDIATE_EXIT:
4372     case KVM_CAP_PMU_EVENT_FILTER:
4373     case KVM_CAP_GET_MSR_FEATURES:
4374     case KVM_CAP_MSR_PLATFORM_INFO:
4375     case KVM_CAP_EXCEPTION_PAYLOAD:
4376     case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4377     case KVM_CAP_SET_GUEST_DEBUG:
4378     case KVM_CAP_LAST_CPU:
4379     case KVM_CAP_X86_USER_SPACE_MSR:
4380     case KVM_CAP_X86_MSR_FILTER:
4381     case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4382 #ifdef CONFIG_X86_SGX_KVM
4383     case KVM_CAP_SGX_ATTRIBUTE:
4384 #endif
4385     case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4386     case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4387     case KVM_CAP_SREGS2:
4388     case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4389     case KVM_CAP_VCPU_ATTRIBUTES:
4390     case KVM_CAP_SYS_ATTRIBUTES:
4391     case KVM_CAP_VAPIC:
4392     case KVM_CAP_ENABLE_CAP:
4393     case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4394         r = 1;
4395         break;
4396     case KVM_CAP_EXIT_HYPERCALL:
4397         r = KVM_EXIT_HYPERCALL_VALID_MASK;
4398         break;
4399     case KVM_CAP_SET_GUEST_DEBUG2:
4400         return KVM_GUESTDBG_VALID_MASK;
4401 #ifdef CONFIG_KVM_XEN
4402     case KVM_CAP_XEN_HVM:
4403         r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4404             KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4405             KVM_XEN_HVM_CONFIG_SHARED_INFO |
4406             KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4407             KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4408         if (sched_info_on())
4409             r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4410         break;
4411 #endif
4412     case KVM_CAP_SYNC_REGS:
4413         r = KVM_SYNC_X86_VALID_FIELDS;
4414         break;
4415     case KVM_CAP_ADJUST_CLOCK:
4416         r = KVM_CLOCK_VALID_FLAGS;
4417         break;
4418     case KVM_CAP_X86_DISABLE_EXITS:
4419         r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4420               KVM_X86_DISABLE_EXITS_CSTATE;
4421         if(kvm_can_mwait_in_guest())
4422             r |= KVM_X86_DISABLE_EXITS_MWAIT;
4423         break;
4424     case KVM_CAP_X86_SMM:
4425         /* SMBASE is usually relocated above 1M on modern chipsets,
4426          * and SMM handlers might indeed rely on 4G segment limits,
4427          * so do not report SMM to be available if real mode is
4428          * emulated via vm86 mode.  Still, do not go to great lengths
4429          * to avoid userspace's usage of the feature, because it is a
4430          * fringe case that is not enabled except via specific settings
4431          * of the module parameters.
4432          */
4433         r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4434         break;
4435     case KVM_CAP_NR_VCPUS:
4436         r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4437         break;
4438     case KVM_CAP_MAX_VCPUS:
4439         r = KVM_MAX_VCPUS;
4440         break;
4441     case KVM_CAP_MAX_VCPU_ID:
4442         r = KVM_MAX_VCPU_IDS;
4443         break;
4444     case KVM_CAP_PV_MMU:    /* obsolete */
4445         r = 0;
4446         break;
4447     case KVM_CAP_MCE:
4448         r = KVM_MAX_MCE_BANKS;
4449         break;
4450     case KVM_CAP_XCRS:
4451         r = boot_cpu_has(X86_FEATURE_XSAVE);
4452         break;
4453     case KVM_CAP_TSC_CONTROL:
4454     case KVM_CAP_VM_TSC_CONTROL:
4455         r = kvm_caps.has_tsc_control;
4456         break;
4457     case KVM_CAP_X2APIC_API:
4458         r = KVM_X2APIC_API_VALID_FLAGS;
4459         break;
4460     case KVM_CAP_NESTED_STATE:
4461         r = kvm_x86_ops.nested_ops->get_state ?
4462             kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4463         break;
4464     case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4465         r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4466         break;
4467     case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4468         r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4469         break;
4470     case KVM_CAP_SMALLER_MAXPHYADDR:
4471         r = (int) allow_smaller_maxphyaddr;
4472         break;
4473     case KVM_CAP_STEAL_TIME:
4474         r = sched_info_on();
4475         break;
4476     case KVM_CAP_X86_BUS_LOCK_EXIT:
4477         if (kvm_caps.has_bus_lock_exit)
4478             r = KVM_BUS_LOCK_DETECTION_OFF |
4479                 KVM_BUS_LOCK_DETECTION_EXIT;
4480         else
4481             r = 0;
4482         break;
4483     case KVM_CAP_XSAVE2: {
4484         u64 guest_perm = xstate_get_guest_group_perm();
4485 
4486         r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4487         if (r < sizeof(struct kvm_xsave))
4488             r = sizeof(struct kvm_xsave);
4489         break;
4490     }
4491     case KVM_CAP_PMU_CAPABILITY:
4492         r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4493         break;
4494     case KVM_CAP_DISABLE_QUIRKS2:
4495         r = KVM_X86_VALID_QUIRKS;
4496         break;
4497     case KVM_CAP_X86_NOTIFY_VMEXIT:
4498         r = kvm_caps.has_notify_vmexit;
4499         break;
4500     default:
4501         break;
4502     }
4503     return r;
4504 }
4505 
4506 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4507 {
4508     void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4509 
4510     if ((u64)(unsigned long)uaddr != attr->addr)
4511         return ERR_PTR_USR(-EFAULT);
4512     return uaddr;
4513 }
4514 
4515 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4516 {
4517     u64 __user *uaddr = kvm_get_attr_addr(attr);
4518 
4519     if (attr->group)
4520         return -ENXIO;
4521 
4522     if (IS_ERR(uaddr))
4523         return PTR_ERR(uaddr);
4524 
4525     switch (attr->attr) {
4526     case KVM_X86_XCOMP_GUEST_SUPP:
4527         if (put_user(kvm_caps.supported_xcr0, uaddr))
4528             return -EFAULT;
4529         return 0;
4530     default:
4531         return -ENXIO;
4532         break;
4533     }
4534 }
4535 
4536 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4537 {
4538     if (attr->group)
4539         return -ENXIO;
4540 
4541     switch (attr->attr) {
4542     case KVM_X86_XCOMP_GUEST_SUPP:
4543         return 0;
4544     default:
4545         return -ENXIO;
4546     }
4547 }
4548 
4549 long kvm_arch_dev_ioctl(struct file *filp,
4550             unsigned int ioctl, unsigned long arg)
4551 {
4552     void __user *argp = (void __user *)arg;
4553     long r;
4554 
4555     switch (ioctl) {
4556     case KVM_GET_MSR_INDEX_LIST: {
4557         struct kvm_msr_list __user *user_msr_list = argp;
4558         struct kvm_msr_list msr_list;
4559         unsigned n;
4560 
4561         r = -EFAULT;
4562         if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4563             goto out;
4564         n = msr_list.nmsrs;
4565         msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4566         if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4567             goto out;
4568         r = -E2BIG;
4569         if (n < msr_list.nmsrs)
4570             goto out;
4571         r = -EFAULT;
4572         if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4573                  num_msrs_to_save * sizeof(u32)))
4574             goto out;
4575         if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4576                  &emulated_msrs,
4577                  num_emulated_msrs * sizeof(u32)))
4578             goto out;
4579         r = 0;
4580         break;
4581     }
4582     case KVM_GET_SUPPORTED_CPUID:
4583     case KVM_GET_EMULATED_CPUID: {
4584         struct kvm_cpuid2 __user *cpuid_arg = argp;
4585         struct kvm_cpuid2 cpuid;
4586 
4587         r = -EFAULT;
4588         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4589             goto out;
4590 
4591         r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4592                         ioctl);
4593         if (r)
4594             goto out;
4595 
4596         r = -EFAULT;
4597         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4598             goto out;
4599         r = 0;
4600         break;
4601     }
4602     case KVM_X86_GET_MCE_CAP_SUPPORTED:
4603         r = -EFAULT;
4604         if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4605                  sizeof(kvm_caps.supported_mce_cap)))
4606             goto out;
4607         r = 0;
4608         break;
4609     case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4610         struct kvm_msr_list __user *user_msr_list = argp;
4611         struct kvm_msr_list msr_list;
4612         unsigned int n;
4613 
4614         r = -EFAULT;
4615         if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4616             goto out;
4617         n = msr_list.nmsrs;
4618         msr_list.nmsrs = num_msr_based_features;
4619         if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4620             goto out;
4621         r = -E2BIG;
4622         if (n < msr_list.nmsrs)
4623             goto out;
4624         r = -EFAULT;
4625         if (copy_to_user(user_msr_list->indices, &msr_based_features,
4626                  num_msr_based_features * sizeof(u32)))
4627             goto out;
4628         r = 0;
4629         break;
4630     }
4631     case KVM_GET_MSRS:
4632         r = msr_io(NULL, argp, do_get_msr_feature, 1);
4633         break;
4634     case KVM_GET_SUPPORTED_HV_CPUID:
4635         r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4636         break;
4637     case KVM_GET_DEVICE_ATTR: {
4638         struct kvm_device_attr attr;
4639         r = -EFAULT;
4640         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4641             break;
4642         r = kvm_x86_dev_get_attr(&attr);
4643         break;
4644     }
4645     case KVM_HAS_DEVICE_ATTR: {
4646         struct kvm_device_attr attr;
4647         r = -EFAULT;
4648         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4649             break;
4650         r = kvm_x86_dev_has_attr(&attr);
4651         break;
4652     }
4653     default:
4654         r = -EINVAL;
4655         break;
4656     }
4657 out:
4658     return r;
4659 }
4660 
4661 static void wbinvd_ipi(void *garbage)
4662 {
4663     wbinvd();
4664 }
4665 
4666 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4667 {
4668     return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4669 }
4670 
4671 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4672 {
4673     /* Address WBINVD may be executed by guest */
4674     if (need_emulate_wbinvd(vcpu)) {
4675         if (static_call(kvm_x86_has_wbinvd_exit)())
4676             cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4677         else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4678             smp_call_function_single(vcpu->cpu,
4679                     wbinvd_ipi, NULL, 1);
4680     }
4681 
4682     static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4683 
4684     /* Save host pkru register if supported */
4685     vcpu->arch.host_pkru = read_pkru();
4686 
4687     /* Apply any externally detected TSC adjustments (due to suspend) */
4688     if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4689         adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4690         vcpu->arch.tsc_offset_adjustment = 0;
4691         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4692     }
4693 
4694     if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4695         s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4696                 rdtsc() - vcpu->arch.last_host_tsc;
4697         if (tsc_delta < 0)
4698             mark_tsc_unstable("KVM discovered backwards TSC");
4699 
4700         if (kvm_check_tsc_unstable()) {
4701             u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4702                         vcpu->arch.last_guest_tsc);
4703             kvm_vcpu_write_tsc_offset(vcpu, offset);
4704             vcpu->arch.tsc_catchup = 1;
4705         }
4706 
4707         if (kvm_lapic_hv_timer_in_use(vcpu))
4708             kvm_lapic_restart_hv_timer(vcpu);
4709 
4710         /*
4711          * On a host with synchronized TSC, there is no need to update
4712          * kvmclock on vcpu->cpu migration
4713          */
4714         if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4715             kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4716         if (vcpu->cpu != cpu)
4717             kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4718         vcpu->cpu = cpu;
4719     }
4720 
4721     kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4722 }
4723 
4724 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4725 {
4726     struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4727     struct kvm_steal_time __user *st;
4728     struct kvm_memslots *slots;
4729     static const u8 preempted = KVM_VCPU_PREEMPTED;
4730     gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4731 
4732     /*
4733      * The vCPU can be marked preempted if and only if the VM-Exit was on
4734      * an instruction boundary and will not trigger guest emulation of any
4735      * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4736      * when this is true, for example allowing the vCPU to be marked
4737      * preempted if and only if the VM-Exit was due to a host interrupt.
4738      */
4739     if (!vcpu->arch.at_instruction_boundary) {
4740         vcpu->stat.preemption_other++;
4741         return;
4742     }
4743 
4744     vcpu->stat.preemption_reported++;
4745     if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4746         return;
4747 
4748     if (vcpu->arch.st.preempted)
4749         return;
4750 
4751     /* This happens on process exit */
4752     if (unlikely(current->mm != vcpu->kvm->mm))
4753         return;
4754 
4755     slots = kvm_memslots(vcpu->kvm);
4756 
4757     if (unlikely(slots->generation != ghc->generation ||
4758              gpa != ghc->gpa ||
4759              kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4760         return;
4761 
4762     st = (struct kvm_steal_time __user *)ghc->hva;
4763     BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4764 
4765     if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4766         vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4767 
4768     mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4769 }
4770 
4771 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4772 {
4773     int idx;
4774 
4775     if (vcpu->preempted) {
4776         if (!vcpu->arch.guest_state_protected)
4777             vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4778 
4779         /*
4780          * Take the srcu lock as memslots will be accessed to check the gfn
4781          * cache generation against the memslots generation.
4782          */
4783         idx = srcu_read_lock(&vcpu->kvm->srcu);
4784         if (kvm_xen_msr_enabled(vcpu->kvm))
4785             kvm_xen_runstate_set_preempted(vcpu);
4786         else
4787             kvm_steal_time_set_preempted(vcpu);
4788         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4789     }
4790 
4791     static_call(kvm_x86_vcpu_put)(vcpu);
4792     vcpu->arch.last_host_tsc = rdtsc();
4793 }
4794 
4795 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4796                     struct kvm_lapic_state *s)
4797 {
4798     static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4799 
4800     return kvm_apic_get_state(vcpu, s);
4801 }
4802 
4803 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4804                     struct kvm_lapic_state *s)
4805 {
4806     int r;
4807 
4808     r = kvm_apic_set_state(vcpu, s);
4809     if (r)
4810         return r;
4811     update_cr8_intercept(vcpu);
4812 
4813     return 0;
4814 }
4815 
4816 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4817 {
4818     /*
4819      * We can accept userspace's request for interrupt injection
4820      * as long as we have a place to store the interrupt number.
4821      * The actual injection will happen when the CPU is able to
4822      * deliver the interrupt.
4823      */
4824     if (kvm_cpu_has_extint(vcpu))
4825         return false;
4826 
4827     /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4828     return (!lapic_in_kernel(vcpu) ||
4829         kvm_apic_accept_pic_intr(vcpu));
4830 }
4831 
4832 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4833 {
4834     /*
4835      * Do not cause an interrupt window exit if an exception
4836      * is pending or an event needs reinjection; userspace
4837      * might want to inject the interrupt manually using KVM_SET_REGS
4838      * or KVM_SET_SREGS.  For that to work, we must be at an
4839      * instruction boundary and with no events half-injected.
4840      */
4841     return (kvm_arch_interrupt_allowed(vcpu) &&
4842         kvm_cpu_accept_dm_intr(vcpu) &&
4843         !kvm_event_needs_reinjection(vcpu) &&
4844         !vcpu->arch.exception.pending);
4845 }
4846 
4847 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4848                     struct kvm_interrupt *irq)
4849 {
4850     if (irq->irq >= KVM_NR_INTERRUPTS)
4851         return -EINVAL;
4852 
4853     if (!irqchip_in_kernel(vcpu->kvm)) {
4854         kvm_queue_interrupt(vcpu, irq->irq, false);
4855         kvm_make_request(KVM_REQ_EVENT, vcpu);
4856         return 0;
4857     }
4858 
4859     /*
4860      * With in-kernel LAPIC, we only use this to inject EXTINT, so
4861      * fail for in-kernel 8259.
4862      */
4863     if (pic_in_kernel(vcpu->kvm))
4864         return -ENXIO;
4865 
4866     if (vcpu->arch.pending_external_vector != -1)
4867         return -EEXIST;
4868 
4869     vcpu->arch.pending_external_vector = irq->irq;
4870     kvm_make_request(KVM_REQ_EVENT, vcpu);
4871     return 0;
4872 }
4873 
4874 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4875 {
4876     kvm_inject_nmi(vcpu);
4877 
4878     return 0;
4879 }
4880 
4881 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4882 {
4883     kvm_make_request(KVM_REQ_SMI, vcpu);
4884 
4885     return 0;
4886 }
4887 
4888 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4889                        struct kvm_tpr_access_ctl *tac)
4890 {
4891     if (tac->flags)
4892         return -EINVAL;
4893     vcpu->arch.tpr_access_reporting = !!tac->enabled;
4894     return 0;
4895 }
4896 
4897 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4898                     u64 mcg_cap)
4899 {
4900     int r;
4901     unsigned bank_num = mcg_cap & 0xff, bank;
4902 
4903     r = -EINVAL;
4904     if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4905         goto out;
4906     if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4907         goto out;
4908     r = 0;
4909     vcpu->arch.mcg_cap = mcg_cap;
4910     /* Init IA32_MCG_CTL to all 1s */
4911     if (mcg_cap & MCG_CTL_P)
4912         vcpu->arch.mcg_ctl = ~(u64)0;
4913     /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4914     for (bank = 0; bank < bank_num; bank++) {
4915         vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4916         if (mcg_cap & MCG_CMCI_P)
4917             vcpu->arch.mci_ctl2_banks[bank] = 0;
4918     }
4919 
4920     kvm_apic_after_set_mcg_cap(vcpu);
4921 
4922     static_call(kvm_x86_setup_mce)(vcpu);
4923 out:
4924     return r;
4925 }
4926 
4927 /*
4928  * Validate this is an UCNA (uncorrectable no action) error by checking the
4929  * MCG_STATUS and MCi_STATUS registers:
4930  * - none of the bits for Machine Check Exceptions are set
4931  * - both the VAL (valid) and UC (uncorrectable) bits are set
4932  * MCI_STATUS_PCC - Processor Context Corrupted
4933  * MCI_STATUS_S - Signaled as a Machine Check Exception
4934  * MCI_STATUS_AR - Software recoverable Action Required
4935  */
4936 static bool is_ucna(struct kvm_x86_mce *mce)
4937 {
4938     return  !mce->mcg_status &&
4939         !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4940         (mce->status & MCI_STATUS_VAL) &&
4941         (mce->status & MCI_STATUS_UC);
4942 }
4943 
4944 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4945 {
4946     u64 mcg_cap = vcpu->arch.mcg_cap;
4947 
4948     banks[1] = mce->status;
4949     banks[2] = mce->addr;
4950     banks[3] = mce->misc;
4951     vcpu->arch.mcg_status = mce->mcg_status;
4952 
4953     if (!(mcg_cap & MCG_CMCI_P) ||
4954         !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4955         return 0;
4956 
4957     if (lapic_in_kernel(vcpu))
4958         kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4959 
4960     return 0;
4961 }
4962 
4963 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4964                       struct kvm_x86_mce *mce)
4965 {
4966     u64 mcg_cap = vcpu->arch.mcg_cap;
4967     unsigned bank_num = mcg_cap & 0xff;
4968     u64 *banks = vcpu->arch.mce_banks;
4969 
4970     if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4971         return -EINVAL;
4972 
4973     banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
4974 
4975     if (is_ucna(mce))
4976         return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
4977 
4978     /*
4979      * if IA32_MCG_CTL is not all 1s, the uncorrected error
4980      * reporting is disabled
4981      */
4982     if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4983         vcpu->arch.mcg_ctl != ~(u64)0)
4984         return 0;
4985     /*
4986      * if IA32_MCi_CTL is not all 1s, the uncorrected error
4987      * reporting is disabled for the bank
4988      */
4989     if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4990         return 0;
4991     if (mce->status & MCI_STATUS_UC) {
4992         if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4993             !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4994             kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4995             return 0;
4996         }
4997         if (banks[1] & MCI_STATUS_VAL)
4998             mce->status |= MCI_STATUS_OVER;
4999         banks[2] = mce->addr;
5000         banks[3] = mce->misc;
5001         vcpu->arch.mcg_status = mce->mcg_status;
5002         banks[1] = mce->status;
5003         kvm_queue_exception(vcpu, MC_VECTOR);
5004     } else if (!(banks[1] & MCI_STATUS_VAL)
5005            || !(banks[1] & MCI_STATUS_UC)) {
5006         if (banks[1] & MCI_STATUS_VAL)
5007             mce->status |= MCI_STATUS_OVER;
5008         banks[2] = mce->addr;
5009         banks[3] = mce->misc;
5010         banks[1] = mce->status;
5011     } else
5012         banks[1] |= MCI_STATUS_OVER;
5013     return 0;
5014 }
5015 
5016 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5017                            struct kvm_vcpu_events *events)
5018 {
5019     process_nmi(vcpu);
5020 
5021     if (kvm_check_request(KVM_REQ_SMI, vcpu))
5022         process_smi(vcpu);
5023 
5024     /*
5025      * In guest mode, payload delivery should be deferred,
5026      * so that the L1 hypervisor can intercept #PF before
5027      * CR2 is modified (or intercept #DB before DR6 is
5028      * modified under nVMX). Unless the per-VM capability,
5029      * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
5030      * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
5031      * opportunistically defer the exception payload, deliver it if the
5032      * capability hasn't been requested before processing a
5033      * KVM_GET_VCPU_EVENTS.
5034      */
5035     if (!vcpu->kvm->arch.exception_payload_enabled &&
5036         vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
5037         kvm_deliver_exception_payload(vcpu);
5038 
5039     /*
5040      * The API doesn't provide the instruction length for software
5041      * exceptions, so don't report them. As long as the guest RIP
5042      * isn't advanced, we should expect to encounter the exception
5043      * again.
5044      */
5045     if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
5046         events->exception.injected = 0;
5047         events->exception.pending = 0;
5048     } else {
5049         events->exception.injected = vcpu->arch.exception.injected;
5050         events->exception.pending = vcpu->arch.exception.pending;
5051         /*
5052          * For ABI compatibility, deliberately conflate
5053          * pending and injected exceptions when
5054          * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5055          */
5056         if (!vcpu->kvm->arch.exception_payload_enabled)
5057             events->exception.injected |=
5058                 vcpu->arch.exception.pending;
5059     }
5060     events->exception.nr = vcpu->arch.exception.nr;
5061     events->exception.has_error_code = vcpu->arch.exception.has_error_code;
5062     events->exception.error_code = vcpu->arch.exception.error_code;
5063     events->exception_has_payload = vcpu->arch.exception.has_payload;
5064     events->exception_payload = vcpu->arch.exception.payload;
5065 
5066     events->interrupt.injected =
5067         vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5068     events->interrupt.nr = vcpu->arch.interrupt.nr;
5069     events->interrupt.soft = 0;
5070     events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5071 
5072     events->nmi.injected = vcpu->arch.nmi_injected;
5073     events->nmi.pending = vcpu->arch.nmi_pending != 0;
5074     events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5075     events->nmi.pad = 0;
5076 
5077     events->sipi_vector = 0; /* never valid when reporting to user space */
5078 
5079     events->smi.smm = is_smm(vcpu);
5080     events->smi.pending = vcpu->arch.smi_pending;
5081     events->smi.smm_inside_nmi =
5082         !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5083     events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5084 
5085     events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5086              | KVM_VCPUEVENT_VALID_SHADOW
5087              | KVM_VCPUEVENT_VALID_SMM);
5088     if (vcpu->kvm->arch.exception_payload_enabled)
5089         events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5090     if (vcpu->kvm->arch.triple_fault_event) {
5091         events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5092         events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5093     }
5094 
5095     memset(&events->reserved, 0, sizeof(events->reserved));
5096 }
5097 
5098 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
5099 
5100 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5101                           struct kvm_vcpu_events *events)
5102 {
5103     if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5104                   | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5105                   | KVM_VCPUEVENT_VALID_SHADOW
5106                   | KVM_VCPUEVENT_VALID_SMM
5107                   | KVM_VCPUEVENT_VALID_PAYLOAD
5108                   | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5109         return -EINVAL;
5110 
5111     if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5112         if (!vcpu->kvm->arch.exception_payload_enabled)
5113             return -EINVAL;
5114         if (events->exception.pending)
5115             events->exception.injected = 0;
5116         else
5117             events->exception_has_payload = 0;
5118     } else {
5119         events->exception.pending = 0;
5120         events->exception_has_payload = 0;
5121     }
5122 
5123     if ((events->exception.injected || events->exception.pending) &&
5124         (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5125         return -EINVAL;
5126 
5127     /* INITs are latched while in SMM */
5128     if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5129         (events->smi.smm || events->smi.pending) &&
5130         vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5131         return -EINVAL;
5132 
5133     process_nmi(vcpu);
5134     vcpu->arch.exception.injected = events->exception.injected;
5135     vcpu->arch.exception.pending = events->exception.pending;
5136     vcpu->arch.exception.nr = events->exception.nr;
5137     vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5138     vcpu->arch.exception.error_code = events->exception.error_code;
5139     vcpu->arch.exception.has_payload = events->exception_has_payload;
5140     vcpu->arch.exception.payload = events->exception_payload;
5141 
5142     vcpu->arch.interrupt.injected = events->interrupt.injected;
5143     vcpu->arch.interrupt.nr = events->interrupt.nr;
5144     vcpu->arch.interrupt.soft = events->interrupt.soft;
5145     if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5146         static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5147                         events->interrupt.shadow);
5148 
5149     vcpu->arch.nmi_injected = events->nmi.injected;
5150     if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5151         vcpu->arch.nmi_pending = events->nmi.pending;
5152     static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5153 
5154     if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5155         lapic_in_kernel(vcpu))
5156         vcpu->arch.apic->sipi_vector = events->sipi_vector;
5157 
5158     if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5159         if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5160             kvm_x86_ops.nested_ops->leave_nested(vcpu);
5161             kvm_smm_changed(vcpu, events->smi.smm);
5162         }
5163 
5164         vcpu->arch.smi_pending = events->smi.pending;
5165 
5166         if (events->smi.smm) {
5167             if (events->smi.smm_inside_nmi)
5168                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5169             else
5170                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5171         }
5172 
5173         if (lapic_in_kernel(vcpu)) {
5174             if (events->smi.latched_init)
5175                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5176             else
5177                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5178         }
5179     }
5180 
5181     if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5182         if (!vcpu->kvm->arch.triple_fault_event)
5183             return -EINVAL;
5184         if (events->triple_fault.pending)
5185             kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5186         else
5187             kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5188     }
5189 
5190     kvm_make_request(KVM_REQ_EVENT, vcpu);
5191 
5192     return 0;
5193 }
5194 
5195 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5196                          struct kvm_debugregs *dbgregs)
5197 {
5198     unsigned long val;
5199 
5200     memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5201     kvm_get_dr(vcpu, 6, &val);
5202     dbgregs->dr6 = val;
5203     dbgregs->dr7 = vcpu->arch.dr7;
5204     dbgregs->flags = 0;
5205     memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5206 }
5207 
5208 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5209                         struct kvm_debugregs *dbgregs)
5210 {
5211     if (dbgregs->flags)
5212         return -EINVAL;
5213 
5214     if (!kvm_dr6_valid(dbgregs->dr6))
5215         return -EINVAL;
5216     if (!kvm_dr7_valid(dbgregs->dr7))
5217         return -EINVAL;
5218 
5219     memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5220     kvm_update_dr0123(vcpu);
5221     vcpu->arch.dr6 = dbgregs->dr6;
5222     vcpu->arch.dr7 = dbgregs->dr7;
5223     kvm_update_dr7(vcpu);
5224 
5225     return 0;
5226 }
5227 
5228 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5229                      struct kvm_xsave *guest_xsave)
5230 {
5231     if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5232         return;
5233 
5234     fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5235                        guest_xsave->region,
5236                        sizeof(guest_xsave->region),
5237                        vcpu->arch.pkru);
5238 }
5239 
5240 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5241                       u8 *state, unsigned int size)
5242 {
5243     if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5244         return;
5245 
5246     fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5247                        state, size, vcpu->arch.pkru);
5248 }
5249 
5250 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5251                     struct kvm_xsave *guest_xsave)
5252 {
5253     if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5254         return 0;
5255 
5256     return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5257                           guest_xsave->region,
5258                           kvm_caps.supported_xcr0,
5259                           &vcpu->arch.pkru);
5260 }
5261 
5262 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5263                     struct kvm_xcrs *guest_xcrs)
5264 {
5265     if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5266         guest_xcrs->nr_xcrs = 0;
5267         return;
5268     }
5269 
5270     guest_xcrs->nr_xcrs = 1;
5271     guest_xcrs->flags = 0;
5272     guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5273     guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5274 }
5275 
5276 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5277                        struct kvm_xcrs *guest_xcrs)
5278 {
5279     int i, r = 0;
5280 
5281     if (!boot_cpu_has(X86_FEATURE_XSAVE))
5282         return -EINVAL;
5283 
5284     if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5285         return -EINVAL;
5286 
5287     for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5288         /* Only support XCR0 currently */
5289         if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5290             r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5291                 guest_xcrs->xcrs[i].value);
5292             break;
5293         }
5294     if (r)
5295         r = -EINVAL;
5296     return r;
5297 }
5298 
5299 /*
5300  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5301  * stopped by the hypervisor.  This function will be called from the host only.
5302  * EINVAL is returned when the host attempts to set the flag for a guest that
5303  * does not support pv clocks.
5304  */
5305 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5306 {
5307     if (!vcpu->arch.pv_time.active)
5308         return -EINVAL;
5309     vcpu->arch.pvclock_set_guest_stopped_request = true;
5310     kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5311     return 0;
5312 }
5313 
5314 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5315                  struct kvm_device_attr *attr)
5316 {
5317     int r;
5318 
5319     switch (attr->attr) {
5320     case KVM_VCPU_TSC_OFFSET:
5321         r = 0;
5322         break;
5323     default:
5324         r = -ENXIO;
5325     }
5326 
5327     return r;
5328 }
5329 
5330 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5331                  struct kvm_device_attr *attr)
5332 {
5333     u64 __user *uaddr = kvm_get_attr_addr(attr);
5334     int r;
5335 
5336     if (IS_ERR(uaddr))
5337         return PTR_ERR(uaddr);
5338 
5339     switch (attr->attr) {
5340     case KVM_VCPU_TSC_OFFSET:
5341         r = -EFAULT;
5342         if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5343             break;
5344         r = 0;
5345         break;
5346     default:
5347         r = -ENXIO;
5348     }
5349 
5350     return r;
5351 }
5352 
5353 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5354                  struct kvm_device_attr *attr)
5355 {
5356     u64 __user *uaddr = kvm_get_attr_addr(attr);
5357     struct kvm *kvm = vcpu->kvm;
5358     int r;
5359 
5360     if (IS_ERR(uaddr))
5361         return PTR_ERR(uaddr);
5362 
5363     switch (attr->attr) {
5364     case KVM_VCPU_TSC_OFFSET: {
5365         u64 offset, tsc, ns;
5366         unsigned long flags;
5367         bool matched;
5368 
5369         r = -EFAULT;
5370         if (get_user(offset, uaddr))
5371             break;
5372 
5373         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5374 
5375         matched = (vcpu->arch.virtual_tsc_khz &&
5376                kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5377                kvm->arch.last_tsc_offset == offset);
5378 
5379         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5380         ns = get_kvmclock_base_ns();
5381 
5382         __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5383         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5384 
5385         r = 0;
5386         break;
5387     }
5388     default:
5389         r = -ENXIO;
5390     }
5391 
5392     return r;
5393 }
5394 
5395 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5396                       unsigned int ioctl,
5397                       void __user *argp)
5398 {
5399     struct kvm_device_attr attr;
5400     int r;
5401 
5402     if (copy_from_user(&attr, argp, sizeof(attr)))
5403         return -EFAULT;
5404 
5405     if (attr.group != KVM_VCPU_TSC_CTRL)
5406         return -ENXIO;
5407 
5408     switch (ioctl) {
5409     case KVM_HAS_DEVICE_ATTR:
5410         r = kvm_arch_tsc_has_attr(vcpu, &attr);
5411         break;
5412     case KVM_GET_DEVICE_ATTR:
5413         r = kvm_arch_tsc_get_attr(vcpu, &attr);
5414         break;
5415     case KVM_SET_DEVICE_ATTR:
5416         r = kvm_arch_tsc_set_attr(vcpu, &attr);
5417         break;
5418     }
5419 
5420     return r;
5421 }
5422 
5423 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5424                      struct kvm_enable_cap *cap)
5425 {
5426     int r;
5427     uint16_t vmcs_version;
5428     void __user *user_ptr;
5429 
5430     if (cap->flags)
5431         return -EINVAL;
5432 
5433     switch (cap->cap) {
5434     case KVM_CAP_HYPERV_SYNIC2:
5435         if (cap->args[0])
5436             return -EINVAL;
5437         fallthrough;
5438 
5439     case KVM_CAP_HYPERV_SYNIC:
5440         if (!irqchip_in_kernel(vcpu->kvm))
5441             return -EINVAL;
5442         return kvm_hv_activate_synic(vcpu, cap->cap ==
5443                          KVM_CAP_HYPERV_SYNIC2);
5444     case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5445         if (!kvm_x86_ops.nested_ops->enable_evmcs)
5446             return -ENOTTY;
5447         r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5448         if (!r) {
5449             user_ptr = (void __user *)(uintptr_t)cap->args[0];
5450             if (copy_to_user(user_ptr, &vmcs_version,
5451                      sizeof(vmcs_version)))
5452                 r = -EFAULT;
5453         }
5454         return r;
5455     case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5456         if (!kvm_x86_ops.enable_direct_tlbflush)
5457             return -ENOTTY;
5458 
5459         return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5460 
5461     case KVM_CAP_HYPERV_ENFORCE_CPUID:
5462         return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5463 
5464     case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5465         vcpu->arch.pv_cpuid.enforce = cap->args[0];
5466         if (vcpu->arch.pv_cpuid.enforce)
5467             kvm_update_pv_runtime(vcpu);
5468 
5469         return 0;
5470     default:
5471         return -EINVAL;
5472     }
5473 }
5474 
5475 long kvm_arch_vcpu_ioctl(struct file *filp,
5476              unsigned int ioctl, unsigned long arg)
5477 {
5478     struct kvm_vcpu *vcpu = filp->private_data;
5479     void __user *argp = (void __user *)arg;
5480     int r;
5481     union {
5482         struct kvm_sregs2 *sregs2;
5483         struct kvm_lapic_state *lapic;
5484         struct kvm_xsave *xsave;
5485         struct kvm_xcrs *xcrs;
5486         void *buffer;
5487     } u;
5488 
5489     vcpu_load(vcpu);
5490 
5491     u.buffer = NULL;
5492     switch (ioctl) {
5493     case KVM_GET_LAPIC: {
5494         r = -EINVAL;
5495         if (!lapic_in_kernel(vcpu))
5496             goto out;
5497         u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5498                 GFP_KERNEL_ACCOUNT);
5499 
5500         r = -ENOMEM;
5501         if (!u.lapic)
5502             goto out;
5503         r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5504         if (r)
5505             goto out;
5506         r = -EFAULT;
5507         if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5508             goto out;
5509         r = 0;
5510         break;
5511     }
5512     case KVM_SET_LAPIC: {
5513         r = -EINVAL;
5514         if (!lapic_in_kernel(vcpu))
5515             goto out;
5516         u.lapic = memdup_user(argp, sizeof(*u.lapic));
5517         if (IS_ERR(u.lapic)) {
5518             r = PTR_ERR(u.lapic);
5519             goto out_nofree;
5520         }
5521 
5522         r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5523         break;
5524     }
5525     case KVM_INTERRUPT: {
5526         struct kvm_interrupt irq;
5527 
5528         r = -EFAULT;
5529         if (copy_from_user(&irq, argp, sizeof(irq)))
5530             goto out;
5531         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5532         break;
5533     }
5534     case KVM_NMI: {
5535         r = kvm_vcpu_ioctl_nmi(vcpu);
5536         break;
5537     }
5538     case KVM_SMI: {
5539         r = kvm_vcpu_ioctl_smi(vcpu);
5540         break;
5541     }
5542     case KVM_SET_CPUID: {
5543         struct kvm_cpuid __user *cpuid_arg = argp;
5544         struct kvm_cpuid cpuid;
5545 
5546         r = -EFAULT;
5547         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5548             goto out;
5549         r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5550         break;
5551     }
5552     case KVM_SET_CPUID2: {
5553         struct kvm_cpuid2 __user *cpuid_arg = argp;
5554         struct kvm_cpuid2 cpuid;
5555 
5556         r = -EFAULT;
5557         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5558             goto out;
5559         r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5560                           cpuid_arg->entries);
5561         break;
5562     }
5563     case KVM_GET_CPUID2: {
5564         struct kvm_cpuid2 __user *cpuid_arg = argp;
5565         struct kvm_cpuid2 cpuid;
5566 
5567         r = -EFAULT;
5568         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5569             goto out;
5570         r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5571                           cpuid_arg->entries);
5572         if (r)
5573             goto out;
5574         r = -EFAULT;
5575         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5576             goto out;
5577         r = 0;
5578         break;
5579     }
5580     case KVM_GET_MSRS: {
5581         int idx = srcu_read_lock(&vcpu->kvm->srcu);
5582         r = msr_io(vcpu, argp, do_get_msr, 1);
5583         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5584         break;
5585     }
5586     case KVM_SET_MSRS: {
5587         int idx = srcu_read_lock(&vcpu->kvm->srcu);
5588         r = msr_io(vcpu, argp, do_set_msr, 0);
5589         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5590         break;
5591     }
5592     case KVM_TPR_ACCESS_REPORTING: {
5593         struct kvm_tpr_access_ctl tac;
5594 
5595         r = -EFAULT;
5596         if (copy_from_user(&tac, argp, sizeof(tac)))
5597             goto out;
5598         r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5599         if (r)
5600             goto out;
5601         r = -EFAULT;
5602         if (copy_to_user(argp, &tac, sizeof(tac)))
5603             goto out;
5604         r = 0;
5605         break;
5606     };
5607     case KVM_SET_VAPIC_ADDR: {
5608         struct kvm_vapic_addr va;
5609         int idx;
5610 
5611         r = -EINVAL;
5612         if (!lapic_in_kernel(vcpu))
5613             goto out;
5614         r = -EFAULT;
5615         if (copy_from_user(&va, argp, sizeof(va)))
5616             goto out;
5617         idx = srcu_read_lock(&vcpu->kvm->srcu);
5618         r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5619         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5620         break;
5621     }
5622     case KVM_X86_SETUP_MCE: {
5623         u64 mcg_cap;
5624 
5625         r = -EFAULT;
5626         if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5627             goto out;
5628         r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5629         break;
5630     }
5631     case KVM_X86_SET_MCE: {
5632         struct kvm_x86_mce mce;
5633 
5634         r = -EFAULT;
5635         if (copy_from_user(&mce, argp, sizeof(mce)))
5636             goto out;
5637         r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5638         break;
5639     }
5640     case KVM_GET_VCPU_EVENTS: {
5641         struct kvm_vcpu_events events;
5642 
5643         kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5644 
5645         r = -EFAULT;
5646         if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5647             break;
5648         r = 0;
5649         break;
5650     }
5651     case KVM_SET_VCPU_EVENTS: {
5652         struct kvm_vcpu_events events;
5653 
5654         r = -EFAULT;
5655         if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5656             break;
5657 
5658         r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5659         break;
5660     }
5661     case KVM_GET_DEBUGREGS: {
5662         struct kvm_debugregs dbgregs;
5663 
5664         kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5665 
5666         r = -EFAULT;
5667         if (copy_to_user(argp, &dbgregs,
5668                  sizeof(struct kvm_debugregs)))
5669             break;
5670         r = 0;
5671         break;
5672     }
5673     case KVM_SET_DEBUGREGS: {
5674         struct kvm_debugregs dbgregs;
5675 
5676         r = -EFAULT;
5677         if (copy_from_user(&dbgregs, argp,
5678                    sizeof(struct kvm_debugregs)))
5679             break;
5680 
5681         r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5682         break;
5683     }
5684     case KVM_GET_XSAVE: {
5685         r = -EINVAL;
5686         if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5687             break;
5688 
5689         u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5690         r = -ENOMEM;
5691         if (!u.xsave)
5692             break;
5693 
5694         kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5695 
5696         r = -EFAULT;
5697         if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5698             break;
5699         r = 0;
5700         break;
5701     }
5702     case KVM_SET_XSAVE: {
5703         int size = vcpu->arch.guest_fpu.uabi_size;
5704 
5705         u.xsave = memdup_user(argp, size);
5706         if (IS_ERR(u.xsave)) {
5707             r = PTR_ERR(u.xsave);
5708             goto out_nofree;
5709         }
5710 
5711         r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5712         break;
5713     }
5714 
5715     case KVM_GET_XSAVE2: {
5716         int size = vcpu->arch.guest_fpu.uabi_size;
5717 
5718         u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5719         r = -ENOMEM;
5720         if (!u.xsave)
5721             break;
5722 
5723         kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5724 
5725         r = -EFAULT;
5726         if (copy_to_user(argp, u.xsave, size))
5727             break;
5728 
5729         r = 0;
5730         break;
5731     }
5732 
5733     case KVM_GET_XCRS: {
5734         u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5735         r = -ENOMEM;
5736         if (!u.xcrs)
5737             break;
5738 
5739         kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5740 
5741         r = -EFAULT;
5742         if (copy_to_user(argp, u.xcrs,
5743                  sizeof(struct kvm_xcrs)))
5744             break;
5745         r = 0;
5746         break;
5747     }
5748     case KVM_SET_XCRS: {
5749         u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5750         if (IS_ERR(u.xcrs)) {
5751             r = PTR_ERR(u.xcrs);
5752             goto out_nofree;
5753         }
5754 
5755         r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5756         break;
5757     }
5758     case KVM_SET_TSC_KHZ: {
5759         u32 user_tsc_khz;
5760 
5761         r = -EINVAL;
5762         user_tsc_khz = (u32)arg;
5763 
5764         if (kvm_caps.has_tsc_control &&
5765             user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5766             goto out;
5767 
5768         if (user_tsc_khz == 0)
5769             user_tsc_khz = tsc_khz;
5770 
5771         if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5772             r = 0;
5773 
5774         goto out;
5775     }
5776     case KVM_GET_TSC_KHZ: {
5777         r = vcpu->arch.virtual_tsc_khz;
5778         goto out;
5779     }
5780     case KVM_KVMCLOCK_CTRL: {
5781         r = kvm_set_guest_paused(vcpu);
5782         goto out;
5783     }
5784     case KVM_ENABLE_CAP: {
5785         struct kvm_enable_cap cap;
5786 
5787         r = -EFAULT;
5788         if (copy_from_user(&cap, argp, sizeof(cap)))
5789             goto out;
5790         r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5791         break;
5792     }
5793     case KVM_GET_NESTED_STATE: {
5794         struct kvm_nested_state __user *user_kvm_nested_state = argp;
5795         u32 user_data_size;
5796 
5797         r = -EINVAL;
5798         if (!kvm_x86_ops.nested_ops->get_state)
5799             break;
5800 
5801         BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5802         r = -EFAULT;
5803         if (get_user(user_data_size, &user_kvm_nested_state->size))
5804             break;
5805 
5806         r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5807                              user_data_size);
5808         if (r < 0)
5809             break;
5810 
5811         if (r > user_data_size) {
5812             if (put_user(r, &user_kvm_nested_state->size))
5813                 r = -EFAULT;
5814             else
5815                 r = -E2BIG;
5816             break;
5817         }
5818 
5819         r = 0;
5820         break;
5821     }
5822     case KVM_SET_NESTED_STATE: {
5823         struct kvm_nested_state __user *user_kvm_nested_state = argp;
5824         struct kvm_nested_state kvm_state;
5825         int idx;
5826 
5827         r = -EINVAL;
5828         if (!kvm_x86_ops.nested_ops->set_state)
5829             break;
5830 
5831         r = -EFAULT;
5832         if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5833             break;
5834 
5835         r = -EINVAL;
5836         if (kvm_state.size < sizeof(kvm_state))
5837             break;
5838 
5839         if (kvm_state.flags &
5840             ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5841               | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5842               | KVM_STATE_NESTED_GIF_SET))
5843             break;
5844 
5845         /* nested_run_pending implies guest_mode.  */
5846         if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5847             && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5848             break;
5849 
5850         idx = srcu_read_lock(&vcpu->kvm->srcu);
5851         r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5852         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5853         break;
5854     }
5855     case KVM_GET_SUPPORTED_HV_CPUID:
5856         r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5857         break;
5858 #ifdef CONFIG_KVM_XEN
5859     case KVM_XEN_VCPU_GET_ATTR: {
5860         struct kvm_xen_vcpu_attr xva;
5861 
5862         r = -EFAULT;
5863         if (copy_from_user(&xva, argp, sizeof(xva)))
5864             goto out;
5865         r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5866         if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5867             r = -EFAULT;
5868         break;
5869     }
5870     case KVM_XEN_VCPU_SET_ATTR: {
5871         struct kvm_xen_vcpu_attr xva;
5872 
5873         r = -EFAULT;
5874         if (copy_from_user(&xva, argp, sizeof(xva)))
5875             goto out;
5876         r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5877         break;
5878     }
5879 #endif
5880     case KVM_GET_SREGS2: {
5881         u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5882         r = -ENOMEM;
5883         if (!u.sregs2)
5884             goto out;
5885         __get_sregs2(vcpu, u.sregs2);
5886         r = -EFAULT;
5887         if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5888             goto out;
5889         r = 0;
5890         break;
5891     }
5892     case KVM_SET_SREGS2: {
5893         u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5894         if (IS_ERR(u.sregs2)) {
5895             r = PTR_ERR(u.sregs2);
5896             u.sregs2 = NULL;
5897             goto out;
5898         }
5899         r = __set_sregs2(vcpu, u.sregs2);
5900         break;
5901     }
5902     case KVM_HAS_DEVICE_ATTR:
5903     case KVM_GET_DEVICE_ATTR:
5904     case KVM_SET_DEVICE_ATTR:
5905         r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5906         break;
5907     default:
5908         r = -EINVAL;
5909     }
5910 out:
5911     kfree(u.buffer);
5912 out_nofree:
5913     vcpu_put(vcpu);
5914     return r;
5915 }
5916 
5917 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5918 {
5919     return VM_FAULT_SIGBUS;
5920 }
5921 
5922 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5923 {
5924     int ret;
5925 
5926     if (addr > (unsigned int)(-3 * PAGE_SIZE))
5927         return -EINVAL;
5928     ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5929     return ret;
5930 }
5931 
5932 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5933                           u64 ident_addr)
5934 {
5935     return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5936 }
5937 
5938 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5939                      unsigned long kvm_nr_mmu_pages)
5940 {
5941     if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5942         return -EINVAL;
5943 
5944     mutex_lock(&kvm->slots_lock);
5945 
5946     kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5947     kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5948 
5949     mutex_unlock(&kvm->slots_lock);
5950     return 0;
5951 }
5952 
5953 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5954 {
5955     return kvm->arch.n_max_mmu_pages;
5956 }
5957 
5958 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5959 {
5960     struct kvm_pic *pic = kvm->arch.vpic;
5961     int r;
5962 
5963     r = 0;
5964     switch (chip->chip_id) {
5965     case KVM_IRQCHIP_PIC_MASTER:
5966         memcpy(&chip->chip.pic, &pic->pics[0],
5967             sizeof(struct kvm_pic_state));
5968         break;
5969     case KVM_IRQCHIP_PIC_SLAVE:
5970         memcpy(&chip->chip.pic, &pic->pics[1],
5971             sizeof(struct kvm_pic_state));
5972         break;
5973     case KVM_IRQCHIP_IOAPIC:
5974         kvm_get_ioapic(kvm, &chip->chip.ioapic);
5975         break;
5976     default:
5977         r = -EINVAL;
5978         break;
5979     }
5980     return r;
5981 }
5982 
5983 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5984 {
5985     struct kvm_pic *pic = kvm->arch.vpic;
5986     int r;
5987 
5988     r = 0;
5989     switch (chip->chip_id) {
5990     case KVM_IRQCHIP_PIC_MASTER:
5991         spin_lock(&pic->lock);
5992         memcpy(&pic->pics[0], &chip->chip.pic,
5993             sizeof(struct kvm_pic_state));
5994         spin_unlock(&pic->lock);
5995         break;
5996     case KVM_IRQCHIP_PIC_SLAVE:
5997         spin_lock(&pic->lock);
5998         memcpy(&pic->pics[1], &chip->chip.pic,
5999             sizeof(struct kvm_pic_state));
6000         spin_unlock(&pic->lock);
6001         break;
6002     case KVM_IRQCHIP_IOAPIC:
6003         kvm_set_ioapic(kvm, &chip->chip.ioapic);
6004         break;
6005     default:
6006         r = -EINVAL;
6007         break;
6008     }
6009     kvm_pic_update_irq(pic);
6010     return r;
6011 }
6012 
6013 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6014 {
6015     struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6016 
6017     BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6018 
6019     mutex_lock(&kps->lock);
6020     memcpy(ps, &kps->channels, sizeof(*ps));
6021     mutex_unlock(&kps->lock);
6022     return 0;
6023 }
6024 
6025 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6026 {
6027     int i;
6028     struct kvm_pit *pit = kvm->arch.vpit;
6029 
6030     mutex_lock(&pit->pit_state.lock);
6031     memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6032     for (i = 0; i < 3; i++)
6033         kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6034     mutex_unlock(&pit->pit_state.lock);
6035     return 0;
6036 }
6037 
6038 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6039 {
6040     mutex_lock(&kvm->arch.vpit->pit_state.lock);
6041     memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6042         sizeof(ps->channels));
6043     ps->flags = kvm->arch.vpit->pit_state.flags;
6044     mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6045     memset(&ps->reserved, 0, sizeof(ps->reserved));
6046     return 0;
6047 }
6048 
6049 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6050 {
6051     int start = 0;
6052     int i;
6053     u32 prev_legacy, cur_legacy;
6054     struct kvm_pit *pit = kvm->arch.vpit;
6055 
6056     mutex_lock(&pit->pit_state.lock);
6057     prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6058     cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6059     if (!prev_legacy && cur_legacy)
6060         start = 1;
6061     memcpy(&pit->pit_state.channels, &ps->channels,
6062            sizeof(pit->pit_state.channels));
6063     pit->pit_state.flags = ps->flags;
6064     for (i = 0; i < 3; i++)
6065         kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6066                    start && i == 0);
6067     mutex_unlock(&pit->pit_state.lock);
6068     return 0;
6069 }
6070 
6071 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6072                  struct kvm_reinject_control *control)
6073 {
6074     struct kvm_pit *pit = kvm->arch.vpit;
6075 
6076     /* pit->pit_state.lock was overloaded to prevent userspace from getting
6077      * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6078      * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6079      */
6080     mutex_lock(&pit->pit_state.lock);
6081     kvm_pit_set_reinject(pit, control->pit_reinject);
6082     mutex_unlock(&pit->pit_state.lock);
6083 
6084     return 0;
6085 }
6086 
6087 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6088 {
6089 
6090     /*
6091      * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6092      * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6093      * on all VM-Exits, thus we only need to kick running vCPUs to force a
6094      * VM-Exit.
6095      */
6096     struct kvm_vcpu *vcpu;
6097     unsigned long i;
6098 
6099     kvm_for_each_vcpu(i, vcpu, kvm)
6100         kvm_vcpu_kick(vcpu);
6101 }
6102 
6103 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6104             bool line_status)
6105 {
6106     if (!irqchip_in_kernel(kvm))
6107         return -ENXIO;
6108 
6109     irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6110                     irq_event->irq, irq_event->level,
6111                     line_status);
6112     return 0;
6113 }
6114 
6115 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6116                 struct kvm_enable_cap *cap)
6117 {
6118     int r;
6119 
6120     if (cap->flags)
6121         return -EINVAL;
6122 
6123     switch (cap->cap) {
6124     case KVM_CAP_DISABLE_QUIRKS2:
6125         r = -EINVAL;
6126         if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6127             break;
6128         fallthrough;
6129     case KVM_CAP_DISABLE_QUIRKS:
6130         kvm->arch.disabled_quirks = cap->args[0];
6131         r = 0;
6132         break;
6133     case KVM_CAP_SPLIT_IRQCHIP: {
6134         mutex_lock(&kvm->lock);
6135         r = -EINVAL;
6136         if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6137             goto split_irqchip_unlock;
6138         r = -EEXIST;
6139         if (irqchip_in_kernel(kvm))
6140             goto split_irqchip_unlock;
6141         if (kvm->created_vcpus)
6142             goto split_irqchip_unlock;
6143         r = kvm_setup_empty_irq_routing(kvm);
6144         if (r)
6145             goto split_irqchip_unlock;
6146         /* Pairs with irqchip_in_kernel. */
6147         smp_wmb();
6148         kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6149         kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6150         kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6151         r = 0;
6152 split_irqchip_unlock:
6153         mutex_unlock(&kvm->lock);
6154         break;
6155     }
6156     case KVM_CAP_X2APIC_API:
6157         r = -EINVAL;
6158         if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6159             break;
6160 
6161         if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6162             kvm->arch.x2apic_format = true;
6163         if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6164             kvm->arch.x2apic_broadcast_quirk_disabled = true;
6165 
6166         r = 0;
6167         break;
6168     case KVM_CAP_X86_DISABLE_EXITS:
6169         r = -EINVAL;
6170         if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6171             break;
6172 
6173         if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6174             kvm_can_mwait_in_guest())
6175             kvm->arch.mwait_in_guest = true;
6176         if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6177             kvm->arch.hlt_in_guest = true;
6178         if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6179             kvm->arch.pause_in_guest = true;
6180         if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6181             kvm->arch.cstate_in_guest = true;
6182         r = 0;
6183         break;
6184     case KVM_CAP_MSR_PLATFORM_INFO:
6185         kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6186         r = 0;
6187         break;
6188     case KVM_CAP_EXCEPTION_PAYLOAD:
6189         kvm->arch.exception_payload_enabled = cap->args[0];
6190         r = 0;
6191         break;
6192     case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6193         kvm->arch.triple_fault_event = cap->args[0];
6194         r = 0;
6195         break;
6196     case KVM_CAP_X86_USER_SPACE_MSR:
6197         r = -EINVAL;
6198         if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
6199                      KVM_MSR_EXIT_REASON_UNKNOWN |
6200                      KVM_MSR_EXIT_REASON_FILTER))
6201             break;
6202         kvm->arch.user_space_msr_mask = cap->args[0];
6203         r = 0;
6204         break;
6205     case KVM_CAP_X86_BUS_LOCK_EXIT:
6206         r = -EINVAL;
6207         if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6208             break;
6209 
6210         if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6211             (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6212             break;
6213 
6214         if (kvm_caps.has_bus_lock_exit &&
6215             cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6216             kvm->arch.bus_lock_detection_enabled = true;
6217         r = 0;
6218         break;
6219 #ifdef CONFIG_X86_SGX_KVM
6220     case KVM_CAP_SGX_ATTRIBUTE: {
6221         unsigned long allowed_attributes = 0;
6222 
6223         r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6224         if (r)
6225             break;
6226 
6227         /* KVM only supports the PROVISIONKEY privileged attribute. */
6228         if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6229             !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6230             kvm->arch.sgx_provisioning_allowed = true;
6231         else
6232             r = -EINVAL;
6233         break;
6234     }
6235 #endif
6236     case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6237         r = -EINVAL;
6238         if (!kvm_x86_ops.vm_copy_enc_context_from)
6239             break;
6240 
6241         r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6242         break;
6243     case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6244         r = -EINVAL;
6245         if (!kvm_x86_ops.vm_move_enc_context_from)
6246             break;
6247 
6248         r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6249         break;
6250     case KVM_CAP_EXIT_HYPERCALL:
6251         if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6252             r = -EINVAL;
6253             break;
6254         }
6255         kvm->arch.hypercall_exit_enabled = cap->args[0];
6256         r = 0;
6257         break;
6258     case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6259         r = -EINVAL;
6260         if (cap->args[0] & ~1)
6261             break;
6262         kvm->arch.exit_on_emulation_error = cap->args[0];
6263         r = 0;
6264         break;
6265     case KVM_CAP_PMU_CAPABILITY:
6266         r = -EINVAL;
6267         if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6268             break;
6269 
6270         mutex_lock(&kvm->lock);
6271         if (!kvm->created_vcpus) {
6272             kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6273             r = 0;
6274         }
6275         mutex_unlock(&kvm->lock);
6276         break;
6277     case KVM_CAP_MAX_VCPU_ID:
6278         r = -EINVAL;
6279         if (cap->args[0] > KVM_MAX_VCPU_IDS)
6280             break;
6281 
6282         mutex_lock(&kvm->lock);
6283         if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6284             r = 0;
6285         } else if (!kvm->arch.max_vcpu_ids) {
6286             kvm->arch.max_vcpu_ids = cap->args[0];
6287             r = 0;
6288         }
6289         mutex_unlock(&kvm->lock);
6290         break;
6291     case KVM_CAP_X86_NOTIFY_VMEXIT:
6292         r = -EINVAL;
6293         if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6294             break;
6295         if (!kvm_caps.has_notify_vmexit)
6296             break;
6297         if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6298             break;
6299         mutex_lock(&kvm->lock);
6300         if (!kvm->created_vcpus) {
6301             kvm->arch.notify_window = cap->args[0] >> 32;
6302             kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6303             r = 0;
6304         }
6305         mutex_unlock(&kvm->lock);
6306         break;
6307     case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6308         r = -EINVAL;
6309 
6310         /*
6311          * Since the risk of disabling NX hugepages is a guest crashing
6312          * the system, ensure the userspace process has permission to
6313          * reboot the system.
6314          *
6315          * Note that unlike the reboot() syscall, the process must have
6316          * this capability in the root namespace because exposing
6317          * /dev/kvm into a container does not limit the scope of the
6318          * iTLB multihit bug to that container. In other words,
6319          * this must use capable(), not ns_capable().
6320          */
6321         if (!capable(CAP_SYS_BOOT)) {
6322             r = -EPERM;
6323             break;
6324         }
6325 
6326         if (cap->args[0])
6327             break;
6328 
6329         mutex_lock(&kvm->lock);
6330         if (!kvm->created_vcpus) {
6331             kvm->arch.disable_nx_huge_pages = true;
6332             r = 0;
6333         }
6334         mutex_unlock(&kvm->lock);
6335         break;
6336     default:
6337         r = -EINVAL;
6338         break;
6339     }
6340     return r;
6341 }
6342 
6343 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6344 {
6345     struct kvm_x86_msr_filter *msr_filter;
6346 
6347     msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6348     if (!msr_filter)
6349         return NULL;
6350 
6351     msr_filter->default_allow = default_allow;
6352     return msr_filter;
6353 }
6354 
6355 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6356 {
6357     u32 i;
6358 
6359     if (!msr_filter)
6360         return;
6361 
6362     for (i = 0; i < msr_filter->count; i++)
6363         kfree(msr_filter->ranges[i].bitmap);
6364 
6365     kfree(msr_filter);
6366 }
6367 
6368 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6369                   struct kvm_msr_filter_range *user_range)
6370 {
6371     unsigned long *bitmap = NULL;
6372     size_t bitmap_size;
6373 
6374     if (!user_range->nmsrs)
6375         return 0;
6376 
6377     if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6378         return -EINVAL;
6379 
6380     if (!user_range->flags)
6381         return -EINVAL;
6382 
6383     bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6384     if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6385         return -EINVAL;
6386 
6387     bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6388     if (IS_ERR(bitmap))
6389         return PTR_ERR(bitmap);
6390 
6391     msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6392         .flags = user_range->flags,
6393         .base = user_range->base,
6394         .nmsrs = user_range->nmsrs,
6395         .bitmap = bitmap,
6396     };
6397 
6398     msr_filter->count++;
6399     return 0;
6400 }
6401 
6402 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6403 {
6404     struct kvm_msr_filter __user *user_msr_filter = argp;
6405     struct kvm_x86_msr_filter *new_filter, *old_filter;
6406     struct kvm_msr_filter filter;
6407     bool default_allow;
6408     bool empty = true;
6409     int r = 0;
6410     u32 i;
6411 
6412     if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6413         return -EFAULT;
6414 
6415     if (filter.flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
6416         return -EINVAL;
6417 
6418     for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6419         empty &= !filter.ranges[i].nmsrs;
6420 
6421     default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6422     if (empty && !default_allow)
6423         return -EINVAL;
6424 
6425     new_filter = kvm_alloc_msr_filter(default_allow);
6426     if (!new_filter)
6427         return -ENOMEM;
6428 
6429     for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6430         r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6431         if (r) {
6432             kvm_free_msr_filter(new_filter);
6433             return r;
6434         }
6435     }
6436 
6437     mutex_lock(&kvm->lock);
6438 
6439     /* The per-VM filter is protected by kvm->lock... */
6440     old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6441 
6442     rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6443     synchronize_srcu(&kvm->srcu);
6444 
6445     kvm_free_msr_filter(old_filter);
6446 
6447     kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6448     mutex_unlock(&kvm->lock);
6449 
6450     return 0;
6451 }
6452 
6453 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6454 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6455 {
6456     struct kvm_vcpu *vcpu;
6457     unsigned long i;
6458     int ret = 0;
6459 
6460     mutex_lock(&kvm->lock);
6461     kvm_for_each_vcpu(i, vcpu, kvm) {
6462         if (!vcpu->arch.pv_time.active)
6463             continue;
6464 
6465         ret = kvm_set_guest_paused(vcpu);
6466         if (ret) {
6467             kvm_err("Failed to pause guest VCPU%d: %d\n",
6468                 vcpu->vcpu_id, ret);
6469             break;
6470         }
6471     }
6472     mutex_unlock(&kvm->lock);
6473 
6474     return ret ? NOTIFY_BAD : NOTIFY_DONE;
6475 }
6476 
6477 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6478 {
6479     switch (state) {
6480     case PM_HIBERNATION_PREPARE:
6481     case PM_SUSPEND_PREPARE:
6482         return kvm_arch_suspend_notifier(kvm);
6483     }
6484 
6485     return NOTIFY_DONE;
6486 }
6487 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6488 
6489 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6490 {
6491     struct kvm_clock_data data = { 0 };
6492 
6493     get_kvmclock(kvm, &data);
6494     if (copy_to_user(argp, &data, sizeof(data)))
6495         return -EFAULT;
6496 
6497     return 0;
6498 }
6499 
6500 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6501 {
6502     struct kvm_arch *ka = &kvm->arch;
6503     struct kvm_clock_data data;
6504     u64 now_raw_ns;
6505 
6506     if (copy_from_user(&data, argp, sizeof(data)))
6507         return -EFAULT;
6508 
6509     /*
6510      * Only KVM_CLOCK_REALTIME is used, but allow passing the
6511      * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6512      */
6513     if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6514         return -EINVAL;
6515 
6516     kvm_hv_request_tsc_page_update(kvm);
6517     kvm_start_pvclock_update(kvm);
6518     pvclock_update_vm_gtod_copy(kvm);
6519 
6520     /*
6521      * This pairs with kvm_guest_time_update(): when masterclock is
6522      * in use, we use master_kernel_ns + kvmclock_offset to set
6523      * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6524      * is slightly ahead) here we risk going negative on unsigned
6525      * 'system_time' when 'data.clock' is very small.
6526      */
6527     if (data.flags & KVM_CLOCK_REALTIME) {
6528         u64 now_real_ns = ktime_get_real_ns();
6529 
6530         /*
6531          * Avoid stepping the kvmclock backwards.
6532          */
6533         if (now_real_ns > data.realtime)
6534             data.clock += now_real_ns - data.realtime;
6535     }
6536 
6537     if (ka->use_master_clock)
6538         now_raw_ns = ka->master_kernel_ns;
6539     else
6540         now_raw_ns = get_kvmclock_base_ns();
6541     ka->kvmclock_offset = data.clock - now_raw_ns;
6542     kvm_end_pvclock_update(kvm);
6543     return 0;
6544 }
6545 
6546 long kvm_arch_vm_ioctl(struct file *filp,
6547                unsigned int ioctl, unsigned long arg)
6548 {
6549     struct kvm *kvm = filp->private_data;
6550     void __user *argp = (void __user *)arg;
6551     int r = -ENOTTY;
6552     /*
6553      * This union makes it completely explicit to gcc-3.x
6554      * that these two variables' stack usage should be
6555      * combined, not added together.
6556      */
6557     union {
6558         struct kvm_pit_state ps;
6559         struct kvm_pit_state2 ps2;
6560         struct kvm_pit_config pit_config;
6561     } u;
6562 
6563     switch (ioctl) {
6564     case KVM_SET_TSS_ADDR:
6565         r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6566         break;
6567     case KVM_SET_IDENTITY_MAP_ADDR: {
6568         u64 ident_addr;
6569 
6570         mutex_lock(&kvm->lock);
6571         r = -EINVAL;
6572         if (kvm->created_vcpus)
6573             goto set_identity_unlock;
6574         r = -EFAULT;
6575         if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6576             goto set_identity_unlock;
6577         r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6578 set_identity_unlock:
6579         mutex_unlock(&kvm->lock);
6580         break;
6581     }
6582     case KVM_SET_NR_MMU_PAGES:
6583         r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6584         break;
6585     case KVM_GET_NR_MMU_PAGES:
6586         r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6587         break;
6588     case KVM_CREATE_IRQCHIP: {
6589         mutex_lock(&kvm->lock);
6590 
6591         r = -EEXIST;
6592         if (irqchip_in_kernel(kvm))
6593             goto create_irqchip_unlock;
6594 
6595         r = -EINVAL;
6596         if (kvm->created_vcpus)
6597             goto create_irqchip_unlock;
6598 
6599         r = kvm_pic_init(kvm);
6600         if (r)
6601             goto create_irqchip_unlock;
6602 
6603         r = kvm_ioapic_init(kvm);
6604         if (r) {
6605             kvm_pic_destroy(kvm);
6606             goto create_irqchip_unlock;
6607         }
6608 
6609         r = kvm_setup_default_irq_routing(kvm);
6610         if (r) {
6611             kvm_ioapic_destroy(kvm);
6612             kvm_pic_destroy(kvm);
6613             goto create_irqchip_unlock;
6614         }
6615         /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6616         smp_wmb();
6617         kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6618         kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6619     create_irqchip_unlock:
6620         mutex_unlock(&kvm->lock);
6621         break;
6622     }
6623     case KVM_CREATE_PIT:
6624         u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6625         goto create_pit;
6626     case KVM_CREATE_PIT2:
6627         r = -EFAULT;
6628         if (copy_from_user(&u.pit_config, argp,
6629                    sizeof(struct kvm_pit_config)))
6630             goto out;
6631     create_pit:
6632         mutex_lock(&kvm->lock);
6633         r = -EEXIST;
6634         if (kvm->arch.vpit)
6635             goto create_pit_unlock;
6636         r = -ENOMEM;
6637         kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6638         if (kvm->arch.vpit)
6639             r = 0;
6640     create_pit_unlock:
6641         mutex_unlock(&kvm->lock);
6642         break;
6643     case KVM_GET_IRQCHIP: {
6644         /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6645         struct kvm_irqchip *chip;
6646 
6647         chip = memdup_user(argp, sizeof(*chip));
6648         if (IS_ERR(chip)) {
6649             r = PTR_ERR(chip);
6650             goto out;
6651         }
6652 
6653         r = -ENXIO;
6654         if (!irqchip_kernel(kvm))
6655             goto get_irqchip_out;
6656         r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6657         if (r)
6658             goto get_irqchip_out;
6659         r = -EFAULT;
6660         if (copy_to_user(argp, chip, sizeof(*chip)))
6661             goto get_irqchip_out;
6662         r = 0;
6663     get_irqchip_out:
6664         kfree(chip);
6665         break;
6666     }
6667     case KVM_SET_IRQCHIP: {
6668         /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6669         struct kvm_irqchip *chip;
6670 
6671         chip = memdup_user(argp, sizeof(*chip));
6672         if (IS_ERR(chip)) {
6673             r = PTR_ERR(chip);
6674             goto out;
6675         }
6676 
6677         r = -ENXIO;
6678         if (!irqchip_kernel(kvm))
6679             goto set_irqchip_out;
6680         r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6681     set_irqchip_out:
6682         kfree(chip);
6683         break;
6684     }
6685     case KVM_GET_PIT: {
6686         r = -EFAULT;
6687         if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6688             goto out;
6689         r = -ENXIO;
6690         if (!kvm->arch.vpit)
6691             goto out;
6692         r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6693         if (r)
6694             goto out;
6695         r = -EFAULT;
6696         if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6697             goto out;
6698         r = 0;
6699         break;
6700     }
6701     case KVM_SET_PIT: {
6702         r = -EFAULT;
6703         if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6704             goto out;
6705         mutex_lock(&kvm->lock);
6706         r = -ENXIO;
6707         if (!kvm->arch.vpit)
6708             goto set_pit_out;
6709         r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6710 set_pit_out:
6711         mutex_unlock(&kvm->lock);
6712         break;
6713     }
6714     case KVM_GET_PIT2: {
6715         r = -ENXIO;
6716         if (!kvm->arch.vpit)
6717             goto out;
6718         r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6719         if (r)
6720             goto out;
6721         r = -EFAULT;
6722         if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6723             goto out;
6724         r = 0;
6725         break;
6726     }
6727     case KVM_SET_PIT2: {
6728         r = -EFAULT;
6729         if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6730             goto out;
6731         mutex_lock(&kvm->lock);
6732         r = -ENXIO;
6733         if (!kvm->arch.vpit)
6734             goto set_pit2_out;
6735         r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6736 set_pit2_out:
6737         mutex_unlock(&kvm->lock);
6738         break;
6739     }
6740     case KVM_REINJECT_CONTROL: {
6741         struct kvm_reinject_control control;
6742         r =  -EFAULT;
6743         if (copy_from_user(&control, argp, sizeof(control)))
6744             goto out;
6745         r = -ENXIO;
6746         if (!kvm->arch.vpit)
6747             goto out;
6748         r = kvm_vm_ioctl_reinject(kvm, &control);
6749         break;
6750     }
6751     case KVM_SET_BOOT_CPU_ID:
6752         r = 0;
6753         mutex_lock(&kvm->lock);
6754         if (kvm->created_vcpus)
6755             r = -EBUSY;
6756         else
6757             kvm->arch.bsp_vcpu_id = arg;
6758         mutex_unlock(&kvm->lock);
6759         break;
6760 #ifdef CONFIG_KVM_XEN
6761     case KVM_XEN_HVM_CONFIG: {
6762         struct kvm_xen_hvm_config xhc;
6763         r = -EFAULT;
6764         if (copy_from_user(&xhc, argp, sizeof(xhc)))
6765             goto out;
6766         r = kvm_xen_hvm_config(kvm, &xhc);
6767         break;
6768     }
6769     case KVM_XEN_HVM_GET_ATTR: {
6770         struct kvm_xen_hvm_attr xha;
6771 
6772         r = -EFAULT;
6773         if (copy_from_user(&xha, argp, sizeof(xha)))
6774             goto out;
6775         r = kvm_xen_hvm_get_attr(kvm, &xha);
6776         if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6777             r = -EFAULT;
6778         break;
6779     }
6780     case KVM_XEN_HVM_SET_ATTR: {
6781         struct kvm_xen_hvm_attr xha;
6782 
6783         r = -EFAULT;
6784         if (copy_from_user(&xha, argp, sizeof(xha)))
6785             goto out;
6786         r = kvm_xen_hvm_set_attr(kvm, &xha);
6787         break;
6788     }
6789     case KVM_XEN_HVM_EVTCHN_SEND: {
6790         struct kvm_irq_routing_xen_evtchn uxe;
6791 
6792         r = -EFAULT;
6793         if (copy_from_user(&uxe, argp, sizeof(uxe)))
6794             goto out;
6795         r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6796         break;
6797     }
6798 #endif
6799     case KVM_SET_CLOCK:
6800         r = kvm_vm_ioctl_set_clock(kvm, argp);
6801         break;
6802     case KVM_GET_CLOCK:
6803         r = kvm_vm_ioctl_get_clock(kvm, argp);
6804         break;
6805     case KVM_SET_TSC_KHZ: {
6806         u32 user_tsc_khz;
6807 
6808         r = -EINVAL;
6809         user_tsc_khz = (u32)arg;
6810 
6811         if (kvm_caps.has_tsc_control &&
6812             user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6813             goto out;
6814 
6815         if (user_tsc_khz == 0)
6816             user_tsc_khz = tsc_khz;
6817 
6818         WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6819         r = 0;
6820 
6821         goto out;
6822     }
6823     case KVM_GET_TSC_KHZ: {
6824         r = READ_ONCE(kvm->arch.default_tsc_khz);
6825         goto out;
6826     }
6827     case KVM_MEMORY_ENCRYPT_OP: {
6828         r = -ENOTTY;
6829         if (!kvm_x86_ops.mem_enc_ioctl)
6830             goto out;
6831 
6832         r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6833         break;
6834     }
6835     case KVM_MEMORY_ENCRYPT_REG_REGION: {
6836         struct kvm_enc_region region;
6837 
6838         r = -EFAULT;
6839         if (copy_from_user(&region, argp, sizeof(region)))
6840             goto out;
6841 
6842         r = -ENOTTY;
6843         if (!kvm_x86_ops.mem_enc_register_region)
6844             goto out;
6845 
6846         r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6847         break;
6848     }
6849     case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6850         struct kvm_enc_region region;
6851 
6852         r = -EFAULT;
6853         if (copy_from_user(&region, argp, sizeof(region)))
6854             goto out;
6855 
6856         r = -ENOTTY;
6857         if (!kvm_x86_ops.mem_enc_unregister_region)
6858             goto out;
6859 
6860         r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6861         break;
6862     }
6863     case KVM_HYPERV_EVENTFD: {
6864         struct kvm_hyperv_eventfd hvevfd;
6865 
6866         r = -EFAULT;
6867         if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6868             goto out;
6869         r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6870         break;
6871     }
6872     case KVM_SET_PMU_EVENT_FILTER:
6873         r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6874         break;
6875     case KVM_X86_SET_MSR_FILTER:
6876         r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6877         break;
6878     default:
6879         r = -ENOTTY;
6880     }
6881 out:
6882     return r;
6883 }
6884 
6885 static void kvm_init_msr_list(void)
6886 {
6887     u32 dummy[2];
6888     unsigned i;
6889 
6890     BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6891              "Please update the fixed PMCs in msrs_to_saved_all[]");
6892 
6893     num_msrs_to_save = 0;
6894     num_emulated_msrs = 0;
6895     num_msr_based_features = 0;
6896 
6897     for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6898         if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6899             continue;
6900 
6901         /*
6902          * Even MSRs that are valid in the host may not be exposed
6903          * to the guests in some cases.
6904          */
6905         switch (msrs_to_save_all[i]) {
6906         case MSR_IA32_BNDCFGS:
6907             if (!kvm_mpx_supported())
6908                 continue;
6909             break;
6910         case MSR_TSC_AUX:
6911             if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6912                 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6913                 continue;
6914             break;
6915         case MSR_IA32_UMWAIT_CONTROL:
6916             if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6917                 continue;
6918             break;
6919         case MSR_IA32_RTIT_CTL:
6920         case MSR_IA32_RTIT_STATUS:
6921             if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6922                 continue;
6923             break;
6924         case MSR_IA32_RTIT_CR3_MATCH:
6925             if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6926                 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6927                 continue;
6928             break;
6929         case MSR_IA32_RTIT_OUTPUT_BASE:
6930         case MSR_IA32_RTIT_OUTPUT_MASK:
6931             if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6932                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6933                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6934                 continue;
6935             break;
6936         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6937             if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6938                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6939                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6940                 continue;
6941             break;
6942         case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6943             if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6944                 min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6945                 continue;
6946             break;
6947         case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6948             if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6949                 min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6950                 continue;
6951             break;
6952         case MSR_IA32_XFD:
6953         case MSR_IA32_XFD_ERR:
6954             if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6955                 continue;
6956             break;
6957         default:
6958             break;
6959         }
6960 
6961         msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6962     }
6963 
6964     for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6965         if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6966             continue;
6967 
6968         emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6969     }
6970 
6971     for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6972         struct kvm_msr_entry msr;
6973 
6974         msr.index = msr_based_features_all[i];
6975         if (kvm_get_msr_feature(&msr))
6976             continue;
6977 
6978         msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6979     }
6980 }
6981 
6982 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6983                const void *v)
6984 {
6985     int handled = 0;
6986     int n;
6987 
6988     do {
6989         n = min(len, 8);
6990         if (!(lapic_in_kernel(vcpu) &&
6991               !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6992             && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6993             break;
6994         handled += n;
6995         addr += n;
6996         len -= n;
6997         v += n;
6998     } while (len);
6999 
7000     return handled;
7001 }
7002 
7003 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7004 {
7005     int handled = 0;
7006     int n;
7007 
7008     do {
7009         n = min(len, 8);
7010         if (!(lapic_in_kernel(vcpu) &&
7011               !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7012                      addr, n, v))
7013             && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7014             break;
7015         trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7016         handled += n;
7017         addr += n;
7018         len -= n;
7019         v += n;
7020     } while (len);
7021 
7022     return handled;
7023 }
7024 
7025 static void kvm_set_segment(struct kvm_vcpu *vcpu,
7026             struct kvm_segment *var, int seg)
7027 {
7028     static_call(kvm_x86_set_segment)(vcpu, var, seg);
7029 }
7030 
7031 void kvm_get_segment(struct kvm_vcpu *vcpu,
7032              struct kvm_segment *var, int seg)
7033 {
7034     static_call(kvm_x86_get_segment)(vcpu, var, seg);
7035 }
7036 
7037 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7038                struct x86_exception *exception)
7039 {
7040     struct kvm_mmu *mmu = vcpu->arch.mmu;
7041     gpa_t t_gpa;
7042 
7043     BUG_ON(!mmu_is_nested(vcpu));
7044 
7045     /* NPT walks are always user-walks */
7046     access |= PFERR_USER_MASK;
7047     t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7048 
7049     return t_gpa;
7050 }
7051 
7052 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7053                   struct x86_exception *exception)
7054 {
7055     struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7056 
7057     u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7058     return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7059 }
7060 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7061 
7062  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
7063                 struct x86_exception *exception)
7064 {
7065     struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7066 
7067     u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7068     access |= PFERR_FETCH_MASK;
7069     return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7070 }
7071 
7072 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7073                    struct x86_exception *exception)
7074 {
7075     struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7076 
7077     u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7078     access |= PFERR_WRITE_MASK;
7079     return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7080 }
7081 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7082 
7083 /* uses this to access any guest's mapped memory without checking CPL */
7084 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7085                 struct x86_exception *exception)
7086 {
7087     struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7088 
7089     return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7090 }
7091 
7092 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7093                       struct kvm_vcpu *vcpu, u64 access,
7094                       struct x86_exception *exception)
7095 {
7096     struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7097     void *data = val;
7098     int r = X86EMUL_CONTINUE;
7099 
7100     while (bytes) {
7101         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7102         unsigned offset = addr & (PAGE_SIZE-1);
7103         unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7104         int ret;
7105 
7106         if (gpa == INVALID_GPA)
7107             return X86EMUL_PROPAGATE_FAULT;
7108         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7109                            offset, toread);
7110         if (ret < 0) {
7111             r = X86EMUL_IO_NEEDED;
7112             goto out;
7113         }
7114 
7115         bytes -= toread;
7116         data += toread;
7117         addr += toread;
7118     }
7119 out:
7120     return r;
7121 }
7122 
7123 /* used for instruction fetching */
7124 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7125                 gva_t addr, void *val, unsigned int bytes,
7126                 struct x86_exception *exception)
7127 {
7128     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7129     struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7130     u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7131     unsigned offset;
7132     int ret;
7133 
7134     /* Inline kvm_read_guest_virt_helper for speed.  */
7135     gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7136                     exception);
7137     if (unlikely(gpa == INVALID_GPA))
7138         return X86EMUL_PROPAGATE_FAULT;
7139 
7140     offset = addr & (PAGE_SIZE-1);
7141     if (WARN_ON(offset + bytes > PAGE_SIZE))
7142         bytes = (unsigned)PAGE_SIZE - offset;
7143     ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7144                        offset, bytes);
7145     if (unlikely(ret < 0))
7146         return X86EMUL_IO_NEEDED;
7147 
7148     return X86EMUL_CONTINUE;
7149 }
7150 
7151 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7152                    gva_t addr, void *val, unsigned int bytes,
7153                    struct x86_exception *exception)
7154 {
7155     u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7156 
7157     /*
7158      * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7159      * is returned, but our callers are not ready for that and they blindly
7160      * call kvm_inject_page_fault.  Ensure that they at least do not leak
7161      * uninitialized kernel stack memory into cr2 and error code.
7162      */
7163     memset(exception, 0, sizeof(*exception));
7164     return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7165                       exception);
7166 }
7167 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7168 
7169 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7170                  gva_t addr, void *val, unsigned int bytes,
7171                  struct x86_exception *exception, bool system)
7172 {
7173     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7174     u64 access = 0;
7175 
7176     if (system)
7177         access |= PFERR_IMPLICIT_ACCESS;
7178     else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7179         access |= PFERR_USER_MASK;
7180 
7181     return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7182 }
7183 
7184 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
7185         unsigned long addr, void *val, unsigned int bytes)
7186 {
7187     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7188     int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
7189 
7190     return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
7191 }
7192 
7193 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7194                       struct kvm_vcpu *vcpu, u64 access,
7195                       struct x86_exception *exception)
7196 {
7197     struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7198     void *data = val;
7199     int r = X86EMUL_CONTINUE;
7200 
7201     while (bytes) {
7202         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7203         unsigned offset = addr & (PAGE_SIZE-1);
7204         unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7205         int ret;
7206 
7207         if (gpa == INVALID_GPA)
7208             return X86EMUL_PROPAGATE_FAULT;
7209         ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7210         if (ret < 0) {
7211             r = X86EMUL_IO_NEEDED;
7212             goto out;
7213         }
7214 
7215         bytes -= towrite;
7216         data += towrite;
7217         addr += towrite;
7218     }
7219 out:
7220     return r;
7221 }
7222 
7223 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7224                   unsigned int bytes, struct x86_exception *exception,
7225                   bool system)
7226 {
7227     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7228     u64 access = PFERR_WRITE_MASK;
7229 
7230     if (system)
7231         access |= PFERR_IMPLICIT_ACCESS;
7232     else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7233         access |= PFERR_USER_MASK;
7234 
7235     return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7236                        access, exception);
7237 }
7238 
7239 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7240                 unsigned int bytes, struct x86_exception *exception)
7241 {
7242     /* kvm_write_guest_virt_system can pull in tons of pages. */
7243     vcpu->arch.l1tf_flush_l1d = true;
7244 
7245     return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7246                        PFERR_WRITE_MASK, exception);
7247 }
7248 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7249 
7250 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7251                 void *insn, int insn_len)
7252 {
7253     return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7254                                 insn, insn_len);
7255 }
7256 
7257 int handle_ud(struct kvm_vcpu *vcpu)
7258 {
7259     static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7260     int emul_type = EMULTYPE_TRAP_UD;
7261     char sig[5]; /* ud2; .ascii "kvm" */
7262     struct x86_exception e;
7263 
7264     if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7265         return 1;
7266 
7267     if (force_emulation_prefix &&
7268         kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7269                 sig, sizeof(sig), &e) == 0 &&
7270         memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7271         kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7272         emul_type = EMULTYPE_TRAP_UD_FORCED;
7273     }
7274 
7275     return kvm_emulate_instruction(vcpu, emul_type);
7276 }
7277 EXPORT_SYMBOL_GPL(handle_ud);
7278 
7279 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7280                 gpa_t gpa, bool write)
7281 {
7282     /* For APIC access vmexit */
7283     if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7284         return 1;
7285 
7286     if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7287         trace_vcpu_match_mmio(gva, gpa, write, true);
7288         return 1;
7289     }
7290 
7291     return 0;
7292 }
7293 
7294 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7295                 gpa_t *gpa, struct x86_exception *exception,
7296                 bool write)
7297 {
7298     struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7299     u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7300         | (write ? PFERR_WRITE_MASK : 0);
7301 
7302     /*
7303      * currently PKRU is only applied to ept enabled guest so
7304      * there is no pkey in EPT page table for L1 guest or EPT
7305      * shadow page table for L2 guest.
7306      */
7307     if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7308         !permission_fault(vcpu, vcpu->arch.walk_mmu,
7309                   vcpu->arch.mmio_access, 0, access))) {
7310         *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7311                     (gva & (PAGE_SIZE - 1));
7312         trace_vcpu_match_mmio(gva, *gpa, write, false);
7313         return 1;
7314     }
7315 
7316     *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7317 
7318     if (*gpa == INVALID_GPA)
7319         return -1;
7320 
7321     return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7322 }
7323 
7324 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7325             const void *val, int bytes)
7326 {
7327     int ret;
7328 
7329     ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7330     if (ret < 0)
7331         return 0;
7332     kvm_page_track_write(vcpu, gpa, val, bytes);
7333     return 1;
7334 }
7335 
7336 struct read_write_emulator_ops {
7337     int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7338                   int bytes);
7339     int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7340                   void *val, int bytes);
7341     int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7342                    int bytes, void *val);
7343     int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7344                     void *val, int bytes);
7345     bool write;
7346 };
7347 
7348 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7349 {
7350     if (vcpu->mmio_read_completed) {
7351         trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7352                    vcpu->mmio_fragments[0].gpa, val);
7353         vcpu->mmio_read_completed = 0;
7354         return 1;
7355     }
7356 
7357     return 0;
7358 }
7359 
7360 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7361             void *val, int bytes)
7362 {
7363     return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7364 }
7365 
7366 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7367              void *val, int bytes)
7368 {
7369     return emulator_write_phys(vcpu, gpa, val, bytes);
7370 }
7371 
7372 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7373 {
7374     trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7375     return vcpu_mmio_write(vcpu, gpa, bytes, val);
7376 }
7377 
7378 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7379               void *val, int bytes)
7380 {
7381     trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7382     return X86EMUL_IO_NEEDED;
7383 }
7384 
7385 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7386                void *val, int bytes)
7387 {
7388     struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7389 
7390     memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7391     return X86EMUL_CONTINUE;
7392 }
7393 
7394 static const struct read_write_emulator_ops read_emultor = {
7395     .read_write_prepare = read_prepare,
7396     .read_write_emulate = read_emulate,
7397     .read_write_mmio = vcpu_mmio_read,
7398     .read_write_exit_mmio = read_exit_mmio,
7399 };
7400 
7401 static const struct read_write_emulator_ops write_emultor = {
7402     .read_write_emulate = write_emulate,
7403     .read_write_mmio = write_mmio,
7404     .read_write_exit_mmio = write_exit_mmio,
7405     .write = true,
7406 };
7407 
7408 static int emulator_read_write_onepage(unsigned long addr, void *val,
7409                        unsigned int bytes,
7410                        struct x86_exception *exception,
7411                        struct kvm_vcpu *vcpu,
7412                        const struct read_write_emulator_ops *ops)
7413 {
7414     gpa_t gpa;
7415     int handled, ret;
7416     bool write = ops->write;
7417     struct kvm_mmio_fragment *frag;
7418     struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7419 
7420     /*
7421      * If the exit was due to a NPF we may already have a GPA.
7422      * If the GPA is present, use it to avoid the GVA to GPA table walk.
7423      * Note, this cannot be used on string operations since string
7424      * operation using rep will only have the initial GPA from the NPF
7425      * occurred.
7426      */
7427     if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7428         (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7429         gpa = ctxt->gpa_val;
7430         ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7431     } else {
7432         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7433         if (ret < 0)
7434             return X86EMUL_PROPAGATE_FAULT;
7435     }
7436 
7437     if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7438         return X86EMUL_CONTINUE;
7439 
7440     /*
7441      * Is this MMIO handled locally?
7442      */
7443     handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7444     if (handled == bytes)
7445         return X86EMUL_CONTINUE;
7446 
7447     gpa += handled;
7448     bytes -= handled;
7449     val += handled;
7450 
7451     WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7452     frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7453     frag->gpa = gpa;
7454     frag->data = val;
7455     frag->len = bytes;
7456     return X86EMUL_CONTINUE;
7457 }
7458 
7459 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7460             unsigned long addr,
7461             void *val, unsigned int bytes,
7462             struct x86_exception *exception,
7463             const struct read_write_emulator_ops *ops)
7464 {
7465     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7466     gpa_t gpa;
7467     int rc;
7468 
7469     if (ops->read_write_prepare &&
7470           ops->read_write_prepare(vcpu, val, bytes))
7471         return X86EMUL_CONTINUE;
7472 
7473     vcpu->mmio_nr_fragments = 0;
7474 
7475     /* Crossing a page boundary? */
7476     if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7477         int now;
7478 
7479         now = -addr & ~PAGE_MASK;
7480         rc = emulator_read_write_onepage(addr, val, now, exception,
7481                          vcpu, ops);
7482 
7483         if (rc != X86EMUL_CONTINUE)
7484             return rc;
7485         addr += now;
7486         if (ctxt->mode != X86EMUL_MODE_PROT64)
7487             addr = (u32)addr;
7488         val += now;
7489         bytes -= now;
7490     }
7491 
7492     rc = emulator_read_write_onepage(addr, val, bytes, exception,
7493                      vcpu, ops);
7494     if (rc != X86EMUL_CONTINUE)
7495         return rc;
7496 
7497     if (!vcpu->mmio_nr_fragments)
7498         return rc;
7499 
7500     gpa = vcpu->mmio_fragments[0].gpa;
7501 
7502     vcpu->mmio_needed = 1;
7503     vcpu->mmio_cur_fragment = 0;
7504 
7505     vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7506     vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7507     vcpu->run->exit_reason = KVM_EXIT_MMIO;
7508     vcpu->run->mmio.phys_addr = gpa;
7509 
7510     return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7511 }
7512 
7513 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7514                   unsigned long addr,
7515                   void *val,
7516                   unsigned int bytes,
7517                   struct x86_exception *exception)
7518 {
7519     return emulator_read_write(ctxt, addr, val, bytes,
7520                    exception, &read_emultor);
7521 }
7522 
7523 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7524                 unsigned long addr,
7525                 const void *val,
7526                 unsigned int bytes,
7527                 struct x86_exception *exception)
7528 {
7529     return emulator_read_write(ctxt, addr, (void *)val, bytes,
7530                    exception, &write_emultor);
7531 }
7532 
7533 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7534     (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7535 
7536 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7537                      unsigned long addr,
7538                      const void *old,
7539                      const void *new,
7540                      unsigned int bytes,
7541                      struct x86_exception *exception)
7542 {
7543     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7544     u64 page_line_mask;
7545     unsigned long hva;
7546     gpa_t gpa;
7547     int r;
7548 
7549     /* guests cmpxchg8b have to be emulated atomically */
7550     if (bytes > 8 || (bytes & (bytes - 1)))
7551         goto emul_write;
7552 
7553     gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7554 
7555     if (gpa == INVALID_GPA ||
7556         (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7557         goto emul_write;
7558 
7559     /*
7560      * Emulate the atomic as a straight write to avoid #AC if SLD is
7561      * enabled in the host and the access splits a cache line.
7562      */
7563     if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7564         page_line_mask = ~(cache_line_size() - 1);
7565     else
7566         page_line_mask = PAGE_MASK;
7567 
7568     if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7569         goto emul_write;
7570 
7571     hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7572     if (kvm_is_error_hva(hva))
7573         goto emul_write;
7574 
7575     hva += offset_in_page(gpa);
7576 
7577     switch (bytes) {
7578     case 1:
7579         r = emulator_try_cmpxchg_user(u8, hva, old, new);
7580         break;
7581     case 2:
7582         r = emulator_try_cmpxchg_user(u16, hva, old, new);
7583         break;
7584     case 4:
7585         r = emulator_try_cmpxchg_user(u32, hva, old, new);
7586         break;
7587     case 8:
7588         r = emulator_try_cmpxchg_user(u64, hva, old, new);
7589         break;
7590     default:
7591         BUG();
7592     }
7593 
7594     if (r < 0)
7595         return X86EMUL_UNHANDLEABLE;
7596     if (r)
7597         return X86EMUL_CMPXCHG_FAILED;
7598 
7599     kvm_page_track_write(vcpu, gpa, new, bytes);
7600 
7601     return X86EMUL_CONTINUE;
7602 
7603 emul_write:
7604     printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7605 
7606     return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7607 }
7608 
7609 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7610                    unsigned short port, void *data,
7611                    unsigned int count, bool in)
7612 {
7613     unsigned i;
7614     int r;
7615 
7616     WARN_ON_ONCE(vcpu->arch.pio.count);
7617     for (i = 0; i < count; i++) {
7618         if (in)
7619             r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7620         else
7621             r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7622 
7623         if (r) {
7624             if (i == 0)
7625                 goto userspace_io;
7626 
7627             /*
7628              * Userspace must have unregistered the device while PIO
7629              * was running.  Drop writes / read as 0.
7630              */
7631             if (in)
7632                 memset(data, 0, size * (count - i));
7633             break;
7634         }
7635 
7636         data += size;
7637     }
7638     return 1;
7639 
7640 userspace_io:
7641     vcpu->arch.pio.port = port;
7642     vcpu->arch.pio.in = in;
7643     vcpu->arch.pio.count = count;
7644     vcpu->arch.pio.size = size;
7645 
7646     if (in)
7647         memset(vcpu->arch.pio_data, 0, size * count);
7648     else
7649         memcpy(vcpu->arch.pio_data, data, size * count);
7650 
7651     vcpu->run->exit_reason = KVM_EXIT_IO;
7652     vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7653     vcpu->run->io.size = size;
7654     vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7655     vcpu->run->io.count = count;
7656     vcpu->run->io.port = port;
7657     return 0;
7658 }
7659 
7660 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7661                    unsigned short port, void *val, unsigned int count)
7662 {
7663     int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7664     if (r)
7665         trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7666 
7667     return r;
7668 }
7669 
7670 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7671 {
7672     int size = vcpu->arch.pio.size;
7673     unsigned int count = vcpu->arch.pio.count;
7674     memcpy(val, vcpu->arch.pio_data, size * count);
7675     trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7676     vcpu->arch.pio.count = 0;
7677 }
7678 
7679 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7680                     int size, unsigned short port, void *val,
7681                     unsigned int count)
7682 {
7683     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7684     if (vcpu->arch.pio.count) {
7685         /*
7686          * Complete a previous iteration that required userspace I/O.
7687          * Note, @count isn't guaranteed to match pio.count as userspace
7688          * can modify ECX before rerunning the vCPU.  Ignore any such
7689          * shenanigans as KVM doesn't support modifying the rep count,
7690          * and the emulator ensures @count doesn't overflow the buffer.
7691          */
7692         complete_emulator_pio_in(vcpu, val);
7693         return 1;
7694     }
7695 
7696     return emulator_pio_in(vcpu, size, port, val, count);
7697 }
7698 
7699 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7700                 unsigned short port, const void *val,
7701                 unsigned int count)
7702 {
7703     trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7704     return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7705 }
7706 
7707 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7708                      int size, unsigned short port,
7709                      const void *val, unsigned int count)
7710 {
7711     return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7712 }
7713 
7714 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7715 {
7716     return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7717 }
7718 
7719 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7720 {
7721     kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7722 }
7723 
7724 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7725 {
7726     if (!need_emulate_wbinvd(vcpu))
7727         return X86EMUL_CONTINUE;
7728 
7729     if (static_call(kvm_x86_has_wbinvd_exit)()) {
7730         int cpu = get_cpu();
7731 
7732         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7733         on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7734                 wbinvd_ipi, NULL, 1);
7735         put_cpu();
7736         cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7737     } else
7738         wbinvd();
7739     return X86EMUL_CONTINUE;
7740 }
7741 
7742 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7743 {
7744     kvm_emulate_wbinvd_noskip(vcpu);
7745     return kvm_skip_emulated_instruction(vcpu);
7746 }
7747 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7748 
7749 
7750 
7751 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7752 {
7753     kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7754 }
7755 
7756 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7757                 unsigned long *dest)
7758 {
7759     kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7760 }
7761 
7762 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7763                unsigned long value)
7764 {
7765 
7766     return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7767 }
7768 
7769 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7770 {
7771     return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7772 }
7773 
7774 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7775 {
7776     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7777     unsigned long value;
7778 
7779     switch (cr) {
7780     case 0:
7781         value = kvm_read_cr0(vcpu);
7782         break;
7783     case 2:
7784         value = vcpu->arch.cr2;
7785         break;
7786     case 3:
7787         value = kvm_read_cr3(vcpu);
7788         break;
7789     case 4:
7790         value = kvm_read_cr4(vcpu);
7791         break;
7792     case 8:
7793         value = kvm_get_cr8(vcpu);
7794         break;
7795     default:
7796         kvm_err("%s: unexpected cr %u\n", __func__, cr);
7797         return 0;
7798     }
7799 
7800     return value;
7801 }
7802 
7803 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7804 {
7805     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7806     int res = 0;
7807 
7808     switch (cr) {
7809     case 0:
7810         res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7811         break;
7812     case 2:
7813         vcpu->arch.cr2 = val;
7814         break;
7815     case 3:
7816         res = kvm_set_cr3(vcpu, val);
7817         break;
7818     case 4:
7819         res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7820         break;
7821     case 8:
7822         res = kvm_set_cr8(vcpu, val);
7823         break;
7824     default:
7825         kvm_err("%s: unexpected cr %u\n", __func__, cr);
7826         res = -1;
7827     }
7828 
7829     return res;
7830 }
7831 
7832 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7833 {
7834     return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7835 }
7836 
7837 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7838 {
7839     static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7840 }
7841 
7842 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7843 {
7844     static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7845 }
7846 
7847 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7848 {
7849     static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7850 }
7851 
7852 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7853 {
7854     static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7855 }
7856 
7857 static unsigned long emulator_get_cached_segment_base(
7858     struct x86_emulate_ctxt *ctxt, int seg)
7859 {
7860     return get_segment_base(emul_to_vcpu(ctxt), seg);
7861 }
7862 
7863 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7864                  struct desc_struct *desc, u32 *base3,
7865                  int seg)
7866 {
7867     struct kvm_segment var;
7868 
7869     kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7870     *selector = var.selector;
7871 
7872     if (var.unusable) {
7873         memset(desc, 0, sizeof(*desc));
7874         if (base3)
7875             *base3 = 0;
7876         return false;
7877     }
7878 
7879     if (var.g)
7880         var.limit >>= 12;
7881     set_desc_limit(desc, var.limit);
7882     set_desc_base(desc, (unsigned long)var.base);
7883 #ifdef CONFIG_X86_64
7884     if (base3)
7885         *base3 = var.base >> 32;
7886 #endif
7887     desc->type = var.type;
7888     desc->s = var.s;
7889     desc->dpl = var.dpl;
7890     desc->p = var.present;
7891     desc->avl = var.avl;
7892     desc->l = var.l;
7893     desc->d = var.db;
7894     desc->g = var.g;
7895 
7896     return true;
7897 }
7898 
7899 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7900                  struct desc_struct *desc, u32 base3,
7901                  int seg)
7902 {
7903     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7904     struct kvm_segment var;
7905 
7906     var.selector = selector;
7907     var.base = get_desc_base(desc);
7908 #ifdef CONFIG_X86_64
7909     var.base |= ((u64)base3) << 32;
7910 #endif
7911     var.limit = get_desc_limit(desc);
7912     if (desc->g)
7913         var.limit = (var.limit << 12) | 0xfff;
7914     var.type = desc->type;
7915     var.dpl = desc->dpl;
7916     var.db = desc->d;
7917     var.s = desc->s;
7918     var.l = desc->l;
7919     var.g = desc->g;
7920     var.avl = desc->avl;
7921     var.present = desc->p;
7922     var.unusable = !var.present;
7923     var.padding = 0;
7924 
7925     kvm_set_segment(vcpu, &var, seg);
7926     return;
7927 }
7928 
7929 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7930                     u32 msr_index, u64 *pdata)
7931 {
7932     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7933     int r;
7934 
7935     r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7936 
7937     if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7938                     complete_emulated_rdmsr, r)) {
7939         /* Bounce to user space */
7940         return X86EMUL_IO_NEEDED;
7941     }
7942 
7943     return r;
7944 }
7945 
7946 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7947                     u32 msr_index, u64 data)
7948 {
7949     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7950     int r;
7951 
7952     r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7953 
7954     if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7955                     complete_emulated_msr_access, r)) {
7956         /* Bounce to user space */
7957         return X86EMUL_IO_NEEDED;
7958     }
7959 
7960     return r;
7961 }
7962 
7963 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7964                 u32 msr_index, u64 *pdata)
7965 {
7966     return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7967 }
7968 
7969 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7970                 u32 msr_index, u64 data)
7971 {
7972     return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7973 }
7974 
7975 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7976 {
7977     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7978 
7979     return vcpu->arch.smbase;
7980 }
7981 
7982 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7983 {
7984     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7985 
7986     vcpu->arch.smbase = smbase;
7987 }
7988 
7989 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7990                   u32 pmc)
7991 {
7992     if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7993         return 0;
7994     return -EINVAL;
7995 }
7996 
7997 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7998                  u32 pmc, u64 *pdata)
7999 {
8000     return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8001 }
8002 
8003 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8004 {
8005     emul_to_vcpu(ctxt)->arch.halt_request = 1;
8006 }
8007 
8008 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8009                   struct x86_instruction_info *info,
8010                   enum x86_intercept_stage stage)
8011 {
8012     return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8013                         &ctxt->exception);
8014 }
8015 
8016 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8017                   u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8018                   bool exact_only)
8019 {
8020     return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8021 }
8022 
8023 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8024 {
8025     return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8026 }
8027 
8028 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8029 {
8030     return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8031 }
8032 
8033 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8034 {
8035     return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8036 }
8037 
8038 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8039 {
8040     return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8041 }
8042 
8043 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8044 {
8045     return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8046 }
8047 
8048 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8049 {
8050     kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8051 }
8052 
8053 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8054 {
8055     static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8056 }
8057 
8058 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8059 {
8060     return emul_to_vcpu(ctxt)->arch.hflags;
8061 }
8062 
8063 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
8064 {
8065     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8066 
8067     kvm_smm_changed(vcpu, false);
8068 }
8069 
8070 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
8071                   const char *smstate)
8072 {
8073     return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
8074 }
8075 
8076 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8077 {
8078     kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8079 }
8080 
8081 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8082 {
8083     return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8084 }
8085 
8086 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8087 {
8088     struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8089 
8090     if (!kvm->vm_bugged)
8091         kvm_vm_bugged(kvm);
8092 }
8093 
8094 static const struct x86_emulate_ops emulate_ops = {
8095     .vm_bugged           = emulator_vm_bugged,
8096     .read_gpr            = emulator_read_gpr,
8097     .write_gpr           = emulator_write_gpr,
8098     .read_std            = emulator_read_std,
8099     .write_std           = emulator_write_std,
8100     .read_phys           = kvm_read_guest_phys_system,
8101     .fetch               = kvm_fetch_guest_virt,
8102     .read_emulated       = emulator_read_emulated,
8103     .write_emulated      = emulator_write_emulated,
8104     .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8105     .invlpg              = emulator_invlpg,
8106     .pio_in_emulated     = emulator_pio_in_emulated,
8107     .pio_out_emulated    = emulator_pio_out_emulated,
8108     .get_segment         = emulator_get_segment,
8109     .set_segment         = emulator_set_segment,
8110     .get_cached_segment_base = emulator_get_cached_segment_base,
8111     .get_gdt             = emulator_get_gdt,
8112     .get_idt         = emulator_get_idt,
8113     .set_gdt             = emulator_set_gdt,
8114     .set_idt         = emulator_set_idt,
8115     .get_cr              = emulator_get_cr,
8116     .set_cr              = emulator_set_cr,
8117     .cpl                 = emulator_get_cpl,
8118     .get_dr              = emulator_get_dr,
8119     .set_dr              = emulator_set_dr,
8120     .get_smbase          = emulator_get_smbase,
8121     .set_smbase          = emulator_set_smbase,
8122     .set_msr_with_filter = emulator_set_msr_with_filter,
8123     .get_msr_with_filter = emulator_get_msr_with_filter,
8124     .set_msr             = emulator_set_msr,
8125     .get_msr             = emulator_get_msr,
8126     .check_pmc       = emulator_check_pmc,
8127     .read_pmc            = emulator_read_pmc,
8128     .halt                = emulator_halt,
8129     .wbinvd              = emulator_wbinvd,
8130     .fix_hypercall       = emulator_fix_hypercall,
8131     .intercept           = emulator_intercept,
8132     .get_cpuid           = emulator_get_cpuid,
8133     .guest_has_long_mode = emulator_guest_has_long_mode,
8134     .guest_has_movbe     = emulator_guest_has_movbe,
8135     .guest_has_fxsr      = emulator_guest_has_fxsr,
8136     .guest_has_rdpid     = emulator_guest_has_rdpid,
8137     .set_nmi_mask        = emulator_set_nmi_mask,
8138     .get_hflags          = emulator_get_hflags,
8139     .exiting_smm         = emulator_exiting_smm,
8140     .leave_smm           = emulator_leave_smm,
8141     .triple_fault        = emulator_triple_fault,
8142     .set_xcr             = emulator_set_xcr,
8143 };
8144 
8145 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8146 {
8147     u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8148     /*
8149      * an sti; sti; sequence only disable interrupts for the first
8150      * instruction. So, if the last instruction, be it emulated or
8151      * not, left the system with the INT_STI flag enabled, it
8152      * means that the last instruction is an sti. We should not
8153      * leave the flag on in this case. The same goes for mov ss
8154      */
8155     if (int_shadow & mask)
8156         mask = 0;
8157     if (unlikely(int_shadow || mask)) {
8158         static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8159         if (!mask)
8160             kvm_make_request(KVM_REQ_EVENT, vcpu);
8161     }
8162 }
8163 
8164 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
8165 {
8166     struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8167     if (ctxt->exception.vector == PF_VECTOR)
8168         return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8169 
8170     if (ctxt->exception.error_code_valid)
8171         kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8172                       ctxt->exception.error_code);
8173     else
8174         kvm_queue_exception(vcpu, ctxt->exception.vector);
8175     return false;
8176 }
8177 
8178 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8179 {
8180     struct x86_emulate_ctxt *ctxt;
8181 
8182     ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8183     if (!ctxt) {
8184         pr_err("kvm: failed to allocate vcpu's emulator\n");
8185         return NULL;
8186     }
8187 
8188     ctxt->vcpu = vcpu;
8189     ctxt->ops = &emulate_ops;
8190     vcpu->arch.emulate_ctxt = ctxt;
8191 
8192     return ctxt;
8193 }
8194 
8195 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8196 {
8197     struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8198     int cs_db, cs_l;
8199 
8200     static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8201 
8202     ctxt->gpa_available = false;
8203     ctxt->eflags = kvm_get_rflags(vcpu);
8204     ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8205 
8206     ctxt->eip = kvm_rip_read(vcpu);
8207     ctxt->mode = (!is_protmode(vcpu))       ? X86EMUL_MODE_REAL :
8208              (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8209              (cs_l && is_long_mode(vcpu))   ? X86EMUL_MODE_PROT64 :
8210              cs_db              ? X86EMUL_MODE_PROT32 :
8211                               X86EMUL_MODE_PROT16;
8212     BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8213     BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
8214     BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
8215 
8216     ctxt->interruptibility = 0;
8217     ctxt->have_exception = false;
8218     ctxt->exception.vector = -1;
8219     ctxt->perm_ok = false;
8220 
8221     init_decode_cache(ctxt);
8222     vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8223 }
8224 
8225 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8226 {
8227     struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8228     int ret;
8229 
8230     init_emulate_ctxt(vcpu);
8231 
8232     ctxt->op_bytes = 2;
8233     ctxt->ad_bytes = 2;
8234     ctxt->_eip = ctxt->eip + inc_eip;
8235     ret = emulate_int_real(ctxt, irq);
8236 
8237     if (ret != X86EMUL_CONTINUE) {
8238         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8239     } else {
8240         ctxt->eip = ctxt->_eip;
8241         kvm_rip_write(vcpu, ctxt->eip);
8242         kvm_set_rflags(vcpu, ctxt->eflags);
8243     }
8244 }
8245 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8246 
8247 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8248                        u8 ndata, u8 *insn_bytes, u8 insn_size)
8249 {
8250     struct kvm_run *run = vcpu->run;
8251     u64 info[5];
8252     u8 info_start;
8253 
8254     /*
8255      * Zero the whole array used to retrieve the exit info, as casting to
8256      * u32 for select entries will leave some chunks uninitialized.
8257      */
8258     memset(&info, 0, sizeof(info));
8259 
8260     static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8261                        &info[2], (u32 *)&info[3],
8262                        (u32 *)&info[4]);
8263 
8264     run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8265     run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8266 
8267     /*
8268      * There's currently space for 13 entries, but 5 are used for the exit
8269      * reason and info.  Restrict to 4 to reduce the maintenance burden
8270      * when expanding kvm_run.emulation_failure in the future.
8271      */
8272     if (WARN_ON_ONCE(ndata > 4))
8273         ndata = 4;
8274 
8275     /* Always include the flags as a 'data' entry. */
8276     info_start = 1;
8277     run->emulation_failure.flags = 0;
8278 
8279     if (insn_size) {
8280         BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8281                   sizeof(run->emulation_failure.insn_bytes) != 16));
8282         info_start += 2;
8283         run->emulation_failure.flags |=
8284             KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8285         run->emulation_failure.insn_size = insn_size;
8286         memset(run->emulation_failure.insn_bytes, 0x90,
8287                sizeof(run->emulation_failure.insn_bytes));
8288         memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8289     }
8290 
8291     memcpy(&run->internal.data[info_start], info, sizeof(info));
8292     memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8293            ndata * sizeof(data[0]));
8294 
8295     run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8296 }
8297 
8298 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8299 {
8300     struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8301 
8302     prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8303                        ctxt->fetch.end - ctxt->fetch.data);
8304 }
8305 
8306 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8307                       u8 ndata)
8308 {
8309     prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8310 }
8311 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8312 
8313 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8314 {
8315     __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8316 }
8317 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8318 
8319 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8320 {
8321     struct kvm *kvm = vcpu->kvm;
8322 
8323     ++vcpu->stat.insn_emulation_fail;
8324     trace_kvm_emulate_insn_failed(vcpu);
8325 
8326     if (emulation_type & EMULTYPE_VMWARE_GP) {
8327         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8328         return 1;
8329     }
8330 
8331     if (kvm->arch.exit_on_emulation_error ||
8332         (emulation_type & EMULTYPE_SKIP)) {
8333         prepare_emulation_ctxt_failure_exit(vcpu);
8334         return 0;
8335     }
8336 
8337     kvm_queue_exception(vcpu, UD_VECTOR);
8338 
8339     if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8340         prepare_emulation_ctxt_failure_exit(vcpu);
8341         return 0;
8342     }
8343 
8344     return 1;
8345 }
8346 
8347 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8348                   bool write_fault_to_shadow_pgtable,
8349                   int emulation_type)
8350 {
8351     gpa_t gpa = cr2_or_gpa;
8352     kvm_pfn_t pfn;
8353 
8354     if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8355         return false;
8356 
8357     if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8358         WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8359         return false;
8360 
8361     if (!vcpu->arch.mmu->root_role.direct) {
8362         /*
8363          * Write permission should be allowed since only
8364          * write access need to be emulated.
8365          */
8366         gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8367 
8368         /*
8369          * If the mapping is invalid in guest, let cpu retry
8370          * it to generate fault.
8371          */
8372         if (gpa == INVALID_GPA)
8373             return true;
8374     }
8375 
8376     /*
8377      * Do not retry the unhandleable instruction if it faults on the
8378      * readonly host memory, otherwise it will goto a infinite loop:
8379      * retry instruction -> write #PF -> emulation fail -> retry
8380      * instruction -> ...
8381      */
8382     pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8383 
8384     /*
8385      * If the instruction failed on the error pfn, it can not be fixed,
8386      * report the error to userspace.
8387      */
8388     if (is_error_noslot_pfn(pfn))
8389         return false;
8390 
8391     kvm_release_pfn_clean(pfn);
8392 
8393     /* The instructions are well-emulated on direct mmu. */
8394     if (vcpu->arch.mmu->root_role.direct) {
8395         unsigned int indirect_shadow_pages;
8396 
8397         write_lock(&vcpu->kvm->mmu_lock);
8398         indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8399         write_unlock(&vcpu->kvm->mmu_lock);
8400 
8401         if (indirect_shadow_pages)
8402             kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8403 
8404         return true;
8405     }
8406 
8407     /*
8408      * if emulation was due to access to shadowed page table
8409      * and it failed try to unshadow page and re-enter the
8410      * guest to let CPU execute the instruction.
8411      */
8412     kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8413 
8414     /*
8415      * If the access faults on its page table, it can not
8416      * be fixed by unprotecting shadow page and it should
8417      * be reported to userspace.
8418      */
8419     return !write_fault_to_shadow_pgtable;
8420 }
8421 
8422 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8423                   gpa_t cr2_or_gpa,  int emulation_type)
8424 {
8425     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8426     unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8427 
8428     last_retry_eip = vcpu->arch.last_retry_eip;
8429     last_retry_addr = vcpu->arch.last_retry_addr;
8430 
8431     /*
8432      * If the emulation is caused by #PF and it is non-page_table
8433      * writing instruction, it means the VM-EXIT is caused by shadow
8434      * page protected, we can zap the shadow page and retry this
8435      * instruction directly.
8436      *
8437      * Note: if the guest uses a non-page-table modifying instruction
8438      * on the PDE that points to the instruction, then we will unmap
8439      * the instruction and go to an infinite loop. So, we cache the
8440      * last retried eip and the last fault address, if we meet the eip
8441      * and the address again, we can break out of the potential infinite
8442      * loop.
8443      */
8444     vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8445 
8446     if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8447         return false;
8448 
8449     if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8450         WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8451         return false;
8452 
8453     if (x86_page_table_writing_insn(ctxt))
8454         return false;
8455 
8456     if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8457         return false;
8458 
8459     vcpu->arch.last_retry_eip = ctxt->eip;
8460     vcpu->arch.last_retry_addr = cr2_or_gpa;
8461 
8462     if (!vcpu->arch.mmu->root_role.direct)
8463         gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8464 
8465     kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8466 
8467     return true;
8468 }
8469 
8470 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8471 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8472 
8473 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8474 {
8475     trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8476 
8477     if (entering_smm) {
8478         vcpu->arch.hflags |= HF_SMM_MASK;
8479     } else {
8480         vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8481 
8482         /* Process a latched INIT or SMI, if any.  */
8483         kvm_make_request(KVM_REQ_EVENT, vcpu);
8484 
8485         /*
8486          * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8487          * on SMM exit we still need to reload them from
8488          * guest memory
8489          */
8490         vcpu->arch.pdptrs_from_userspace = false;
8491     }
8492 
8493     kvm_mmu_reset_context(vcpu);
8494 }
8495 
8496 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8497                 unsigned long *db)
8498 {
8499     u32 dr6 = 0;
8500     int i;
8501     u32 enable, rwlen;
8502 
8503     enable = dr7;
8504     rwlen = dr7 >> 16;
8505     for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8506         if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8507             dr6 |= (1 << i);
8508     return dr6;
8509 }
8510 
8511 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8512 {
8513     struct kvm_run *kvm_run = vcpu->run;
8514 
8515     if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8516         kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8517         kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8518         kvm_run->debug.arch.exception = DB_VECTOR;
8519         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8520         return 0;
8521     }
8522     kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8523     return 1;
8524 }
8525 
8526 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8527 {
8528     unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8529     int r;
8530 
8531     r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8532     if (unlikely(!r))
8533         return 0;
8534 
8535     kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8536 
8537     /*
8538      * rflags is the old, "raw" value of the flags.  The new value has
8539      * not been saved yet.
8540      *
8541      * This is correct even for TF set by the guest, because "the
8542      * processor will not generate this exception after the instruction
8543      * that sets the TF flag".
8544      */
8545     if (unlikely(rflags & X86_EFLAGS_TF))
8546         r = kvm_vcpu_do_singlestep(vcpu);
8547     return r;
8548 }
8549 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8550 
8551 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8552 {
8553     if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8554         (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8555         struct kvm_run *kvm_run = vcpu->run;
8556         unsigned long eip = kvm_get_linear_rip(vcpu);
8557         u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8558                        vcpu->arch.guest_debug_dr7,
8559                        vcpu->arch.eff_db);
8560 
8561         if (dr6 != 0) {
8562             kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8563             kvm_run->debug.arch.pc = eip;
8564             kvm_run->debug.arch.exception = DB_VECTOR;
8565             kvm_run->exit_reason = KVM_EXIT_DEBUG;
8566             *r = 0;
8567             return true;
8568         }
8569     }
8570 
8571     if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8572         !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8573         unsigned long eip = kvm_get_linear_rip(vcpu);
8574         u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8575                        vcpu->arch.dr7,
8576                        vcpu->arch.db);
8577 
8578         if (dr6 != 0) {
8579             kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8580             *r = 1;
8581             return true;
8582         }
8583     }
8584 
8585     return false;
8586 }
8587 
8588 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8589 {
8590     switch (ctxt->opcode_len) {
8591     case 1:
8592         switch (ctxt->b) {
8593         case 0xe4:  /* IN */
8594         case 0xe5:
8595         case 0xec:
8596         case 0xed:
8597         case 0xe6:  /* OUT */
8598         case 0xe7:
8599         case 0xee:
8600         case 0xef:
8601         case 0x6c:  /* INS */
8602         case 0x6d:
8603         case 0x6e:  /* OUTS */
8604         case 0x6f:
8605             return true;
8606         }
8607         break;
8608     case 2:
8609         switch (ctxt->b) {
8610         case 0x33:  /* RDPMC */
8611             return true;
8612         }
8613         break;
8614     }
8615 
8616     return false;
8617 }
8618 
8619 /*
8620  * Decode an instruction for emulation.  The caller is responsible for handling
8621  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8622  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8623  * code breakpoints have higher priority and thus have already been done by
8624  * hardware.
8625  *
8626  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8627  *     response to a machine check.
8628  */
8629 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8630                     void *insn, int insn_len)
8631 {
8632     struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8633     int r;
8634 
8635     init_emulate_ctxt(vcpu);
8636 
8637     r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8638 
8639     trace_kvm_emulate_insn_start(vcpu);
8640     ++vcpu->stat.insn_emulation;
8641 
8642     return r;
8643 }
8644 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8645 
8646 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8647                 int emulation_type, void *insn, int insn_len)
8648 {
8649     int r;
8650     struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8651     bool writeback = true;
8652     bool write_fault_to_spt;
8653 
8654     if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8655         return 1;
8656 
8657     vcpu->arch.l1tf_flush_l1d = true;
8658 
8659     /*
8660      * Clear write_fault_to_shadow_pgtable here to ensure it is
8661      * never reused.
8662      */
8663     write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8664     vcpu->arch.write_fault_to_shadow_pgtable = false;
8665 
8666     if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8667         kvm_clear_exception_queue(vcpu);
8668 
8669         /*
8670          * Return immediately if RIP hits a code breakpoint, such #DBs
8671          * are fault-like and are higher priority than any faults on
8672          * the code fetch itself.
8673          */
8674         if (!(emulation_type & EMULTYPE_SKIP) &&
8675             kvm_vcpu_check_code_breakpoint(vcpu, &r))
8676             return r;
8677 
8678         r = x86_decode_emulated_instruction(vcpu, emulation_type,
8679                             insn, insn_len);
8680         if (r != EMULATION_OK)  {
8681             if ((emulation_type & EMULTYPE_TRAP_UD) ||
8682                 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8683                 kvm_queue_exception(vcpu, UD_VECTOR);
8684                 return 1;
8685             }
8686             if (reexecute_instruction(vcpu, cr2_or_gpa,
8687                           write_fault_to_spt,
8688                           emulation_type))
8689                 return 1;
8690             if (ctxt->have_exception) {
8691                 /*
8692                  * #UD should result in just EMULATION_FAILED, and trap-like
8693                  * exception should not be encountered during decode.
8694                  */
8695                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8696                          exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8697                 inject_emulated_exception(vcpu);
8698                 return 1;
8699             }
8700             return handle_emulation_failure(vcpu, emulation_type);
8701         }
8702     }
8703 
8704     if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8705         !is_vmware_backdoor_opcode(ctxt)) {
8706         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8707         return 1;
8708     }
8709 
8710     /*
8711      * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8712      * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8713      * The caller is responsible for updating interruptibility state and
8714      * injecting single-step #DBs.
8715      */
8716     if (emulation_type & EMULTYPE_SKIP) {
8717         if (ctxt->mode != X86EMUL_MODE_PROT64)
8718             ctxt->eip = (u32)ctxt->_eip;
8719         else
8720             ctxt->eip = ctxt->_eip;
8721 
8722         if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8723             r = 1;
8724             goto writeback;
8725         }
8726 
8727         kvm_rip_write(vcpu, ctxt->eip);
8728         if (ctxt->eflags & X86_EFLAGS_RF)
8729             kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8730         return 1;
8731     }
8732 
8733     if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8734         return 1;
8735 
8736     /* this is needed for vmware backdoor interface to work since it
8737        changes registers values  during IO operation */
8738     if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8739         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8740         emulator_invalidate_register_cache(ctxt);
8741     }
8742 
8743 restart:
8744     if (emulation_type & EMULTYPE_PF) {
8745         /* Save the faulting GPA (cr2) in the address field */
8746         ctxt->exception.address = cr2_or_gpa;
8747 
8748         /* With shadow page tables, cr2 contains a GVA or nGPA. */
8749         if (vcpu->arch.mmu->root_role.direct) {
8750             ctxt->gpa_available = true;
8751             ctxt->gpa_val = cr2_or_gpa;
8752         }
8753     } else {
8754         /* Sanitize the address out of an abundance of paranoia. */
8755         ctxt->exception.address = 0;
8756     }
8757 
8758     r = x86_emulate_insn(ctxt);
8759 
8760     if (r == EMULATION_INTERCEPTED)
8761         return 1;
8762 
8763     if (r == EMULATION_FAILED) {
8764         if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8765                     emulation_type))
8766             return 1;
8767 
8768         return handle_emulation_failure(vcpu, emulation_type);
8769     }
8770 
8771     if (ctxt->have_exception) {
8772         r = 1;
8773         if (inject_emulated_exception(vcpu))
8774             return r;
8775     } else if (vcpu->arch.pio.count) {
8776         if (!vcpu->arch.pio.in) {
8777             /* FIXME: return into emulator if single-stepping.  */
8778             vcpu->arch.pio.count = 0;
8779         } else {
8780             writeback = false;
8781             vcpu->arch.complete_userspace_io = complete_emulated_pio;
8782         }
8783         r = 0;
8784     } else if (vcpu->mmio_needed) {
8785         ++vcpu->stat.mmio_exits;
8786 
8787         if (!vcpu->mmio_is_write)
8788             writeback = false;
8789         r = 0;
8790         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8791     } else if (vcpu->arch.complete_userspace_io) {
8792         writeback = false;
8793         r = 0;
8794     } else if (r == EMULATION_RESTART)
8795         goto restart;
8796     else
8797         r = 1;
8798 
8799 writeback:
8800     if (writeback) {
8801         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8802         toggle_interruptibility(vcpu, ctxt->interruptibility);
8803         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8804         if (!ctxt->have_exception ||
8805             exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8806             kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8807             if (ctxt->is_branch)
8808                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8809             kvm_rip_write(vcpu, ctxt->eip);
8810             if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8811                 r = kvm_vcpu_do_singlestep(vcpu);
8812             static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8813             __kvm_set_rflags(vcpu, ctxt->eflags);
8814         }
8815 
8816         /*
8817          * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8818          * do nothing, and it will be requested again as soon as
8819          * the shadow expires.  But we still need to check here,
8820          * because POPF has no interrupt shadow.
8821          */
8822         if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8823             kvm_make_request(KVM_REQ_EVENT, vcpu);
8824     } else
8825         vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8826 
8827     return r;
8828 }
8829 
8830 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8831 {
8832     return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8833 }
8834 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8835 
8836 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8837                     void *insn, int insn_len)
8838 {
8839     return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8840 }
8841 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8842 
8843 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8844 {
8845     vcpu->arch.pio.count = 0;
8846     return 1;
8847 }
8848 
8849 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8850 {
8851     vcpu->arch.pio.count = 0;
8852 
8853     if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8854         return 1;
8855 
8856     return kvm_skip_emulated_instruction(vcpu);
8857 }
8858 
8859 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8860                 unsigned short port)
8861 {
8862     unsigned long val = kvm_rax_read(vcpu);
8863     int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8864 
8865     if (ret)
8866         return ret;
8867 
8868     /*
8869      * Workaround userspace that relies on old KVM behavior of %rip being
8870      * incremented prior to exiting to userspace to handle "OUT 0x7e".
8871      */
8872     if (port == 0x7e &&
8873         kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8874         vcpu->arch.complete_userspace_io =
8875             complete_fast_pio_out_port_0x7e;
8876         kvm_skip_emulated_instruction(vcpu);
8877     } else {
8878         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8879         vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8880     }
8881     return 0;
8882 }
8883 
8884 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8885 {
8886     unsigned long val;
8887 
8888     /* We should only ever be called with arch.pio.count equal to 1 */
8889     BUG_ON(vcpu->arch.pio.count != 1);
8890 
8891     if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8892         vcpu->arch.pio.count = 0;
8893         return 1;
8894     }
8895 
8896     /* For size less than 4 we merge, else we zero extend */
8897     val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8898 
8899     complete_emulator_pio_in(vcpu, &val);
8900     kvm_rax_write(vcpu, val);
8901 
8902     return kvm_skip_emulated_instruction(vcpu);
8903 }
8904 
8905 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8906                unsigned short port)
8907 {
8908     unsigned long val;
8909     int ret;
8910 
8911     /* For size less than 4 we merge, else we zero extend */
8912     val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8913 
8914     ret = emulator_pio_in(vcpu, size, port, &val, 1);
8915     if (ret) {
8916         kvm_rax_write(vcpu, val);
8917         return ret;
8918     }
8919 
8920     vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8921     vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8922 
8923     return 0;
8924 }
8925 
8926 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8927 {
8928     int ret;
8929 
8930     if (in)
8931         ret = kvm_fast_pio_in(vcpu, size, port);
8932     else
8933         ret = kvm_fast_pio_out(vcpu, size, port);
8934     return ret && kvm_skip_emulated_instruction(vcpu);
8935 }
8936 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8937 
8938 static int kvmclock_cpu_down_prep(unsigned int cpu)
8939 {
8940     __this_cpu_write(cpu_tsc_khz, 0);
8941     return 0;
8942 }
8943 
8944 static void tsc_khz_changed(void *data)
8945 {
8946     struct cpufreq_freqs *freq = data;
8947     unsigned long khz = 0;
8948 
8949     if (data)
8950         khz = freq->new;
8951     else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8952         khz = cpufreq_quick_get(raw_smp_processor_id());
8953     if (!khz)
8954         khz = tsc_khz;
8955     __this_cpu_write(cpu_tsc_khz, khz);
8956 }
8957 
8958 #ifdef CONFIG_X86_64
8959 static void kvm_hyperv_tsc_notifier(void)
8960 {
8961     struct kvm *kvm;
8962     int cpu;
8963 
8964     mutex_lock(&kvm_lock);
8965     list_for_each_entry(kvm, &vm_list, vm_list)
8966         kvm_make_mclock_inprogress_request(kvm);
8967 
8968     /* no guest entries from this point */
8969     hyperv_stop_tsc_emulation();
8970 
8971     /* TSC frequency always matches when on Hyper-V */
8972     for_each_present_cpu(cpu)
8973         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8974     kvm_caps.max_guest_tsc_khz = tsc_khz;
8975 
8976     list_for_each_entry(kvm, &vm_list, vm_list) {
8977         __kvm_start_pvclock_update(kvm);
8978         pvclock_update_vm_gtod_copy(kvm);
8979         kvm_end_pvclock_update(kvm);
8980     }
8981 
8982     mutex_unlock(&kvm_lock);
8983 }
8984 #endif
8985 
8986 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8987 {
8988     struct kvm *kvm;
8989     struct kvm_vcpu *vcpu;
8990     int send_ipi = 0;
8991     unsigned long i;
8992 
8993     /*
8994      * We allow guests to temporarily run on slowing clocks,
8995      * provided we notify them after, or to run on accelerating
8996      * clocks, provided we notify them before.  Thus time never
8997      * goes backwards.
8998      *
8999      * However, we have a problem.  We can't atomically update
9000      * the frequency of a given CPU from this function; it is
9001      * merely a notifier, which can be called from any CPU.
9002      * Changing the TSC frequency at arbitrary points in time
9003      * requires a recomputation of local variables related to
9004      * the TSC for each VCPU.  We must flag these local variables
9005      * to be updated and be sure the update takes place with the
9006      * new frequency before any guests proceed.
9007      *
9008      * Unfortunately, the combination of hotplug CPU and frequency
9009      * change creates an intractable locking scenario; the order
9010      * of when these callouts happen is undefined with respect to
9011      * CPU hotplug, and they can race with each other.  As such,
9012      * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9013      * undefined; you can actually have a CPU frequency change take
9014      * place in between the computation of X and the setting of the
9015      * variable.  To protect against this problem, all updates of
9016      * the per_cpu tsc_khz variable are done in an interrupt
9017      * protected IPI, and all callers wishing to update the value
9018      * must wait for a synchronous IPI to complete (which is trivial
9019      * if the caller is on the CPU already).  This establishes the
9020      * necessary total order on variable updates.
9021      *
9022      * Note that because a guest time update may take place
9023      * anytime after the setting of the VCPU's request bit, the
9024      * correct TSC value must be set before the request.  However,
9025      * to ensure the update actually makes it to any guest which
9026      * starts running in hardware virtualization between the set
9027      * and the acquisition of the spinlock, we must also ping the
9028      * CPU after setting the request bit.
9029      *
9030      */
9031 
9032     smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9033 
9034     mutex_lock(&kvm_lock);
9035     list_for_each_entry(kvm, &vm_list, vm_list) {
9036         kvm_for_each_vcpu(i, vcpu, kvm) {
9037             if (vcpu->cpu != cpu)
9038                 continue;
9039             kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9040             if (vcpu->cpu != raw_smp_processor_id())
9041                 send_ipi = 1;
9042         }
9043     }
9044     mutex_unlock(&kvm_lock);
9045 
9046     if (freq->old < freq->new && send_ipi) {
9047         /*
9048          * We upscale the frequency.  Must make the guest
9049          * doesn't see old kvmclock values while running with
9050          * the new frequency, otherwise we risk the guest sees
9051          * time go backwards.
9052          *
9053          * In case we update the frequency for another cpu
9054          * (which might be in guest context) send an interrupt
9055          * to kick the cpu out of guest context.  Next time
9056          * guest context is entered kvmclock will be updated,
9057          * so the guest will not see stale values.
9058          */
9059         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9060     }
9061 }
9062 
9063 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9064                      void *data)
9065 {
9066     struct cpufreq_freqs *freq = data;
9067     int cpu;
9068 
9069     if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9070         return 0;
9071     if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9072         return 0;
9073 
9074     for_each_cpu(cpu, freq->policy->cpus)
9075         __kvmclock_cpufreq_notifier(freq, cpu);
9076 
9077     return 0;
9078 }
9079 
9080 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9081     .notifier_call  = kvmclock_cpufreq_notifier
9082 };
9083 
9084 static int kvmclock_cpu_online(unsigned int cpu)
9085 {
9086     tsc_khz_changed(NULL);
9087     return 0;
9088 }
9089 
9090 static void kvm_timer_init(void)
9091 {
9092     if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9093         max_tsc_khz = tsc_khz;
9094 
9095         if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9096             struct cpufreq_policy *policy;
9097             int cpu;
9098 
9099             cpu = get_cpu();
9100             policy = cpufreq_cpu_get(cpu);
9101             if (policy) {
9102                 if (policy->cpuinfo.max_freq)
9103                     max_tsc_khz = policy->cpuinfo.max_freq;
9104                 cpufreq_cpu_put(policy);
9105             }
9106             put_cpu();
9107         }
9108         cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9109                       CPUFREQ_TRANSITION_NOTIFIER);
9110     }
9111 
9112     cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9113               kvmclock_cpu_online, kvmclock_cpu_down_prep);
9114 }
9115 
9116 #ifdef CONFIG_X86_64
9117 static void pvclock_gtod_update_fn(struct work_struct *work)
9118 {
9119     struct kvm *kvm;
9120     struct kvm_vcpu *vcpu;
9121     unsigned long i;
9122 
9123     mutex_lock(&kvm_lock);
9124     list_for_each_entry(kvm, &vm_list, vm_list)
9125         kvm_for_each_vcpu(i, vcpu, kvm)
9126             kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9127     atomic_set(&kvm_guest_has_master_clock, 0);
9128     mutex_unlock(&kvm_lock);
9129 }
9130 
9131 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9132 
9133 /*
9134  * Indirection to move queue_work() out of the tk_core.seq write held
9135  * region to prevent possible deadlocks against time accessors which
9136  * are invoked with work related locks held.
9137  */
9138 static void pvclock_irq_work_fn(struct irq_work *w)
9139 {
9140     queue_work(system_long_wq, &pvclock_gtod_work);
9141 }
9142 
9143 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9144 
9145 /*
9146  * Notification about pvclock gtod data update.
9147  */
9148 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9149                    void *priv)
9150 {
9151     struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9152     struct timekeeper *tk = priv;
9153 
9154     update_pvclock_gtod(tk);
9155 
9156     /*
9157      * Disable master clock if host does not trust, or does not use,
9158      * TSC based clocksource. Delegate queue_work() to irq_work as
9159      * this is invoked with tk_core.seq write held.
9160      */
9161     if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9162         atomic_read(&kvm_guest_has_master_clock) != 0)
9163         irq_work_queue(&pvclock_irq_work);
9164     return 0;
9165 }
9166 
9167 static struct notifier_block pvclock_gtod_notifier = {
9168     .notifier_call = pvclock_gtod_notify,
9169 };
9170 #endif
9171 
9172 int kvm_arch_init(void *opaque)
9173 {
9174     struct kvm_x86_init_ops *ops = opaque;
9175     u64 host_pat;
9176     int r;
9177 
9178     if (kvm_x86_ops.hardware_enable) {
9179         pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9180         return -EEXIST;
9181     }
9182 
9183     if (!ops->cpu_has_kvm_support()) {
9184         pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9185                    ops->runtime_ops->name);
9186         return -EOPNOTSUPP;
9187     }
9188     if (ops->disabled_by_bios()) {
9189         pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9190                    ops->runtime_ops->name);
9191         return -EOPNOTSUPP;
9192     }
9193 
9194     /*
9195      * KVM explicitly assumes that the guest has an FPU and
9196      * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9197      * vCPU's FPU state as a fxregs_state struct.
9198      */
9199     if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9200         printk(KERN_ERR "kvm: inadequate fpu\n");
9201         return -EOPNOTSUPP;
9202     }
9203 
9204     if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9205         pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9206         return -EOPNOTSUPP;
9207     }
9208 
9209     /*
9210      * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9211      * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9212      * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9213      * with an exception.  PAT[0] is set to WB on RESET and also by the
9214      * kernel, i.e. failure indicates a kernel bug or broken firmware.
9215      */
9216     if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9217         (host_pat & GENMASK(2, 0)) != 6) {
9218         pr_err("kvm: host PAT[0] is not WB\n");
9219         return -EIO;
9220     }
9221 
9222     x86_emulator_cache = kvm_alloc_emulator_cache();
9223     if (!x86_emulator_cache) {
9224         pr_err("kvm: failed to allocate cache for x86 emulator\n");
9225         return -ENOMEM;
9226     }
9227 
9228     user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9229     if (!user_return_msrs) {
9230         printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9231         r = -ENOMEM;
9232         goto out_free_x86_emulator_cache;
9233     }
9234     kvm_nr_uret_msrs = 0;
9235 
9236     r = kvm_mmu_vendor_module_init();
9237     if (r)
9238         goto out_free_percpu;
9239 
9240     kvm_timer_init();
9241 
9242     if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9243         host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9244         kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9245     }
9246 
9247     if (pi_inject_timer == -1)
9248         pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9249 #ifdef CONFIG_X86_64
9250     pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9251 
9252     if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9253         set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9254 #endif
9255 
9256     return 0;
9257 
9258 out_free_percpu:
9259     free_percpu(user_return_msrs);
9260 out_free_x86_emulator_cache:
9261     kmem_cache_destroy(x86_emulator_cache);
9262     return r;
9263 }
9264 
9265 void kvm_arch_exit(void)
9266 {
9267 #ifdef CONFIG_X86_64
9268     if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9269         clear_hv_tscchange_cb();
9270 #endif
9271     kvm_lapic_exit();
9272 
9273     if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9274         cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9275                         CPUFREQ_TRANSITION_NOTIFIER);
9276     cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9277 #ifdef CONFIG_X86_64
9278     pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9279     irq_work_sync(&pvclock_irq_work);
9280     cancel_work_sync(&pvclock_gtod_work);
9281 #endif
9282     kvm_x86_ops.hardware_enable = NULL;
9283     kvm_mmu_vendor_module_exit();
9284     free_percpu(user_return_msrs);
9285     kmem_cache_destroy(x86_emulator_cache);
9286 #ifdef CONFIG_KVM_XEN
9287     static_key_deferred_flush(&kvm_xen_enabled);
9288     WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9289 #endif
9290 }
9291 
9292 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9293 {
9294     /*
9295      * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9296      * local APIC is in-kernel, the run loop will detect the non-runnable
9297      * state and halt the vCPU.  Exit to userspace if the local APIC is
9298      * managed by userspace, in which case userspace is responsible for
9299      * handling wake events.
9300      */
9301     ++vcpu->stat.halt_exits;
9302     if (lapic_in_kernel(vcpu)) {
9303         vcpu->arch.mp_state = state;
9304         return 1;
9305     } else {
9306         vcpu->run->exit_reason = reason;
9307         return 0;
9308     }
9309 }
9310 
9311 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9312 {
9313     return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9314 }
9315 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9316 
9317 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9318 {
9319     int ret = kvm_skip_emulated_instruction(vcpu);
9320     /*
9321      * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9322      * KVM_EXIT_DEBUG here.
9323      */
9324     return kvm_emulate_halt_noskip(vcpu) && ret;
9325 }
9326 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9327 
9328 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9329 {
9330     int ret = kvm_skip_emulated_instruction(vcpu);
9331 
9332     return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9333                     KVM_EXIT_AP_RESET_HOLD) && ret;
9334 }
9335 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9336 
9337 #ifdef CONFIG_X86_64
9338 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9339                     unsigned long clock_type)
9340 {
9341     struct kvm_clock_pairing clock_pairing;
9342     struct timespec64 ts;
9343     u64 cycle;
9344     int ret;
9345 
9346     if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9347         return -KVM_EOPNOTSUPP;
9348 
9349     /*
9350      * When tsc is in permanent catchup mode guests won't be able to use
9351      * pvclock_read_retry loop to get consistent view of pvclock
9352      */
9353     if (vcpu->arch.tsc_always_catchup)
9354         return -KVM_EOPNOTSUPP;
9355 
9356     if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9357         return -KVM_EOPNOTSUPP;
9358 
9359     clock_pairing.sec = ts.tv_sec;
9360     clock_pairing.nsec = ts.tv_nsec;
9361     clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9362     clock_pairing.flags = 0;
9363     memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9364 
9365     ret = 0;
9366     if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9367                 sizeof(struct kvm_clock_pairing)))
9368         ret = -KVM_EFAULT;
9369 
9370     return ret;
9371 }
9372 #endif
9373 
9374 /*
9375  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9376  *
9377  * @apicid - apicid of vcpu to be kicked.
9378  */
9379 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9380 {
9381     /*
9382      * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9383      * common code, e.g. for tracing. Defer initialization to the compiler.
9384      */
9385     struct kvm_lapic_irq lapic_irq = {
9386         .delivery_mode = APIC_DM_REMRD,
9387         .dest_mode = APIC_DEST_PHYSICAL,
9388         .shorthand = APIC_DEST_NOSHORT,
9389         .dest_id = apicid,
9390     };
9391 
9392     kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9393 }
9394 
9395 bool kvm_apicv_activated(struct kvm *kvm)
9396 {
9397     return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9398 }
9399 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9400 
9401 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9402 {
9403     ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9404     ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9405 
9406     return (vm_reasons | vcpu_reasons) == 0;
9407 }
9408 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9409 
9410 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9411                        enum kvm_apicv_inhibit reason, bool set)
9412 {
9413     if (set)
9414         __set_bit(reason, inhibits);
9415     else
9416         __clear_bit(reason, inhibits);
9417 
9418     trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9419 }
9420 
9421 static void kvm_apicv_init(struct kvm *kvm)
9422 {
9423     unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9424 
9425     init_rwsem(&kvm->arch.apicv_update_lock);
9426 
9427     set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9428 
9429     if (!enable_apicv)
9430         set_or_clear_apicv_inhibit(inhibits,
9431                        APICV_INHIBIT_REASON_DISABLE, true);
9432 }
9433 
9434 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9435 {
9436     struct kvm_vcpu *target = NULL;
9437     struct kvm_apic_map *map;
9438 
9439     vcpu->stat.directed_yield_attempted++;
9440 
9441     if (single_task_running())
9442         goto no_yield;
9443 
9444     rcu_read_lock();
9445     map = rcu_dereference(vcpu->kvm->arch.apic_map);
9446 
9447     if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9448         target = map->phys_map[dest_id]->vcpu;
9449 
9450     rcu_read_unlock();
9451 
9452     if (!target || !READ_ONCE(target->ready))
9453         goto no_yield;
9454 
9455     /* Ignore requests to yield to self */
9456     if (vcpu == target)
9457         goto no_yield;
9458 
9459     if (kvm_vcpu_yield_to(target) <= 0)
9460         goto no_yield;
9461 
9462     vcpu->stat.directed_yield_successful++;
9463 
9464 no_yield:
9465     return;
9466 }
9467 
9468 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9469 {
9470     u64 ret = vcpu->run->hypercall.ret;
9471 
9472     if (!is_64_bit_mode(vcpu))
9473         ret = (u32)ret;
9474     kvm_rax_write(vcpu, ret);
9475     ++vcpu->stat.hypercalls;
9476     return kvm_skip_emulated_instruction(vcpu);
9477 }
9478 
9479 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9480 {
9481     unsigned long nr, a0, a1, a2, a3, ret;
9482     int op_64_bit;
9483 
9484     if (kvm_xen_hypercall_enabled(vcpu->kvm))
9485         return kvm_xen_hypercall(vcpu);
9486 
9487     if (kvm_hv_hypercall_enabled(vcpu))
9488         return kvm_hv_hypercall(vcpu);
9489 
9490     nr = kvm_rax_read(vcpu);
9491     a0 = kvm_rbx_read(vcpu);
9492     a1 = kvm_rcx_read(vcpu);
9493     a2 = kvm_rdx_read(vcpu);
9494     a3 = kvm_rsi_read(vcpu);
9495 
9496     trace_kvm_hypercall(nr, a0, a1, a2, a3);
9497 
9498     op_64_bit = is_64_bit_hypercall(vcpu);
9499     if (!op_64_bit) {
9500         nr &= 0xFFFFFFFF;
9501         a0 &= 0xFFFFFFFF;
9502         a1 &= 0xFFFFFFFF;
9503         a2 &= 0xFFFFFFFF;
9504         a3 &= 0xFFFFFFFF;
9505     }
9506 
9507     if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9508         ret = -KVM_EPERM;
9509         goto out;
9510     }
9511 
9512     ret = -KVM_ENOSYS;
9513 
9514     switch (nr) {
9515     case KVM_HC_VAPIC_POLL_IRQ:
9516         ret = 0;
9517         break;
9518     case KVM_HC_KICK_CPU:
9519         if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9520             break;
9521 
9522         kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9523         kvm_sched_yield(vcpu, a1);
9524         ret = 0;
9525         break;
9526 #ifdef CONFIG_X86_64
9527     case KVM_HC_CLOCK_PAIRING:
9528         ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9529         break;
9530 #endif
9531     case KVM_HC_SEND_IPI:
9532         if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9533             break;
9534 
9535         ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9536         break;
9537     case KVM_HC_SCHED_YIELD:
9538         if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9539             break;
9540 
9541         kvm_sched_yield(vcpu, a0);
9542         ret = 0;
9543         break;
9544     case KVM_HC_MAP_GPA_RANGE: {
9545         u64 gpa = a0, npages = a1, attrs = a2;
9546 
9547         ret = -KVM_ENOSYS;
9548         if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9549             break;
9550 
9551         if (!PAGE_ALIGNED(gpa) || !npages ||
9552             gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9553             ret = -KVM_EINVAL;
9554             break;
9555         }
9556 
9557         vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9558         vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9559         vcpu->run->hypercall.args[0]  = gpa;
9560         vcpu->run->hypercall.args[1]  = npages;
9561         vcpu->run->hypercall.args[2]  = attrs;
9562         vcpu->run->hypercall.longmode = op_64_bit;
9563         vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9564         return 0;
9565     }
9566     default:
9567         ret = -KVM_ENOSYS;
9568         break;
9569     }
9570 out:
9571     if (!op_64_bit)
9572         ret = (u32)ret;
9573     kvm_rax_write(vcpu, ret);
9574 
9575     ++vcpu->stat.hypercalls;
9576     return kvm_skip_emulated_instruction(vcpu);
9577 }
9578 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9579 
9580 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9581 {
9582     struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9583     char instruction[3];
9584     unsigned long rip = kvm_rip_read(vcpu);
9585 
9586     /*
9587      * If the quirk is disabled, synthesize a #UD and let the guest pick up
9588      * the pieces.
9589      */
9590     if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9591         ctxt->exception.error_code_valid = false;
9592         ctxt->exception.vector = UD_VECTOR;
9593         ctxt->have_exception = true;
9594         return X86EMUL_PROPAGATE_FAULT;
9595     }
9596 
9597     static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9598 
9599     return emulator_write_emulated(ctxt, rip, instruction, 3,
9600         &ctxt->exception);
9601 }
9602 
9603 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9604 {
9605     return vcpu->run->request_interrupt_window &&
9606         likely(!pic_in_kernel(vcpu->kvm));
9607 }
9608 
9609 /* Called within kvm->srcu read side.  */
9610 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9611 {
9612     struct kvm_run *kvm_run = vcpu->run;
9613 
9614     kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9615     kvm_run->cr8 = kvm_get_cr8(vcpu);
9616     kvm_run->apic_base = kvm_get_apic_base(vcpu);
9617 
9618     kvm_run->ready_for_interrupt_injection =
9619         pic_in_kernel(vcpu->kvm) ||
9620         kvm_vcpu_ready_for_interrupt_injection(vcpu);
9621 
9622     if (is_smm(vcpu))
9623         kvm_run->flags |= KVM_RUN_X86_SMM;
9624 }
9625 
9626 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9627 {
9628     int max_irr, tpr;
9629 
9630     if (!kvm_x86_ops.update_cr8_intercept)
9631         return;
9632 
9633     if (!lapic_in_kernel(vcpu))
9634         return;
9635 
9636     if (vcpu->arch.apic->apicv_active)
9637         return;
9638 
9639     if (!vcpu->arch.apic->vapic_addr)
9640         max_irr = kvm_lapic_find_highest_irr(vcpu);
9641     else
9642         max_irr = -1;
9643 
9644     if (max_irr != -1)
9645         max_irr >>= 4;
9646 
9647     tpr = kvm_lapic_get_cr8(vcpu);
9648 
9649     static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9650 }
9651 
9652 
9653 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9654 {
9655     if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9656         kvm_x86_ops.nested_ops->triple_fault(vcpu);
9657         return 1;
9658     }
9659 
9660     return kvm_x86_ops.nested_ops->check_events(vcpu);
9661 }
9662 
9663 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9664 {
9665     trace_kvm_inj_exception(vcpu->arch.exception.nr,
9666                 vcpu->arch.exception.has_error_code,
9667                 vcpu->arch.exception.error_code,
9668                 vcpu->arch.exception.injected);
9669 
9670     if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9671         vcpu->arch.exception.error_code = false;
9672     static_call(kvm_x86_queue_exception)(vcpu);
9673 }
9674 
9675 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9676 {
9677     int r;
9678     bool can_inject = true;
9679 
9680     /* try to reinject previous events if any */
9681 
9682     if (vcpu->arch.exception.injected) {
9683         kvm_inject_exception(vcpu);
9684         can_inject = false;
9685     }
9686     /*
9687      * Do not inject an NMI or interrupt if there is a pending
9688      * exception.  Exceptions and interrupts are recognized at
9689      * instruction boundaries, i.e. the start of an instruction.
9690      * Trap-like exceptions, e.g. #DB, have higher priority than
9691      * NMIs and interrupts, i.e. traps are recognized before an
9692      * NMI/interrupt that's pending on the same instruction.
9693      * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9694      * priority, but are only generated (pended) during instruction
9695      * execution, i.e. a pending fault-like exception means the
9696      * fault occurred on the *previous* instruction and must be
9697      * serviced prior to recognizing any new events in order to
9698      * fully complete the previous instruction.
9699      */
9700     else if (!vcpu->arch.exception.pending) {
9701         if (vcpu->arch.nmi_injected) {
9702             static_call(kvm_x86_inject_nmi)(vcpu);
9703             can_inject = false;
9704         } else if (vcpu->arch.interrupt.injected) {
9705             static_call(kvm_x86_inject_irq)(vcpu, true);
9706             can_inject = false;
9707         }
9708     }
9709 
9710     WARN_ON_ONCE(vcpu->arch.exception.injected &&
9711              vcpu->arch.exception.pending);
9712 
9713     /*
9714      * Call check_nested_events() even if we reinjected a previous event
9715      * in order for caller to determine if it should require immediate-exit
9716      * from L2 to L1 due to pending L1 events which require exit
9717      * from L2 to L1.
9718      */
9719     if (is_guest_mode(vcpu)) {
9720         r = kvm_check_nested_events(vcpu);
9721         if (r < 0)
9722             goto out;
9723     }
9724 
9725     /* try to inject new event if pending */
9726     if (vcpu->arch.exception.pending) {
9727         if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9728             __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9729                          X86_EFLAGS_RF);
9730 
9731         if (vcpu->arch.exception.nr == DB_VECTOR) {
9732             kvm_deliver_exception_payload(vcpu);
9733             if (vcpu->arch.dr7 & DR7_GD) {
9734                 vcpu->arch.dr7 &= ~DR7_GD;
9735                 kvm_update_dr7(vcpu);
9736             }
9737         }
9738 
9739         kvm_inject_exception(vcpu);
9740 
9741         vcpu->arch.exception.pending = false;
9742         vcpu->arch.exception.injected = true;
9743 
9744         can_inject = false;
9745     }
9746 
9747     /* Don't inject interrupts if the user asked to avoid doing so */
9748     if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9749         return 0;
9750 
9751     /*
9752      * Finally, inject interrupt events.  If an event cannot be injected
9753      * due to architectural conditions (e.g. IF=0) a window-open exit
9754      * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9755      * and can architecturally be injected, but we cannot do it right now:
9756      * an interrupt could have arrived just now and we have to inject it
9757      * as a vmexit, or there could already an event in the queue, which is
9758      * indicated by can_inject.  In that case we request an immediate exit
9759      * in order to make progress and get back here for another iteration.
9760      * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9761      */
9762     if (vcpu->arch.smi_pending) {
9763         r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9764         if (r < 0)
9765             goto out;
9766         if (r) {
9767             vcpu->arch.smi_pending = false;
9768             ++vcpu->arch.smi_count;
9769             enter_smm(vcpu);
9770             can_inject = false;
9771         } else
9772             static_call(kvm_x86_enable_smi_window)(vcpu);
9773     }
9774 
9775     if (vcpu->arch.nmi_pending) {
9776         r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9777         if (r < 0)
9778             goto out;
9779         if (r) {
9780             --vcpu->arch.nmi_pending;
9781             vcpu->arch.nmi_injected = true;
9782             static_call(kvm_x86_inject_nmi)(vcpu);
9783             can_inject = false;
9784             WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9785         }
9786         if (vcpu->arch.nmi_pending)
9787             static_call(kvm_x86_enable_nmi_window)(vcpu);
9788     }
9789 
9790     if (kvm_cpu_has_injectable_intr(vcpu)) {
9791         r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9792         if (r < 0)
9793             goto out;
9794         if (r) {
9795             kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9796             static_call(kvm_x86_inject_irq)(vcpu, false);
9797             WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9798         }
9799         if (kvm_cpu_has_injectable_intr(vcpu))
9800             static_call(kvm_x86_enable_irq_window)(vcpu);
9801     }
9802 
9803     if (is_guest_mode(vcpu) &&
9804         kvm_x86_ops.nested_ops->hv_timer_pending &&
9805         kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9806         *req_immediate_exit = true;
9807 
9808     WARN_ON(vcpu->arch.exception.pending);
9809     return 0;
9810 
9811 out:
9812     if (r == -EBUSY) {
9813         *req_immediate_exit = true;
9814         r = 0;
9815     }
9816     return r;
9817 }
9818 
9819 static void process_nmi(struct kvm_vcpu *vcpu)
9820 {
9821     unsigned limit = 2;
9822 
9823     /*
9824      * x86 is limited to one NMI running, and one NMI pending after it.
9825      * If an NMI is already in progress, limit further NMIs to just one.
9826      * Otherwise, allow two (and we'll inject the first one immediately).
9827      */
9828     if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9829         limit = 1;
9830 
9831     vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9832     vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9833     kvm_make_request(KVM_REQ_EVENT, vcpu);
9834 }
9835 
9836 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9837 {
9838     u32 flags = 0;
9839     flags |= seg->g       << 23;
9840     flags |= seg->db      << 22;
9841     flags |= seg->l       << 21;
9842     flags |= seg->avl     << 20;
9843     flags |= seg->present << 15;
9844     flags |= seg->dpl     << 13;
9845     flags |= seg->s       << 12;
9846     flags |= seg->type    << 8;
9847     return flags;
9848 }
9849 
9850 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9851 {
9852     struct kvm_segment seg;
9853     int offset;
9854 
9855     kvm_get_segment(vcpu, &seg, n);
9856     put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9857 
9858     if (n < 3)
9859         offset = 0x7f84 + n * 12;
9860     else
9861         offset = 0x7f2c + (n - 3) * 12;
9862 
9863     put_smstate(u32, buf, offset + 8, seg.base);
9864     put_smstate(u32, buf, offset + 4, seg.limit);
9865     put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9866 }
9867 
9868 #ifdef CONFIG_X86_64
9869 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9870 {
9871     struct kvm_segment seg;
9872     int offset;
9873     u16 flags;
9874 
9875     kvm_get_segment(vcpu, &seg, n);
9876     offset = 0x7e00 + n * 16;
9877 
9878     flags = enter_smm_get_segment_flags(&seg) >> 8;
9879     put_smstate(u16, buf, offset, seg.selector);
9880     put_smstate(u16, buf, offset + 2, flags);
9881     put_smstate(u32, buf, offset + 4, seg.limit);
9882     put_smstate(u64, buf, offset + 8, seg.base);
9883 }
9884 #endif
9885 
9886 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9887 {
9888     struct desc_ptr dt;
9889     struct kvm_segment seg;
9890     unsigned long val;
9891     int i;
9892 
9893     put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9894     put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9895     put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9896     put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9897 
9898     for (i = 0; i < 8; i++)
9899         put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9900 
9901     kvm_get_dr(vcpu, 6, &val);
9902     put_smstate(u32, buf, 0x7fcc, (u32)val);
9903     kvm_get_dr(vcpu, 7, &val);
9904     put_smstate(u32, buf, 0x7fc8, (u32)val);
9905 
9906     kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9907     put_smstate(u32, buf, 0x7fc4, seg.selector);
9908     put_smstate(u32, buf, 0x7f64, seg.base);
9909     put_smstate(u32, buf, 0x7f60, seg.limit);
9910     put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9911 
9912     kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9913     put_smstate(u32, buf, 0x7fc0, seg.selector);
9914     put_smstate(u32, buf, 0x7f80, seg.base);
9915     put_smstate(u32, buf, 0x7f7c, seg.limit);
9916     put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9917 
9918     static_call(kvm_x86_get_gdt)(vcpu, &dt);
9919     put_smstate(u32, buf, 0x7f74, dt.address);
9920     put_smstate(u32, buf, 0x7f70, dt.size);
9921 
9922     static_call(kvm_x86_get_idt)(vcpu, &dt);
9923     put_smstate(u32, buf, 0x7f58, dt.address);
9924     put_smstate(u32, buf, 0x7f54, dt.size);
9925 
9926     for (i = 0; i < 6; i++)
9927         enter_smm_save_seg_32(vcpu, buf, i);
9928 
9929     put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9930 
9931     /* revision id */
9932     put_smstate(u32, buf, 0x7efc, 0x00020000);
9933     put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9934 }
9935 
9936 #ifdef CONFIG_X86_64
9937 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9938 {
9939     struct desc_ptr dt;
9940     struct kvm_segment seg;
9941     unsigned long val;
9942     int i;
9943 
9944     for (i = 0; i < 16; i++)
9945         put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9946 
9947     put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9948     put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9949 
9950     kvm_get_dr(vcpu, 6, &val);
9951     put_smstate(u64, buf, 0x7f68, val);
9952     kvm_get_dr(vcpu, 7, &val);
9953     put_smstate(u64, buf, 0x7f60, val);
9954 
9955     put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9956     put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9957     put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9958 
9959     put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9960 
9961     /* revision id */
9962     put_smstate(u32, buf, 0x7efc, 0x00020064);
9963 
9964     put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9965 
9966     kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9967     put_smstate(u16, buf, 0x7e90, seg.selector);
9968     put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9969     put_smstate(u32, buf, 0x7e94, seg.limit);
9970     put_smstate(u64, buf, 0x7e98, seg.base);
9971 
9972     static_call(kvm_x86_get_idt)(vcpu, &dt);
9973     put_smstate(u32, buf, 0x7e84, dt.size);
9974     put_smstate(u64, buf, 0x7e88, dt.address);
9975 
9976     kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9977     put_smstate(u16, buf, 0x7e70, seg.selector);
9978     put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9979     put_smstate(u32, buf, 0x7e74, seg.limit);
9980     put_smstate(u64, buf, 0x7e78, seg.base);
9981 
9982     static_call(kvm_x86_get_gdt)(vcpu, &dt);
9983     put_smstate(u32, buf, 0x7e64, dt.size);
9984     put_smstate(u64, buf, 0x7e68, dt.address);
9985 
9986     for (i = 0; i < 6; i++)
9987         enter_smm_save_seg_64(vcpu, buf, i);
9988 }
9989 #endif
9990 
9991 static void enter_smm(struct kvm_vcpu *vcpu)
9992 {
9993     struct kvm_segment cs, ds;
9994     struct desc_ptr dt;
9995     unsigned long cr0;
9996     char buf[512];
9997 
9998     memset(buf, 0, 512);
9999 #ifdef CONFIG_X86_64
10000     if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10001         enter_smm_save_state_64(vcpu, buf);
10002     else
10003 #endif
10004         enter_smm_save_state_32(vcpu, buf);
10005 
10006     /*
10007      * Give enter_smm() a chance to make ISA-specific changes to the vCPU
10008      * state (e.g. leave guest mode) after we've saved the state into the
10009      * SMM state-save area.
10010      */
10011     static_call(kvm_x86_enter_smm)(vcpu, buf);
10012 
10013     kvm_smm_changed(vcpu, true);
10014     kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
10015 
10016     if (static_call(kvm_x86_get_nmi_mask)(vcpu))
10017         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
10018     else
10019         static_call(kvm_x86_set_nmi_mask)(vcpu, true);
10020 
10021     kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10022     kvm_rip_write(vcpu, 0x8000);
10023 
10024     cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
10025     static_call(kvm_x86_set_cr0)(vcpu, cr0);
10026     vcpu->arch.cr0 = cr0;
10027 
10028     static_call(kvm_x86_set_cr4)(vcpu, 0);
10029 
10030     /* Undocumented: IDT limit is set to zero on entry to SMM.  */
10031     dt.address = dt.size = 0;
10032     static_call(kvm_x86_set_idt)(vcpu, &dt);
10033 
10034     kvm_set_dr(vcpu, 7, DR7_FIXED_1);
10035 
10036     cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
10037     cs.base = vcpu->arch.smbase;
10038 
10039     ds.selector = 0;
10040     ds.base = 0;
10041 
10042     cs.limit    = ds.limit = 0xffffffff;
10043     cs.type     = ds.type = 0x3;
10044     cs.dpl      = ds.dpl = 0;
10045     cs.db       = ds.db = 0;
10046     cs.s        = ds.s = 1;
10047     cs.l        = ds.l = 0;
10048     cs.g        = ds.g = 1;
10049     cs.avl      = ds.avl = 0;
10050     cs.present  = ds.present = 1;
10051     cs.unusable = ds.unusable = 0;
10052     cs.padding  = ds.padding = 0;
10053 
10054     kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10055     kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
10056     kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
10057     kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
10058     kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
10059     kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
10060 
10061 #ifdef CONFIG_X86_64
10062     if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10063         static_call(kvm_x86_set_efer)(vcpu, 0);
10064 #endif
10065 
10066     kvm_update_cpuid_runtime(vcpu);
10067     kvm_mmu_reset_context(vcpu);
10068 }
10069 
10070 static void process_smi(struct kvm_vcpu *vcpu)
10071 {
10072     vcpu->arch.smi_pending = true;
10073     kvm_make_request(KVM_REQ_EVENT, vcpu);
10074 }
10075 
10076 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10077                        unsigned long *vcpu_bitmap)
10078 {
10079     kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10080 }
10081 
10082 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10083 {
10084     kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10085 }
10086 
10087 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10088 {
10089     struct kvm_lapic *apic = vcpu->arch.apic;
10090     bool activate;
10091 
10092     if (!lapic_in_kernel(vcpu))
10093         return;
10094 
10095     down_read(&vcpu->kvm->arch.apicv_update_lock);
10096     preempt_disable();
10097 
10098     /* Do not activate APICV when APIC is disabled */
10099     activate = kvm_vcpu_apicv_activated(vcpu) &&
10100            (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10101 
10102     if (apic->apicv_active == activate)
10103         goto out;
10104 
10105     apic->apicv_active = activate;
10106     kvm_apic_update_apicv(vcpu);
10107     static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10108 
10109     /*
10110      * When APICv gets disabled, we may still have injected interrupts
10111      * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10112      * still active when the interrupt got accepted. Make sure
10113      * inject_pending_event() is called to check for that.
10114      */
10115     if (!apic->apicv_active)
10116         kvm_make_request(KVM_REQ_EVENT, vcpu);
10117 
10118 out:
10119     preempt_enable();
10120     up_read(&vcpu->kvm->arch.apicv_update_lock);
10121 }
10122 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10123 
10124 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10125                       enum kvm_apicv_inhibit reason, bool set)
10126 {
10127     unsigned long old, new;
10128 
10129     lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10130 
10131     if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10132         return;
10133 
10134     old = new = kvm->arch.apicv_inhibit_reasons;
10135 
10136     set_or_clear_apicv_inhibit(&new, reason, set);
10137 
10138     if (!!old != !!new) {
10139         /*
10140          * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10141          * false positives in the sanity check WARN in svm_vcpu_run().
10142          * This task will wait for all vCPUs to ack the kick IRQ before
10143          * updating apicv_inhibit_reasons, and all other vCPUs will
10144          * block on acquiring apicv_update_lock so that vCPUs can't
10145          * redo svm_vcpu_run() without seeing the new inhibit state.
10146          *
10147          * Note, holding apicv_update_lock and taking it in the read
10148          * side (handling the request) also prevents other vCPUs from
10149          * servicing the request with a stale apicv_inhibit_reasons.
10150          */
10151         kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10152         kvm->arch.apicv_inhibit_reasons = new;
10153         if (new) {
10154             unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10155             kvm_zap_gfn_range(kvm, gfn, gfn+1);
10156         }
10157     } else {
10158         kvm->arch.apicv_inhibit_reasons = new;
10159     }
10160 }
10161 
10162 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10163                     enum kvm_apicv_inhibit reason, bool set)
10164 {
10165     if (!enable_apicv)
10166         return;
10167 
10168     down_write(&kvm->arch.apicv_update_lock);
10169     __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10170     up_write(&kvm->arch.apicv_update_lock);
10171 }
10172 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10173 
10174 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10175 {
10176     if (!kvm_apic_present(vcpu))
10177         return;
10178 
10179     bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10180 
10181     if (irqchip_split(vcpu->kvm))
10182         kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10183     else {
10184         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10185         if (ioapic_in_kernel(vcpu->kvm))
10186             kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10187     }
10188 
10189     if (is_guest_mode(vcpu))
10190         vcpu->arch.load_eoi_exitmap_pending = true;
10191     else
10192         kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10193 }
10194 
10195 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10196 {
10197     u64 eoi_exit_bitmap[4];
10198 
10199     if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10200         return;
10201 
10202     if (to_hv_vcpu(vcpu)) {
10203         bitmap_or((ulong *)eoi_exit_bitmap,
10204               vcpu->arch.ioapic_handled_vectors,
10205               to_hv_synic(vcpu)->vec_bitmap, 256);
10206         static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10207         return;
10208     }
10209 
10210     static_call_cond(kvm_x86_load_eoi_exitmap)(
10211         vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10212 }
10213 
10214 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10215                         unsigned long start, unsigned long end)
10216 {
10217     unsigned long apic_address;
10218 
10219     /*
10220      * The physical address of apic access page is stored in the VMCS.
10221      * Update it when it becomes invalid.
10222      */
10223     apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10224     if (start <= apic_address && apic_address < end)
10225         kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10226 }
10227 
10228 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10229 {
10230     static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10231 }
10232 
10233 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10234 {
10235     if (!lapic_in_kernel(vcpu))
10236         return;
10237 
10238     static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10239 }
10240 
10241 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10242 {
10243     smp_send_reschedule(vcpu->cpu);
10244 }
10245 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10246 
10247 /*
10248  * Called within kvm->srcu read side.
10249  * Returns 1 to let vcpu_run() continue the guest execution loop without
10250  * exiting to the userspace.  Otherwise, the value will be returned to the
10251  * userspace.
10252  */
10253 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10254 {
10255     int r;
10256     bool req_int_win =
10257         dm_request_for_irq_injection(vcpu) &&
10258         kvm_cpu_accept_dm_intr(vcpu);
10259     fastpath_t exit_fastpath;
10260 
10261     bool req_immediate_exit = false;
10262 
10263     /* Forbid vmenter if vcpu dirty ring is soft-full */
10264     if (unlikely(vcpu->kvm->dirty_ring_size &&
10265              kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10266         vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10267         trace_kvm_dirty_ring_exit(vcpu);
10268         r = 0;
10269         goto out;
10270     }
10271 
10272     if (kvm_request_pending(vcpu)) {
10273         if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10274             r = -EIO;
10275             goto out;
10276         }
10277         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10278             if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10279                 r = 0;
10280                 goto out;
10281             }
10282         }
10283         if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10284             kvm_mmu_free_obsolete_roots(vcpu);
10285         if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10286             __kvm_migrate_timers(vcpu);
10287         if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10288             kvm_update_masterclock(vcpu->kvm);
10289         if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10290             kvm_gen_kvmclock_update(vcpu);
10291         if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10292             r = kvm_guest_time_update(vcpu);
10293             if (unlikely(r))
10294                 goto out;
10295         }
10296         if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10297             kvm_mmu_sync_roots(vcpu);
10298         if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10299             kvm_mmu_load_pgd(vcpu);
10300         if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10301             kvm_vcpu_flush_tlb_all(vcpu);
10302 
10303             /* Flushing all ASIDs flushes the current ASID... */
10304             kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10305         }
10306         kvm_service_local_tlb_flush_requests(vcpu);
10307 
10308         if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10309             vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10310             r = 0;
10311             goto out;
10312         }
10313         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10314             if (is_guest_mode(vcpu)) {
10315                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10316             } else {
10317                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10318                 vcpu->mmio_needed = 0;
10319                 r = 0;
10320                 goto out;
10321             }
10322         }
10323         if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10324             /* Page is swapped out. Do synthetic halt */
10325             vcpu->arch.apf.halted = true;
10326             r = 1;
10327             goto out;
10328         }
10329         if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10330             record_steal_time(vcpu);
10331         if (kvm_check_request(KVM_REQ_SMI, vcpu))
10332             process_smi(vcpu);
10333         if (kvm_check_request(KVM_REQ_NMI, vcpu))
10334             process_nmi(vcpu);
10335         if (kvm_check_request(KVM_REQ_PMU, vcpu))
10336             kvm_pmu_handle_event(vcpu);
10337         if (kvm_check_request(KVM_REQ_PMI, vcpu))
10338             kvm_pmu_deliver_pmi(vcpu);
10339         if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10340             BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10341             if (test_bit(vcpu->arch.pending_ioapic_eoi,
10342                      vcpu->arch.ioapic_handled_vectors)) {
10343                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10344                 vcpu->run->eoi.vector =
10345                         vcpu->arch.pending_ioapic_eoi;
10346                 r = 0;
10347                 goto out;
10348             }
10349         }
10350         if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10351             vcpu_scan_ioapic(vcpu);
10352         if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10353             vcpu_load_eoi_exitmap(vcpu);
10354         if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10355             kvm_vcpu_reload_apic_access_page(vcpu);
10356         if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10357             vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10358             vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10359             vcpu->run->system_event.ndata = 0;
10360             r = 0;
10361             goto out;
10362         }
10363         if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10364             vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10365             vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10366             vcpu->run->system_event.ndata = 0;
10367             r = 0;
10368             goto out;
10369         }
10370         if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10371             struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10372 
10373             vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10374             vcpu->run->hyperv = hv_vcpu->exit;
10375             r = 0;
10376             goto out;
10377         }
10378 
10379         /*
10380          * KVM_REQ_HV_STIMER has to be processed after
10381          * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10382          * depend on the guest clock being up-to-date
10383          */
10384         if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10385             kvm_hv_process_stimers(vcpu);
10386         if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10387             kvm_vcpu_update_apicv(vcpu);
10388         if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10389             kvm_check_async_pf_completion(vcpu);
10390         if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10391             static_call(kvm_x86_msr_filter_changed)(vcpu);
10392 
10393         if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10394             static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10395     }
10396 
10397     if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10398         kvm_xen_has_interrupt(vcpu)) {
10399         ++vcpu->stat.req_event;
10400         r = kvm_apic_accept_events(vcpu);
10401         if (r < 0) {
10402             r = 0;
10403             goto out;
10404         }
10405         if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10406             r = 1;
10407             goto out;
10408         }
10409 
10410         r = inject_pending_event(vcpu, &req_immediate_exit);
10411         if (r < 0) {
10412             r = 0;
10413             goto out;
10414         }
10415         if (req_int_win)
10416             static_call(kvm_x86_enable_irq_window)(vcpu);
10417 
10418         if (kvm_lapic_enabled(vcpu)) {
10419             update_cr8_intercept(vcpu);
10420             kvm_lapic_sync_to_vapic(vcpu);
10421         }
10422     }
10423 
10424     r = kvm_mmu_reload(vcpu);
10425     if (unlikely(r)) {
10426         goto cancel_injection;
10427     }
10428 
10429     preempt_disable();
10430 
10431     static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10432 
10433     /*
10434      * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10435      * IPI are then delayed after guest entry, which ensures that they
10436      * result in virtual interrupt delivery.
10437      */
10438     local_irq_disable();
10439 
10440     /* Store vcpu->apicv_active before vcpu->mode.  */
10441     smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10442 
10443     kvm_vcpu_srcu_read_unlock(vcpu);
10444 
10445     /*
10446      * 1) We should set ->mode before checking ->requests.  Please see
10447      * the comment in kvm_vcpu_exiting_guest_mode().
10448      *
10449      * 2) For APICv, we should set ->mode before checking PID.ON. This
10450      * pairs with the memory barrier implicit in pi_test_and_set_on
10451      * (see vmx_deliver_posted_interrupt).
10452      *
10453      * 3) This also orders the write to mode from any reads to the page
10454      * tables done while the VCPU is running.  Please see the comment
10455      * in kvm_flush_remote_tlbs.
10456      */
10457     smp_mb__after_srcu_read_unlock();
10458 
10459     /*
10460      * Process pending posted interrupts to handle the case where the
10461      * notification IRQ arrived in the host, or was never sent (because the
10462      * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10463      * status, KVM doesn't update assigned devices when APICv is inhibited,
10464      * i.e. they can post interrupts even if APICv is temporarily disabled.
10465      */
10466     if (kvm_lapic_enabled(vcpu))
10467         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10468 
10469     if (kvm_vcpu_exit_request(vcpu)) {
10470         vcpu->mode = OUTSIDE_GUEST_MODE;
10471         smp_wmb();
10472         local_irq_enable();
10473         preempt_enable();
10474         kvm_vcpu_srcu_read_lock(vcpu);
10475         r = 1;
10476         goto cancel_injection;
10477     }
10478 
10479     if (req_immediate_exit) {
10480         kvm_make_request(KVM_REQ_EVENT, vcpu);
10481         static_call(kvm_x86_request_immediate_exit)(vcpu);
10482     }
10483 
10484     fpregs_assert_state_consistent();
10485     if (test_thread_flag(TIF_NEED_FPU_LOAD))
10486         switch_fpu_return();
10487 
10488     if (vcpu->arch.guest_fpu.xfd_err)
10489         wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10490 
10491     if (unlikely(vcpu->arch.switch_db_regs)) {
10492         set_debugreg(0, 7);
10493         set_debugreg(vcpu->arch.eff_db[0], 0);
10494         set_debugreg(vcpu->arch.eff_db[1], 1);
10495         set_debugreg(vcpu->arch.eff_db[2], 2);
10496         set_debugreg(vcpu->arch.eff_db[3], 3);
10497     } else if (unlikely(hw_breakpoint_active())) {
10498         set_debugreg(0, 7);
10499     }
10500 
10501     guest_timing_enter_irqoff();
10502 
10503     for (;;) {
10504         /*
10505          * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10506          * update must kick and wait for all vCPUs before toggling the
10507          * per-VM state, and responsing vCPUs must wait for the update
10508          * to complete before servicing KVM_REQ_APICV_UPDATE.
10509          */
10510         WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10511                  (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10512 
10513         exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10514         if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10515             break;
10516 
10517         if (kvm_lapic_enabled(vcpu))
10518             static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10519 
10520         if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10521             exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10522             break;
10523         }
10524     }
10525 
10526     /*
10527      * Do this here before restoring debug registers on the host.  And
10528      * since we do this before handling the vmexit, a DR access vmexit
10529      * can (a) read the correct value of the debug registers, (b) set
10530      * KVM_DEBUGREG_WONT_EXIT again.
10531      */
10532     if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10533         WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10534         static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10535         kvm_update_dr0123(vcpu);
10536         kvm_update_dr7(vcpu);
10537     }
10538 
10539     /*
10540      * If the guest has used debug registers, at least dr7
10541      * will be disabled while returning to the host.
10542      * If we don't have active breakpoints in the host, we don't
10543      * care about the messed up debug address registers. But if
10544      * we have some of them active, restore the old state.
10545      */
10546     if (hw_breakpoint_active())
10547         hw_breakpoint_restore();
10548 
10549     vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10550     vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10551 
10552     vcpu->mode = OUTSIDE_GUEST_MODE;
10553     smp_wmb();
10554 
10555     /*
10556      * Sync xfd before calling handle_exit_irqoff() which may
10557      * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10558      * in #NM irqoff handler).
10559      */
10560     if (vcpu->arch.xfd_no_write_intercept)
10561         fpu_sync_guest_vmexit_xfd_state();
10562 
10563     static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10564 
10565     if (vcpu->arch.guest_fpu.xfd_err)
10566         wrmsrl(MSR_IA32_XFD_ERR, 0);
10567 
10568     /*
10569      * Consume any pending interrupts, including the possible source of
10570      * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10571      * An instruction is required after local_irq_enable() to fully unblock
10572      * interrupts on processors that implement an interrupt shadow, the
10573      * stat.exits increment will do nicely.
10574      */
10575     kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10576     local_irq_enable();
10577     ++vcpu->stat.exits;
10578     local_irq_disable();
10579     kvm_after_interrupt(vcpu);
10580 
10581     /*
10582      * Wait until after servicing IRQs to account guest time so that any
10583      * ticks that occurred while running the guest are properly accounted
10584      * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10585      * of accounting via context tracking, but the loss of accuracy is
10586      * acceptable for all known use cases.
10587      */
10588     guest_timing_exit_irqoff();
10589 
10590     local_irq_enable();
10591     preempt_enable();
10592 
10593     kvm_vcpu_srcu_read_lock(vcpu);
10594 
10595     /*
10596      * Profile KVM exit RIPs:
10597      */
10598     if (unlikely(prof_on == KVM_PROFILING)) {
10599         unsigned long rip = kvm_rip_read(vcpu);
10600         profile_hit(KVM_PROFILING, (void *)rip);
10601     }
10602 
10603     if (unlikely(vcpu->arch.tsc_always_catchup))
10604         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10605 
10606     if (vcpu->arch.apic_attention)
10607         kvm_lapic_sync_from_vapic(vcpu);
10608 
10609     r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10610     return r;
10611 
10612 cancel_injection:
10613     if (req_immediate_exit)
10614         kvm_make_request(KVM_REQ_EVENT, vcpu);
10615     static_call(kvm_x86_cancel_injection)(vcpu);
10616     if (unlikely(vcpu->arch.apic_attention))
10617         kvm_lapic_sync_from_vapic(vcpu);
10618 out:
10619     return r;
10620 }
10621 
10622 /* Called within kvm->srcu read side.  */
10623 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10624 {
10625     bool hv_timer;
10626 
10627     if (!kvm_arch_vcpu_runnable(vcpu)) {
10628         /*
10629          * Switch to the software timer before halt-polling/blocking as
10630          * the guest's timer may be a break event for the vCPU, and the
10631          * hypervisor timer runs only when the CPU is in guest mode.
10632          * Switch before halt-polling so that KVM recognizes an expired
10633          * timer before blocking.
10634          */
10635         hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10636         if (hv_timer)
10637             kvm_lapic_switch_to_sw_timer(vcpu);
10638 
10639         kvm_vcpu_srcu_read_unlock(vcpu);
10640         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10641             kvm_vcpu_halt(vcpu);
10642         else
10643             kvm_vcpu_block(vcpu);
10644         kvm_vcpu_srcu_read_lock(vcpu);
10645 
10646         if (hv_timer)
10647             kvm_lapic_switch_to_hv_timer(vcpu);
10648 
10649         if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10650             return 1;
10651     }
10652 
10653     if (kvm_apic_accept_events(vcpu) < 0)
10654         return 0;
10655     switch(vcpu->arch.mp_state) {
10656     case KVM_MP_STATE_HALTED:
10657     case KVM_MP_STATE_AP_RESET_HOLD:
10658         vcpu->arch.pv.pv_unhalted = false;
10659         vcpu->arch.mp_state =
10660             KVM_MP_STATE_RUNNABLE;
10661         fallthrough;
10662     case KVM_MP_STATE_RUNNABLE:
10663         vcpu->arch.apf.halted = false;
10664         break;
10665     case KVM_MP_STATE_INIT_RECEIVED:
10666         break;
10667     default:
10668         WARN_ON_ONCE(1);
10669         break;
10670     }
10671     return 1;
10672 }
10673 
10674 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10675 {
10676     if (is_guest_mode(vcpu))
10677         kvm_check_nested_events(vcpu);
10678 
10679     return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10680         !vcpu->arch.apf.halted);
10681 }
10682 
10683 /* Called within kvm->srcu read side.  */
10684 static int vcpu_run(struct kvm_vcpu *vcpu)
10685 {
10686     int r;
10687 
10688     vcpu->arch.l1tf_flush_l1d = true;
10689 
10690     for (;;) {
10691         /*
10692          * If another guest vCPU requests a PV TLB flush in the middle
10693          * of instruction emulation, the rest of the emulation could
10694          * use a stale page translation. Assume that any code after
10695          * this point can start executing an instruction.
10696          */
10697         vcpu->arch.at_instruction_boundary = false;
10698         if (kvm_vcpu_running(vcpu)) {
10699             r = vcpu_enter_guest(vcpu);
10700         } else {
10701             r = vcpu_block(vcpu);
10702         }
10703 
10704         if (r <= 0)
10705             break;
10706 
10707         kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10708         if (kvm_xen_has_pending_events(vcpu))
10709             kvm_xen_inject_pending_events(vcpu);
10710 
10711         if (kvm_cpu_has_pending_timer(vcpu))
10712             kvm_inject_pending_timer_irqs(vcpu);
10713 
10714         if (dm_request_for_irq_injection(vcpu) &&
10715             kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10716             r = 0;
10717             vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10718             ++vcpu->stat.request_irq_exits;
10719             break;
10720         }
10721 
10722         if (__xfer_to_guest_mode_work_pending()) {
10723             kvm_vcpu_srcu_read_unlock(vcpu);
10724             r = xfer_to_guest_mode_handle_work(vcpu);
10725             kvm_vcpu_srcu_read_lock(vcpu);
10726             if (r)
10727                 return r;
10728         }
10729     }
10730 
10731     return r;
10732 }
10733 
10734 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10735 {
10736     return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10737 }
10738 
10739 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10740 {
10741     BUG_ON(!vcpu->arch.pio.count);
10742 
10743     return complete_emulated_io(vcpu);
10744 }
10745 
10746 /*
10747  * Implements the following, as a state machine:
10748  *
10749  * read:
10750  *   for each fragment
10751  *     for each mmio piece in the fragment
10752  *       write gpa, len
10753  *       exit
10754  *       copy data
10755  *   execute insn
10756  *
10757  * write:
10758  *   for each fragment
10759  *     for each mmio piece in the fragment
10760  *       write gpa, len
10761  *       copy data
10762  *       exit
10763  */
10764 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10765 {
10766     struct kvm_run *run = vcpu->run;
10767     struct kvm_mmio_fragment *frag;
10768     unsigned len;
10769 
10770     BUG_ON(!vcpu->mmio_needed);
10771 
10772     /* Complete previous fragment */
10773     frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10774     len = min(8u, frag->len);
10775     if (!vcpu->mmio_is_write)
10776         memcpy(frag->data, run->mmio.data, len);
10777 
10778     if (frag->len <= 8) {
10779         /* Switch to the next fragment. */
10780         frag++;
10781         vcpu->mmio_cur_fragment++;
10782     } else {
10783         /* Go forward to the next mmio piece. */
10784         frag->data += len;
10785         frag->gpa += len;
10786         frag->len -= len;
10787     }
10788 
10789     if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10790         vcpu->mmio_needed = 0;
10791 
10792         /* FIXME: return into emulator if single-stepping.  */
10793         if (vcpu->mmio_is_write)
10794             return 1;
10795         vcpu->mmio_read_completed = 1;
10796         return complete_emulated_io(vcpu);
10797     }
10798 
10799     run->exit_reason = KVM_EXIT_MMIO;
10800     run->mmio.phys_addr = frag->gpa;
10801     if (vcpu->mmio_is_write)
10802         memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10803     run->mmio.len = min(8u, frag->len);
10804     run->mmio.is_write = vcpu->mmio_is_write;
10805     vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10806     return 0;
10807 }
10808 
10809 /* Swap (qemu) user FPU context for the guest FPU context. */
10810 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10811 {
10812     /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10813     fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10814     trace_kvm_fpu(1);
10815 }
10816 
10817 /* When vcpu_run ends, restore user space FPU context. */
10818 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10819 {
10820     fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10821     ++vcpu->stat.fpu_reload;
10822     trace_kvm_fpu(0);
10823 }
10824 
10825 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10826 {
10827     struct kvm_run *kvm_run = vcpu->run;
10828     int r;
10829 
10830     vcpu_load(vcpu);
10831     kvm_sigset_activate(vcpu);
10832     kvm_run->flags = 0;
10833     kvm_load_guest_fpu(vcpu);
10834 
10835     kvm_vcpu_srcu_read_lock(vcpu);
10836     if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10837         if (kvm_run->immediate_exit) {
10838             r = -EINTR;
10839             goto out;
10840         }
10841         /*
10842          * It should be impossible for the hypervisor timer to be in
10843          * use before KVM has ever run the vCPU.
10844          */
10845         WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10846 
10847         kvm_vcpu_srcu_read_unlock(vcpu);
10848         kvm_vcpu_block(vcpu);
10849         kvm_vcpu_srcu_read_lock(vcpu);
10850 
10851         if (kvm_apic_accept_events(vcpu) < 0) {
10852             r = 0;
10853             goto out;
10854         }
10855         kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10856         r = -EAGAIN;
10857         if (signal_pending(current)) {
10858             r = -EINTR;
10859             kvm_run->exit_reason = KVM_EXIT_INTR;
10860             ++vcpu->stat.signal_exits;
10861         }
10862         goto out;
10863     }
10864 
10865     if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10866         (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10867         r = -EINVAL;
10868         goto out;
10869     }
10870 
10871     if (kvm_run->kvm_dirty_regs) {
10872         r = sync_regs(vcpu);
10873         if (r != 0)
10874             goto out;
10875     }
10876 
10877     /* re-sync apic's tpr */
10878     if (!lapic_in_kernel(vcpu)) {
10879         if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10880             r = -EINVAL;
10881             goto out;
10882         }
10883     }
10884 
10885     if (unlikely(vcpu->arch.complete_userspace_io)) {
10886         int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10887         vcpu->arch.complete_userspace_io = NULL;
10888         r = cui(vcpu);
10889         if (r <= 0)
10890             goto out;
10891     } else {
10892         WARN_ON_ONCE(vcpu->arch.pio.count);
10893         WARN_ON_ONCE(vcpu->mmio_needed);
10894     }
10895 
10896     if (kvm_run->immediate_exit) {
10897         r = -EINTR;
10898         goto out;
10899     }
10900 
10901     r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10902     if (r <= 0)
10903         goto out;
10904 
10905     r = vcpu_run(vcpu);
10906 
10907 out:
10908     kvm_put_guest_fpu(vcpu);
10909     if (kvm_run->kvm_valid_regs)
10910         store_regs(vcpu);
10911     post_kvm_run_save(vcpu);
10912     kvm_vcpu_srcu_read_unlock(vcpu);
10913 
10914     kvm_sigset_deactivate(vcpu);
10915     vcpu_put(vcpu);
10916     return r;
10917 }
10918 
10919 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10920 {
10921     if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10922         /*
10923          * We are here if userspace calls get_regs() in the middle of
10924          * instruction emulation. Registers state needs to be copied
10925          * back from emulation context to vcpu. Userspace shouldn't do
10926          * that usually, but some bad designed PV devices (vmware
10927          * backdoor interface) need this to work
10928          */
10929         emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10930         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10931     }
10932     regs->rax = kvm_rax_read(vcpu);
10933     regs->rbx = kvm_rbx_read(vcpu);
10934     regs->rcx = kvm_rcx_read(vcpu);
10935     regs->rdx = kvm_rdx_read(vcpu);
10936     regs->rsi = kvm_rsi_read(vcpu);
10937     regs->rdi = kvm_rdi_read(vcpu);
10938     regs->rsp = kvm_rsp_read(vcpu);
10939     regs->rbp = kvm_rbp_read(vcpu);
10940 #ifdef CONFIG_X86_64
10941     regs->r8 = kvm_r8_read(vcpu);
10942     regs->r9 = kvm_r9_read(vcpu);
10943     regs->r10 = kvm_r10_read(vcpu);
10944     regs->r11 = kvm_r11_read(vcpu);
10945     regs->r12 = kvm_r12_read(vcpu);
10946     regs->r13 = kvm_r13_read(vcpu);
10947     regs->r14 = kvm_r14_read(vcpu);
10948     regs->r15 = kvm_r15_read(vcpu);
10949 #endif
10950 
10951     regs->rip = kvm_rip_read(vcpu);
10952     regs->rflags = kvm_get_rflags(vcpu);
10953 }
10954 
10955 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10956 {
10957     vcpu_load(vcpu);
10958     __get_regs(vcpu, regs);
10959     vcpu_put(vcpu);
10960     return 0;
10961 }
10962 
10963 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10964 {
10965     vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10966     vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10967 
10968     kvm_rax_write(vcpu, regs->rax);
10969     kvm_rbx_write(vcpu, regs->rbx);
10970     kvm_rcx_write(vcpu, regs->rcx);
10971     kvm_rdx_write(vcpu, regs->rdx);
10972     kvm_rsi_write(vcpu, regs->rsi);
10973     kvm_rdi_write(vcpu, regs->rdi);
10974     kvm_rsp_write(vcpu, regs->rsp);
10975     kvm_rbp_write(vcpu, regs->rbp);
10976 #ifdef CONFIG_X86_64
10977     kvm_r8_write(vcpu, regs->r8);
10978     kvm_r9_write(vcpu, regs->r9);
10979     kvm_r10_write(vcpu, regs->r10);
10980     kvm_r11_write(vcpu, regs->r11);
10981     kvm_r12_write(vcpu, regs->r12);
10982     kvm_r13_write(vcpu, regs->r13);
10983     kvm_r14_write(vcpu, regs->r14);
10984     kvm_r15_write(vcpu, regs->r15);
10985 #endif
10986 
10987     kvm_rip_write(vcpu, regs->rip);
10988     kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10989 
10990     vcpu->arch.exception.pending = false;
10991 
10992     kvm_make_request(KVM_REQ_EVENT, vcpu);
10993 }
10994 
10995 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10996 {
10997     vcpu_load(vcpu);
10998     __set_regs(vcpu, regs);
10999     vcpu_put(vcpu);
11000     return 0;
11001 }
11002 
11003 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11004 {
11005     struct desc_ptr dt;
11006 
11007     if (vcpu->arch.guest_state_protected)
11008         goto skip_protected_regs;
11009 
11010     kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11011     kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11012     kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11013     kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11014     kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11015     kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11016 
11017     kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11018     kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11019 
11020     static_call(kvm_x86_get_idt)(vcpu, &dt);
11021     sregs->idt.limit = dt.size;
11022     sregs->idt.base = dt.address;
11023     static_call(kvm_x86_get_gdt)(vcpu, &dt);
11024     sregs->gdt.limit = dt.size;
11025     sregs->gdt.base = dt.address;
11026 
11027     sregs->cr2 = vcpu->arch.cr2;
11028     sregs->cr3 = kvm_read_cr3(vcpu);
11029 
11030 skip_protected_regs:
11031     sregs->cr0 = kvm_read_cr0(vcpu);
11032     sregs->cr4 = kvm_read_cr4(vcpu);
11033     sregs->cr8 = kvm_get_cr8(vcpu);
11034     sregs->efer = vcpu->arch.efer;
11035     sregs->apic_base = kvm_get_apic_base(vcpu);
11036 }
11037 
11038 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11039 {
11040     __get_sregs_common(vcpu, sregs);
11041 
11042     if (vcpu->arch.guest_state_protected)
11043         return;
11044 
11045     if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11046         set_bit(vcpu->arch.interrupt.nr,
11047             (unsigned long *)sregs->interrupt_bitmap);
11048 }
11049 
11050 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11051 {
11052     int i;
11053 
11054     __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11055 
11056     if (vcpu->arch.guest_state_protected)
11057         return;
11058 
11059     if (is_pae_paging(vcpu)) {
11060         for (i = 0 ; i < 4 ; i++)
11061             sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11062         sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11063     }
11064 }
11065 
11066 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11067                   struct kvm_sregs *sregs)
11068 {
11069     vcpu_load(vcpu);
11070     __get_sregs(vcpu, sregs);
11071     vcpu_put(vcpu);
11072     return 0;
11073 }
11074 
11075 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11076                     struct kvm_mp_state *mp_state)
11077 {
11078     int r;
11079 
11080     vcpu_load(vcpu);
11081     if (kvm_mpx_supported())
11082         kvm_load_guest_fpu(vcpu);
11083 
11084     r = kvm_apic_accept_events(vcpu);
11085     if (r < 0)
11086         goto out;
11087     r = 0;
11088 
11089     if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11090          vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11091         vcpu->arch.pv.pv_unhalted)
11092         mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11093     else
11094         mp_state->mp_state = vcpu->arch.mp_state;
11095 
11096 out:
11097     if (kvm_mpx_supported())
11098         kvm_put_guest_fpu(vcpu);
11099     vcpu_put(vcpu);
11100     return r;
11101 }
11102 
11103 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11104                     struct kvm_mp_state *mp_state)
11105 {
11106     int ret = -EINVAL;
11107 
11108     vcpu_load(vcpu);
11109 
11110     switch (mp_state->mp_state) {
11111     case KVM_MP_STATE_UNINITIALIZED:
11112     case KVM_MP_STATE_HALTED:
11113     case KVM_MP_STATE_AP_RESET_HOLD:
11114     case KVM_MP_STATE_INIT_RECEIVED:
11115     case KVM_MP_STATE_SIPI_RECEIVED:
11116         if (!lapic_in_kernel(vcpu))
11117             goto out;
11118         break;
11119 
11120     case KVM_MP_STATE_RUNNABLE:
11121         break;
11122 
11123     default:
11124         goto out;
11125     }
11126 
11127     /*
11128      * KVM_MP_STATE_INIT_RECEIVED means the processor is in
11129      * INIT state; latched init should be reported using
11130      * KVM_SET_VCPU_EVENTS, so reject it here.
11131      */
11132     if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
11133         (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11134          mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11135         goto out;
11136 
11137     if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11138         vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11139         set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11140     } else
11141         vcpu->arch.mp_state = mp_state->mp_state;
11142     kvm_make_request(KVM_REQ_EVENT, vcpu);
11143 
11144     ret = 0;
11145 out:
11146     vcpu_put(vcpu);
11147     return ret;
11148 }
11149 
11150 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11151             int reason, bool has_error_code, u32 error_code)
11152 {
11153     struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11154     int ret;
11155 
11156     init_emulate_ctxt(vcpu);
11157 
11158     ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11159                    has_error_code, error_code);
11160     if (ret) {
11161         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11162         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11163         vcpu->run->internal.ndata = 0;
11164         return 0;
11165     }
11166 
11167     kvm_rip_write(vcpu, ctxt->eip);
11168     kvm_set_rflags(vcpu, ctxt->eflags);
11169     return 1;
11170 }
11171 EXPORT_SYMBOL_GPL(kvm_task_switch);
11172 
11173 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11174 {
11175     if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11176         /*
11177          * When EFER.LME and CR0.PG are set, the processor is in
11178          * 64-bit mode (though maybe in a 32-bit code segment).
11179          * CR4.PAE and EFER.LMA must be set.
11180          */
11181         if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11182             return false;
11183         if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11184             return false;
11185     } else {
11186         /*
11187          * Not in 64-bit mode: EFER.LMA is clear and the code
11188          * segment cannot be 64-bit.
11189          */
11190         if (sregs->efer & EFER_LMA || sregs->cs.l)
11191             return false;
11192     }
11193 
11194     return kvm_is_valid_cr4(vcpu, sregs->cr4);
11195 }
11196 
11197 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11198         int *mmu_reset_needed, bool update_pdptrs)
11199 {
11200     struct msr_data apic_base_msr;
11201     int idx;
11202     struct desc_ptr dt;
11203 
11204     if (!kvm_is_valid_sregs(vcpu, sregs))
11205         return -EINVAL;
11206 
11207     apic_base_msr.data = sregs->apic_base;
11208     apic_base_msr.host_initiated = true;
11209     if (kvm_set_apic_base(vcpu, &apic_base_msr))
11210         return -EINVAL;
11211 
11212     if (vcpu->arch.guest_state_protected)
11213         return 0;
11214 
11215     dt.size = sregs->idt.limit;
11216     dt.address = sregs->idt.base;
11217     static_call(kvm_x86_set_idt)(vcpu, &dt);
11218     dt.size = sregs->gdt.limit;
11219     dt.address = sregs->gdt.base;
11220     static_call(kvm_x86_set_gdt)(vcpu, &dt);
11221 
11222     vcpu->arch.cr2 = sregs->cr2;
11223     *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11224     vcpu->arch.cr3 = sregs->cr3;
11225     kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11226     static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11227 
11228     kvm_set_cr8(vcpu, sregs->cr8);
11229 
11230     *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11231     static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11232 
11233     *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11234     static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11235     vcpu->arch.cr0 = sregs->cr0;
11236 
11237     *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11238     static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11239 
11240     if (update_pdptrs) {
11241         idx = srcu_read_lock(&vcpu->kvm->srcu);
11242         if (is_pae_paging(vcpu)) {
11243             load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11244             *mmu_reset_needed = 1;
11245         }
11246         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11247     }
11248 
11249     kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11250     kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11251     kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11252     kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11253     kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11254     kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11255 
11256     kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11257     kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11258 
11259     update_cr8_intercept(vcpu);
11260 
11261     /* Older userspace won't unhalt the vcpu on reset. */
11262     if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11263         sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11264         !is_protmode(vcpu))
11265         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11266 
11267     return 0;
11268 }
11269 
11270 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11271 {
11272     int pending_vec, max_bits;
11273     int mmu_reset_needed = 0;
11274     int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11275 
11276     if (ret)
11277         return ret;
11278 
11279     if (mmu_reset_needed)
11280         kvm_mmu_reset_context(vcpu);
11281 
11282     max_bits = KVM_NR_INTERRUPTS;
11283     pending_vec = find_first_bit(
11284         (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11285 
11286     if (pending_vec < max_bits) {
11287         kvm_queue_interrupt(vcpu, pending_vec, false);
11288         pr_debug("Set back pending irq %d\n", pending_vec);
11289         kvm_make_request(KVM_REQ_EVENT, vcpu);
11290     }
11291     return 0;
11292 }
11293 
11294 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11295 {
11296     int mmu_reset_needed = 0;
11297     bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11298     bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11299         !(sregs2->efer & EFER_LMA);
11300     int i, ret;
11301 
11302     if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11303         return -EINVAL;
11304 
11305     if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11306         return -EINVAL;
11307 
11308     ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11309                  &mmu_reset_needed, !valid_pdptrs);
11310     if (ret)
11311         return ret;
11312 
11313     if (valid_pdptrs) {
11314         for (i = 0; i < 4 ; i++)
11315             kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11316 
11317         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11318         mmu_reset_needed = 1;
11319         vcpu->arch.pdptrs_from_userspace = true;
11320     }
11321     if (mmu_reset_needed)
11322         kvm_mmu_reset_context(vcpu);
11323     return 0;
11324 }
11325 
11326 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11327                   struct kvm_sregs *sregs)
11328 {
11329     int ret;
11330 
11331     vcpu_load(vcpu);
11332     ret = __set_sregs(vcpu, sregs);
11333     vcpu_put(vcpu);
11334     return ret;
11335 }
11336 
11337 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11338 {
11339     bool set = false;
11340     struct kvm_vcpu *vcpu;
11341     unsigned long i;
11342 
11343     if (!enable_apicv)
11344         return;
11345 
11346     down_write(&kvm->arch.apicv_update_lock);
11347 
11348     kvm_for_each_vcpu(i, vcpu, kvm) {
11349         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11350             set = true;
11351             break;
11352         }
11353     }
11354     __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11355     up_write(&kvm->arch.apicv_update_lock);
11356 }
11357 
11358 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11359                     struct kvm_guest_debug *dbg)
11360 {
11361     unsigned long rflags;
11362     int i, r;
11363 
11364     if (vcpu->arch.guest_state_protected)
11365         return -EINVAL;
11366 
11367     vcpu_load(vcpu);
11368 
11369     if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11370         r = -EBUSY;
11371         if (vcpu->arch.exception.pending)
11372             goto out;
11373         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11374             kvm_queue_exception(vcpu, DB_VECTOR);
11375         else
11376             kvm_queue_exception(vcpu, BP_VECTOR);
11377     }
11378 
11379     /*
11380      * Read rflags as long as potentially injected trace flags are still
11381      * filtered out.
11382      */
11383     rflags = kvm_get_rflags(vcpu);
11384 
11385     vcpu->guest_debug = dbg->control;
11386     if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11387         vcpu->guest_debug = 0;
11388 
11389     if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11390         for (i = 0; i < KVM_NR_DB_REGS; ++i)
11391             vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11392         vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11393     } else {
11394         for (i = 0; i < KVM_NR_DB_REGS; i++)
11395             vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11396     }
11397     kvm_update_dr7(vcpu);
11398 
11399     if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11400         vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11401 
11402     /*
11403      * Trigger an rflags update that will inject or remove the trace
11404      * flags.
11405      */
11406     kvm_set_rflags(vcpu, rflags);
11407 
11408     static_call(kvm_x86_update_exception_bitmap)(vcpu);
11409 
11410     kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11411 
11412     r = 0;
11413 
11414 out:
11415     vcpu_put(vcpu);
11416     return r;
11417 }
11418 
11419 /*
11420  * Translate a guest virtual address to a guest physical address.
11421  */
11422 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11423                     struct kvm_translation *tr)
11424 {
11425     unsigned long vaddr = tr->linear_address;
11426     gpa_t gpa;
11427     int idx;
11428 
11429     vcpu_load(vcpu);
11430 
11431     idx = srcu_read_lock(&vcpu->kvm->srcu);
11432     gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11433     srcu_read_unlock(&vcpu->kvm->srcu, idx);
11434     tr->physical_address = gpa;
11435     tr->valid = gpa != INVALID_GPA;
11436     tr->writeable = 1;
11437     tr->usermode = 0;
11438 
11439     vcpu_put(vcpu);
11440     return 0;
11441 }
11442 
11443 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11444 {
11445     struct fxregs_state *fxsave;
11446 
11447     if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11448         return 0;
11449 
11450     vcpu_load(vcpu);
11451 
11452     fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11453     memcpy(fpu->fpr, fxsave->st_space, 128);
11454     fpu->fcw = fxsave->cwd;
11455     fpu->fsw = fxsave->swd;
11456     fpu->ftwx = fxsave->twd;
11457     fpu->last_opcode = fxsave->fop;
11458     fpu->last_ip = fxsave->rip;
11459     fpu->last_dp = fxsave->rdp;
11460     memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11461 
11462     vcpu_put(vcpu);
11463     return 0;
11464 }
11465 
11466 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11467 {
11468     struct fxregs_state *fxsave;
11469 
11470     if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11471         return 0;
11472 
11473     vcpu_load(vcpu);
11474 
11475     fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11476 
11477     memcpy(fxsave->st_space, fpu->fpr, 128);
11478     fxsave->cwd = fpu->fcw;
11479     fxsave->swd = fpu->fsw;
11480     fxsave->twd = fpu->ftwx;
11481     fxsave->fop = fpu->last_opcode;
11482     fxsave->rip = fpu->last_ip;
11483     fxsave->rdp = fpu->last_dp;
11484     memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11485 
11486     vcpu_put(vcpu);
11487     return 0;
11488 }
11489 
11490 static void store_regs(struct kvm_vcpu *vcpu)
11491 {
11492     BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11493 
11494     if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11495         __get_regs(vcpu, &vcpu->run->s.regs.regs);
11496 
11497     if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11498         __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11499 
11500     if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11501         kvm_vcpu_ioctl_x86_get_vcpu_events(
11502                 vcpu, &vcpu->run->s.regs.events);
11503 }
11504 
11505 static int sync_regs(struct kvm_vcpu *vcpu)
11506 {
11507     if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11508         __set_regs(vcpu, &vcpu->run->s.regs.regs);
11509         vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11510     }
11511     if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11512         if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11513             return -EINVAL;
11514         vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11515     }
11516     if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11517         if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11518                 vcpu, &vcpu->run->s.regs.events))
11519             return -EINVAL;
11520         vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11521     }
11522 
11523     return 0;
11524 }
11525 
11526 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11527 {
11528     if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11529         pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11530                  "guest TSC will not be reliable\n");
11531 
11532     if (!kvm->arch.max_vcpu_ids)
11533         kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11534 
11535     if (id >= kvm->arch.max_vcpu_ids)
11536         return -EINVAL;
11537 
11538     return static_call(kvm_x86_vcpu_precreate)(kvm);
11539 }
11540 
11541 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11542 {
11543     struct page *page;
11544     int r;
11545 
11546     vcpu->arch.last_vmentry_cpu = -1;
11547     vcpu->arch.regs_avail = ~0;
11548     vcpu->arch.regs_dirty = ~0;
11549 
11550     if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11551         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11552     else
11553         vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11554 
11555     r = kvm_mmu_create(vcpu);
11556     if (r < 0)
11557         return r;
11558 
11559     if (irqchip_in_kernel(vcpu->kvm)) {
11560         r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11561         if (r < 0)
11562             goto fail_mmu_destroy;
11563 
11564         /*
11565          * Defer evaluating inhibits until the vCPU is first run, as
11566          * this vCPU will not get notified of any changes until this
11567          * vCPU is visible to other vCPUs (marked online and added to
11568          * the set of vCPUs).  Opportunistically mark APICv active as
11569          * VMX in particularly is highly unlikely to have inhibits.
11570          * Ignore the current per-VM APICv state so that vCPU creation
11571          * is guaranteed to run with a deterministic value, the request
11572          * will ensure the vCPU gets the correct state before VM-Entry.
11573          */
11574         if (enable_apicv) {
11575             vcpu->arch.apic->apicv_active = true;
11576             kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11577         }
11578     } else
11579         static_branch_inc(&kvm_has_noapic_vcpu);
11580 
11581     r = -ENOMEM;
11582 
11583     page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11584     if (!page)
11585         goto fail_free_lapic;
11586     vcpu->arch.pio_data = page_address(page);
11587 
11588     vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11589                        GFP_KERNEL_ACCOUNT);
11590     vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11591                         GFP_KERNEL_ACCOUNT);
11592     if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11593         goto fail_free_mce_banks;
11594     vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11595 
11596     if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11597                 GFP_KERNEL_ACCOUNT))
11598         goto fail_free_mce_banks;
11599 
11600     if (!alloc_emulate_ctxt(vcpu))
11601         goto free_wbinvd_dirty_mask;
11602 
11603     if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11604         pr_err("kvm: failed to allocate vcpu's fpu\n");
11605         goto free_emulate_ctxt;
11606     }
11607 
11608     vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11609     vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11610 
11611     vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11612 
11613     kvm_async_pf_hash_reset(vcpu);
11614     kvm_pmu_init(vcpu);
11615 
11616     vcpu->arch.pending_external_vector = -1;
11617     vcpu->arch.preempted_in_kernel = false;
11618 
11619 #if IS_ENABLED(CONFIG_HYPERV)
11620     vcpu->arch.hv_root_tdp = INVALID_PAGE;
11621 #endif
11622 
11623     r = static_call(kvm_x86_vcpu_create)(vcpu);
11624     if (r)
11625         goto free_guest_fpu;
11626 
11627     vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11628     vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11629     kvm_xen_init_vcpu(vcpu);
11630     kvm_vcpu_mtrr_init(vcpu);
11631     vcpu_load(vcpu);
11632     kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11633     kvm_vcpu_reset(vcpu, false);
11634     kvm_init_mmu(vcpu);
11635     vcpu_put(vcpu);
11636     return 0;
11637 
11638 free_guest_fpu:
11639     fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11640 free_emulate_ctxt:
11641     kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11642 free_wbinvd_dirty_mask:
11643     free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11644 fail_free_mce_banks:
11645     kfree(vcpu->arch.mce_banks);
11646     kfree(vcpu->arch.mci_ctl2_banks);
11647     free_page((unsigned long)vcpu->arch.pio_data);
11648 fail_free_lapic:
11649     kvm_free_lapic(vcpu);
11650 fail_mmu_destroy:
11651     kvm_mmu_destroy(vcpu);
11652     return r;
11653 }
11654 
11655 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11656 {
11657     struct kvm *kvm = vcpu->kvm;
11658 
11659     if (mutex_lock_killable(&vcpu->mutex))
11660         return;
11661     vcpu_load(vcpu);
11662     kvm_synchronize_tsc(vcpu, 0);
11663     vcpu_put(vcpu);
11664 
11665     /* poll control enabled by default */
11666     vcpu->arch.msr_kvm_poll_control = 1;
11667 
11668     mutex_unlock(&vcpu->mutex);
11669 
11670     if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11671         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11672                         KVMCLOCK_SYNC_PERIOD);
11673 }
11674 
11675 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11676 {
11677     int idx;
11678 
11679     kvmclock_reset(vcpu);
11680 
11681     static_call(kvm_x86_vcpu_free)(vcpu);
11682 
11683     kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11684     free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11685     fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11686 
11687     kvm_xen_destroy_vcpu(vcpu);
11688     kvm_hv_vcpu_uninit(vcpu);
11689     kvm_pmu_destroy(vcpu);
11690     kfree(vcpu->arch.mce_banks);
11691     kfree(vcpu->arch.mci_ctl2_banks);
11692     kvm_free_lapic(vcpu);
11693     idx = srcu_read_lock(&vcpu->kvm->srcu);
11694     kvm_mmu_destroy(vcpu);
11695     srcu_read_unlock(&vcpu->kvm->srcu, idx);
11696     free_page((unsigned long)vcpu->arch.pio_data);
11697     kvfree(vcpu->arch.cpuid_entries);
11698     if (!lapic_in_kernel(vcpu))
11699         static_branch_dec(&kvm_has_noapic_vcpu);
11700 }
11701 
11702 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11703 {
11704     struct kvm_cpuid_entry2 *cpuid_0x1;
11705     unsigned long old_cr0 = kvm_read_cr0(vcpu);
11706     unsigned long new_cr0;
11707 
11708     /*
11709      * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11710      * to handle side effects.  RESET emulation hits those flows and relies
11711      * on emulated/virtualized registers, including those that are loaded
11712      * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11713      * to detect improper or missing initialization.
11714      */
11715     WARN_ON_ONCE(!init_event &&
11716              (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11717 
11718     kvm_lapic_reset(vcpu, init_event);
11719 
11720     vcpu->arch.hflags = 0;
11721 
11722     vcpu->arch.smi_pending = 0;
11723     vcpu->arch.smi_count = 0;
11724     atomic_set(&vcpu->arch.nmi_queued, 0);
11725     vcpu->arch.nmi_pending = 0;
11726     vcpu->arch.nmi_injected = false;
11727     kvm_clear_interrupt_queue(vcpu);
11728     kvm_clear_exception_queue(vcpu);
11729 
11730     memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11731     kvm_update_dr0123(vcpu);
11732     vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11733     vcpu->arch.dr7 = DR7_FIXED_1;
11734     kvm_update_dr7(vcpu);
11735 
11736     vcpu->arch.cr2 = 0;
11737 
11738     kvm_make_request(KVM_REQ_EVENT, vcpu);
11739     vcpu->arch.apf.msr_en_val = 0;
11740     vcpu->arch.apf.msr_int_val = 0;
11741     vcpu->arch.st.msr_val = 0;
11742 
11743     kvmclock_reset(vcpu);
11744 
11745     kvm_clear_async_pf_completion_queue(vcpu);
11746     kvm_async_pf_hash_reset(vcpu);
11747     vcpu->arch.apf.halted = false;
11748 
11749     if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11750         struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11751 
11752         /*
11753          * To avoid have the INIT path from kvm_apic_has_events() that be
11754          * called with loaded FPU and does not let userspace fix the state.
11755          */
11756         if (init_event)
11757             kvm_put_guest_fpu(vcpu);
11758 
11759         fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11760         fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11761 
11762         if (init_event)
11763             kvm_load_guest_fpu(vcpu);
11764     }
11765 
11766     if (!init_event) {
11767         kvm_pmu_reset(vcpu);
11768         vcpu->arch.smbase = 0x30000;
11769 
11770         vcpu->arch.msr_misc_features_enables = 0;
11771         vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11772                           MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11773 
11774         __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11775         __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11776     }
11777 
11778     /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11779     memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11780     kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11781 
11782     /*
11783      * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11784      * if no CPUID match is found.  Note, it's impossible to get a match at
11785      * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11786      * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11787      * on RESET.  But, go through the motions in case that's ever remedied.
11788      */
11789     cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11790     kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11791 
11792     static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11793 
11794     kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11795     kvm_rip_write(vcpu, 0xfff0);
11796 
11797     vcpu->arch.cr3 = 0;
11798     kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11799 
11800     /*
11801      * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11802      * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11803      * (or qualify) that with a footnote stating that CD/NW are preserved.
11804      */
11805     new_cr0 = X86_CR0_ET;
11806     if (init_event)
11807         new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11808     else
11809         new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11810 
11811     static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11812     static_call(kvm_x86_set_cr4)(vcpu, 0);
11813     static_call(kvm_x86_set_efer)(vcpu, 0);
11814     static_call(kvm_x86_update_exception_bitmap)(vcpu);
11815 
11816     /*
11817      * On the standard CR0/CR4/EFER modification paths, there are several
11818      * complex conditions determining whether the MMU has to be reset and/or
11819      * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11820      * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11821      * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11822      * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11823      */
11824     if (old_cr0 & X86_CR0_PG) {
11825         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11826         kvm_mmu_reset_context(vcpu);
11827     }
11828 
11829     /*
11830      * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11831      * APM states the TLBs are untouched by INIT, but it also states that
11832      * the TLBs are flushed on "External initialization of the processor."
11833      * Flush the guest TLB regardless of vendor, there is no meaningful
11834      * benefit in relying on the guest to flush the TLB immediately after
11835      * INIT.  A spurious TLB flush is benign and likely negligible from a
11836      * performance perspective.
11837      */
11838     if (init_event)
11839         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11840 }
11841 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11842 
11843 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11844 {
11845     struct kvm_segment cs;
11846 
11847     kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11848     cs.selector = vector << 8;
11849     cs.base = vector << 12;
11850     kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11851     kvm_rip_write(vcpu, 0);
11852 }
11853 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11854 
11855 int kvm_arch_hardware_enable(void)
11856 {
11857     struct kvm *kvm;
11858     struct kvm_vcpu *vcpu;
11859     unsigned long i;
11860     int ret;
11861     u64 local_tsc;
11862     u64 max_tsc = 0;
11863     bool stable, backwards_tsc = false;
11864 
11865     kvm_user_return_msr_cpu_online();
11866     ret = static_call(kvm_x86_hardware_enable)();
11867     if (ret != 0)
11868         return ret;
11869 
11870     local_tsc = rdtsc();
11871     stable = !kvm_check_tsc_unstable();
11872     list_for_each_entry(kvm, &vm_list, vm_list) {
11873         kvm_for_each_vcpu(i, vcpu, kvm) {
11874             if (!stable && vcpu->cpu == smp_processor_id())
11875                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11876             if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11877                 backwards_tsc = true;
11878                 if (vcpu->arch.last_host_tsc > max_tsc)
11879                     max_tsc = vcpu->arch.last_host_tsc;
11880             }
11881         }
11882     }
11883 
11884     /*
11885      * Sometimes, even reliable TSCs go backwards.  This happens on
11886      * platforms that reset TSC during suspend or hibernate actions, but
11887      * maintain synchronization.  We must compensate.  Fortunately, we can
11888      * detect that condition here, which happens early in CPU bringup,
11889      * before any KVM threads can be running.  Unfortunately, we can't
11890      * bring the TSCs fully up to date with real time, as we aren't yet far
11891      * enough into CPU bringup that we know how much real time has actually
11892      * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11893      * variables that haven't been updated yet.
11894      *
11895      * So we simply find the maximum observed TSC above, then record the
11896      * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11897      * the adjustment will be applied.  Note that we accumulate
11898      * adjustments, in case multiple suspend cycles happen before some VCPU
11899      * gets a chance to run again.  In the event that no KVM threads get a
11900      * chance to run, we will miss the entire elapsed period, as we'll have
11901      * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11902      * loose cycle time.  This isn't too big a deal, since the loss will be
11903      * uniform across all VCPUs (not to mention the scenario is extremely
11904      * unlikely). It is possible that a second hibernate recovery happens
11905      * much faster than a first, causing the observed TSC here to be
11906      * smaller; this would require additional padding adjustment, which is
11907      * why we set last_host_tsc to the local tsc observed here.
11908      *
11909      * N.B. - this code below runs only on platforms with reliable TSC,
11910      * as that is the only way backwards_tsc is set above.  Also note
11911      * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11912      * have the same delta_cyc adjustment applied if backwards_tsc
11913      * is detected.  Note further, this adjustment is only done once,
11914      * as we reset last_host_tsc on all VCPUs to stop this from being
11915      * called multiple times (one for each physical CPU bringup).
11916      *
11917      * Platforms with unreliable TSCs don't have to deal with this, they
11918      * will be compensated by the logic in vcpu_load, which sets the TSC to
11919      * catchup mode.  This will catchup all VCPUs to real time, but cannot
11920      * guarantee that they stay in perfect synchronization.
11921      */
11922     if (backwards_tsc) {
11923         u64 delta_cyc = max_tsc - local_tsc;
11924         list_for_each_entry(kvm, &vm_list, vm_list) {
11925             kvm->arch.backwards_tsc_observed = true;
11926             kvm_for_each_vcpu(i, vcpu, kvm) {
11927                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11928                 vcpu->arch.last_host_tsc = local_tsc;
11929                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11930             }
11931 
11932             /*
11933              * We have to disable TSC offset matching.. if you were
11934              * booting a VM while issuing an S4 host suspend....
11935              * you may have some problem.  Solving this issue is
11936              * left as an exercise to the reader.
11937              */
11938             kvm->arch.last_tsc_nsec = 0;
11939             kvm->arch.last_tsc_write = 0;
11940         }
11941 
11942     }
11943     return 0;
11944 }
11945 
11946 void kvm_arch_hardware_disable(void)
11947 {
11948     static_call(kvm_x86_hardware_disable)();
11949     drop_user_return_notifiers();
11950 }
11951 
11952 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11953 {
11954     memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11955 
11956 #define __KVM_X86_OP(func) \
11957     static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11958 #define KVM_X86_OP(func) \
11959     WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11960 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11961 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11962     static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11963                        (void *)__static_call_return0);
11964 #include <asm/kvm-x86-ops.h>
11965 #undef __KVM_X86_OP
11966 
11967     kvm_pmu_ops_update(ops->pmu_ops);
11968 }
11969 
11970 int kvm_arch_hardware_setup(void *opaque)
11971 {
11972     struct kvm_x86_init_ops *ops = opaque;
11973     int r;
11974 
11975     rdmsrl_safe(MSR_EFER, &host_efer);
11976 
11977     if (boot_cpu_has(X86_FEATURE_XSAVES))
11978         rdmsrl(MSR_IA32_XSS, host_xss);
11979 
11980     kvm_init_pmu_capability();
11981 
11982     r = ops->hardware_setup();
11983     if (r != 0)
11984         return r;
11985 
11986     kvm_ops_update(ops);
11987 
11988     kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11989 
11990     if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11991         kvm_caps.supported_xss = 0;
11992 
11993 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11994     cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11995 #undef __kvm_cpu_cap_has
11996 
11997     if (kvm_caps.has_tsc_control) {
11998         /*
11999          * Make sure the user can only configure tsc_khz values that
12000          * fit into a signed integer.
12001          * A min value is not calculated because it will always
12002          * be 1 on all machines.
12003          */
12004         u64 max = min(0x7fffffffULL,
12005                   __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
12006         kvm_caps.max_guest_tsc_khz = max;
12007     }
12008     kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
12009     kvm_init_msr_list();
12010     return 0;
12011 }
12012 
12013 void kvm_arch_hardware_unsetup(void)
12014 {
12015     kvm_unregister_perf_callbacks();
12016 
12017     static_call(kvm_x86_hardware_unsetup)();
12018 }
12019 
12020 int kvm_arch_check_processor_compat(void *opaque)
12021 {
12022     struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12023     struct kvm_x86_init_ops *ops = opaque;
12024 
12025     WARN_ON(!irqs_disabled());
12026 
12027     if (__cr4_reserved_bits(cpu_has, c) !=
12028         __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12029         return -EIO;
12030 
12031     return ops->check_processor_compatibility();
12032 }
12033 
12034 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12035 {
12036     return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12037 }
12038 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
12039 
12040 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12041 {
12042     return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12043 }
12044 
12045 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12046 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12047 
12048 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12049 {
12050     struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12051 
12052     vcpu->arch.l1tf_flush_l1d = true;
12053     if (pmu->version && unlikely(pmu->event_count)) {
12054         pmu->need_cleanup = true;
12055         kvm_make_request(KVM_REQ_PMU, vcpu);
12056     }
12057     static_call(kvm_x86_sched_in)(vcpu, cpu);
12058 }
12059 
12060 void kvm_arch_free_vm(struct kvm *kvm)
12061 {
12062     kfree(to_kvm_hv(kvm)->hv_pa_pg);
12063     __kvm_arch_free_vm(kvm);
12064 }
12065 
12066 
12067 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12068 {
12069     int ret;
12070     unsigned long flags;
12071 
12072     if (type)
12073         return -EINVAL;
12074 
12075     ret = kvm_page_track_init(kvm);
12076     if (ret)
12077         goto out;
12078 
12079     ret = kvm_mmu_init_vm(kvm);
12080     if (ret)
12081         goto out_page_track;
12082 
12083     INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12084     INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12085     atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12086 
12087     /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12088     set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12089     /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12090     set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12091         &kvm->arch.irq_sources_bitmap);
12092 
12093     raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12094     mutex_init(&kvm->arch.apic_map_lock);
12095     seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12096     kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12097 
12098     raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12099     pvclock_update_vm_gtod_copy(kvm);
12100     raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12101 
12102     kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12103     kvm->arch.guest_can_read_msr_platform_info = true;
12104     kvm->arch.enable_pmu = enable_pmu;
12105 
12106 #if IS_ENABLED(CONFIG_HYPERV)
12107     spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12108     kvm->arch.hv_root_tdp = INVALID_PAGE;
12109 #endif
12110 
12111     INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12112     INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12113 
12114     kvm_apicv_init(kvm);
12115     kvm_hv_init_vm(kvm);
12116     kvm_xen_init_vm(kvm);
12117 
12118     return static_call(kvm_x86_vm_init)(kvm);
12119 
12120 out_page_track:
12121     kvm_page_track_cleanup(kvm);
12122 out:
12123     return ret;
12124 }
12125 
12126 int kvm_arch_post_init_vm(struct kvm *kvm)
12127 {
12128     return kvm_mmu_post_init_vm(kvm);
12129 }
12130 
12131 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12132 {
12133     vcpu_load(vcpu);
12134     kvm_mmu_unload(vcpu);
12135     vcpu_put(vcpu);
12136 }
12137 
12138 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12139 {
12140     unsigned long i;
12141     struct kvm_vcpu *vcpu;
12142 
12143     kvm_for_each_vcpu(i, vcpu, kvm) {
12144         kvm_clear_async_pf_completion_queue(vcpu);
12145         kvm_unload_vcpu_mmu(vcpu);
12146     }
12147 }
12148 
12149 void kvm_arch_sync_events(struct kvm *kvm)
12150 {
12151     cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12152     cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12153     kvm_free_pit(kvm);
12154 }
12155 
12156 /**
12157  * __x86_set_memory_region: Setup KVM internal memory slot
12158  *
12159  * @kvm: the kvm pointer to the VM.
12160  * @id: the slot ID to setup.
12161  * @gpa: the GPA to install the slot (unused when @size == 0).
12162  * @size: the size of the slot. Set to zero to uninstall a slot.
12163  *
12164  * This function helps to setup a KVM internal memory slot.  Specify
12165  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12166  * slot.  The return code can be one of the following:
12167  *
12168  *   HVA:           on success (uninstall will return a bogus HVA)
12169  *   -errno:        on error
12170  *
12171  * The caller should always use IS_ERR() to check the return value
12172  * before use.  Note, the KVM internal memory slots are guaranteed to
12173  * remain valid and unchanged until the VM is destroyed, i.e., the
12174  * GPA->HVA translation will not change.  However, the HVA is a user
12175  * address, i.e. its accessibility is not guaranteed, and must be
12176  * accessed via __copy_{to,from}_user().
12177  */
12178 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12179                       u32 size)
12180 {
12181     int i, r;
12182     unsigned long hva, old_npages;
12183     struct kvm_memslots *slots = kvm_memslots(kvm);
12184     struct kvm_memory_slot *slot;
12185 
12186     /* Called with kvm->slots_lock held.  */
12187     if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12188         return ERR_PTR_USR(-EINVAL);
12189 
12190     slot = id_to_memslot(slots, id);
12191     if (size) {
12192         if (slot && slot->npages)
12193             return ERR_PTR_USR(-EEXIST);
12194 
12195         /*
12196          * MAP_SHARED to prevent internal slot pages from being moved
12197          * by fork()/COW.
12198          */
12199         hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12200                   MAP_SHARED | MAP_ANONYMOUS, 0);
12201         if (IS_ERR((void *)hva))
12202             return (void __user *)hva;
12203     } else {
12204         if (!slot || !slot->npages)
12205             return NULL;
12206 
12207         old_npages = slot->npages;
12208         hva = slot->userspace_addr;
12209     }
12210 
12211     for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12212         struct kvm_userspace_memory_region m;
12213 
12214         m.slot = id | (i << 16);
12215         m.flags = 0;
12216         m.guest_phys_addr = gpa;
12217         m.userspace_addr = hva;
12218         m.memory_size = size;
12219         r = __kvm_set_memory_region(kvm, &m);
12220         if (r < 0)
12221             return ERR_PTR_USR(r);
12222     }
12223 
12224     if (!size)
12225         vm_munmap(hva, old_npages * PAGE_SIZE);
12226 
12227     return (void __user *)hva;
12228 }
12229 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12230 
12231 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12232 {
12233     kvm_mmu_pre_destroy_vm(kvm);
12234 }
12235 
12236 void kvm_arch_destroy_vm(struct kvm *kvm)
12237 {
12238     if (current->mm == kvm->mm) {
12239         /*
12240          * Free memory regions allocated on behalf of userspace,
12241          * unless the memory map has changed due to process exit
12242          * or fd copying.
12243          */
12244         mutex_lock(&kvm->slots_lock);
12245         __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12246                     0, 0);
12247         __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12248                     0, 0);
12249         __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12250         mutex_unlock(&kvm->slots_lock);
12251     }
12252     kvm_unload_vcpu_mmus(kvm);
12253     static_call_cond(kvm_x86_vm_destroy)(kvm);
12254     kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12255     kvm_pic_destroy(kvm);
12256     kvm_ioapic_destroy(kvm);
12257     kvm_destroy_vcpus(kvm);
12258     kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12259     kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12260     kvm_mmu_uninit_vm(kvm);
12261     kvm_page_track_cleanup(kvm);
12262     kvm_xen_destroy_vm(kvm);
12263     kvm_hv_destroy_vm(kvm);
12264 }
12265 
12266 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12267 {
12268     int i;
12269 
12270     for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12271         kvfree(slot->arch.rmap[i]);
12272         slot->arch.rmap[i] = NULL;
12273     }
12274 }
12275 
12276 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12277 {
12278     int i;
12279 
12280     memslot_rmap_free(slot);
12281 
12282     for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12283         kvfree(slot->arch.lpage_info[i - 1]);
12284         slot->arch.lpage_info[i - 1] = NULL;
12285     }
12286 
12287     kvm_page_track_free_memslot(slot);
12288 }
12289 
12290 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12291 {
12292     const int sz = sizeof(*slot->arch.rmap[0]);
12293     int i;
12294 
12295     for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12296         int level = i + 1;
12297         int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12298 
12299         if (slot->arch.rmap[i])
12300             continue;
12301 
12302         slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12303         if (!slot->arch.rmap[i]) {
12304             memslot_rmap_free(slot);
12305             return -ENOMEM;
12306         }
12307     }
12308 
12309     return 0;
12310 }
12311 
12312 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12313                       struct kvm_memory_slot *slot)
12314 {
12315     unsigned long npages = slot->npages;
12316     int i, r;
12317 
12318     /*
12319      * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12320      * old arrays will be freed by __kvm_set_memory_region() if installing
12321      * the new memslot is successful.
12322      */
12323     memset(&slot->arch, 0, sizeof(slot->arch));
12324 
12325     if (kvm_memslots_have_rmaps(kvm)) {
12326         r = memslot_rmap_alloc(slot, npages);
12327         if (r)
12328             return r;
12329     }
12330 
12331     for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12332         struct kvm_lpage_info *linfo;
12333         unsigned long ugfn;
12334         int lpages;
12335         int level = i + 1;
12336 
12337         lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12338 
12339         linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12340         if (!linfo)
12341             goto out_free;
12342 
12343         slot->arch.lpage_info[i - 1] = linfo;
12344 
12345         if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12346             linfo[0].disallow_lpage = 1;
12347         if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12348             linfo[lpages - 1].disallow_lpage = 1;
12349         ugfn = slot->userspace_addr >> PAGE_SHIFT;
12350         /*
12351          * If the gfn and userspace address are not aligned wrt each
12352          * other, disable large page support for this slot.
12353          */
12354         if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12355             unsigned long j;
12356 
12357             for (j = 0; j < lpages; ++j)
12358                 linfo[j].disallow_lpage = 1;
12359         }
12360     }
12361 
12362     if (kvm_page_track_create_memslot(kvm, slot, npages))
12363         goto out_free;
12364 
12365     return 0;
12366 
12367 out_free:
12368     memslot_rmap_free(slot);
12369 
12370     for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12371         kvfree(slot->arch.lpage_info[i - 1]);
12372         slot->arch.lpage_info[i - 1] = NULL;
12373     }
12374     return -ENOMEM;
12375 }
12376 
12377 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12378 {
12379     struct kvm_vcpu *vcpu;
12380     unsigned long i;
12381 
12382     /*
12383      * memslots->generation has been incremented.
12384      * mmio generation may have reached its maximum value.
12385      */
12386     kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12387 
12388     /* Force re-initialization of steal_time cache */
12389     kvm_for_each_vcpu(i, vcpu, kvm)
12390         kvm_vcpu_kick(vcpu);
12391 }
12392 
12393 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12394                    const struct kvm_memory_slot *old,
12395                    struct kvm_memory_slot *new,
12396                    enum kvm_mr_change change)
12397 {
12398     if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12399         if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12400             return -EINVAL;
12401 
12402         return kvm_alloc_memslot_metadata(kvm, new);
12403     }
12404 
12405     if (change == KVM_MR_FLAGS_ONLY)
12406         memcpy(&new->arch, &old->arch, sizeof(old->arch));
12407     else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12408         return -EIO;
12409 
12410     return 0;
12411 }
12412 
12413 
12414 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12415 {
12416     struct kvm_arch *ka = &kvm->arch;
12417 
12418     if (!kvm_x86_ops.cpu_dirty_log_size)
12419         return;
12420 
12421     if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12422         (!enable && --ka->cpu_dirty_logging_count == 0))
12423         kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12424 
12425     WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12426 }
12427 
12428 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12429                      struct kvm_memory_slot *old,
12430                      const struct kvm_memory_slot *new,
12431                      enum kvm_mr_change change)
12432 {
12433     u32 old_flags = old ? old->flags : 0;
12434     u32 new_flags = new ? new->flags : 0;
12435     bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12436 
12437     /*
12438      * Update CPU dirty logging if dirty logging is being toggled.  This
12439      * applies to all operations.
12440      */
12441     if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12442         kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12443 
12444     /*
12445      * Nothing more to do for RO slots (which can't be dirtied and can't be
12446      * made writable) or CREATE/MOVE/DELETE of a slot.
12447      *
12448      * For a memslot with dirty logging disabled:
12449      * CREATE:      No dirty mappings will already exist.
12450      * MOVE/DELETE: The old mappings will already have been cleaned up by
12451      *      kvm_arch_flush_shadow_memslot()
12452      *
12453      * For a memslot with dirty logging enabled:
12454      * CREATE:      No shadow pages exist, thus nothing to write-protect
12455      *      and no dirty bits to clear.
12456      * MOVE/DELETE: The old mappings will already have been cleaned up by
12457      *      kvm_arch_flush_shadow_memslot().
12458      */
12459     if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12460         return;
12461 
12462     /*
12463      * READONLY and non-flags changes were filtered out above, and the only
12464      * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12465      * logging isn't being toggled on or off.
12466      */
12467     if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12468         return;
12469 
12470     if (!log_dirty_pages) {
12471         /*
12472          * Dirty logging tracks sptes in 4k granularity, meaning that
12473          * large sptes have to be split.  If live migration succeeds,
12474          * the guest in the source machine will be destroyed and large
12475          * sptes will be created in the destination.  However, if the
12476          * guest continues to run in the source machine (for example if
12477          * live migration fails), small sptes will remain around and
12478          * cause bad performance.
12479          *
12480          * Scan sptes if dirty logging has been stopped, dropping those
12481          * which can be collapsed into a single large-page spte.  Later
12482          * page faults will create the large-page sptes.
12483          */
12484         kvm_mmu_zap_collapsible_sptes(kvm, new);
12485     } else {
12486         /*
12487          * Initially-all-set does not require write protecting any page,
12488          * because they're all assumed to be dirty.
12489          */
12490         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12491             return;
12492 
12493         if (READ_ONCE(eager_page_split))
12494             kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12495 
12496         if (kvm_x86_ops.cpu_dirty_log_size) {
12497             kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12498             kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12499         } else {
12500             kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12501         }
12502 
12503         /*
12504          * Unconditionally flush the TLBs after enabling dirty logging.
12505          * A flush is almost always going to be necessary (see below),
12506          * and unconditionally flushing allows the helpers to omit
12507          * the subtly complex checks when removing write access.
12508          *
12509          * Do the flush outside of mmu_lock to reduce the amount of
12510          * time mmu_lock is held.  Flushing after dropping mmu_lock is
12511          * safe as KVM only needs to guarantee the slot is fully
12512          * write-protected before returning to userspace, i.e. before
12513          * userspace can consume the dirty status.
12514          *
12515          * Flushing outside of mmu_lock requires KVM to be careful when
12516          * making decisions based on writable status of an SPTE, e.g. a
12517          * !writable SPTE doesn't guarantee a CPU can't perform writes.
12518          *
12519          * Specifically, KVM also write-protects guest page tables to
12520          * monitor changes when using shadow paging, and must guarantee
12521          * no CPUs can write to those page before mmu_lock is dropped.
12522          * Because CPUs may have stale TLB entries at this point, a
12523          * !writable SPTE doesn't guarantee CPUs can't perform writes.
12524          *
12525          * KVM also allows making SPTES writable outside of mmu_lock,
12526          * e.g. to allow dirty logging without taking mmu_lock.
12527          *
12528          * To handle these scenarios, KVM uses a separate software-only
12529          * bit (MMU-writable) to track if a SPTE is !writable due to
12530          * a guest page table being write-protected (KVM clears the
12531          * MMU-writable flag when write-protecting for shadow paging).
12532          *
12533          * The use of MMU-writable is also the primary motivation for
12534          * the unconditional flush.  Because KVM must guarantee that a
12535          * CPU doesn't contain stale, writable TLB entries for a
12536          * !MMU-writable SPTE, KVM must flush if it encounters any
12537          * MMU-writable SPTE regardless of whether the actual hardware
12538          * writable bit was set.  I.e. KVM is almost guaranteed to need
12539          * to flush, while unconditionally flushing allows the "remove
12540          * write access" helpers to ignore MMU-writable entirely.
12541          *
12542          * See is_writable_pte() for more details (the case involving
12543          * access-tracked SPTEs is particularly relevant).
12544          */
12545         kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12546     }
12547 }
12548 
12549 void kvm_arch_commit_memory_region(struct kvm *kvm,
12550                 struct kvm_memory_slot *old,
12551                 const struct kvm_memory_slot *new,
12552                 enum kvm_mr_change change)
12553 {
12554     if (!kvm->arch.n_requested_mmu_pages &&
12555         (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12556         unsigned long nr_mmu_pages;
12557 
12558         nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12559         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12560         kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12561     }
12562 
12563     kvm_mmu_slot_apply_flags(kvm, old, new, change);
12564 
12565     /* Free the arrays associated with the old memslot. */
12566     if (change == KVM_MR_MOVE)
12567         kvm_arch_free_memslot(kvm, old);
12568 }
12569 
12570 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12571 {
12572     kvm_mmu_zap_all(kvm);
12573 }
12574 
12575 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12576                    struct kvm_memory_slot *slot)
12577 {
12578     kvm_page_track_flush_slot(kvm, slot);
12579 }
12580 
12581 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12582 {
12583     return (is_guest_mode(vcpu) &&
12584         static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12585 }
12586 
12587 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12588 {
12589     if (!list_empty_careful(&vcpu->async_pf.done))
12590         return true;
12591 
12592     if (kvm_apic_has_events(vcpu))
12593         return true;
12594 
12595     if (vcpu->arch.pv.pv_unhalted)
12596         return true;
12597 
12598     if (vcpu->arch.exception.pending)
12599         return true;
12600 
12601     if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12602         (vcpu->arch.nmi_pending &&
12603          static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12604         return true;
12605 
12606     if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12607         (vcpu->arch.smi_pending &&
12608          static_call(kvm_x86_smi_allowed)(vcpu, false)))
12609         return true;
12610 
12611     if (kvm_arch_interrupt_allowed(vcpu) &&
12612         (kvm_cpu_has_interrupt(vcpu) ||
12613         kvm_guest_apic_has_interrupt(vcpu)))
12614         return true;
12615 
12616     if (kvm_hv_has_stimer_pending(vcpu))
12617         return true;
12618 
12619     if (is_guest_mode(vcpu) &&
12620         kvm_x86_ops.nested_ops->hv_timer_pending &&
12621         kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12622         return true;
12623 
12624     if (kvm_xen_has_pending_events(vcpu))
12625         return true;
12626 
12627     if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12628         return true;
12629 
12630     return false;
12631 }
12632 
12633 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12634 {
12635     return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12636 }
12637 
12638 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12639 {
12640     if (kvm_vcpu_apicv_active(vcpu) &&
12641         static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12642         return true;
12643 
12644     return false;
12645 }
12646 
12647 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12648 {
12649     if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12650         return true;
12651 
12652     if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12653         kvm_test_request(KVM_REQ_SMI, vcpu) ||
12654          kvm_test_request(KVM_REQ_EVENT, vcpu))
12655         return true;
12656 
12657     return kvm_arch_dy_has_pending_interrupt(vcpu);
12658 }
12659 
12660 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12661 {
12662     if (vcpu->arch.guest_state_protected)
12663         return true;
12664 
12665     return vcpu->arch.preempted_in_kernel;
12666 }
12667 
12668 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12669 {
12670     return kvm_rip_read(vcpu);
12671 }
12672 
12673 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12674 {
12675     return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12676 }
12677 
12678 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12679 {
12680     return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12681 }
12682 
12683 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12684 {
12685     /* Can't read the RIP when guest state is protected, just return 0 */
12686     if (vcpu->arch.guest_state_protected)
12687         return 0;
12688 
12689     if (is_64_bit_mode(vcpu))
12690         return kvm_rip_read(vcpu);
12691     return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12692              kvm_rip_read(vcpu));
12693 }
12694 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12695 
12696 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12697 {
12698     return kvm_get_linear_rip(vcpu) == linear_rip;
12699 }
12700 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12701 
12702 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12703 {
12704     unsigned long rflags;
12705 
12706     rflags = static_call(kvm_x86_get_rflags)(vcpu);
12707     if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12708         rflags &= ~X86_EFLAGS_TF;
12709     return rflags;
12710 }
12711 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12712 
12713 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12714 {
12715     if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12716         kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12717         rflags |= X86_EFLAGS_TF;
12718     static_call(kvm_x86_set_rflags)(vcpu, rflags);
12719 }
12720 
12721 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12722 {
12723     __kvm_set_rflags(vcpu, rflags);
12724     kvm_make_request(KVM_REQ_EVENT, vcpu);
12725 }
12726 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12727 
12728 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12729 {
12730     BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12731 
12732     return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12733 }
12734 
12735 static inline u32 kvm_async_pf_next_probe(u32 key)
12736 {
12737     return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12738 }
12739 
12740 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12741 {
12742     u32 key = kvm_async_pf_hash_fn(gfn);
12743 
12744     while (vcpu->arch.apf.gfns[key] != ~0)
12745         key = kvm_async_pf_next_probe(key);
12746 
12747     vcpu->arch.apf.gfns[key] = gfn;
12748 }
12749 
12750 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12751 {
12752     int i;
12753     u32 key = kvm_async_pf_hash_fn(gfn);
12754 
12755     for (i = 0; i < ASYNC_PF_PER_VCPU &&
12756              (vcpu->arch.apf.gfns[key] != gfn &&
12757               vcpu->arch.apf.gfns[key] != ~0); i++)
12758         key = kvm_async_pf_next_probe(key);
12759 
12760     return key;
12761 }
12762 
12763 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12764 {
12765     return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12766 }
12767 
12768 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12769 {
12770     u32 i, j, k;
12771 
12772     i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12773 
12774     if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12775         return;
12776 
12777     while (true) {
12778         vcpu->arch.apf.gfns[i] = ~0;
12779         do {
12780             j = kvm_async_pf_next_probe(j);
12781             if (vcpu->arch.apf.gfns[j] == ~0)
12782                 return;
12783             k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12784             /*
12785              * k lies cyclically in ]i,j]
12786              * |    i.k.j |
12787              * |....j i.k.| or  |.k..j i...|
12788              */
12789         } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12790         vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12791         i = j;
12792     }
12793 }
12794 
12795 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12796 {
12797     u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12798 
12799     return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12800                       sizeof(reason));
12801 }
12802 
12803 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12804 {
12805     unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12806 
12807     return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12808                          &token, offset, sizeof(token));
12809 }
12810 
12811 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12812 {
12813     unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12814     u32 val;
12815 
12816     if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12817                      &val, offset, sizeof(val)))
12818         return false;
12819 
12820     return !val;
12821 }
12822 
12823 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12824 {
12825 
12826     if (!kvm_pv_async_pf_enabled(vcpu))
12827         return false;
12828 
12829     if (vcpu->arch.apf.send_user_only &&
12830         static_call(kvm_x86_get_cpl)(vcpu) == 0)
12831         return false;
12832 
12833     if (is_guest_mode(vcpu)) {
12834         /*
12835          * L1 needs to opt into the special #PF vmexits that are
12836          * used to deliver async page faults.
12837          */
12838         return vcpu->arch.apf.delivery_as_pf_vmexit;
12839     } else {
12840         /*
12841          * Play it safe in case the guest temporarily disables paging.
12842          * The real mode IDT in particular is unlikely to have a #PF
12843          * exception setup.
12844          */
12845         return is_paging(vcpu);
12846     }
12847 }
12848 
12849 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12850 {
12851     if (unlikely(!lapic_in_kernel(vcpu) ||
12852              kvm_event_needs_reinjection(vcpu) ||
12853              vcpu->arch.exception.pending))
12854         return false;
12855 
12856     if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12857         return false;
12858 
12859     /*
12860      * If interrupts are off we cannot even use an artificial
12861      * halt state.
12862      */
12863     return kvm_arch_interrupt_allowed(vcpu);
12864 }
12865 
12866 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12867                      struct kvm_async_pf *work)
12868 {
12869     struct x86_exception fault;
12870 
12871     trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12872     kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12873 
12874     if (kvm_can_deliver_async_pf(vcpu) &&
12875         !apf_put_user_notpresent(vcpu)) {
12876         fault.vector = PF_VECTOR;
12877         fault.error_code_valid = true;
12878         fault.error_code = 0;
12879         fault.nested_page_fault = false;
12880         fault.address = work->arch.token;
12881         fault.async_page_fault = true;
12882         kvm_inject_page_fault(vcpu, &fault);
12883         return true;
12884     } else {
12885         /*
12886          * It is not possible to deliver a paravirtualized asynchronous
12887          * page fault, but putting the guest in an artificial halt state
12888          * can be beneficial nevertheless: if an interrupt arrives, we
12889          * can deliver it timely and perhaps the guest will schedule
12890          * another process.  When the instruction that triggered a page
12891          * fault is retried, hopefully the page will be ready in the host.
12892          */
12893         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12894         return false;
12895     }
12896 }
12897 
12898 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12899                  struct kvm_async_pf *work)
12900 {
12901     struct kvm_lapic_irq irq = {
12902         .delivery_mode = APIC_DM_FIXED,
12903         .vector = vcpu->arch.apf.vec
12904     };
12905 
12906     if (work->wakeup_all)
12907         work->arch.token = ~0; /* broadcast wakeup */
12908     else
12909         kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12910     trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12911 
12912     if ((work->wakeup_all || work->notpresent_injected) &&
12913         kvm_pv_async_pf_enabled(vcpu) &&
12914         !apf_put_user_ready(vcpu, work->arch.token)) {
12915         vcpu->arch.apf.pageready_pending = true;
12916         kvm_apic_set_irq(vcpu, &irq, NULL);
12917     }
12918 
12919     vcpu->arch.apf.halted = false;
12920     vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12921 }
12922 
12923 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12924 {
12925     kvm_make_request(KVM_REQ_APF_READY, vcpu);
12926     if (!vcpu->arch.apf.pageready_pending)
12927         kvm_vcpu_kick(vcpu);
12928 }
12929 
12930 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12931 {
12932     if (!kvm_pv_async_pf_enabled(vcpu))
12933         return true;
12934     else
12935         return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12936 }
12937 
12938 void kvm_arch_start_assignment(struct kvm *kvm)
12939 {
12940     if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12941         static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12942 }
12943 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12944 
12945 void kvm_arch_end_assignment(struct kvm *kvm)
12946 {
12947     atomic_dec(&kvm->arch.assigned_device_count);
12948 }
12949 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12950 
12951 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12952 {
12953     return arch_atomic_read(&kvm->arch.assigned_device_count);
12954 }
12955 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12956 
12957 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12958 {
12959     atomic_inc(&kvm->arch.noncoherent_dma_count);
12960 }
12961 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12962 
12963 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12964 {
12965     atomic_dec(&kvm->arch.noncoherent_dma_count);
12966 }
12967 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12968 
12969 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12970 {
12971     return atomic_read(&kvm->arch.noncoherent_dma_count);
12972 }
12973 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12974 
12975 bool kvm_arch_has_irq_bypass(void)
12976 {
12977     return true;
12978 }
12979 
12980 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12981                       struct irq_bypass_producer *prod)
12982 {
12983     struct kvm_kernel_irqfd *irqfd =
12984         container_of(cons, struct kvm_kernel_irqfd, consumer);
12985     int ret;
12986 
12987     irqfd->producer = prod;
12988     kvm_arch_start_assignment(irqfd->kvm);
12989     ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12990                      prod->irq, irqfd->gsi, 1);
12991 
12992     if (ret)
12993         kvm_arch_end_assignment(irqfd->kvm);
12994 
12995     return ret;
12996 }
12997 
12998 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12999                       struct irq_bypass_producer *prod)
13000 {
13001     int ret;
13002     struct kvm_kernel_irqfd *irqfd =
13003         container_of(cons, struct kvm_kernel_irqfd, consumer);
13004 
13005     WARN_ON(irqfd->producer != prod);
13006     irqfd->producer = NULL;
13007 
13008     /*
13009      * When producer of consumer is unregistered, we change back to
13010      * remapped mode, so we can re-use the current implementation
13011      * when the irq is masked/disabled or the consumer side (KVM
13012      * int this case doesn't want to receive the interrupts.
13013     */
13014     ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13015     if (ret)
13016         printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13017                " fails: %d\n", irqfd->consumer.token, ret);
13018 
13019     kvm_arch_end_assignment(irqfd->kvm);
13020 }
13021 
13022 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13023                    uint32_t guest_irq, bool set)
13024 {
13025     return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13026 }
13027 
13028 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13029                   struct kvm_kernel_irq_routing_entry *new)
13030 {
13031     if (new->type != KVM_IRQ_ROUTING_MSI)
13032         return true;
13033 
13034     return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13035 }
13036 
13037 bool kvm_vector_hashing_enabled(void)
13038 {
13039     return vector_hashing;
13040 }
13041 
13042 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13043 {
13044     return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13045 }
13046 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13047 
13048 
13049 int kvm_spec_ctrl_test_value(u64 value)
13050 {
13051     /*
13052      * test that setting IA32_SPEC_CTRL to given value
13053      * is allowed by the host processor
13054      */
13055 
13056     u64 saved_value;
13057     unsigned long flags;
13058     int ret = 0;
13059 
13060     local_irq_save(flags);
13061 
13062     if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13063         ret = 1;
13064     else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13065         ret = 1;
13066     else
13067         wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13068 
13069     local_irq_restore(flags);
13070 
13071     return ret;
13072 }
13073 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13074 
13075 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13076 {
13077     struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13078     struct x86_exception fault;
13079     u64 access = error_code &
13080         (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13081 
13082     if (!(error_code & PFERR_PRESENT_MASK) ||
13083         mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13084         /*
13085          * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13086          * tables probably do not match the TLB.  Just proceed
13087          * with the error code that the processor gave.
13088          */
13089         fault.vector = PF_VECTOR;
13090         fault.error_code_valid = true;
13091         fault.error_code = error_code;
13092         fault.nested_page_fault = false;
13093         fault.address = gva;
13094         fault.async_page_fault = false;
13095     }
13096     vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13097 }
13098 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13099 
13100 /*
13101  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13102  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13103  * indicates whether exit to userspace is needed.
13104  */
13105 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13106                   struct x86_exception *e)
13107 {
13108     if (r == X86EMUL_PROPAGATE_FAULT) {
13109         kvm_inject_emulated_page_fault(vcpu, e);
13110         return 1;
13111     }
13112 
13113     /*
13114      * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13115      * while handling a VMX instruction KVM could've handled the request
13116      * correctly by exiting to userspace and performing I/O but there
13117      * doesn't seem to be a real use-case behind such requests, just return
13118      * KVM_EXIT_INTERNAL_ERROR for now.
13119      */
13120     kvm_prepare_emulation_failure_exit(vcpu);
13121 
13122     return 0;
13123 }
13124 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13125 
13126 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13127 {
13128     bool pcid_enabled;
13129     struct x86_exception e;
13130     struct {
13131         u64 pcid;
13132         u64 gla;
13133     } operand;
13134     int r;
13135 
13136     r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13137     if (r != X86EMUL_CONTINUE)
13138         return kvm_handle_memory_failure(vcpu, r, &e);
13139 
13140     if (operand.pcid >> 12 != 0) {
13141         kvm_inject_gp(vcpu, 0);
13142         return 1;
13143     }
13144 
13145     pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13146 
13147     switch (type) {
13148     case INVPCID_TYPE_INDIV_ADDR:
13149         if ((!pcid_enabled && (operand.pcid != 0)) ||
13150             is_noncanonical_address(operand.gla, vcpu)) {
13151             kvm_inject_gp(vcpu, 0);
13152             return 1;
13153         }
13154         kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13155         return kvm_skip_emulated_instruction(vcpu);
13156 
13157     case INVPCID_TYPE_SINGLE_CTXT:
13158         if (!pcid_enabled && (operand.pcid != 0)) {
13159             kvm_inject_gp(vcpu, 0);
13160             return 1;
13161         }
13162 
13163         kvm_invalidate_pcid(vcpu, operand.pcid);
13164         return kvm_skip_emulated_instruction(vcpu);
13165 
13166     case INVPCID_TYPE_ALL_NON_GLOBAL:
13167         /*
13168          * Currently, KVM doesn't mark global entries in the shadow
13169          * page tables, so a non-global flush just degenerates to a
13170          * global flush. If needed, we could optimize this later by
13171          * keeping track of global entries in shadow page tables.
13172          */
13173 
13174         fallthrough;
13175     case INVPCID_TYPE_ALL_INCL_GLOBAL:
13176         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13177         return kvm_skip_emulated_instruction(vcpu);
13178 
13179     default:
13180         kvm_inject_gp(vcpu, 0);
13181         return 1;
13182     }
13183 }
13184 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13185 
13186 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13187 {
13188     struct kvm_run *run = vcpu->run;
13189     struct kvm_mmio_fragment *frag;
13190     unsigned int len;
13191 
13192     BUG_ON(!vcpu->mmio_needed);
13193 
13194     /* Complete previous fragment */
13195     frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13196     len = min(8u, frag->len);
13197     if (!vcpu->mmio_is_write)
13198         memcpy(frag->data, run->mmio.data, len);
13199 
13200     if (frag->len <= 8) {
13201         /* Switch to the next fragment. */
13202         frag++;
13203         vcpu->mmio_cur_fragment++;
13204     } else {
13205         /* Go forward to the next mmio piece. */
13206         frag->data += len;
13207         frag->gpa += len;
13208         frag->len -= len;
13209     }
13210 
13211     if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13212         vcpu->mmio_needed = 0;
13213 
13214         // VMG change, at this point, we're always done
13215         // RIP has already been advanced
13216         return 1;
13217     }
13218 
13219     // More MMIO is needed
13220     run->mmio.phys_addr = frag->gpa;
13221     run->mmio.len = min(8u, frag->len);
13222     run->mmio.is_write = vcpu->mmio_is_write;
13223     if (run->mmio.is_write)
13224         memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13225     run->exit_reason = KVM_EXIT_MMIO;
13226 
13227     vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13228 
13229     return 0;
13230 }
13231 
13232 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13233               void *data)
13234 {
13235     int handled;
13236     struct kvm_mmio_fragment *frag;
13237 
13238     if (!data)
13239         return -EINVAL;
13240 
13241     handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13242     if (handled == bytes)
13243         return 1;
13244 
13245     bytes -= handled;
13246     gpa += handled;
13247     data += handled;
13248 
13249     /*TODO: Check if need to increment number of frags */
13250     frag = vcpu->mmio_fragments;
13251     vcpu->mmio_nr_fragments = 1;
13252     frag->len = bytes;
13253     frag->gpa = gpa;
13254     frag->data = data;
13255 
13256     vcpu->mmio_needed = 1;
13257     vcpu->mmio_cur_fragment = 0;
13258 
13259     vcpu->run->mmio.phys_addr = gpa;
13260     vcpu->run->mmio.len = min(8u, frag->len);
13261     vcpu->run->mmio.is_write = 1;
13262     memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13263     vcpu->run->exit_reason = KVM_EXIT_MMIO;
13264 
13265     vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13266 
13267     return 0;
13268 }
13269 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13270 
13271 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13272              void *data)
13273 {
13274     int handled;
13275     struct kvm_mmio_fragment *frag;
13276 
13277     if (!data)
13278         return -EINVAL;
13279 
13280     handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13281     if (handled == bytes)
13282         return 1;
13283 
13284     bytes -= handled;
13285     gpa += handled;
13286     data += handled;
13287 
13288     /*TODO: Check if need to increment number of frags */
13289     frag = vcpu->mmio_fragments;
13290     vcpu->mmio_nr_fragments = 1;
13291     frag->len = bytes;
13292     frag->gpa = gpa;
13293     frag->data = data;
13294 
13295     vcpu->mmio_needed = 1;
13296     vcpu->mmio_cur_fragment = 0;
13297 
13298     vcpu->run->mmio.phys_addr = gpa;
13299     vcpu->run->mmio.len = min(8u, frag->len);
13300     vcpu->run->mmio.is_write = 0;
13301     vcpu->run->exit_reason = KVM_EXIT_MMIO;
13302 
13303     vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13304 
13305     return 0;
13306 }
13307 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13308 
13309 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13310 {
13311     vcpu->arch.sev_pio_count -= count;
13312     vcpu->arch.sev_pio_data += count * size;
13313 }
13314 
13315 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13316                unsigned int port);
13317 
13318 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13319 {
13320     int size = vcpu->arch.pio.size;
13321     int port = vcpu->arch.pio.port;
13322 
13323     vcpu->arch.pio.count = 0;
13324     if (vcpu->arch.sev_pio_count)
13325         return kvm_sev_es_outs(vcpu, size, port);
13326     return 1;
13327 }
13328 
13329 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13330                unsigned int port)
13331 {
13332     for (;;) {
13333         unsigned int count =
13334             min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13335         int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13336 
13337         /* memcpy done already by emulator_pio_out.  */
13338         advance_sev_es_emulated_pio(vcpu, count, size);
13339         if (!ret)
13340             break;
13341 
13342         /* Emulation done by the kernel.  */
13343         if (!vcpu->arch.sev_pio_count)
13344             return 1;
13345     }
13346 
13347     vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13348     return 0;
13349 }
13350 
13351 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13352               unsigned int port);
13353 
13354 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13355 {
13356     unsigned count = vcpu->arch.pio.count;
13357     int size = vcpu->arch.pio.size;
13358     int port = vcpu->arch.pio.port;
13359 
13360     complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13361     advance_sev_es_emulated_pio(vcpu, count, size);
13362     if (vcpu->arch.sev_pio_count)
13363         return kvm_sev_es_ins(vcpu, size, port);
13364     return 1;
13365 }
13366 
13367 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13368               unsigned int port)
13369 {
13370     for (;;) {
13371         unsigned int count =
13372             min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13373         if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13374             break;
13375 
13376         /* Emulation done by the kernel.  */
13377         advance_sev_es_emulated_pio(vcpu, count, size);
13378         if (!vcpu->arch.sev_pio_count)
13379             return 1;
13380     }
13381 
13382     vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13383     return 0;
13384 }
13385 
13386 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13387              unsigned int port, void *data,  unsigned int count,
13388              int in)
13389 {
13390     vcpu->arch.sev_pio_data = data;
13391     vcpu->arch.sev_pio_count = count;
13392     return in ? kvm_sev_es_ins(vcpu, size, port)
13393           : kvm_sev_es_outs(vcpu, size, port);
13394 }
13395 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13396 
13397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13426 
13427 static int __init kvm_x86_init(void)
13428 {
13429     kvm_mmu_x86_module_init();
13430     return 0;
13431 }
13432 module_init(kvm_x86_init);
13433 
13434 static void __exit kvm_x86_exit(void)
13435 {
13436     /*
13437      * If module_init() is implemented, module_exit() must also be
13438      * implemented to allow module unload.
13439      */
13440 }
13441 module_exit(kvm_x86_exit);