Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 #ifndef __KVM_X86_VMX_H
0003 #define __KVM_X86_VMX_H
0004 
0005 #include <linux/kvm_host.h>
0006 
0007 #include <asm/kvm.h>
0008 #include <asm/intel_pt.h>
0009 #include <asm/perf_event.h>
0010 
0011 #include "capabilities.h"
0012 #include "../kvm_cache_regs.h"
0013 #include "posted_intr.h"
0014 #include "vmcs.h"
0015 #include "vmx_ops.h"
0016 #include "../cpuid.h"
0017 #include "run_flags.h"
0018 
0019 #define MSR_TYPE_R  1
0020 #define MSR_TYPE_W  2
0021 #define MSR_TYPE_RW 3
0022 
0023 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
0024 
0025 #ifdef CONFIG_X86_64
0026 #define MAX_NR_USER_RETURN_MSRS 7
0027 #else
0028 #define MAX_NR_USER_RETURN_MSRS 4
0029 #endif
0030 
0031 #define MAX_NR_LOADSTORE_MSRS   8
0032 
0033 struct vmx_msrs {
0034     unsigned int        nr;
0035     struct vmx_msr_entry    val[MAX_NR_LOADSTORE_MSRS];
0036 };
0037 
0038 struct vmx_uret_msr {
0039     bool load_into_hardware;
0040     u64 data;
0041     u64 mask;
0042 };
0043 
0044 enum segment_cache_field {
0045     SEG_FIELD_SEL = 0,
0046     SEG_FIELD_BASE = 1,
0047     SEG_FIELD_LIMIT = 2,
0048     SEG_FIELD_AR = 3,
0049 
0050     SEG_FIELD_NR = 4
0051 };
0052 
0053 #define RTIT_ADDR_RANGE     4
0054 
0055 struct pt_ctx {
0056     u64 ctl;
0057     u64 status;
0058     u64 output_base;
0059     u64 output_mask;
0060     u64 cr3_match;
0061     u64 addr_a[RTIT_ADDR_RANGE];
0062     u64 addr_b[RTIT_ADDR_RANGE];
0063 };
0064 
0065 struct pt_desc {
0066     u64 ctl_bitmask;
0067     u32 num_address_ranges;
0068     u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
0069     struct pt_ctx host;
0070     struct pt_ctx guest;
0071 };
0072 
0073 union vmx_exit_reason {
0074     struct {
0075         u32 basic           : 16;
0076         u32 reserved16      : 1;
0077         u32 reserved17      : 1;
0078         u32 reserved18      : 1;
0079         u32 reserved19      : 1;
0080         u32 reserved20      : 1;
0081         u32 reserved21      : 1;
0082         u32 reserved22      : 1;
0083         u32 reserved23      : 1;
0084         u32 reserved24      : 1;
0085         u32 reserved25      : 1;
0086         u32 bus_lock_detected   : 1;
0087         u32 enclave_mode        : 1;
0088         u32 smi_pending_mtf     : 1;
0089         u32 smi_from_vmx_root   : 1;
0090         u32 reserved30      : 1;
0091         u32 failed_vmentry      : 1;
0092     };
0093     u32 full;
0094 };
0095 
0096 static inline bool intel_pmu_has_perf_global_ctrl(struct kvm_pmu *pmu)
0097 {
0098     /*
0099      * Architecturally, Intel's SDM states that IA32_PERF_GLOBAL_CTRL is
0100      * supported if "CPUID.0AH: EAX[7:0] > 0", i.e. if the PMU version is
0101      * greater than zero.  However, KVM only exposes and emulates the MSR
0102      * to/for the guest if the guest PMU supports at least "Architectural
0103      * Performance Monitoring Version 2".
0104      */
0105     return pmu->version > 1;
0106 }
0107 
0108 struct lbr_desc {
0109     /* Basic info about guest LBR records. */
0110     struct x86_pmu_lbr records;
0111 
0112     /*
0113      * Emulate LBR feature via passthrough LBR registers when the
0114      * per-vcpu guest LBR event is scheduled on the current pcpu.
0115      *
0116      * The records may be inaccurate if the host reclaims the LBR.
0117      */
0118     struct perf_event *event;
0119 
0120     /* True if LBRs are marked as not intercepted in the MSR bitmap */
0121     bool msr_passthrough;
0122 };
0123 
0124 /*
0125  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
0126  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
0127  */
0128 struct nested_vmx {
0129     /* Has the level1 guest done vmxon? */
0130     bool vmxon;
0131     gpa_t vmxon_ptr;
0132     bool pml_full;
0133 
0134     /* The guest-physical address of the current VMCS L1 keeps for L2 */
0135     gpa_t current_vmptr;
0136     /*
0137      * Cache of the guest's VMCS, existing outside of guest memory.
0138      * Loaded from guest memory during VMPTRLD. Flushed to guest
0139      * memory during VMCLEAR and VMPTRLD.
0140      */
0141     struct vmcs12 *cached_vmcs12;
0142     /*
0143      * Cache of the guest's shadow VMCS, existing outside of guest
0144      * memory. Loaded from guest memory during VM entry. Flushed
0145      * to guest memory during VM exit.
0146      */
0147     struct vmcs12 *cached_shadow_vmcs12;
0148 
0149     /*
0150      * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
0151      */
0152     struct gfn_to_hva_cache shadow_vmcs12_cache;
0153 
0154     /*
0155      * GPA to HVA cache for VMCS12
0156      */
0157     struct gfn_to_hva_cache vmcs12_cache;
0158 
0159     /*
0160      * Indicates if the shadow vmcs or enlightened vmcs must be updated
0161      * with the data held by struct vmcs12.
0162      */
0163     bool need_vmcs12_to_shadow_sync;
0164     bool dirty_vmcs12;
0165 
0166     /*
0167      * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
0168      * changes in MSR bitmap for L1 or switching to a different L2. Note,
0169      * this flag can only be used reliably in conjunction with a paravirt L1
0170      * which informs L0 whether any changes to MSR bitmap for L2 were done
0171      * on its side.
0172      */
0173     bool force_msr_bitmap_recalc;
0174 
0175     /*
0176      * Indicates lazily loaded guest state has not yet been decached from
0177      * vmcs02.
0178      */
0179     bool need_sync_vmcs02_to_vmcs12_rare;
0180 
0181     /*
0182      * vmcs02 has been initialized, i.e. state that is constant for
0183      * vmcs02 has been written to the backing VMCS.  Initialization
0184      * is delayed until L1 actually attempts to run a nested VM.
0185      */
0186     bool vmcs02_initialized;
0187 
0188     bool change_vmcs01_virtual_apic_mode;
0189     bool reload_vmcs01_apic_access_page;
0190     bool update_vmcs01_cpu_dirty_logging;
0191     bool update_vmcs01_apicv_status;
0192 
0193     /*
0194      * Enlightened VMCS has been enabled. It does not mean that L1 has to
0195      * use it. However, VMX features available to L1 will be limited based
0196      * on what the enlightened VMCS supports.
0197      */
0198     bool enlightened_vmcs_enabled;
0199 
0200     /* L2 must run next, and mustn't decide to exit to L1. */
0201     bool nested_run_pending;
0202 
0203     /* Pending MTF VM-exit into L1.  */
0204     bool mtf_pending;
0205 
0206     struct loaded_vmcs vmcs02;
0207 
0208     /*
0209      * Guest pages referred to in the vmcs02 with host-physical
0210      * pointers, so we must keep them pinned while L2 runs.
0211      */
0212     struct kvm_host_map apic_access_page_map;
0213     struct kvm_host_map virtual_apic_map;
0214     struct kvm_host_map pi_desc_map;
0215 
0216     struct kvm_host_map msr_bitmap_map;
0217 
0218     struct pi_desc *pi_desc;
0219     bool pi_pending;
0220     u16 posted_intr_nv;
0221 
0222     struct hrtimer preemption_timer;
0223     u64 preemption_timer_deadline;
0224     bool has_preemption_timer_deadline;
0225     bool preemption_timer_expired;
0226 
0227     /*
0228      * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
0229      * order to propagate the guest's pre-VM-Enter value into vmcs02.  For
0230      * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
0231      * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
0232      * userspace restores MSRs before nested state.  If userspace restores
0233      * MSRs after nested state, the snapshot holds garbage, but KVM can't
0234      * detect that, and the garbage value in vmcs02 will be overwritten by
0235      * MSR restoration in any case.
0236      */
0237     u64 pre_vmenter_debugctl;
0238     u64 pre_vmenter_bndcfgs;
0239 
0240     /* to migrate it to L1 if L2 writes to L1's CR8 directly */
0241     int l1_tpr_threshold;
0242 
0243     u16 vpid02;
0244     u16 last_vpid;
0245 
0246     struct nested_vmx_msrs msrs;
0247 
0248     /* SMM related state */
0249     struct {
0250         /* in VMX operation on SMM entry? */
0251         bool vmxon;
0252         /* in guest mode on SMM entry? */
0253         bool guest_mode;
0254     } smm;
0255 
0256     gpa_t hv_evmcs_vmptr;
0257     struct kvm_host_map hv_evmcs_map;
0258     struct hv_enlightened_vmcs *hv_evmcs;
0259 };
0260 
0261 struct vcpu_vmx {
0262     struct kvm_vcpu       vcpu;
0263     u8                    fail;
0264     u8            x2apic_msr_bitmap_mode;
0265 
0266     /*
0267      * If true, host state has been stored in vmx->loaded_vmcs for
0268      * the CPU registers that only need to be switched when transitioning
0269      * to/from the kernel, and the registers have been loaded with guest
0270      * values.  If false, host state is loaded in the CPU registers
0271      * and vmx->loaded_vmcs->host_state is invalid.
0272      */
0273     bool              guest_state_loaded;
0274 
0275     unsigned long         exit_qualification;
0276     u32                   exit_intr_info;
0277     u32                   idt_vectoring_info;
0278     ulong                 rflags;
0279 
0280     /*
0281      * User return MSRs are always emulated when enabled in the guest, but
0282      * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
0283      * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
0284      * be loaded into hardware if those conditions aren't met.
0285      */
0286     struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
0287     bool                  guest_uret_msrs_loaded;
0288 #ifdef CONFIG_X86_64
0289     u64           msr_host_kernel_gs_base;
0290     u64           msr_guest_kernel_gs_base;
0291 #endif
0292 
0293     u64           spec_ctrl;
0294     u32           msr_ia32_umwait_control;
0295 
0296     /*
0297      * loaded_vmcs points to the VMCS currently used in this vcpu. For a
0298      * non-nested (L1) guest, it always points to vmcs01. For a nested
0299      * guest (L2), it points to a different VMCS.
0300      */
0301     struct loaded_vmcs    vmcs01;
0302     struct loaded_vmcs   *loaded_vmcs;
0303 
0304     struct msr_autoload {
0305         struct vmx_msrs guest;
0306         struct vmx_msrs host;
0307     } msr_autoload;
0308 
0309     struct msr_autostore {
0310         struct vmx_msrs guest;
0311     } msr_autostore;
0312 
0313     struct {
0314         int vm86_active;
0315         ulong save_rflags;
0316         struct kvm_segment segs[8];
0317     } rmode;
0318     struct {
0319         u32 bitmask; /* 4 bits per segment (1 bit per field) */
0320         struct kvm_save_segment {
0321             u16 selector;
0322             unsigned long base;
0323             u32 limit;
0324             u32 ar;
0325         } seg[8];
0326     } segment_cache;
0327     int vpid;
0328     bool emulation_required;
0329 
0330     union vmx_exit_reason exit_reason;
0331 
0332     /* Posted interrupt descriptor */
0333     struct pi_desc pi_desc;
0334 
0335     /* Used if this vCPU is waiting for PI notification wakeup. */
0336     struct list_head pi_wakeup_list;
0337 
0338     /* Support for a guest hypervisor (nested VMX) */
0339     struct nested_vmx nested;
0340 
0341     /* Dynamic PLE window. */
0342     unsigned int ple_window;
0343     bool ple_window_dirty;
0344 
0345     bool req_immediate_exit;
0346 
0347     /* Support for PML */
0348 #define PML_ENTITY_NUM      512
0349     struct page *pml_pg;
0350 
0351     /* apic deadline value in host tsc */
0352     u64 hv_deadline_tsc;
0353 
0354     unsigned long host_debugctlmsr;
0355 
0356     /*
0357      * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
0358      * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
0359      * in msr_ia32_feature_control_valid_bits.
0360      */
0361     u64 msr_ia32_feature_control;
0362     u64 msr_ia32_feature_control_valid_bits;
0363     /* SGX Launch Control public key hash */
0364     u64 msr_ia32_sgxlepubkeyhash[4];
0365     u64 msr_ia32_mcu_opt_ctrl;
0366     bool disable_fb_clear;
0367 
0368     struct pt_desc pt_desc;
0369     struct lbr_desc lbr_desc;
0370 
0371     /* Save desired MSR intercept (read: pass-through) state */
0372 #define MAX_POSSIBLE_PASSTHROUGH_MSRS   15
0373     struct {
0374         DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
0375         DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
0376     } shadow_msr_intercept;
0377 };
0378 
0379 struct kvm_vmx {
0380     struct kvm kvm;
0381 
0382     unsigned int tss_addr;
0383     bool ept_identity_pagetable_done;
0384     gpa_t ept_identity_map_addr;
0385     /* Posted Interrupt Descriptor (PID) table for IPI virtualization */
0386     u64 *pid_table;
0387 };
0388 
0389 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
0390 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
0391             struct loaded_vmcs *buddy);
0392 int allocate_vpid(void);
0393 void free_vpid(int vpid);
0394 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
0395 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
0396 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
0397             unsigned long fs_base, unsigned long gs_base);
0398 int vmx_get_cpl(struct kvm_vcpu *vcpu);
0399 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
0400 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
0401 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
0402 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
0403 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
0404 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
0405 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
0406 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
0407 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
0408 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
0409 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
0410 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
0411 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
0412 
0413 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
0414 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
0415 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
0416 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
0417 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
0418 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
0419 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
0420 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
0421 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
0422 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
0423 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
0424 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
0425 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
0426             unsigned int flags);
0427 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
0428 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
0429 
0430 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
0431 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
0432 
0433 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
0434 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
0435 
0436 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
0437                          int type, bool value)
0438 {
0439     if (value)
0440         vmx_enable_intercept_for_msr(vcpu, msr, type);
0441     else
0442         vmx_disable_intercept_for_msr(vcpu, msr, type);
0443 }
0444 
0445 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
0446 
0447 /*
0448  * Note, early Intel manuals have the write-low and read-high bitmap offsets
0449  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
0450  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
0451  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
0452  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
0453  * VM-Exit.
0454  */
0455 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
0456 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
0457                                u32 msr)            \
0458 {                                          \
0459     int f = sizeof(unsigned long);                         \
0460                                            \
0461     if (msr <= 0x1fff)                             \
0462         return bitop##_bit(msr, bitmap + base / f);            \
0463     else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))               \
0464         return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
0465     return (rtype)true;                            \
0466 }
0467 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)              \
0468     __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
0469     __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
0470 
0471 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
0472 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
0473 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
0474 
0475 static inline u8 vmx_get_rvi(void)
0476 {
0477     return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
0478 }
0479 
0480 #define BUILD_CONTROLS_SHADOW(lname, uname, bits)               \
0481 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val)  \
0482 {                                       \
0483     if (vmx->loaded_vmcs->controls_shadow.lname != val) {           \
0484         vmcs_write##bits(uname, val);                   \
0485         vmx->loaded_vmcs->controls_shadow.lname = val;          \
0486     }                                   \
0487 }                                       \
0488 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs)    \
0489 {                                       \
0490     return vmcs->controls_shadow.lname;                 \
0491 }                                       \
0492 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx)        \
0493 {                                       \
0494     return __##lname##_controls_get(vmx->loaded_vmcs);          \
0495 }                                       \
0496 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val)   \
0497 {                                       \
0498     lname##_controls_set(vmx, lname##_controls_get(vmx) | val);     \
0499 }                                       \
0500 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val) \
0501 {                                       \
0502     lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);        \
0503 }
0504 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
0505 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
0506 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
0507 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
0508 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
0509 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
0510 
0511 /*
0512  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
0513  * cache on demand.  Other registers not listed here are synced to
0514  * the cache immediately after VM-Exit.
0515  */
0516 #define VMX_REGS_LAZY_LOAD_SET  ((1 << VCPU_REGS_RIP) |         \
0517                 (1 << VCPU_REGS_RSP) |          \
0518                 (1 << VCPU_EXREG_RFLAGS) |      \
0519                 (1 << VCPU_EXREG_PDPTR) |       \
0520                 (1 << VCPU_EXREG_SEGMENTS) |    \
0521                 (1 << VCPU_EXREG_CR0) |         \
0522                 (1 << VCPU_EXREG_CR3) |         \
0523                 (1 << VCPU_EXREG_CR4) |         \
0524                 (1 << VCPU_EXREG_EXIT_INFO_1) | \
0525                 (1 << VCPU_EXREG_EXIT_INFO_2))
0526 
0527 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
0528 {
0529     return container_of(kvm, struct kvm_vmx, kvm);
0530 }
0531 
0532 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
0533 {
0534     return container_of(vcpu, struct vcpu_vmx, vcpu);
0535 }
0536 
0537 static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
0538 {
0539     return &to_vmx(vcpu)->lbr_desc;
0540 }
0541 
0542 static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
0543 {
0544     return &vcpu_to_lbr_desc(vcpu)->records;
0545 }
0546 
0547 static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
0548 {
0549     return !!vcpu_to_lbr_records(vcpu)->nr;
0550 }
0551 
0552 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
0553 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
0554 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
0555 
0556 static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
0557 {
0558     struct vcpu_vmx *vmx = to_vmx(vcpu);
0559 
0560     if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) {
0561         kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
0562         vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
0563     }
0564     return vmx->exit_qualification;
0565 }
0566 
0567 static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
0568 {
0569     struct vcpu_vmx *vmx = to_vmx(vcpu);
0570 
0571     if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) {
0572         kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
0573         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
0574     }
0575     return vmx->exit_intr_info;
0576 }
0577 
0578 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
0579 void free_vmcs(struct vmcs *vmcs);
0580 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
0581 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
0582 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
0583 
0584 static inline struct vmcs *alloc_vmcs(bool shadow)
0585 {
0586     return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
0587                   GFP_KERNEL_ACCOUNT);
0588 }
0589 
0590 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
0591 {
0592     return secondary_exec_controls_get(vmx) &
0593         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
0594 }
0595 
0596 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
0597 {
0598     if (!enable_ept)
0599         return true;
0600 
0601     return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
0602 }
0603 
0604 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
0605 {
0606     return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
0607         (secondary_exec_controls_get(to_vmx(vcpu)) &
0608         SECONDARY_EXEC_UNRESTRICTED_GUEST));
0609 }
0610 
0611 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
0612 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
0613 {
0614     return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
0615 }
0616 
0617 void dump_vmcs(struct kvm_vcpu *vcpu);
0618 
0619 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
0620 {
0621     return (vmx_instr_info >> 28) & 0xf;
0622 }
0623 
0624 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
0625 {
0626     return  lapic_in_kernel(vcpu) && enable_ipiv;
0627 }
0628 
0629 #endif /* __KVM_X86_VMX_H */