Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Kernel-based Virtual Machine driver for Linux
0004  *
0005  * AMD SVM-SEV support
0006  *
0007  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
0008  */
0009 
0010 #include <linux/kvm_types.h>
0011 #include <linux/kvm_host.h>
0012 #include <linux/kernel.h>
0013 #include <linux/highmem.h>
0014 #include <linux/psp-sev.h>
0015 #include <linux/pagemap.h>
0016 #include <linux/swap.h>
0017 #include <linux/misc_cgroup.h>
0018 #include <linux/processor.h>
0019 #include <linux/trace_events.h>
0020 
0021 #include <asm/pkru.h>
0022 #include <asm/trapnr.h>
0023 #include <asm/fpu/xcr.h>
0024 
0025 #include "mmu.h"
0026 #include "x86.h"
0027 #include "svm.h"
0028 #include "svm_ops.h"
0029 #include "cpuid.h"
0030 #include "trace.h"
0031 
0032 #ifndef CONFIG_KVM_AMD_SEV
0033 /*
0034  * When this config is not defined, SEV feature is not supported and APIs in
0035  * this file are not used but this file still gets compiled into the KVM AMD
0036  * module.
0037  *
0038  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
0039  * misc_res_type {} defined in linux/misc_cgroup.h.
0040  *
0041  * Below macros allow compilation to succeed.
0042  */
0043 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
0044 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
0045 #endif
0046 
0047 #ifdef CONFIG_KVM_AMD_SEV
0048 /* enable/disable SEV support */
0049 static bool sev_enabled = true;
0050 module_param_named(sev, sev_enabled, bool, 0444);
0051 
0052 /* enable/disable SEV-ES support */
0053 static bool sev_es_enabled = true;
0054 module_param_named(sev_es, sev_es_enabled, bool, 0444);
0055 #else
0056 #define sev_enabled false
0057 #define sev_es_enabled false
0058 #endif /* CONFIG_KVM_AMD_SEV */
0059 
0060 static u8 sev_enc_bit;
0061 static DECLARE_RWSEM(sev_deactivate_lock);
0062 static DEFINE_MUTEX(sev_bitmap_lock);
0063 unsigned int max_sev_asid;
0064 static unsigned int min_sev_asid;
0065 static unsigned long sev_me_mask;
0066 static unsigned int nr_asids;
0067 static unsigned long *sev_asid_bitmap;
0068 static unsigned long *sev_reclaim_asid_bitmap;
0069 
0070 struct enc_region {
0071     struct list_head list;
0072     unsigned long npages;
0073     struct page **pages;
0074     unsigned long uaddr;
0075     unsigned long size;
0076 };
0077 
0078 /* Called with the sev_bitmap_lock held, or on shutdown  */
0079 static int sev_flush_asids(int min_asid, int max_asid)
0080 {
0081     int ret, asid, error = 0;
0082 
0083     /* Check if there are any ASIDs to reclaim before performing a flush */
0084     asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
0085     if (asid > max_asid)
0086         return -EBUSY;
0087 
0088     /*
0089      * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
0090      * so it must be guarded.
0091      */
0092     down_write(&sev_deactivate_lock);
0093 
0094     wbinvd_on_all_cpus();
0095     ret = sev_guest_df_flush(&error);
0096 
0097     up_write(&sev_deactivate_lock);
0098 
0099     if (ret)
0100         pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
0101 
0102     return ret;
0103 }
0104 
0105 static inline bool is_mirroring_enc_context(struct kvm *kvm)
0106 {
0107     return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
0108 }
0109 
0110 /* Must be called with the sev_bitmap_lock held */
0111 static bool __sev_recycle_asids(int min_asid, int max_asid)
0112 {
0113     if (sev_flush_asids(min_asid, max_asid))
0114         return false;
0115 
0116     /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
0117     bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
0118            nr_asids);
0119     bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
0120 
0121     return true;
0122 }
0123 
0124 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
0125 {
0126     enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
0127     return misc_cg_try_charge(type, sev->misc_cg, 1);
0128 }
0129 
0130 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
0131 {
0132     enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
0133     misc_cg_uncharge(type, sev->misc_cg, 1);
0134 }
0135 
0136 static int sev_asid_new(struct kvm_sev_info *sev)
0137 {
0138     int asid, min_asid, max_asid, ret;
0139     bool retry = true;
0140 
0141     WARN_ON(sev->misc_cg);
0142     sev->misc_cg = get_current_misc_cg();
0143     ret = sev_misc_cg_try_charge(sev);
0144     if (ret) {
0145         put_misc_cg(sev->misc_cg);
0146         sev->misc_cg = NULL;
0147         return ret;
0148     }
0149 
0150     mutex_lock(&sev_bitmap_lock);
0151 
0152     /*
0153      * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
0154      * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
0155      */
0156     min_asid = sev->es_active ? 1 : min_sev_asid;
0157     max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
0158 again:
0159     asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
0160     if (asid > max_asid) {
0161         if (retry && __sev_recycle_asids(min_asid, max_asid)) {
0162             retry = false;
0163             goto again;
0164         }
0165         mutex_unlock(&sev_bitmap_lock);
0166         ret = -EBUSY;
0167         goto e_uncharge;
0168     }
0169 
0170     __set_bit(asid, sev_asid_bitmap);
0171 
0172     mutex_unlock(&sev_bitmap_lock);
0173 
0174     return asid;
0175 e_uncharge:
0176     sev_misc_cg_uncharge(sev);
0177     put_misc_cg(sev->misc_cg);
0178     sev->misc_cg = NULL;
0179     return ret;
0180 }
0181 
0182 static int sev_get_asid(struct kvm *kvm)
0183 {
0184     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
0185 
0186     return sev->asid;
0187 }
0188 
0189 static void sev_asid_free(struct kvm_sev_info *sev)
0190 {
0191     struct svm_cpu_data *sd;
0192     int cpu;
0193 
0194     mutex_lock(&sev_bitmap_lock);
0195 
0196     __set_bit(sev->asid, sev_reclaim_asid_bitmap);
0197 
0198     for_each_possible_cpu(cpu) {
0199         sd = per_cpu(svm_data, cpu);
0200         sd->sev_vmcbs[sev->asid] = NULL;
0201     }
0202 
0203     mutex_unlock(&sev_bitmap_lock);
0204 
0205     sev_misc_cg_uncharge(sev);
0206     put_misc_cg(sev->misc_cg);
0207     sev->misc_cg = NULL;
0208 }
0209 
0210 static void sev_decommission(unsigned int handle)
0211 {
0212     struct sev_data_decommission decommission;
0213 
0214     if (!handle)
0215         return;
0216 
0217     decommission.handle = handle;
0218     sev_guest_decommission(&decommission, NULL);
0219 }
0220 
0221 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
0222 {
0223     struct sev_data_deactivate deactivate;
0224 
0225     if (!handle)
0226         return;
0227 
0228     deactivate.handle = handle;
0229 
0230     /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
0231     down_read(&sev_deactivate_lock);
0232     sev_guest_deactivate(&deactivate, NULL);
0233     up_read(&sev_deactivate_lock);
0234 
0235     sev_decommission(handle);
0236 }
0237 
0238 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
0239 {
0240     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
0241     int asid, ret;
0242 
0243     if (kvm->created_vcpus)
0244         return -EINVAL;
0245 
0246     ret = -EBUSY;
0247     if (unlikely(sev->active))
0248         return ret;
0249 
0250     sev->active = true;
0251     sev->es_active = argp->id == KVM_SEV_ES_INIT;
0252     asid = sev_asid_new(sev);
0253     if (asid < 0)
0254         goto e_no_asid;
0255     sev->asid = asid;
0256 
0257     ret = sev_platform_init(&argp->error);
0258     if (ret)
0259         goto e_free;
0260 
0261     INIT_LIST_HEAD(&sev->regions_list);
0262     INIT_LIST_HEAD(&sev->mirror_vms);
0263 
0264     kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
0265 
0266     return 0;
0267 
0268 e_free:
0269     sev_asid_free(sev);
0270     sev->asid = 0;
0271 e_no_asid:
0272     sev->es_active = false;
0273     sev->active = false;
0274     return ret;
0275 }
0276 
0277 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
0278 {
0279     struct sev_data_activate activate;
0280     int asid = sev_get_asid(kvm);
0281     int ret;
0282 
0283     /* activate ASID on the given handle */
0284     activate.handle = handle;
0285     activate.asid   = asid;
0286     ret = sev_guest_activate(&activate, error);
0287 
0288     return ret;
0289 }
0290 
0291 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
0292 {
0293     struct fd f;
0294     int ret;
0295 
0296     f = fdget(fd);
0297     if (!f.file)
0298         return -EBADF;
0299 
0300     ret = sev_issue_cmd_external_user(f.file, id, data, error);
0301 
0302     fdput(f);
0303     return ret;
0304 }
0305 
0306 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
0307 {
0308     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
0309 
0310     return __sev_issue_cmd(sev->fd, id, data, error);
0311 }
0312 
0313 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
0314 {
0315     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
0316     struct sev_data_launch_start start;
0317     struct kvm_sev_launch_start params;
0318     void *dh_blob, *session_blob;
0319     int *error = &argp->error;
0320     int ret;
0321 
0322     if (!sev_guest(kvm))
0323         return -ENOTTY;
0324 
0325     if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
0326         return -EFAULT;
0327 
0328     memset(&start, 0, sizeof(start));
0329 
0330     dh_blob = NULL;
0331     if (params.dh_uaddr) {
0332         dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
0333         if (IS_ERR(dh_blob))
0334             return PTR_ERR(dh_blob);
0335 
0336         start.dh_cert_address = __sme_set(__pa(dh_blob));
0337         start.dh_cert_len = params.dh_len;
0338     }
0339 
0340     session_blob = NULL;
0341     if (params.session_uaddr) {
0342         session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
0343         if (IS_ERR(session_blob)) {
0344             ret = PTR_ERR(session_blob);
0345             goto e_free_dh;
0346         }
0347 
0348         start.session_address = __sme_set(__pa(session_blob));
0349         start.session_len = params.session_len;
0350     }
0351 
0352     start.handle = params.handle;
0353     start.policy = params.policy;
0354 
0355     /* create memory encryption context */
0356     ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
0357     if (ret)
0358         goto e_free_session;
0359 
0360     /* Bind ASID to this guest */
0361     ret = sev_bind_asid(kvm, start.handle, error);
0362     if (ret) {
0363         sev_decommission(start.handle);
0364         goto e_free_session;
0365     }
0366 
0367     /* return handle to userspace */
0368     params.handle = start.handle;
0369     if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
0370         sev_unbind_asid(kvm, start.handle);
0371         ret = -EFAULT;
0372         goto e_free_session;
0373     }
0374 
0375     sev->handle = start.handle;
0376     sev->fd = argp->sev_fd;
0377 
0378 e_free_session:
0379     kfree(session_blob);
0380 e_free_dh:
0381     kfree(dh_blob);
0382     return ret;
0383 }
0384 
0385 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
0386                     unsigned long ulen, unsigned long *n,
0387                     int write)
0388 {
0389     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
0390     unsigned long npages, size;
0391     int npinned;
0392     unsigned long locked, lock_limit;
0393     struct page **pages;
0394     unsigned long first, last;
0395     int ret;
0396 
0397     lockdep_assert_held(&kvm->lock);
0398 
0399     if (ulen == 0 || uaddr + ulen < uaddr)
0400         return ERR_PTR(-EINVAL);
0401 
0402     /* Calculate number of pages. */
0403     first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
0404     last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
0405     npages = (last - first + 1);
0406 
0407     locked = sev->pages_locked + npages;
0408     lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
0409     if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
0410         pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
0411         return ERR_PTR(-ENOMEM);
0412     }
0413 
0414     if (WARN_ON_ONCE(npages > INT_MAX))
0415         return ERR_PTR(-EINVAL);
0416 
0417     /* Avoid using vmalloc for smaller buffers. */
0418     size = npages * sizeof(struct page *);
0419     if (size > PAGE_SIZE)
0420         pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
0421     else
0422         pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
0423 
0424     if (!pages)
0425         return ERR_PTR(-ENOMEM);
0426 
0427     /* Pin the user virtual address. */
0428     npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
0429     if (npinned != npages) {
0430         pr_err("SEV: Failure locking %lu pages.\n", npages);
0431         ret = -ENOMEM;
0432         goto err;
0433     }
0434 
0435     *n = npages;
0436     sev->pages_locked = locked;
0437 
0438     return pages;
0439 
0440 err:
0441     if (npinned > 0)
0442         unpin_user_pages(pages, npinned);
0443 
0444     kvfree(pages);
0445     return ERR_PTR(ret);
0446 }
0447 
0448 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
0449                  unsigned long npages)
0450 {
0451     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
0452 
0453     unpin_user_pages(pages, npages);
0454     kvfree(pages);
0455     sev->pages_locked -= npages;
0456 }
0457 
0458 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
0459 {
0460     uint8_t *page_virtual;
0461     unsigned long i;
0462 
0463     if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
0464         pages == NULL)
0465         return;
0466 
0467     for (i = 0; i < npages; i++) {
0468         page_virtual = kmap_atomic(pages[i]);
0469         clflush_cache_range(page_virtual, PAGE_SIZE);
0470         kunmap_atomic(page_virtual);
0471         cond_resched();
0472     }
0473 }
0474 
0475 static unsigned long get_num_contig_pages(unsigned long idx,
0476                 struct page **inpages, unsigned long npages)
0477 {
0478     unsigned long paddr, next_paddr;
0479     unsigned long i = idx + 1, pages = 1;
0480 
0481     /* find the number of contiguous pages starting from idx */
0482     paddr = __sme_page_pa(inpages[idx]);
0483     while (i < npages) {
0484         next_paddr = __sme_page_pa(inpages[i++]);
0485         if ((paddr + PAGE_SIZE) == next_paddr) {
0486             pages++;
0487             paddr = next_paddr;
0488             continue;
0489         }
0490         break;
0491     }
0492 
0493     return pages;
0494 }
0495 
0496 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
0497 {
0498     unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
0499     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
0500     struct kvm_sev_launch_update_data params;
0501     struct sev_data_launch_update_data data;
0502     struct page **inpages;
0503     int ret;
0504 
0505     if (!sev_guest(kvm))
0506         return -ENOTTY;
0507 
0508     if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
0509         return -EFAULT;
0510 
0511     vaddr = params.uaddr;
0512     size = params.len;
0513     vaddr_end = vaddr + size;
0514 
0515     /* Lock the user memory. */
0516     inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
0517     if (IS_ERR(inpages))
0518         return PTR_ERR(inpages);
0519 
0520     /*
0521      * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
0522      * place; the cache may contain the data that was written unencrypted.
0523      */
0524     sev_clflush_pages(inpages, npages);
0525 
0526     data.reserved = 0;
0527     data.handle = sev->handle;
0528 
0529     for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
0530         int offset, len;
0531 
0532         /*
0533          * If the user buffer is not page-aligned, calculate the offset
0534          * within the page.
0535          */
0536         offset = vaddr & (PAGE_SIZE - 1);
0537 
0538         /* Calculate the number of pages that can be encrypted in one go. */
0539         pages = get_num_contig_pages(i, inpages, npages);
0540 
0541         len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
0542 
0543         data.len = len;
0544         data.address = __sme_page_pa(inpages[i]) + offset;
0545         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
0546         if (ret)
0547             goto e_unpin;
0548 
0549         size -= len;
0550         next_vaddr = vaddr + len;
0551     }
0552 
0553 e_unpin:
0554     /* content of memory is updated, mark pages dirty */
0555     for (i = 0; i < npages; i++) {
0556         set_page_dirty_lock(inpages[i]);
0557         mark_page_accessed(inpages[i]);
0558     }
0559     /* unlock the user pages */
0560     sev_unpin_memory(kvm, inpages, npages);
0561     return ret;
0562 }
0563 
0564 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
0565 {
0566     struct sev_es_save_area *save = svm->sev_es.vmsa;
0567 
0568     /* Check some debug related fields before encrypting the VMSA */
0569     if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
0570         return -EINVAL;
0571 
0572     /*
0573      * SEV-ES will use a VMSA that is pointed to by the VMCB, not
0574      * the traditional VMSA that is part of the VMCB. Copy the
0575      * traditional VMSA as it has been built so far (in prep
0576      * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
0577      */
0578     memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
0579 
0580     /* Sync registgers */
0581     save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
0582     save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
0583     save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
0584     save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
0585     save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
0586     save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
0587     save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
0588     save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
0589 #ifdef CONFIG_X86_64
0590     save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
0591     save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
0592     save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
0593     save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
0594     save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
0595     save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
0596     save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
0597     save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
0598 #endif
0599     save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
0600 
0601     /* Sync some non-GPR registers before encrypting */
0602     save->xcr0 = svm->vcpu.arch.xcr0;
0603     save->pkru = svm->vcpu.arch.pkru;
0604     save->xss  = svm->vcpu.arch.ia32_xss;
0605     save->dr6  = svm->vcpu.arch.dr6;
0606 
0607     pr_debug("Virtual Machine Save Area (VMSA):\n");
0608     print_hex_dump(KERN_CONT, "", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
0609 
0610     return 0;
0611 }
0612 
0613 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
0614                     int *error)
0615 {
0616     struct sev_data_launch_update_vmsa vmsa;
0617     struct vcpu_svm *svm = to_svm(vcpu);
0618     int ret;
0619 
0620     /* Perform some pre-encryption checks against the VMSA */
0621     ret = sev_es_sync_vmsa(svm);
0622     if (ret)
0623         return ret;
0624 
0625     /*
0626      * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
0627      * the VMSA memory content (i.e it will write the same memory region
0628      * with the guest's key), so invalidate it first.
0629      */
0630     clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
0631 
0632     vmsa.reserved = 0;
0633     vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
0634     vmsa.address = __sme_pa(svm->sev_es.vmsa);
0635     vmsa.len = PAGE_SIZE;
0636     ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
0637     if (ret)
0638       return ret;
0639 
0640     vcpu->arch.guest_state_protected = true;
0641     return 0;
0642 }
0643 
0644 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
0645 {
0646     struct kvm_vcpu *vcpu;
0647     unsigned long i;
0648     int ret;
0649 
0650     if (!sev_es_guest(kvm))
0651         return -ENOTTY;
0652 
0653     kvm_for_each_vcpu(i, vcpu, kvm) {
0654         ret = mutex_lock_killable(&vcpu->mutex);
0655         if (ret)
0656             return ret;
0657 
0658         ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
0659 
0660         mutex_unlock(&vcpu->mutex);
0661         if (ret)
0662             return ret;
0663     }
0664 
0665     return 0;
0666 }
0667 
0668 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
0669 {
0670     void __user *measure = (void __user *)(uintptr_t)argp->data;
0671     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
0672     struct sev_data_launch_measure data;
0673     struct kvm_sev_launch_measure params;
0674     void __user *p = NULL;
0675     void *blob = NULL;
0676     int ret;
0677 
0678     if (!sev_guest(kvm))
0679         return -ENOTTY;
0680 
0681     if (copy_from_user(&params, measure, sizeof(params)))
0682         return -EFAULT;
0683 
0684     memset(&data, 0, sizeof(data));
0685 
0686     /* User wants to query the blob length */
0687     if (!params.len)
0688         goto cmd;
0689 
0690     p = (void __user *)(uintptr_t)params.uaddr;
0691     if (p) {
0692         if (params.len > SEV_FW_BLOB_MAX_SIZE)
0693             return -EINVAL;
0694 
0695         blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
0696         if (!blob)
0697             return -ENOMEM;
0698 
0699         data.address = __psp_pa(blob);
0700         data.len = params.len;
0701     }
0702 
0703 cmd:
0704     data.handle = sev->handle;
0705     ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
0706 
0707     /*
0708      * If we query the session length, FW responded with expected data.
0709      */
0710     if (!params.len)
0711         goto done;
0712 
0713     if (ret)
0714         goto e_free_blob;
0715 
0716     if (blob) {
0717         if (copy_to_user(p, blob, params.len))
0718             ret = -EFAULT;
0719     }
0720 
0721 done:
0722     params.len = data.len;
0723     if (copy_to_user(measure, &params, sizeof(params)))
0724         ret = -EFAULT;
0725 e_free_blob:
0726     kfree(blob);
0727     return ret;
0728 }
0729 
0730 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
0731 {
0732     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
0733     struct sev_data_launch_finish data;
0734 
0735     if (!sev_guest(kvm))
0736         return -ENOTTY;
0737 
0738     data.handle = sev->handle;
0739     return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
0740 }
0741 
0742 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
0743 {
0744     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
0745     struct kvm_sev_guest_status params;
0746     struct sev_data_guest_status data;
0747     int ret;
0748 
0749     if (!sev_guest(kvm))
0750         return -ENOTTY;
0751 
0752     memset(&data, 0, sizeof(data));
0753 
0754     data.handle = sev->handle;
0755     ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
0756     if (ret)
0757         return ret;
0758 
0759     params.policy = data.policy;
0760     params.state = data.state;
0761     params.handle = data.handle;
0762 
0763     if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
0764         ret = -EFAULT;
0765 
0766     return ret;
0767 }
0768 
0769 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
0770                    unsigned long dst, int size,
0771                    int *error, bool enc)
0772 {
0773     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
0774     struct sev_data_dbg data;
0775 
0776     data.reserved = 0;
0777     data.handle = sev->handle;
0778     data.dst_addr = dst;
0779     data.src_addr = src;
0780     data.len = size;
0781 
0782     return sev_issue_cmd(kvm,
0783                  enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
0784                  &data, error);
0785 }
0786 
0787 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
0788                  unsigned long dst_paddr, int sz, int *err)
0789 {
0790     int offset;
0791 
0792     /*
0793      * Its safe to read more than we are asked, caller should ensure that
0794      * destination has enough space.
0795      */
0796     offset = src_paddr & 15;
0797     src_paddr = round_down(src_paddr, 16);
0798     sz = round_up(sz + offset, 16);
0799 
0800     return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
0801 }
0802 
0803 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
0804                   void __user *dst_uaddr,
0805                   unsigned long dst_paddr,
0806                   int size, int *err)
0807 {
0808     struct page *tpage = NULL;
0809     int ret, offset;
0810 
0811     /* if inputs are not 16-byte then use intermediate buffer */
0812     if (!IS_ALIGNED(dst_paddr, 16) ||
0813         !IS_ALIGNED(paddr,     16) ||
0814         !IS_ALIGNED(size,      16)) {
0815         tpage = (void *)alloc_page(GFP_KERNEL | __GFP_ZERO);
0816         if (!tpage)
0817             return -ENOMEM;
0818 
0819         dst_paddr = __sme_page_pa(tpage);
0820     }
0821 
0822     ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
0823     if (ret)
0824         goto e_free;
0825 
0826     if (tpage) {
0827         offset = paddr & 15;
0828         if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
0829             ret = -EFAULT;
0830     }
0831 
0832 e_free:
0833     if (tpage)
0834         __free_page(tpage);
0835 
0836     return ret;
0837 }
0838 
0839 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
0840                   void __user *vaddr,
0841                   unsigned long dst_paddr,
0842                   void __user *dst_vaddr,
0843                   int size, int *error)
0844 {
0845     struct page *src_tpage = NULL;
0846     struct page *dst_tpage = NULL;
0847     int ret, len = size;
0848 
0849     /* If source buffer is not aligned then use an intermediate buffer */
0850     if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
0851         src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
0852         if (!src_tpage)
0853             return -ENOMEM;
0854 
0855         if (copy_from_user(page_address(src_tpage), vaddr, size)) {
0856             __free_page(src_tpage);
0857             return -EFAULT;
0858         }
0859 
0860         paddr = __sme_page_pa(src_tpage);
0861     }
0862 
0863     /*
0864      *  If destination buffer or length is not aligned then do read-modify-write:
0865      *   - decrypt destination in an intermediate buffer
0866      *   - copy the source buffer in an intermediate buffer
0867      *   - use the intermediate buffer as source buffer
0868      */
0869     if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
0870         int dst_offset;
0871 
0872         dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
0873         if (!dst_tpage) {
0874             ret = -ENOMEM;
0875             goto e_free;
0876         }
0877 
0878         ret = __sev_dbg_decrypt(kvm, dst_paddr,
0879                     __sme_page_pa(dst_tpage), size, error);
0880         if (ret)
0881             goto e_free;
0882 
0883         /*
0884          *  If source is kernel buffer then use memcpy() otherwise
0885          *  copy_from_user().
0886          */
0887         dst_offset = dst_paddr & 15;
0888 
0889         if (src_tpage)
0890             memcpy(page_address(dst_tpage) + dst_offset,
0891                    page_address(src_tpage), size);
0892         else {
0893             if (copy_from_user(page_address(dst_tpage) + dst_offset,
0894                        vaddr, size)) {
0895                 ret = -EFAULT;
0896                 goto e_free;
0897             }
0898         }
0899 
0900         paddr = __sme_page_pa(dst_tpage);
0901         dst_paddr = round_down(dst_paddr, 16);
0902         len = round_up(size, 16);
0903     }
0904 
0905     ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
0906 
0907 e_free:
0908     if (src_tpage)
0909         __free_page(src_tpage);
0910     if (dst_tpage)
0911         __free_page(dst_tpage);
0912     return ret;
0913 }
0914 
0915 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
0916 {
0917     unsigned long vaddr, vaddr_end, next_vaddr;
0918     unsigned long dst_vaddr;
0919     struct page **src_p, **dst_p;
0920     struct kvm_sev_dbg debug;
0921     unsigned long n;
0922     unsigned int size;
0923     int ret;
0924 
0925     if (!sev_guest(kvm))
0926         return -ENOTTY;
0927 
0928     if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
0929         return -EFAULT;
0930 
0931     if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
0932         return -EINVAL;
0933     if (!debug.dst_uaddr)
0934         return -EINVAL;
0935 
0936     vaddr = debug.src_uaddr;
0937     size = debug.len;
0938     vaddr_end = vaddr + size;
0939     dst_vaddr = debug.dst_uaddr;
0940 
0941     for (; vaddr < vaddr_end; vaddr = next_vaddr) {
0942         int len, s_off, d_off;
0943 
0944         /* lock userspace source and destination page */
0945         src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
0946         if (IS_ERR(src_p))
0947             return PTR_ERR(src_p);
0948 
0949         dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
0950         if (IS_ERR(dst_p)) {
0951             sev_unpin_memory(kvm, src_p, n);
0952             return PTR_ERR(dst_p);
0953         }
0954 
0955         /*
0956          * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
0957          * the pages; flush the destination too so that future accesses do not
0958          * see stale data.
0959          */
0960         sev_clflush_pages(src_p, 1);
0961         sev_clflush_pages(dst_p, 1);
0962 
0963         /*
0964          * Since user buffer may not be page aligned, calculate the
0965          * offset within the page.
0966          */
0967         s_off = vaddr & ~PAGE_MASK;
0968         d_off = dst_vaddr & ~PAGE_MASK;
0969         len = min_t(size_t, (PAGE_SIZE - s_off), size);
0970 
0971         if (dec)
0972             ret = __sev_dbg_decrypt_user(kvm,
0973                              __sme_page_pa(src_p[0]) + s_off,
0974                              (void __user *)dst_vaddr,
0975                              __sme_page_pa(dst_p[0]) + d_off,
0976                              len, &argp->error);
0977         else
0978             ret = __sev_dbg_encrypt_user(kvm,
0979                              __sme_page_pa(src_p[0]) + s_off,
0980                              (void __user *)vaddr,
0981                              __sme_page_pa(dst_p[0]) + d_off,
0982                              (void __user *)dst_vaddr,
0983                              len, &argp->error);
0984 
0985         sev_unpin_memory(kvm, src_p, n);
0986         sev_unpin_memory(kvm, dst_p, n);
0987 
0988         if (ret)
0989             goto err;
0990 
0991         next_vaddr = vaddr + len;
0992         dst_vaddr = dst_vaddr + len;
0993         size -= len;
0994     }
0995 err:
0996     return ret;
0997 }
0998 
0999 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1000 {
1001     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1002     struct sev_data_launch_secret data;
1003     struct kvm_sev_launch_secret params;
1004     struct page **pages;
1005     void *blob, *hdr;
1006     unsigned long n, i;
1007     int ret, offset;
1008 
1009     if (!sev_guest(kvm))
1010         return -ENOTTY;
1011 
1012     if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1013         return -EFAULT;
1014 
1015     pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1016     if (IS_ERR(pages))
1017         return PTR_ERR(pages);
1018 
1019     /*
1020      * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1021      * place; the cache may contain the data that was written unencrypted.
1022      */
1023     sev_clflush_pages(pages, n);
1024 
1025     /*
1026      * The secret must be copied into contiguous memory region, lets verify
1027      * that userspace memory pages are contiguous before we issue command.
1028      */
1029     if (get_num_contig_pages(0, pages, n) != n) {
1030         ret = -EINVAL;
1031         goto e_unpin_memory;
1032     }
1033 
1034     memset(&data, 0, sizeof(data));
1035 
1036     offset = params.guest_uaddr & (PAGE_SIZE - 1);
1037     data.guest_address = __sme_page_pa(pages[0]) + offset;
1038     data.guest_len = params.guest_len;
1039 
1040     blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1041     if (IS_ERR(blob)) {
1042         ret = PTR_ERR(blob);
1043         goto e_unpin_memory;
1044     }
1045 
1046     data.trans_address = __psp_pa(blob);
1047     data.trans_len = params.trans_len;
1048 
1049     hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1050     if (IS_ERR(hdr)) {
1051         ret = PTR_ERR(hdr);
1052         goto e_free_blob;
1053     }
1054     data.hdr_address = __psp_pa(hdr);
1055     data.hdr_len = params.hdr_len;
1056 
1057     data.handle = sev->handle;
1058     ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1059 
1060     kfree(hdr);
1061 
1062 e_free_blob:
1063     kfree(blob);
1064 e_unpin_memory:
1065     /* content of memory is updated, mark pages dirty */
1066     for (i = 0; i < n; i++) {
1067         set_page_dirty_lock(pages[i]);
1068         mark_page_accessed(pages[i]);
1069     }
1070     sev_unpin_memory(kvm, pages, n);
1071     return ret;
1072 }
1073 
1074 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1075 {
1076     void __user *report = (void __user *)(uintptr_t)argp->data;
1077     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1078     struct sev_data_attestation_report data;
1079     struct kvm_sev_attestation_report params;
1080     void __user *p;
1081     void *blob = NULL;
1082     int ret;
1083 
1084     if (!sev_guest(kvm))
1085         return -ENOTTY;
1086 
1087     if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1088         return -EFAULT;
1089 
1090     memset(&data, 0, sizeof(data));
1091 
1092     /* User wants to query the blob length */
1093     if (!params.len)
1094         goto cmd;
1095 
1096     p = (void __user *)(uintptr_t)params.uaddr;
1097     if (p) {
1098         if (params.len > SEV_FW_BLOB_MAX_SIZE)
1099             return -EINVAL;
1100 
1101         blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1102         if (!blob)
1103             return -ENOMEM;
1104 
1105         data.address = __psp_pa(blob);
1106         data.len = params.len;
1107         memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1108     }
1109 cmd:
1110     data.handle = sev->handle;
1111     ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1112     /*
1113      * If we query the session length, FW responded with expected data.
1114      */
1115     if (!params.len)
1116         goto done;
1117 
1118     if (ret)
1119         goto e_free_blob;
1120 
1121     if (blob) {
1122         if (copy_to_user(p, blob, params.len))
1123             ret = -EFAULT;
1124     }
1125 
1126 done:
1127     params.len = data.len;
1128     if (copy_to_user(report, &params, sizeof(params)))
1129         ret = -EFAULT;
1130 e_free_blob:
1131     kfree(blob);
1132     return ret;
1133 }
1134 
1135 /* Userspace wants to query session length. */
1136 static int
1137 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1138                       struct kvm_sev_send_start *params)
1139 {
1140     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1141     struct sev_data_send_start data;
1142     int ret;
1143 
1144     memset(&data, 0, sizeof(data));
1145     data.handle = sev->handle;
1146     ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1147 
1148     params->session_len = data.session_len;
1149     if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1150                 sizeof(struct kvm_sev_send_start)))
1151         ret = -EFAULT;
1152 
1153     return ret;
1154 }
1155 
1156 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1157 {
1158     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1159     struct sev_data_send_start data;
1160     struct kvm_sev_send_start params;
1161     void *amd_certs, *session_data;
1162     void *pdh_cert, *plat_certs;
1163     int ret;
1164 
1165     if (!sev_guest(kvm))
1166         return -ENOTTY;
1167 
1168     if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1169                 sizeof(struct kvm_sev_send_start)))
1170         return -EFAULT;
1171 
1172     /* if session_len is zero, userspace wants to query the session length */
1173     if (!params.session_len)
1174         return __sev_send_start_query_session_length(kvm, argp,
1175                 &params);
1176 
1177     /* some sanity checks */
1178     if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1179         !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1180         return -EINVAL;
1181 
1182     /* allocate the memory to hold the session data blob */
1183     session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1184     if (!session_data)
1185         return -ENOMEM;
1186 
1187     /* copy the certificate blobs from userspace */
1188     pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1189                 params.pdh_cert_len);
1190     if (IS_ERR(pdh_cert)) {
1191         ret = PTR_ERR(pdh_cert);
1192         goto e_free_session;
1193     }
1194 
1195     plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1196                 params.plat_certs_len);
1197     if (IS_ERR(plat_certs)) {
1198         ret = PTR_ERR(plat_certs);
1199         goto e_free_pdh;
1200     }
1201 
1202     amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1203                 params.amd_certs_len);
1204     if (IS_ERR(amd_certs)) {
1205         ret = PTR_ERR(amd_certs);
1206         goto e_free_plat_cert;
1207     }
1208 
1209     /* populate the FW SEND_START field with system physical address */
1210     memset(&data, 0, sizeof(data));
1211     data.pdh_cert_address = __psp_pa(pdh_cert);
1212     data.pdh_cert_len = params.pdh_cert_len;
1213     data.plat_certs_address = __psp_pa(plat_certs);
1214     data.plat_certs_len = params.plat_certs_len;
1215     data.amd_certs_address = __psp_pa(amd_certs);
1216     data.amd_certs_len = params.amd_certs_len;
1217     data.session_address = __psp_pa(session_data);
1218     data.session_len = params.session_len;
1219     data.handle = sev->handle;
1220 
1221     ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1222 
1223     if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1224             session_data, params.session_len)) {
1225         ret = -EFAULT;
1226         goto e_free_amd_cert;
1227     }
1228 
1229     params.policy = data.policy;
1230     params.session_len = data.session_len;
1231     if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1232                 sizeof(struct kvm_sev_send_start)))
1233         ret = -EFAULT;
1234 
1235 e_free_amd_cert:
1236     kfree(amd_certs);
1237 e_free_plat_cert:
1238     kfree(plat_certs);
1239 e_free_pdh:
1240     kfree(pdh_cert);
1241 e_free_session:
1242     kfree(session_data);
1243     return ret;
1244 }
1245 
1246 /* Userspace wants to query either header or trans length. */
1247 static int
1248 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1249                      struct kvm_sev_send_update_data *params)
1250 {
1251     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1252     struct sev_data_send_update_data data;
1253     int ret;
1254 
1255     memset(&data, 0, sizeof(data));
1256     data.handle = sev->handle;
1257     ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1258 
1259     params->hdr_len = data.hdr_len;
1260     params->trans_len = data.trans_len;
1261 
1262     if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1263              sizeof(struct kvm_sev_send_update_data)))
1264         ret = -EFAULT;
1265 
1266     return ret;
1267 }
1268 
1269 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1270 {
1271     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1272     struct sev_data_send_update_data data;
1273     struct kvm_sev_send_update_data params;
1274     void *hdr, *trans_data;
1275     struct page **guest_page;
1276     unsigned long n;
1277     int ret, offset;
1278 
1279     if (!sev_guest(kvm))
1280         return -ENOTTY;
1281 
1282     if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1283             sizeof(struct kvm_sev_send_update_data)))
1284         return -EFAULT;
1285 
1286     /* userspace wants to query either header or trans length */
1287     if (!params.trans_len || !params.hdr_len)
1288         return __sev_send_update_data_query_lengths(kvm, argp, &params);
1289 
1290     if (!params.trans_uaddr || !params.guest_uaddr ||
1291         !params.guest_len || !params.hdr_uaddr)
1292         return -EINVAL;
1293 
1294     /* Check if we are crossing the page boundary */
1295     offset = params.guest_uaddr & (PAGE_SIZE - 1);
1296     if ((params.guest_len + offset > PAGE_SIZE))
1297         return -EINVAL;
1298 
1299     /* Pin guest memory */
1300     guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1301                     PAGE_SIZE, &n, 0);
1302     if (IS_ERR(guest_page))
1303         return PTR_ERR(guest_page);
1304 
1305     /* allocate memory for header and transport buffer */
1306     ret = -ENOMEM;
1307     hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1308     if (!hdr)
1309         goto e_unpin;
1310 
1311     trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1312     if (!trans_data)
1313         goto e_free_hdr;
1314 
1315     memset(&data, 0, sizeof(data));
1316     data.hdr_address = __psp_pa(hdr);
1317     data.hdr_len = params.hdr_len;
1318     data.trans_address = __psp_pa(trans_data);
1319     data.trans_len = params.trans_len;
1320 
1321     /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1322     data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1323     data.guest_address |= sev_me_mask;
1324     data.guest_len = params.guest_len;
1325     data.handle = sev->handle;
1326 
1327     ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1328 
1329     if (ret)
1330         goto e_free_trans_data;
1331 
1332     /* copy transport buffer to user space */
1333     if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1334              trans_data, params.trans_len)) {
1335         ret = -EFAULT;
1336         goto e_free_trans_data;
1337     }
1338 
1339     /* Copy packet header to userspace. */
1340     if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1341              params.hdr_len))
1342         ret = -EFAULT;
1343 
1344 e_free_trans_data:
1345     kfree(trans_data);
1346 e_free_hdr:
1347     kfree(hdr);
1348 e_unpin:
1349     sev_unpin_memory(kvm, guest_page, n);
1350 
1351     return ret;
1352 }
1353 
1354 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1355 {
1356     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1357     struct sev_data_send_finish data;
1358 
1359     if (!sev_guest(kvm))
1360         return -ENOTTY;
1361 
1362     data.handle = sev->handle;
1363     return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1364 }
1365 
1366 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1367 {
1368     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1369     struct sev_data_send_cancel data;
1370 
1371     if (!sev_guest(kvm))
1372         return -ENOTTY;
1373 
1374     data.handle = sev->handle;
1375     return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1376 }
1377 
1378 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1379 {
1380     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1381     struct sev_data_receive_start start;
1382     struct kvm_sev_receive_start params;
1383     int *error = &argp->error;
1384     void *session_data;
1385     void *pdh_data;
1386     int ret;
1387 
1388     if (!sev_guest(kvm))
1389         return -ENOTTY;
1390 
1391     /* Get parameter from the userspace */
1392     if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1393             sizeof(struct kvm_sev_receive_start)))
1394         return -EFAULT;
1395 
1396     /* some sanity checks */
1397     if (!params.pdh_uaddr || !params.pdh_len ||
1398         !params.session_uaddr || !params.session_len)
1399         return -EINVAL;
1400 
1401     pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1402     if (IS_ERR(pdh_data))
1403         return PTR_ERR(pdh_data);
1404 
1405     session_data = psp_copy_user_blob(params.session_uaddr,
1406             params.session_len);
1407     if (IS_ERR(session_data)) {
1408         ret = PTR_ERR(session_data);
1409         goto e_free_pdh;
1410     }
1411 
1412     memset(&start, 0, sizeof(start));
1413     start.handle = params.handle;
1414     start.policy = params.policy;
1415     start.pdh_cert_address = __psp_pa(pdh_data);
1416     start.pdh_cert_len = params.pdh_len;
1417     start.session_address = __psp_pa(session_data);
1418     start.session_len = params.session_len;
1419 
1420     /* create memory encryption context */
1421     ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1422                 error);
1423     if (ret)
1424         goto e_free_session;
1425 
1426     /* Bind ASID to this guest */
1427     ret = sev_bind_asid(kvm, start.handle, error);
1428     if (ret) {
1429         sev_decommission(start.handle);
1430         goto e_free_session;
1431     }
1432 
1433     params.handle = start.handle;
1434     if (copy_to_user((void __user *)(uintptr_t)argp->data,
1435              &params, sizeof(struct kvm_sev_receive_start))) {
1436         ret = -EFAULT;
1437         sev_unbind_asid(kvm, start.handle);
1438         goto e_free_session;
1439     }
1440 
1441         sev->handle = start.handle;
1442     sev->fd = argp->sev_fd;
1443 
1444 e_free_session:
1445     kfree(session_data);
1446 e_free_pdh:
1447     kfree(pdh_data);
1448 
1449     return ret;
1450 }
1451 
1452 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1453 {
1454     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1455     struct kvm_sev_receive_update_data params;
1456     struct sev_data_receive_update_data data;
1457     void *hdr = NULL, *trans = NULL;
1458     struct page **guest_page;
1459     unsigned long n;
1460     int ret, offset;
1461 
1462     if (!sev_guest(kvm))
1463         return -EINVAL;
1464 
1465     if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1466             sizeof(struct kvm_sev_receive_update_data)))
1467         return -EFAULT;
1468 
1469     if (!params.hdr_uaddr || !params.hdr_len ||
1470         !params.guest_uaddr || !params.guest_len ||
1471         !params.trans_uaddr || !params.trans_len)
1472         return -EINVAL;
1473 
1474     /* Check if we are crossing the page boundary */
1475     offset = params.guest_uaddr & (PAGE_SIZE - 1);
1476     if ((params.guest_len + offset > PAGE_SIZE))
1477         return -EINVAL;
1478 
1479     hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1480     if (IS_ERR(hdr))
1481         return PTR_ERR(hdr);
1482 
1483     trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1484     if (IS_ERR(trans)) {
1485         ret = PTR_ERR(trans);
1486         goto e_free_hdr;
1487     }
1488 
1489     memset(&data, 0, sizeof(data));
1490     data.hdr_address = __psp_pa(hdr);
1491     data.hdr_len = params.hdr_len;
1492     data.trans_address = __psp_pa(trans);
1493     data.trans_len = params.trans_len;
1494 
1495     /* Pin guest memory */
1496     guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1497                     PAGE_SIZE, &n, 1);
1498     if (IS_ERR(guest_page)) {
1499         ret = PTR_ERR(guest_page);
1500         goto e_free_trans;
1501     }
1502 
1503     /*
1504      * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1505      * encrypts the written data with the guest's key, and the cache may
1506      * contain dirty, unencrypted data.
1507      */
1508     sev_clflush_pages(guest_page, n);
1509 
1510     /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1511     data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1512     data.guest_address |= sev_me_mask;
1513     data.guest_len = params.guest_len;
1514     data.handle = sev->handle;
1515 
1516     ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1517                 &argp->error);
1518 
1519     sev_unpin_memory(kvm, guest_page, n);
1520 
1521 e_free_trans:
1522     kfree(trans);
1523 e_free_hdr:
1524     kfree(hdr);
1525 
1526     return ret;
1527 }
1528 
1529 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1530 {
1531     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1532     struct sev_data_receive_finish data;
1533 
1534     if (!sev_guest(kvm))
1535         return -ENOTTY;
1536 
1537     data.handle = sev->handle;
1538     return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1539 }
1540 
1541 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1542 {
1543     /*
1544      * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1545      * active mirror VMs. Also allow the debugging and status commands.
1546      */
1547     if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1548         cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1549         cmd_id == KVM_SEV_DBG_ENCRYPT)
1550         return true;
1551 
1552     return false;
1553 }
1554 
1555 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1556 {
1557     struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1558     struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1559     int r = -EBUSY;
1560 
1561     if (dst_kvm == src_kvm)
1562         return -EINVAL;
1563 
1564     /*
1565      * Bail if these VMs are already involved in a migration to avoid
1566      * deadlock between two VMs trying to migrate to/from each other.
1567      */
1568     if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1569         return -EBUSY;
1570 
1571     if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1572         goto release_dst;
1573 
1574     r = -EINTR;
1575     if (mutex_lock_killable(&dst_kvm->lock))
1576         goto release_src;
1577     if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1578         goto unlock_dst;
1579     return 0;
1580 
1581 unlock_dst:
1582     mutex_unlock(&dst_kvm->lock);
1583 release_src:
1584     atomic_set_release(&src_sev->migration_in_progress, 0);
1585 release_dst:
1586     atomic_set_release(&dst_sev->migration_in_progress, 0);
1587     return r;
1588 }
1589 
1590 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1591 {
1592     struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1593     struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1594 
1595     mutex_unlock(&dst_kvm->lock);
1596     mutex_unlock(&src_kvm->lock);
1597     atomic_set_release(&dst_sev->migration_in_progress, 0);
1598     atomic_set_release(&src_sev->migration_in_progress, 0);
1599 }
1600 
1601 /* vCPU mutex subclasses.  */
1602 enum sev_migration_role {
1603     SEV_MIGRATION_SOURCE = 0,
1604     SEV_MIGRATION_TARGET,
1605     SEV_NR_MIGRATION_ROLES,
1606 };
1607 
1608 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1609                     enum sev_migration_role role)
1610 {
1611     struct kvm_vcpu *vcpu;
1612     unsigned long i, j;
1613 
1614     kvm_for_each_vcpu(i, vcpu, kvm) {
1615         if (mutex_lock_killable_nested(&vcpu->mutex, role))
1616             goto out_unlock;
1617 
1618 #ifdef CONFIG_PROVE_LOCKING
1619         if (!i)
1620             /*
1621              * Reset the role to one that avoids colliding with
1622              * the role used for the first vcpu mutex.
1623              */
1624             role = SEV_NR_MIGRATION_ROLES;
1625         else
1626             mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1627 #endif
1628     }
1629 
1630     return 0;
1631 
1632 out_unlock:
1633 
1634     kvm_for_each_vcpu(j, vcpu, kvm) {
1635         if (i == j)
1636             break;
1637 
1638 #ifdef CONFIG_PROVE_LOCKING
1639         if (j)
1640             mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1641 #endif
1642 
1643         mutex_unlock(&vcpu->mutex);
1644     }
1645     return -EINTR;
1646 }
1647 
1648 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1649 {
1650     struct kvm_vcpu *vcpu;
1651     unsigned long i;
1652     bool first = true;
1653 
1654     kvm_for_each_vcpu(i, vcpu, kvm) {
1655         if (first)
1656             first = false;
1657         else
1658             mutex_acquire(&vcpu->mutex.dep_map,
1659                       SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1660 
1661         mutex_unlock(&vcpu->mutex);
1662     }
1663 }
1664 
1665 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1666 {
1667     struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1668     struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1669     struct kvm_vcpu *dst_vcpu, *src_vcpu;
1670     struct vcpu_svm *dst_svm, *src_svm;
1671     struct kvm_sev_info *mirror;
1672     unsigned long i;
1673 
1674     dst->active = true;
1675     dst->asid = src->asid;
1676     dst->handle = src->handle;
1677     dst->pages_locked = src->pages_locked;
1678     dst->enc_context_owner = src->enc_context_owner;
1679     dst->es_active = src->es_active;
1680 
1681     src->asid = 0;
1682     src->active = false;
1683     src->handle = 0;
1684     src->pages_locked = 0;
1685     src->enc_context_owner = NULL;
1686     src->es_active = false;
1687 
1688     list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1689 
1690     /*
1691      * If this VM has mirrors, "transfer" each mirror's refcount of the
1692      * source to the destination (this KVM).  The caller holds a reference
1693      * to the source, so there's no danger of use-after-free.
1694      */
1695     list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1696     list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1697         kvm_get_kvm(dst_kvm);
1698         kvm_put_kvm(src_kvm);
1699         mirror->enc_context_owner = dst_kvm;
1700     }
1701 
1702     /*
1703      * If this VM is a mirror, remove the old mirror from the owners list
1704      * and add the new mirror to the list.
1705      */
1706     if (is_mirroring_enc_context(dst_kvm)) {
1707         struct kvm_sev_info *owner_sev_info =
1708             &to_kvm_svm(dst->enc_context_owner)->sev_info;
1709 
1710         list_del(&src->mirror_entry);
1711         list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1712     }
1713 
1714     kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1715         dst_svm = to_svm(dst_vcpu);
1716 
1717         sev_init_vmcb(dst_svm);
1718 
1719         if (!dst->es_active)
1720             continue;
1721 
1722         /*
1723          * Note, the source is not required to have the same number of
1724          * vCPUs as the destination when migrating a vanilla SEV VM.
1725          */
1726         src_vcpu = kvm_get_vcpu(dst_kvm, i);
1727         src_svm = to_svm(src_vcpu);
1728 
1729         /*
1730          * Transfer VMSA and GHCB state to the destination.  Nullify and
1731          * clear source fields as appropriate, the state now belongs to
1732          * the destination.
1733          */
1734         memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1735         dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1736         dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1737         dst_vcpu->arch.guest_state_protected = true;
1738 
1739         memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1740         src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1741         src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1742         src_vcpu->arch.guest_state_protected = false;
1743     }
1744 }
1745 
1746 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1747 {
1748     struct kvm_vcpu *src_vcpu;
1749     unsigned long i;
1750 
1751     if (!sev_es_guest(src))
1752         return 0;
1753 
1754     if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1755         return -EINVAL;
1756 
1757     kvm_for_each_vcpu(i, src_vcpu, src) {
1758         if (!src_vcpu->arch.guest_state_protected)
1759             return -EINVAL;
1760     }
1761 
1762     return 0;
1763 }
1764 
1765 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1766 {
1767     struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1768     struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1769     struct file *source_kvm_file;
1770     struct kvm *source_kvm;
1771     bool charged = false;
1772     int ret;
1773 
1774     source_kvm_file = fget(source_fd);
1775     if (!file_is_kvm(source_kvm_file)) {
1776         ret = -EBADF;
1777         goto out_fput;
1778     }
1779 
1780     source_kvm = source_kvm_file->private_data;
1781     ret = sev_lock_two_vms(kvm, source_kvm);
1782     if (ret)
1783         goto out_fput;
1784 
1785     if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1786         ret = -EINVAL;
1787         goto out_unlock;
1788     }
1789 
1790     src_sev = &to_kvm_svm(source_kvm)->sev_info;
1791 
1792     dst_sev->misc_cg = get_current_misc_cg();
1793     cg_cleanup_sev = dst_sev;
1794     if (dst_sev->misc_cg != src_sev->misc_cg) {
1795         ret = sev_misc_cg_try_charge(dst_sev);
1796         if (ret)
1797             goto out_dst_cgroup;
1798         charged = true;
1799     }
1800 
1801     ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1802     if (ret)
1803         goto out_dst_cgroup;
1804     ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1805     if (ret)
1806         goto out_dst_vcpu;
1807 
1808     ret = sev_check_source_vcpus(kvm, source_kvm);
1809     if (ret)
1810         goto out_source_vcpu;
1811 
1812     sev_migrate_from(kvm, source_kvm);
1813     kvm_vm_dead(source_kvm);
1814     cg_cleanup_sev = src_sev;
1815     ret = 0;
1816 
1817 out_source_vcpu:
1818     sev_unlock_vcpus_for_migration(source_kvm);
1819 out_dst_vcpu:
1820     sev_unlock_vcpus_for_migration(kvm);
1821 out_dst_cgroup:
1822     /* Operates on the source on success, on the destination on failure.  */
1823     if (charged)
1824         sev_misc_cg_uncharge(cg_cleanup_sev);
1825     put_misc_cg(cg_cleanup_sev->misc_cg);
1826     cg_cleanup_sev->misc_cg = NULL;
1827 out_unlock:
1828     sev_unlock_two_vms(kvm, source_kvm);
1829 out_fput:
1830     if (source_kvm_file)
1831         fput(source_kvm_file);
1832     return ret;
1833 }
1834 
1835 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1836 {
1837     struct kvm_sev_cmd sev_cmd;
1838     int r;
1839 
1840     if (!sev_enabled)
1841         return -ENOTTY;
1842 
1843     if (!argp)
1844         return 0;
1845 
1846     if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1847         return -EFAULT;
1848 
1849     mutex_lock(&kvm->lock);
1850 
1851     /* Only the enc_context_owner handles some memory enc operations. */
1852     if (is_mirroring_enc_context(kvm) &&
1853         !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1854         r = -EINVAL;
1855         goto out;
1856     }
1857 
1858     switch (sev_cmd.id) {
1859     case KVM_SEV_ES_INIT:
1860         if (!sev_es_enabled) {
1861             r = -ENOTTY;
1862             goto out;
1863         }
1864         fallthrough;
1865     case KVM_SEV_INIT:
1866         r = sev_guest_init(kvm, &sev_cmd);
1867         break;
1868     case KVM_SEV_LAUNCH_START:
1869         r = sev_launch_start(kvm, &sev_cmd);
1870         break;
1871     case KVM_SEV_LAUNCH_UPDATE_DATA:
1872         r = sev_launch_update_data(kvm, &sev_cmd);
1873         break;
1874     case KVM_SEV_LAUNCH_UPDATE_VMSA:
1875         r = sev_launch_update_vmsa(kvm, &sev_cmd);
1876         break;
1877     case KVM_SEV_LAUNCH_MEASURE:
1878         r = sev_launch_measure(kvm, &sev_cmd);
1879         break;
1880     case KVM_SEV_LAUNCH_FINISH:
1881         r = sev_launch_finish(kvm, &sev_cmd);
1882         break;
1883     case KVM_SEV_GUEST_STATUS:
1884         r = sev_guest_status(kvm, &sev_cmd);
1885         break;
1886     case KVM_SEV_DBG_DECRYPT:
1887         r = sev_dbg_crypt(kvm, &sev_cmd, true);
1888         break;
1889     case KVM_SEV_DBG_ENCRYPT:
1890         r = sev_dbg_crypt(kvm, &sev_cmd, false);
1891         break;
1892     case KVM_SEV_LAUNCH_SECRET:
1893         r = sev_launch_secret(kvm, &sev_cmd);
1894         break;
1895     case KVM_SEV_GET_ATTESTATION_REPORT:
1896         r = sev_get_attestation_report(kvm, &sev_cmd);
1897         break;
1898     case KVM_SEV_SEND_START:
1899         r = sev_send_start(kvm, &sev_cmd);
1900         break;
1901     case KVM_SEV_SEND_UPDATE_DATA:
1902         r = sev_send_update_data(kvm, &sev_cmd);
1903         break;
1904     case KVM_SEV_SEND_FINISH:
1905         r = sev_send_finish(kvm, &sev_cmd);
1906         break;
1907     case KVM_SEV_SEND_CANCEL:
1908         r = sev_send_cancel(kvm, &sev_cmd);
1909         break;
1910     case KVM_SEV_RECEIVE_START:
1911         r = sev_receive_start(kvm, &sev_cmd);
1912         break;
1913     case KVM_SEV_RECEIVE_UPDATE_DATA:
1914         r = sev_receive_update_data(kvm, &sev_cmd);
1915         break;
1916     case KVM_SEV_RECEIVE_FINISH:
1917         r = sev_receive_finish(kvm, &sev_cmd);
1918         break;
1919     default:
1920         r = -EINVAL;
1921         goto out;
1922     }
1923 
1924     if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1925         r = -EFAULT;
1926 
1927 out:
1928     mutex_unlock(&kvm->lock);
1929     return r;
1930 }
1931 
1932 int sev_mem_enc_register_region(struct kvm *kvm,
1933                 struct kvm_enc_region *range)
1934 {
1935     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1936     struct enc_region *region;
1937     int ret = 0;
1938 
1939     if (!sev_guest(kvm))
1940         return -ENOTTY;
1941 
1942     /* If kvm is mirroring encryption context it isn't responsible for it */
1943     if (is_mirroring_enc_context(kvm))
1944         return -EINVAL;
1945 
1946     if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1947         return -EINVAL;
1948 
1949     region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1950     if (!region)
1951         return -ENOMEM;
1952 
1953     mutex_lock(&kvm->lock);
1954     region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1955     if (IS_ERR(region->pages)) {
1956         ret = PTR_ERR(region->pages);
1957         mutex_unlock(&kvm->lock);
1958         goto e_free;
1959     }
1960 
1961     region->uaddr = range->addr;
1962     region->size = range->size;
1963 
1964     list_add_tail(&region->list, &sev->regions_list);
1965     mutex_unlock(&kvm->lock);
1966 
1967     /*
1968      * The guest may change the memory encryption attribute from C=0 -> C=1
1969      * or vice versa for this memory range. Lets make sure caches are
1970      * flushed to ensure that guest data gets written into memory with
1971      * correct C-bit.
1972      */
1973     sev_clflush_pages(region->pages, region->npages);
1974 
1975     return ret;
1976 
1977 e_free:
1978     kfree(region);
1979     return ret;
1980 }
1981 
1982 static struct enc_region *
1983 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1984 {
1985     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1986     struct list_head *head = &sev->regions_list;
1987     struct enc_region *i;
1988 
1989     list_for_each_entry(i, head, list) {
1990         if (i->uaddr == range->addr &&
1991             i->size == range->size)
1992             return i;
1993     }
1994 
1995     return NULL;
1996 }
1997 
1998 static void __unregister_enc_region_locked(struct kvm *kvm,
1999                        struct enc_region *region)
2000 {
2001     sev_unpin_memory(kvm, region->pages, region->npages);
2002     list_del(&region->list);
2003     kfree(region);
2004 }
2005 
2006 int sev_mem_enc_unregister_region(struct kvm *kvm,
2007                   struct kvm_enc_region *range)
2008 {
2009     struct enc_region *region;
2010     int ret;
2011 
2012     /* If kvm is mirroring encryption context it isn't responsible for it */
2013     if (is_mirroring_enc_context(kvm))
2014         return -EINVAL;
2015 
2016     mutex_lock(&kvm->lock);
2017 
2018     if (!sev_guest(kvm)) {
2019         ret = -ENOTTY;
2020         goto failed;
2021     }
2022 
2023     region = find_enc_region(kvm, range);
2024     if (!region) {
2025         ret = -EINVAL;
2026         goto failed;
2027     }
2028 
2029     /*
2030      * Ensure that all guest tagged cache entries are flushed before
2031      * releasing the pages back to the system for use. CLFLUSH will
2032      * not do this, so issue a WBINVD.
2033      */
2034     wbinvd_on_all_cpus();
2035 
2036     __unregister_enc_region_locked(kvm, region);
2037 
2038     mutex_unlock(&kvm->lock);
2039     return 0;
2040 
2041 failed:
2042     mutex_unlock(&kvm->lock);
2043     return ret;
2044 }
2045 
2046 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2047 {
2048     struct file *source_kvm_file;
2049     struct kvm *source_kvm;
2050     struct kvm_sev_info *source_sev, *mirror_sev;
2051     int ret;
2052 
2053     source_kvm_file = fget(source_fd);
2054     if (!file_is_kvm(source_kvm_file)) {
2055         ret = -EBADF;
2056         goto e_source_fput;
2057     }
2058 
2059     source_kvm = source_kvm_file->private_data;
2060     ret = sev_lock_two_vms(kvm, source_kvm);
2061     if (ret)
2062         goto e_source_fput;
2063 
2064     /*
2065      * Mirrors of mirrors should work, but let's not get silly.  Also
2066      * disallow out-of-band SEV/SEV-ES init if the target is already an
2067      * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2068      * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2069      */
2070     if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2071         is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2072         ret = -EINVAL;
2073         goto e_unlock;
2074     }
2075 
2076     /*
2077      * The mirror kvm holds an enc_context_owner ref so its asid can't
2078      * disappear until we're done with it
2079      */
2080     source_sev = &to_kvm_svm(source_kvm)->sev_info;
2081     kvm_get_kvm(source_kvm);
2082     mirror_sev = &to_kvm_svm(kvm)->sev_info;
2083     list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2084 
2085     /* Set enc_context_owner and copy its encryption context over */
2086     mirror_sev->enc_context_owner = source_kvm;
2087     mirror_sev->active = true;
2088     mirror_sev->asid = source_sev->asid;
2089     mirror_sev->fd = source_sev->fd;
2090     mirror_sev->es_active = source_sev->es_active;
2091     mirror_sev->handle = source_sev->handle;
2092     INIT_LIST_HEAD(&mirror_sev->regions_list);
2093     INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2094     ret = 0;
2095 
2096     /*
2097      * Do not copy ap_jump_table. Since the mirror does not share the same
2098      * KVM contexts as the original, and they may have different
2099      * memory-views.
2100      */
2101 
2102 e_unlock:
2103     sev_unlock_two_vms(kvm, source_kvm);
2104 e_source_fput:
2105     if (source_kvm_file)
2106         fput(source_kvm_file);
2107     return ret;
2108 }
2109 
2110 void sev_vm_destroy(struct kvm *kvm)
2111 {
2112     struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2113     struct list_head *head = &sev->regions_list;
2114     struct list_head *pos, *q;
2115 
2116     if (!sev_guest(kvm))
2117         return;
2118 
2119     WARN_ON(!list_empty(&sev->mirror_vms));
2120 
2121     /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2122     if (is_mirroring_enc_context(kvm)) {
2123         struct kvm *owner_kvm = sev->enc_context_owner;
2124 
2125         mutex_lock(&owner_kvm->lock);
2126         list_del(&sev->mirror_entry);
2127         mutex_unlock(&owner_kvm->lock);
2128         kvm_put_kvm(owner_kvm);
2129         return;
2130     }
2131 
2132     /*
2133      * Ensure that all guest tagged cache entries are flushed before
2134      * releasing the pages back to the system for use. CLFLUSH will
2135      * not do this, so issue a WBINVD.
2136      */
2137     wbinvd_on_all_cpus();
2138 
2139     /*
2140      * if userspace was terminated before unregistering the memory regions
2141      * then lets unpin all the registered memory.
2142      */
2143     if (!list_empty(head)) {
2144         list_for_each_safe(pos, q, head) {
2145             __unregister_enc_region_locked(kvm,
2146                 list_entry(pos, struct enc_region, list));
2147             cond_resched();
2148         }
2149     }
2150 
2151     sev_unbind_asid(kvm, sev->handle);
2152     sev_asid_free(sev);
2153 }
2154 
2155 void __init sev_set_cpu_caps(void)
2156 {
2157     if (!sev_enabled)
2158         kvm_cpu_cap_clear(X86_FEATURE_SEV);
2159     if (!sev_es_enabled)
2160         kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2161 }
2162 
2163 void __init sev_hardware_setup(void)
2164 {
2165 #ifdef CONFIG_KVM_AMD_SEV
2166     unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2167     bool sev_es_supported = false;
2168     bool sev_supported = false;
2169 
2170     if (!sev_enabled || !npt_enabled)
2171         goto out;
2172 
2173     /*
2174      * SEV must obviously be supported in hardware.  Sanity check that the
2175      * CPU supports decode assists, which is mandatory for SEV guests to
2176      * support instruction emulation.
2177      */
2178     if (!boot_cpu_has(X86_FEATURE_SEV) ||
2179         WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2180         goto out;
2181 
2182     /* Retrieve SEV CPUID information */
2183     cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2184 
2185     /* Set encryption bit location for SEV-ES guests */
2186     sev_enc_bit = ebx & 0x3f;
2187 
2188     /* Maximum number of encrypted guests supported simultaneously */
2189     max_sev_asid = ecx;
2190     if (!max_sev_asid)
2191         goto out;
2192 
2193     /* Minimum ASID value that should be used for SEV guest */
2194     min_sev_asid = edx;
2195     sev_me_mask = 1UL << (ebx & 0x3f);
2196 
2197     /*
2198      * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2199      * even though it's never used, so that the bitmap is indexed by the
2200      * actual ASID.
2201      */
2202     nr_asids = max_sev_asid + 1;
2203     sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2204     if (!sev_asid_bitmap)
2205         goto out;
2206 
2207     sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2208     if (!sev_reclaim_asid_bitmap) {
2209         bitmap_free(sev_asid_bitmap);
2210         sev_asid_bitmap = NULL;
2211         goto out;
2212     }
2213 
2214     sev_asid_count = max_sev_asid - min_sev_asid + 1;
2215     if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
2216         goto out;
2217 
2218     pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
2219     sev_supported = true;
2220 
2221     /* SEV-ES support requested? */
2222     if (!sev_es_enabled)
2223         goto out;
2224 
2225     /*
2226      * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2227      * instruction stream, i.e. can't emulate in response to a #NPF and
2228      * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2229      * (the guest can then do a #VMGEXIT to request MMIO emulation).
2230      */
2231     if (!enable_mmio_caching)
2232         goto out;
2233 
2234     /* Does the CPU support SEV-ES? */
2235     if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2236         goto out;
2237 
2238     /* Has the system been allocated ASIDs for SEV-ES? */
2239     if (min_sev_asid == 1)
2240         goto out;
2241 
2242     sev_es_asid_count = min_sev_asid - 1;
2243     if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
2244         goto out;
2245 
2246     pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
2247     sev_es_supported = true;
2248 
2249 out:
2250     sev_enabled = sev_supported;
2251     sev_es_enabled = sev_es_supported;
2252 #endif
2253 }
2254 
2255 void sev_hardware_unsetup(void)
2256 {
2257     if (!sev_enabled)
2258         return;
2259 
2260     /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2261     sev_flush_asids(1, max_sev_asid);
2262 
2263     bitmap_free(sev_asid_bitmap);
2264     bitmap_free(sev_reclaim_asid_bitmap);
2265 
2266     misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2267     misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2268 }
2269 
2270 int sev_cpu_init(struct svm_cpu_data *sd)
2271 {
2272     if (!sev_enabled)
2273         return 0;
2274 
2275     sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2276     if (!sd->sev_vmcbs)
2277         return -ENOMEM;
2278 
2279     return 0;
2280 }
2281 
2282 /*
2283  * Pages used by hardware to hold guest encrypted state must be flushed before
2284  * returning them to the system.
2285  */
2286 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2287 {
2288     int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2289 
2290     /*
2291      * Note!  The address must be a kernel address, as regular page walk
2292      * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2293      * address is non-deterministic and unsafe.  This function deliberately
2294      * takes a pointer to deter passing in a user address.
2295      */
2296     unsigned long addr = (unsigned long)va;
2297 
2298     /*
2299      * If CPU enforced cache coherency for encrypted mappings of the
2300      * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2301      * flush is still needed in order to work properly with DMA devices.
2302      */
2303     if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2304         clflush_cache_range(va, PAGE_SIZE);
2305         return;
2306     }
2307 
2308     /*
2309      * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2310      * back to WBINVD if this faults so as not to make any problems worse
2311      * by leaving stale encrypted data in the cache.
2312      */
2313     if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2314         goto do_wbinvd;
2315 
2316     return;
2317 
2318 do_wbinvd:
2319     wbinvd_on_all_cpus();
2320 }
2321 
2322 void sev_guest_memory_reclaimed(struct kvm *kvm)
2323 {
2324     if (!sev_guest(kvm))
2325         return;
2326 
2327     wbinvd_on_all_cpus();
2328 }
2329 
2330 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2331 {
2332     struct vcpu_svm *svm;
2333 
2334     if (!sev_es_guest(vcpu->kvm))
2335         return;
2336 
2337     svm = to_svm(vcpu);
2338 
2339     if (vcpu->arch.guest_state_protected)
2340         sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2341 
2342     __free_page(virt_to_page(svm->sev_es.vmsa));
2343 
2344     if (svm->sev_es.ghcb_sa_free)
2345         kvfree(svm->sev_es.ghcb_sa);
2346 }
2347 
2348 static void dump_ghcb(struct vcpu_svm *svm)
2349 {
2350     struct ghcb *ghcb = svm->sev_es.ghcb;
2351     unsigned int nbits;
2352 
2353     /* Re-use the dump_invalid_vmcb module parameter */
2354     if (!dump_invalid_vmcb) {
2355         pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2356         return;
2357     }
2358 
2359     nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2360 
2361     pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2362     pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2363            ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2364     pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2365            ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2366     pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2367            ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2368     pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2369            ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2370     pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2371 }
2372 
2373 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2374 {
2375     struct kvm_vcpu *vcpu = &svm->vcpu;
2376     struct ghcb *ghcb = svm->sev_es.ghcb;
2377 
2378     /*
2379      * The GHCB protocol so far allows for the following data
2380      * to be returned:
2381      *   GPRs RAX, RBX, RCX, RDX
2382      *
2383      * Copy their values, even if they may not have been written during the
2384      * VM-Exit.  It's the guest's responsibility to not consume random data.
2385      */
2386     ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2387     ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2388     ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2389     ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2390 }
2391 
2392 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2393 {
2394     struct vmcb_control_area *control = &svm->vmcb->control;
2395     struct kvm_vcpu *vcpu = &svm->vcpu;
2396     struct ghcb *ghcb = svm->sev_es.ghcb;
2397     u64 exit_code;
2398 
2399     /*
2400      * The GHCB protocol so far allows for the following data
2401      * to be supplied:
2402      *   GPRs RAX, RBX, RCX, RDX
2403      *   XCR0
2404      *   CPL
2405      *
2406      * VMMCALL allows the guest to provide extra registers. KVM also
2407      * expects RSI for hypercalls, so include that, too.
2408      *
2409      * Copy their values to the appropriate location if supplied.
2410      */
2411     memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2412 
2413     vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2414     vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2415     vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2416     vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2417     vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2418 
2419     svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2420 
2421     if (ghcb_xcr0_is_valid(ghcb)) {
2422         vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2423         kvm_update_cpuid_runtime(vcpu);
2424     }
2425 
2426     /* Copy the GHCB exit information into the VMCB fields */
2427     exit_code = ghcb_get_sw_exit_code(ghcb);
2428     control->exit_code = lower_32_bits(exit_code);
2429     control->exit_code_hi = upper_32_bits(exit_code);
2430     control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2431     control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2432 
2433     /* Clear the valid entries fields */
2434     memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2435 }
2436 
2437 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2438 {
2439     struct kvm_vcpu *vcpu;
2440     struct ghcb *ghcb;
2441     u64 exit_code;
2442     u64 reason;
2443 
2444     ghcb = svm->sev_es.ghcb;
2445 
2446     /*
2447      * Retrieve the exit code now even though it may not be marked valid
2448      * as it could help with debugging.
2449      */
2450     exit_code = ghcb_get_sw_exit_code(ghcb);
2451 
2452     /* Only GHCB Usage code 0 is supported */
2453     if (ghcb->ghcb_usage) {
2454         reason = GHCB_ERR_INVALID_USAGE;
2455         goto vmgexit_err;
2456     }
2457 
2458     reason = GHCB_ERR_MISSING_INPUT;
2459 
2460     if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2461         !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2462         !ghcb_sw_exit_info_2_is_valid(ghcb))
2463         goto vmgexit_err;
2464 
2465     switch (ghcb_get_sw_exit_code(ghcb)) {
2466     case SVM_EXIT_READ_DR7:
2467         break;
2468     case SVM_EXIT_WRITE_DR7:
2469         if (!ghcb_rax_is_valid(ghcb))
2470             goto vmgexit_err;
2471         break;
2472     case SVM_EXIT_RDTSC:
2473         break;
2474     case SVM_EXIT_RDPMC:
2475         if (!ghcb_rcx_is_valid(ghcb))
2476             goto vmgexit_err;
2477         break;
2478     case SVM_EXIT_CPUID:
2479         if (!ghcb_rax_is_valid(ghcb) ||
2480             !ghcb_rcx_is_valid(ghcb))
2481             goto vmgexit_err;
2482         if (ghcb_get_rax(ghcb) == 0xd)
2483             if (!ghcb_xcr0_is_valid(ghcb))
2484                 goto vmgexit_err;
2485         break;
2486     case SVM_EXIT_INVD:
2487         break;
2488     case SVM_EXIT_IOIO:
2489         if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2490             if (!ghcb_sw_scratch_is_valid(ghcb))
2491                 goto vmgexit_err;
2492         } else {
2493             if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2494                 if (!ghcb_rax_is_valid(ghcb))
2495                     goto vmgexit_err;
2496         }
2497         break;
2498     case SVM_EXIT_MSR:
2499         if (!ghcb_rcx_is_valid(ghcb))
2500             goto vmgexit_err;
2501         if (ghcb_get_sw_exit_info_1(ghcb)) {
2502             if (!ghcb_rax_is_valid(ghcb) ||
2503                 !ghcb_rdx_is_valid(ghcb))
2504                 goto vmgexit_err;
2505         }
2506         break;
2507     case SVM_EXIT_VMMCALL:
2508         if (!ghcb_rax_is_valid(ghcb) ||
2509             !ghcb_cpl_is_valid(ghcb))
2510             goto vmgexit_err;
2511         break;
2512     case SVM_EXIT_RDTSCP:
2513         break;
2514     case SVM_EXIT_WBINVD:
2515         break;
2516     case SVM_EXIT_MONITOR:
2517         if (!ghcb_rax_is_valid(ghcb) ||
2518             !ghcb_rcx_is_valid(ghcb) ||
2519             !ghcb_rdx_is_valid(ghcb))
2520             goto vmgexit_err;
2521         break;
2522     case SVM_EXIT_MWAIT:
2523         if (!ghcb_rax_is_valid(ghcb) ||
2524             !ghcb_rcx_is_valid(ghcb))
2525             goto vmgexit_err;
2526         break;
2527     case SVM_VMGEXIT_MMIO_READ:
2528     case SVM_VMGEXIT_MMIO_WRITE:
2529         if (!ghcb_sw_scratch_is_valid(ghcb))
2530             goto vmgexit_err;
2531         break;
2532     case SVM_VMGEXIT_NMI_COMPLETE:
2533     case SVM_VMGEXIT_AP_HLT_LOOP:
2534     case SVM_VMGEXIT_AP_JUMP_TABLE:
2535     case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2536         break;
2537     default:
2538         reason = GHCB_ERR_INVALID_EVENT;
2539         goto vmgexit_err;
2540     }
2541 
2542     return 0;
2543 
2544 vmgexit_err:
2545     vcpu = &svm->vcpu;
2546 
2547     if (reason == GHCB_ERR_INVALID_USAGE) {
2548         vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2549                 ghcb->ghcb_usage);
2550     } else if (reason == GHCB_ERR_INVALID_EVENT) {
2551         vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2552                 exit_code);
2553     } else {
2554         vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2555                 exit_code);
2556         dump_ghcb(svm);
2557     }
2558 
2559     /* Clear the valid entries fields */
2560     memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2561 
2562     ghcb_set_sw_exit_info_1(ghcb, 2);
2563     ghcb_set_sw_exit_info_2(ghcb, reason);
2564 
2565     /* Resume the guest to "return" the error code. */
2566     return 1;
2567 }
2568 
2569 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2570 {
2571     if (!svm->sev_es.ghcb)
2572         return;
2573 
2574     if (svm->sev_es.ghcb_sa_free) {
2575         /*
2576          * The scratch area lives outside the GHCB, so there is a
2577          * buffer that, depending on the operation performed, may
2578          * need to be synced, then freed.
2579          */
2580         if (svm->sev_es.ghcb_sa_sync) {
2581             kvm_write_guest(svm->vcpu.kvm,
2582                     ghcb_get_sw_scratch(svm->sev_es.ghcb),
2583                     svm->sev_es.ghcb_sa,
2584                     svm->sev_es.ghcb_sa_len);
2585             svm->sev_es.ghcb_sa_sync = false;
2586         }
2587 
2588         kvfree(svm->sev_es.ghcb_sa);
2589         svm->sev_es.ghcb_sa = NULL;
2590         svm->sev_es.ghcb_sa_free = false;
2591     }
2592 
2593     trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2594 
2595     sev_es_sync_to_ghcb(svm);
2596 
2597     kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2598     svm->sev_es.ghcb = NULL;
2599 }
2600 
2601 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2602 {
2603     struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2604     int asid = sev_get_asid(svm->vcpu.kvm);
2605 
2606     /* Assign the asid allocated with this SEV guest */
2607     svm->asid = asid;
2608 
2609     /*
2610      * Flush guest TLB:
2611      *
2612      * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2613      * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2614      */
2615     if (sd->sev_vmcbs[asid] == svm->vmcb &&
2616         svm->vcpu.arch.last_vmentry_cpu == cpu)
2617         return;
2618 
2619     sd->sev_vmcbs[asid] = svm->vmcb;
2620     svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2621     vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2622 }
2623 
2624 #define GHCB_SCRATCH_AREA_LIMIT     (16ULL * PAGE_SIZE)
2625 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2626 {
2627     struct vmcb_control_area *control = &svm->vmcb->control;
2628     struct ghcb *ghcb = svm->sev_es.ghcb;
2629     u64 ghcb_scratch_beg, ghcb_scratch_end;
2630     u64 scratch_gpa_beg, scratch_gpa_end;
2631     void *scratch_va;
2632 
2633     scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2634     if (!scratch_gpa_beg) {
2635         pr_err("vmgexit: scratch gpa not provided\n");
2636         goto e_scratch;
2637     }
2638 
2639     scratch_gpa_end = scratch_gpa_beg + len;
2640     if (scratch_gpa_end < scratch_gpa_beg) {
2641         pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2642                len, scratch_gpa_beg);
2643         goto e_scratch;
2644     }
2645 
2646     if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2647         /* Scratch area begins within GHCB */
2648         ghcb_scratch_beg = control->ghcb_gpa +
2649                    offsetof(struct ghcb, shared_buffer);
2650         ghcb_scratch_end = control->ghcb_gpa +
2651                    offsetof(struct ghcb, reserved_1);
2652 
2653         /*
2654          * If the scratch area begins within the GHCB, it must be
2655          * completely contained in the GHCB shared buffer area.
2656          */
2657         if (scratch_gpa_beg < ghcb_scratch_beg ||
2658             scratch_gpa_end > ghcb_scratch_end) {
2659             pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2660                    scratch_gpa_beg, scratch_gpa_end);
2661             goto e_scratch;
2662         }
2663 
2664         scratch_va = (void *)svm->sev_es.ghcb;
2665         scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2666     } else {
2667         /*
2668          * The guest memory must be read into a kernel buffer, so
2669          * limit the size
2670          */
2671         if (len > GHCB_SCRATCH_AREA_LIMIT) {
2672             pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2673                    len, GHCB_SCRATCH_AREA_LIMIT);
2674             goto e_scratch;
2675         }
2676         scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2677         if (!scratch_va)
2678             return -ENOMEM;
2679 
2680         if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2681             /* Unable to copy scratch area from guest */
2682             pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2683 
2684             kvfree(scratch_va);
2685             return -EFAULT;
2686         }
2687 
2688         /*
2689          * The scratch area is outside the GHCB. The operation will
2690          * dictate whether the buffer needs to be synced before running
2691          * the vCPU next time (i.e. a read was requested so the data
2692          * must be written back to the guest memory).
2693          */
2694         svm->sev_es.ghcb_sa_sync = sync;
2695         svm->sev_es.ghcb_sa_free = true;
2696     }
2697 
2698     svm->sev_es.ghcb_sa = scratch_va;
2699     svm->sev_es.ghcb_sa_len = len;
2700 
2701     return 0;
2702 
2703 e_scratch:
2704     ghcb_set_sw_exit_info_1(ghcb, 2);
2705     ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2706 
2707     return 1;
2708 }
2709 
2710 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2711                   unsigned int pos)
2712 {
2713     svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2714     svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2715 }
2716 
2717 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2718 {
2719     return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2720 }
2721 
2722 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2723 {
2724     svm->vmcb->control.ghcb_gpa = value;
2725 }
2726 
2727 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2728 {
2729     struct vmcb_control_area *control = &svm->vmcb->control;
2730     struct kvm_vcpu *vcpu = &svm->vcpu;
2731     u64 ghcb_info;
2732     int ret = 1;
2733 
2734     ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2735 
2736     trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2737                          control->ghcb_gpa);
2738 
2739     switch (ghcb_info) {
2740     case GHCB_MSR_SEV_INFO_REQ:
2741         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2742                             GHCB_VERSION_MIN,
2743                             sev_enc_bit));
2744         break;
2745     case GHCB_MSR_CPUID_REQ: {
2746         u64 cpuid_fn, cpuid_reg, cpuid_value;
2747 
2748         cpuid_fn = get_ghcb_msr_bits(svm,
2749                          GHCB_MSR_CPUID_FUNC_MASK,
2750                          GHCB_MSR_CPUID_FUNC_POS);
2751 
2752         /* Initialize the registers needed by the CPUID intercept */
2753         vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2754         vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2755 
2756         ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2757         if (!ret) {
2758             /* Error, keep GHCB MSR value as-is */
2759             break;
2760         }
2761 
2762         cpuid_reg = get_ghcb_msr_bits(svm,
2763                           GHCB_MSR_CPUID_REG_MASK,
2764                           GHCB_MSR_CPUID_REG_POS);
2765         if (cpuid_reg == 0)
2766             cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2767         else if (cpuid_reg == 1)
2768             cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2769         else if (cpuid_reg == 2)
2770             cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2771         else
2772             cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2773 
2774         set_ghcb_msr_bits(svm, cpuid_value,
2775                   GHCB_MSR_CPUID_VALUE_MASK,
2776                   GHCB_MSR_CPUID_VALUE_POS);
2777 
2778         set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2779                   GHCB_MSR_INFO_MASK,
2780                   GHCB_MSR_INFO_POS);
2781         break;
2782     }
2783     case GHCB_MSR_TERM_REQ: {
2784         u64 reason_set, reason_code;
2785 
2786         reason_set = get_ghcb_msr_bits(svm,
2787                            GHCB_MSR_TERM_REASON_SET_MASK,
2788                            GHCB_MSR_TERM_REASON_SET_POS);
2789         reason_code = get_ghcb_msr_bits(svm,
2790                         GHCB_MSR_TERM_REASON_MASK,
2791                         GHCB_MSR_TERM_REASON_POS);
2792         pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2793             reason_set, reason_code);
2794 
2795         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2796         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2797         vcpu->run->system_event.ndata = 1;
2798         vcpu->run->system_event.data[0] = control->ghcb_gpa;
2799 
2800         return 0;
2801     }
2802     default:
2803         /* Error, keep GHCB MSR value as-is */
2804         break;
2805     }
2806 
2807     trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2808                         control->ghcb_gpa, ret);
2809 
2810     return ret;
2811 }
2812 
2813 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2814 {
2815     struct vcpu_svm *svm = to_svm(vcpu);
2816     struct vmcb_control_area *control = &svm->vmcb->control;
2817     u64 ghcb_gpa, exit_code;
2818     struct ghcb *ghcb;
2819     int ret;
2820 
2821     /* Validate the GHCB */
2822     ghcb_gpa = control->ghcb_gpa;
2823     if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2824         return sev_handle_vmgexit_msr_protocol(svm);
2825 
2826     if (!ghcb_gpa) {
2827         vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2828 
2829         /* Without a GHCB, just return right back to the guest */
2830         return 1;
2831     }
2832 
2833     if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2834         /* Unable to map GHCB from guest */
2835         vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2836                 ghcb_gpa);
2837 
2838         /* Without a GHCB, just return right back to the guest */
2839         return 1;
2840     }
2841 
2842     svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2843     ghcb = svm->sev_es.ghcb_map.hva;
2844 
2845     trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2846 
2847     exit_code = ghcb_get_sw_exit_code(ghcb);
2848 
2849     ret = sev_es_validate_vmgexit(svm);
2850     if (ret)
2851         return ret;
2852 
2853     sev_es_sync_from_ghcb(svm);
2854     ghcb_set_sw_exit_info_1(ghcb, 0);
2855     ghcb_set_sw_exit_info_2(ghcb, 0);
2856 
2857     switch (exit_code) {
2858     case SVM_VMGEXIT_MMIO_READ:
2859         ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2860         if (ret)
2861             break;
2862 
2863         ret = kvm_sev_es_mmio_read(vcpu,
2864                        control->exit_info_1,
2865                        control->exit_info_2,
2866                        svm->sev_es.ghcb_sa);
2867         break;
2868     case SVM_VMGEXIT_MMIO_WRITE:
2869         ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2870         if (ret)
2871             break;
2872 
2873         ret = kvm_sev_es_mmio_write(vcpu,
2874                         control->exit_info_1,
2875                         control->exit_info_2,
2876                         svm->sev_es.ghcb_sa);
2877         break;
2878     case SVM_VMGEXIT_NMI_COMPLETE:
2879         ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2880         break;
2881     case SVM_VMGEXIT_AP_HLT_LOOP:
2882         ret = kvm_emulate_ap_reset_hold(vcpu);
2883         break;
2884     case SVM_VMGEXIT_AP_JUMP_TABLE: {
2885         struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2886 
2887         switch (control->exit_info_1) {
2888         case 0:
2889             /* Set AP jump table address */
2890             sev->ap_jump_table = control->exit_info_2;
2891             break;
2892         case 1:
2893             /* Get AP jump table address */
2894             ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2895             break;
2896         default:
2897             pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2898                    control->exit_info_1);
2899             ghcb_set_sw_exit_info_1(ghcb, 2);
2900             ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
2901         }
2902 
2903         ret = 1;
2904         break;
2905     }
2906     case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2907         vcpu_unimpl(vcpu,
2908                 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2909                 control->exit_info_1, control->exit_info_2);
2910         ret = -EINVAL;
2911         break;
2912     default:
2913         ret = svm_invoke_exit_handler(vcpu, exit_code);
2914     }
2915 
2916     return ret;
2917 }
2918 
2919 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2920 {
2921     int count;
2922     int bytes;
2923     int r;
2924 
2925     if (svm->vmcb->control.exit_info_2 > INT_MAX)
2926         return -EINVAL;
2927 
2928     count = svm->vmcb->control.exit_info_2;
2929     if (unlikely(check_mul_overflow(count, size, &bytes)))
2930         return -EINVAL;
2931 
2932     r = setup_vmgexit_scratch(svm, in, bytes);
2933     if (r)
2934         return r;
2935 
2936     return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2937                     count, in);
2938 }
2939 
2940 static void sev_es_init_vmcb(struct vcpu_svm *svm)
2941 {
2942     struct kvm_vcpu *vcpu = &svm->vcpu;
2943 
2944     svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2945     svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2946 
2947     /*
2948      * An SEV-ES guest requires a VMSA area that is a separate from the
2949      * VMCB page. Do not include the encryption mask on the VMSA physical
2950      * address since hardware will access it using the guest key.
2951      */
2952     svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
2953 
2954     /* Can't intercept CR register access, HV can't modify CR registers */
2955     svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2956     svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2957     svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2958     svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2959     svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2960     svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2961 
2962     svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2963 
2964     /* Track EFER/CR register changes */
2965     svm_set_intercept(svm, TRAP_EFER_WRITE);
2966     svm_set_intercept(svm, TRAP_CR0_WRITE);
2967     svm_set_intercept(svm, TRAP_CR4_WRITE);
2968     svm_set_intercept(svm, TRAP_CR8_WRITE);
2969 
2970     /* No support for enable_vmware_backdoor */
2971     clr_exception_intercept(svm, GP_VECTOR);
2972 
2973     /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2974     svm_clr_intercept(svm, INTERCEPT_XSETBV);
2975 
2976     /* Clear intercepts on selected MSRs */
2977     set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2978     set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2979     set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2980     set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2981     set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2982     set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2983 
2984     if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) &&
2985         (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP) ||
2986          guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDPID))) {
2987         set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, 1, 1);
2988         if (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP))
2989             svm_clr_intercept(svm, INTERCEPT_RDTSCP);
2990     }
2991 }
2992 
2993 void sev_init_vmcb(struct vcpu_svm *svm)
2994 {
2995     svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
2996     clr_exception_intercept(svm, UD_VECTOR);
2997 
2998     if (sev_es_guest(svm->vcpu.kvm))
2999         sev_es_init_vmcb(svm);
3000 }
3001 
3002 void sev_es_vcpu_reset(struct vcpu_svm *svm)
3003 {
3004     /*
3005      * Set the GHCB MSR value as per the GHCB specification when emulating
3006      * vCPU RESET for an SEV-ES guest.
3007      */
3008     set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3009                         GHCB_VERSION_MIN,
3010                         sev_enc_bit));
3011 }
3012 
3013 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3014 {
3015     /*
3016      * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
3017      * of which one step is to perform a VMLOAD.  KVM performs the
3018      * corresponding VMSAVE in svm_prepare_guest_switch for both
3019      * traditional and SEV-ES guests.
3020      */
3021 
3022     /* XCR0 is restored on VMEXIT, save the current host value */
3023     hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3024 
3025     /* PKRU is restored on VMEXIT, save the current host value */
3026     hostsa->pkru = read_pkru();
3027 
3028     /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
3029     hostsa->xss = host_xss;
3030 }
3031 
3032 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3033 {
3034     struct vcpu_svm *svm = to_svm(vcpu);
3035 
3036     /* First SIPI: Use the values as initially set by the VMM */
3037     if (!svm->sev_es.received_first_sipi) {
3038         svm->sev_es.received_first_sipi = true;
3039         return;
3040     }
3041 
3042     /*
3043      * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3044      * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3045      * non-zero value.
3046      */
3047     if (!svm->sev_es.ghcb)
3048         return;
3049 
3050     ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3051 }