Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Kernel-based Virtual Machine driver for Linux
0004  *
0005  * Macros and functions to access KVM PTEs (also known as SPTEs)
0006  *
0007  * Copyright (C) 2006 Qumranet, Inc.
0008  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
0009  */
0010 
0011 
0012 #include <linux/kvm_host.h>
0013 #include "mmu.h"
0014 #include "mmu_internal.h"
0015 #include "x86.h"
0016 #include "spte.h"
0017 
0018 #include <asm/e820/api.h>
0019 #include <asm/memtype.h>
0020 #include <asm/vmx.h>
0021 
0022 bool __read_mostly enable_mmio_caching = true;
0023 static bool __ro_after_init allow_mmio_caching;
0024 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
0025 EXPORT_SYMBOL_GPL(enable_mmio_caching);
0026 
0027 u64 __read_mostly shadow_host_writable_mask;
0028 u64 __read_mostly shadow_mmu_writable_mask;
0029 u64 __read_mostly shadow_nx_mask;
0030 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
0031 u64 __read_mostly shadow_user_mask;
0032 u64 __read_mostly shadow_accessed_mask;
0033 u64 __read_mostly shadow_dirty_mask;
0034 u64 __read_mostly shadow_mmio_value;
0035 u64 __read_mostly shadow_mmio_mask;
0036 u64 __read_mostly shadow_mmio_access_mask;
0037 u64 __read_mostly shadow_present_mask;
0038 u64 __read_mostly shadow_memtype_mask;
0039 u64 __read_mostly shadow_me_value;
0040 u64 __read_mostly shadow_me_mask;
0041 u64 __read_mostly shadow_acc_track_mask;
0042 
0043 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
0044 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
0045 
0046 u8 __read_mostly shadow_phys_bits;
0047 
0048 void __init kvm_mmu_spte_module_init(void)
0049 {
0050     /*
0051      * Snapshot userspace's desire to allow MMIO caching.  Whether or not
0052      * KVM can actually enable MMIO caching depends on vendor-specific
0053      * hardware capabilities and other module params that can't be resolved
0054      * until the vendor module is loaded, i.e. enable_mmio_caching can and
0055      * will change when the vendor module is (re)loaded.
0056      */
0057     allow_mmio_caching = enable_mmio_caching;
0058 }
0059 
0060 static u64 generation_mmio_spte_mask(u64 gen)
0061 {
0062     u64 mask;
0063 
0064     WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
0065 
0066     mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
0067     mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
0068     return mask;
0069 }
0070 
0071 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
0072 {
0073     u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
0074     u64 spte = generation_mmio_spte_mask(gen);
0075     u64 gpa = gfn << PAGE_SHIFT;
0076 
0077     WARN_ON_ONCE(!shadow_mmio_value);
0078 
0079     access &= shadow_mmio_access_mask;
0080     spte |= shadow_mmio_value | access;
0081     spte |= gpa | shadow_nonpresent_or_rsvd_mask;
0082     spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
0083         << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
0084 
0085     return spte;
0086 }
0087 
0088 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
0089 {
0090     if (pfn_valid(pfn))
0091         return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
0092             /*
0093              * Some reserved pages, such as those from NVDIMM
0094              * DAX devices, are not for MMIO, and can be mapped
0095              * with cached memory type for better performance.
0096              * However, the above check misconceives those pages
0097              * as MMIO, and results in KVM mapping them with UC
0098              * memory type, which would hurt the performance.
0099              * Therefore, we check the host memory type in addition
0100              * and only treat UC/UC-/WC pages as MMIO.
0101              */
0102             (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
0103 
0104     return !e820__mapped_raw_any(pfn_to_hpa(pfn),
0105                      pfn_to_hpa(pfn + 1) - 1,
0106                      E820_TYPE_RAM);
0107 }
0108 
0109 /*
0110  * Returns true if the SPTE has bits that may be set without holding mmu_lock.
0111  * The caller is responsible for checking if the SPTE is shadow-present, and
0112  * for determining whether or not the caller cares about non-leaf SPTEs.
0113  */
0114 bool spte_has_volatile_bits(u64 spte)
0115 {
0116     /*
0117      * Always atomically update spte if it can be updated
0118      * out of mmu-lock, it can ensure dirty bit is not lost,
0119      * also, it can help us to get a stable is_writable_pte()
0120      * to ensure tlb flush is not missed.
0121      */
0122     if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
0123         return true;
0124 
0125     if (is_access_track_spte(spte))
0126         return true;
0127 
0128     if (spte_ad_enabled(spte)) {
0129         if (!(spte & shadow_accessed_mask) ||
0130             (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
0131             return true;
0132     }
0133 
0134     return false;
0135 }
0136 
0137 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
0138            const struct kvm_memory_slot *slot,
0139            unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
0140            u64 old_spte, bool prefetch, bool can_unsync,
0141            bool host_writable, u64 *new_spte)
0142 {
0143     int level = sp->role.level;
0144     u64 spte = SPTE_MMU_PRESENT_MASK;
0145     bool wrprot = false;
0146 
0147     WARN_ON_ONCE(!pte_access && !shadow_present_mask);
0148 
0149     if (sp->role.ad_disabled)
0150         spte |= SPTE_TDP_AD_DISABLED_MASK;
0151     else if (kvm_mmu_page_ad_need_write_protect(sp))
0152         spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK;
0153 
0154     /*
0155      * For the EPT case, shadow_present_mask is 0 if hardware
0156      * supports exec-only page table entries.  In that case,
0157      * ACC_USER_MASK and shadow_user_mask are used to represent
0158      * read access.  See FNAME(gpte_access) in paging_tmpl.h.
0159      */
0160     spte |= shadow_present_mask;
0161     if (!prefetch)
0162         spte |= spte_shadow_accessed_mask(spte);
0163 
0164     if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
0165         is_nx_huge_page_enabled(vcpu->kvm)) {
0166         pte_access &= ~ACC_EXEC_MASK;
0167     }
0168 
0169     if (pte_access & ACC_EXEC_MASK)
0170         spte |= shadow_x_mask;
0171     else
0172         spte |= shadow_nx_mask;
0173 
0174     if (pte_access & ACC_USER_MASK)
0175         spte |= shadow_user_mask;
0176 
0177     if (level > PG_LEVEL_4K)
0178         spte |= PT_PAGE_SIZE_MASK;
0179 
0180     if (shadow_memtype_mask)
0181         spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
0182                              kvm_is_mmio_pfn(pfn));
0183     if (host_writable)
0184         spte |= shadow_host_writable_mask;
0185     else
0186         pte_access &= ~ACC_WRITE_MASK;
0187 
0188     if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
0189         spte |= shadow_me_value;
0190 
0191     spte |= (u64)pfn << PAGE_SHIFT;
0192 
0193     if (pte_access & ACC_WRITE_MASK) {
0194         spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
0195 
0196         /*
0197          * Optimization: for pte sync, if spte was writable the hash
0198          * lookup is unnecessary (and expensive). Write protection
0199          * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
0200          * Same reasoning can be applied to dirty page accounting.
0201          */
0202         if (is_writable_pte(old_spte))
0203             goto out;
0204 
0205         /*
0206          * Unsync shadow pages that are reachable by the new, writable
0207          * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
0208          * e.g. it's write-tracked (upper-level SPs) or has one or more
0209          * shadow pages and unsync'ing pages is not allowed.
0210          */
0211         if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) {
0212             pgprintk("%s: found shadow page for %llx, marking ro\n",
0213                  __func__, gfn);
0214             wrprot = true;
0215             pte_access &= ~ACC_WRITE_MASK;
0216             spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
0217         }
0218     }
0219 
0220     if (pte_access & ACC_WRITE_MASK)
0221         spte |= spte_shadow_dirty_mask(spte);
0222 
0223 out:
0224     if (prefetch)
0225         spte = mark_spte_for_access_track(spte);
0226 
0227     WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
0228           "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
0229           get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
0230 
0231     if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
0232         /* Enforced by kvm_mmu_hugepage_adjust. */
0233         WARN_ON(level > PG_LEVEL_4K);
0234         mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
0235     }
0236 
0237     *new_spte = spte;
0238     return wrprot;
0239 }
0240 
0241 static u64 make_spte_executable(u64 spte)
0242 {
0243     bool is_access_track = is_access_track_spte(spte);
0244 
0245     if (is_access_track)
0246         spte = restore_acc_track_spte(spte);
0247 
0248     spte &= ~shadow_nx_mask;
0249     spte |= shadow_x_mask;
0250 
0251     if (is_access_track)
0252         spte = mark_spte_for_access_track(spte);
0253 
0254     return spte;
0255 }
0256 
0257 /*
0258  * Construct an SPTE that maps a sub-page of the given huge page SPTE where
0259  * `index` identifies which sub-page.
0260  *
0261  * This is used during huge page splitting to build the SPTEs that make up the
0262  * new page table.
0263  */
0264 u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role,
0265                   int index)
0266 {
0267     u64 child_spte;
0268 
0269     if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte)))
0270         return 0;
0271 
0272     if (WARN_ON_ONCE(!is_large_pte(huge_spte)))
0273         return 0;
0274 
0275     child_spte = huge_spte;
0276 
0277     /*
0278      * The child_spte already has the base address of the huge page being
0279      * split. So we just have to OR in the offset to the page at the next
0280      * lower level for the given index.
0281      */
0282     child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
0283 
0284     if (role.level == PG_LEVEL_4K) {
0285         child_spte &= ~PT_PAGE_SIZE_MASK;
0286 
0287         /*
0288          * When splitting to a 4K page where execution is allowed, mark
0289          * the page executable as the NX hugepage mitigation no longer
0290          * applies.
0291          */
0292         if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
0293             child_spte = make_spte_executable(child_spte);
0294     }
0295 
0296     return child_spte;
0297 }
0298 
0299 
0300 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
0301 {
0302     u64 spte = SPTE_MMU_PRESENT_MASK;
0303 
0304     spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
0305         shadow_user_mask | shadow_x_mask | shadow_me_value;
0306 
0307     if (ad_disabled)
0308         spte |= SPTE_TDP_AD_DISABLED_MASK;
0309     else
0310         spte |= shadow_accessed_mask;
0311 
0312     return spte;
0313 }
0314 
0315 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
0316 {
0317     u64 new_spte;
0318 
0319     new_spte = old_spte & ~SPTE_BASE_ADDR_MASK;
0320     new_spte |= (u64)new_pfn << PAGE_SHIFT;
0321 
0322     new_spte &= ~PT_WRITABLE_MASK;
0323     new_spte &= ~shadow_host_writable_mask;
0324     new_spte &= ~shadow_mmu_writable_mask;
0325 
0326     new_spte = mark_spte_for_access_track(new_spte);
0327 
0328     return new_spte;
0329 }
0330 
0331 u64 mark_spte_for_access_track(u64 spte)
0332 {
0333     if (spte_ad_enabled(spte))
0334         return spte & ~shadow_accessed_mask;
0335 
0336     if (is_access_track_spte(spte))
0337         return spte;
0338 
0339     check_spte_writable_invariants(spte);
0340 
0341     WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
0342               SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
0343           "kvm: Access Tracking saved bit locations are not zero\n");
0344 
0345     spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
0346         SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
0347     spte &= ~shadow_acc_track_mask;
0348 
0349     return spte;
0350 }
0351 
0352 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
0353 {
0354     BUG_ON((u64)(unsigned)access_mask != access_mask);
0355     WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
0356 
0357     /*
0358      * Reset to the original module param value to honor userspace's desire
0359      * to (dis)allow MMIO caching.  Update the param itself so that
0360      * userspace can see whether or not KVM is actually using MMIO caching.
0361      */
0362     enable_mmio_caching = allow_mmio_caching;
0363     if (!enable_mmio_caching)
0364         mmio_value = 0;
0365 
0366     /*
0367      * The mask must contain only bits that are carved out specifically for
0368      * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
0369      * generation.
0370      */
0371     if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
0372         mmio_value = 0;
0373 
0374     /*
0375      * Disable MMIO caching if the MMIO value collides with the bits that
0376      * are used to hold the relocated GFN when the L1TF mitigation is
0377      * enabled.  This should never fire as there is no known hardware that
0378      * can trigger this condition, e.g. SME/SEV CPUs that require a custom
0379      * MMIO value are not susceptible to L1TF.
0380      */
0381     if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
0382                   SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
0383         mmio_value = 0;
0384 
0385     /*
0386      * The masked MMIO value must obviously match itself and a removed SPTE
0387      * must not get a false positive.  Removed SPTEs and MMIO SPTEs should
0388      * never collide as MMIO must set some RWX bits, and removed SPTEs must
0389      * not set any RWX bits.
0390      */
0391     if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
0392         WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
0393         mmio_value = 0;
0394 
0395     if (!mmio_value)
0396         enable_mmio_caching = false;
0397 
0398     shadow_mmio_value = mmio_value;
0399     shadow_mmio_mask  = mmio_mask;
0400     shadow_mmio_access_mask = access_mask;
0401 }
0402 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
0403 
0404 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
0405 {
0406     /* shadow_me_value must be a subset of shadow_me_mask */
0407     if (WARN_ON(me_value & ~me_mask))
0408         me_value = me_mask = 0;
0409 
0410     shadow_me_value = me_value;
0411     shadow_me_mask = me_mask;
0412 }
0413 EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
0414 
0415 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
0416 {
0417     shadow_user_mask    = VMX_EPT_READABLE_MASK;
0418     shadow_accessed_mask    = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
0419     shadow_dirty_mask   = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
0420     shadow_nx_mask      = 0ull;
0421     shadow_x_mask       = VMX_EPT_EXECUTABLE_MASK;
0422     shadow_present_mask = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
0423     /*
0424      * EPT overrides the host MTRRs, and so KVM must program the desired
0425      * memtype directly into the SPTEs.  Note, this mask is just the mask
0426      * of all bits that factor into the memtype, the actual memtype must be
0427      * dynamically calculated, e.g. to ensure host MMIO is mapped UC.
0428      */
0429     shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
0430     shadow_acc_track_mask   = VMX_EPT_RWX_MASK;
0431     shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
0432     shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
0433 
0434     /*
0435      * EPT Misconfigurations are generated if the value of bits 2:0
0436      * of an EPT paging-structure entry is 110b (write/execute).
0437      */
0438     kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
0439                    VMX_EPT_RWX_MASK, 0);
0440 }
0441 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
0442 
0443 void kvm_mmu_reset_all_pte_masks(void)
0444 {
0445     u8 low_phys_bits;
0446     u64 mask;
0447 
0448     shadow_phys_bits = kvm_get_shadow_phys_bits();
0449 
0450     /*
0451      * If the CPU has 46 or less physical address bits, then set an
0452      * appropriate mask to guard against L1TF attacks. Otherwise, it is
0453      * assumed that the CPU is not vulnerable to L1TF.
0454      *
0455      * Some Intel CPUs address the L1 cache using more PA bits than are
0456      * reported by CPUID. Use the PA width of the L1 cache when possible
0457      * to achieve more effective mitigation, e.g. if system RAM overlaps
0458      * the most significant bits of legal physical address space.
0459      */
0460     shadow_nonpresent_or_rsvd_mask = 0;
0461     low_phys_bits = boot_cpu_data.x86_phys_bits;
0462     if (boot_cpu_has_bug(X86_BUG_L1TF) &&
0463         !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
0464               52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
0465         low_phys_bits = boot_cpu_data.x86_cache_bits
0466             - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
0467         shadow_nonpresent_or_rsvd_mask =
0468             rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
0469     }
0470 
0471     shadow_nonpresent_or_rsvd_lower_gfn_mask =
0472         GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
0473 
0474     shadow_user_mask    = PT_USER_MASK;
0475     shadow_accessed_mask    = PT_ACCESSED_MASK;
0476     shadow_dirty_mask   = PT_DIRTY_MASK;
0477     shadow_nx_mask      = PT64_NX_MASK;
0478     shadow_x_mask       = 0;
0479     shadow_present_mask = PT_PRESENT_MASK;
0480 
0481     /*
0482      * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
0483      * memtype in the SPTEs, i.e. relies on host MTRRs to provide the
0484      * correct memtype (WB is the "weakest" memtype).
0485      */
0486     shadow_memtype_mask = 0;
0487     shadow_acc_track_mask   = 0;
0488     shadow_me_mask      = 0;
0489     shadow_me_value     = 0;
0490 
0491     shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
0492     shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITABLE;
0493 
0494     /*
0495      * Set a reserved PA bit in MMIO SPTEs to generate page faults with
0496      * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
0497      * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
0498      * 52-bit physical addresses then there are no reserved PA bits in the
0499      * PTEs and so the reserved PA approach must be disabled.
0500      */
0501     if (shadow_phys_bits < 52)
0502         mask = BIT_ULL(51) | PT_PRESENT_MASK;
0503     else
0504         mask = 0;
0505 
0506     kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
0507 }