0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024 #if PTTYPE == 64
0025 #define pt_element_t u64
0026 #define guest_walker guest_walker64
0027 #define FNAME(name) paging##64_##name
0028 #define PT_LEVEL_BITS 9
0029 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
0030 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
0031 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
0032 #ifdef CONFIG_X86_64
0033 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
0034 #else
0035 #define PT_MAX_FULL_LEVELS 2
0036 #endif
0037 #elif PTTYPE == 32
0038 #define pt_element_t u32
0039 #define guest_walker guest_walker32
0040 #define FNAME(name) paging##32_##name
0041 #define PT_LEVEL_BITS 10
0042 #define PT_MAX_FULL_LEVELS 2
0043 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
0044 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
0045 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
0046
0047 #define PT32_DIR_PSE36_SIZE 4
0048 #define PT32_DIR_PSE36_SHIFT 13
0049 #define PT32_DIR_PSE36_MASK \
0050 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
0051 #elif PTTYPE == PTTYPE_EPT
0052 #define pt_element_t u64
0053 #define guest_walker guest_walkerEPT
0054 #define FNAME(name) ept_##name
0055 #define PT_LEVEL_BITS 9
0056 #define PT_GUEST_DIRTY_SHIFT 9
0057 #define PT_GUEST_ACCESSED_SHIFT 8
0058 #define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled)
0059 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
0060 #else
0061 #error Invalid PTTYPE value
0062 #endif
0063
0064
0065 #define PT_BASE_ADDR_MASK ((pt_element_t)(((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
0066 #define PT_LVL_ADDR_MASK(lvl) __PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
0067 #define PT_LVL_OFFSET_MASK(lvl) __PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
0068 #define PT_INDEX(addr, lvl) __PT_INDEX(addr, lvl, PT_LEVEL_BITS)
0069
0070 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
0071 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
0072
0073 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
0074 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
0075
0076
0077
0078
0079
0080 struct guest_walker {
0081 int level;
0082 unsigned max_level;
0083 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
0084 pt_element_t ptes[PT_MAX_FULL_LEVELS];
0085 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
0086 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
0087 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
0088 bool pte_writable[PT_MAX_FULL_LEVELS];
0089 unsigned int pt_access[PT_MAX_FULL_LEVELS];
0090 unsigned int pte_access;
0091 gfn_t gfn;
0092 struct x86_exception fault;
0093 };
0094
0095 #if PTTYPE == 32
0096 static inline gfn_t pse36_gfn_delta(u32 gpte)
0097 {
0098 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
0099
0100 return (gpte & PT32_DIR_PSE36_MASK) << shift;
0101 }
0102 #endif
0103
0104 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
0105 {
0106 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
0107 }
0108
0109 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
0110 unsigned gpte)
0111 {
0112 unsigned mask;
0113
0114
0115 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
0116 return;
0117
0118 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
0119
0120 mask = (unsigned)~ACC_WRITE_MASK;
0121
0122 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
0123 PT_WRITABLE_MASK;
0124 *access &= mask;
0125 }
0126
0127 static inline int FNAME(is_present_gpte)(unsigned long pte)
0128 {
0129 #if PTTYPE != PTTYPE_EPT
0130 return pte & PT_PRESENT_MASK;
0131 #else
0132 return pte & 7;
0133 #endif
0134 }
0135
0136 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
0137 {
0138 #if PTTYPE != PTTYPE_EPT
0139 return false;
0140 #else
0141 return __is_bad_mt_xwr(rsvd_check, gpte);
0142 #endif
0143 }
0144
0145 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
0146 {
0147 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
0148 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
0149 }
0150
0151 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
0152 struct kvm_mmu_page *sp, u64 *spte,
0153 u64 gpte)
0154 {
0155 if (!FNAME(is_present_gpte)(gpte))
0156 goto no_present;
0157
0158
0159 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
0160 !(gpte & PT_GUEST_ACCESSED_MASK))
0161 goto no_present;
0162
0163 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
0164 goto no_present;
0165
0166 return false;
0167
0168 no_present:
0169 drop_spte(vcpu->kvm, spte);
0170 return true;
0171 }
0172
0173
0174
0175
0176
0177
0178
0179 static inline unsigned FNAME(gpte_access)(u64 gpte)
0180 {
0181 unsigned access;
0182 #if PTTYPE == PTTYPE_EPT
0183 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
0184 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
0185 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
0186 #else
0187 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
0188 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
0189 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
0190
0191 access ^= (gpte >> PT64_NX_SHIFT);
0192 #endif
0193
0194 return access;
0195 }
0196
0197 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
0198 struct kvm_mmu *mmu,
0199 struct guest_walker *walker,
0200 gpa_t addr, int write_fault)
0201 {
0202 unsigned level, index;
0203 pt_element_t pte, orig_pte;
0204 pt_element_t __user *ptep_user;
0205 gfn_t table_gfn;
0206 int ret;
0207
0208
0209 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
0210 return 0;
0211
0212 for (level = walker->max_level; level >= walker->level; --level) {
0213 pte = orig_pte = walker->ptes[level - 1];
0214 table_gfn = walker->table_gfn[level - 1];
0215 ptep_user = walker->ptep_user[level - 1];
0216 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
0217 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
0218 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
0219 pte |= PT_GUEST_ACCESSED_MASK;
0220 }
0221 if (level == walker->level && write_fault &&
0222 !(pte & PT_GUEST_DIRTY_MASK)) {
0223 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
0224 #if PTTYPE == PTTYPE_EPT
0225 if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
0226 return -EINVAL;
0227 #endif
0228 pte |= PT_GUEST_DIRTY_MASK;
0229 }
0230 if (pte == orig_pte)
0231 continue;
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246 if (unlikely(!walker->pte_writable[level - 1]))
0247 continue;
0248
0249 ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault);
0250 if (ret)
0251 return ret;
0252
0253 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
0254 walker->ptes[level - 1] = pte;
0255 }
0256 return 0;
0257 }
0258
0259 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
0260 {
0261 unsigned pkeys = 0;
0262 #if PTTYPE == 64
0263 pte_t pte = {.pte = gpte};
0264
0265 pkeys = pte_flags_pkey(pte_flags(pte));
0266 #endif
0267 return pkeys;
0268 }
0269
0270 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
0271 unsigned int level, unsigned int gpte)
0272 {
0273
0274
0275
0276
0277
0278 #if PTTYPE == 32
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288 gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse);
0289 #endif
0290
0291
0292
0293
0294
0295 gpte |= level - PG_LEVEL_4K - 1;
0296
0297 return gpte & PT_PAGE_SIZE_MASK;
0298 }
0299
0300
0301
0302 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
0303 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
0304 gpa_t addr, u64 access)
0305 {
0306 int ret;
0307 pt_element_t pte;
0308 pt_element_t __user *ptep_user;
0309 gfn_t table_gfn;
0310 u64 pt_access, pte_access;
0311 unsigned index, accessed_dirty, pte_pkey;
0312 u64 nested_access;
0313 gpa_t pte_gpa;
0314 bool have_ad;
0315 int offset;
0316 u64 walk_nx_mask = 0;
0317 const int write_fault = access & PFERR_WRITE_MASK;
0318 const int user_fault = access & PFERR_USER_MASK;
0319 const int fetch_fault = access & PFERR_FETCH_MASK;
0320 u16 errcode = 0;
0321 gpa_t real_gpa;
0322 gfn_t gfn;
0323
0324 trace_kvm_mmu_pagetable_walk(addr, access);
0325 retry_walk:
0326 walker->level = mmu->cpu_role.base.level;
0327 pte = mmu->get_guest_pgd(vcpu);
0328 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
0329
0330 #if PTTYPE == 64
0331 walk_nx_mask = 1ULL << PT64_NX_SHIFT;
0332 if (walker->level == PT32E_ROOT_LEVEL) {
0333 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
0334 trace_kvm_mmu_paging_element(pte, walker->level);
0335 if (!FNAME(is_present_gpte)(pte))
0336 goto error;
0337 --walker->level;
0338 }
0339 #endif
0340 walker->max_level = walker->level;
0341 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
0342
0343
0344
0345
0346
0347
0348 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
0349
0350 pte_access = ~0;
0351 ++walker->level;
0352
0353 do {
0354 unsigned long host_addr;
0355
0356 pt_access = pte_access;
0357 --walker->level;
0358
0359 index = PT_INDEX(addr, walker->level);
0360 table_gfn = gpte_to_gfn(pte);
0361 offset = index * sizeof(pt_element_t);
0362 pte_gpa = gfn_to_gpa(table_gfn) + offset;
0363
0364 BUG_ON(walker->level < 1);
0365 walker->table_gfn[walker->level - 1] = table_gfn;
0366 walker->pte_gpa[walker->level - 1] = pte_gpa;
0367
0368 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
0369 nested_access, &walker->fault);
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381 if (unlikely(real_gpa == INVALID_GPA))
0382 return 0;
0383
0384 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
0385 &walker->pte_writable[walker->level - 1]);
0386 if (unlikely(kvm_is_error_hva(host_addr)))
0387 goto error;
0388
0389 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
0390 if (unlikely(__get_user(pte, ptep_user)))
0391 goto error;
0392 walker->ptep_user[walker->level - 1] = ptep_user;
0393
0394 trace_kvm_mmu_paging_element(pte, walker->level);
0395
0396
0397
0398
0399
0400 pte_access = pt_access & (pte ^ walk_nx_mask);
0401
0402 if (unlikely(!FNAME(is_present_gpte)(pte)))
0403 goto error;
0404
0405 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
0406 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
0407 goto error;
0408 }
0409
0410 walker->ptes[walker->level - 1] = pte;
0411
0412
0413 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
0414 } while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
0415
0416 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
0417 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
0418
0419
0420 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
0421 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
0422 if (unlikely(errcode))
0423 goto error;
0424
0425 gfn = gpte_to_gfn_lvl(pte, walker->level);
0426 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
0427
0428 #if PTTYPE == 32
0429 if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
0430 gfn += pse36_gfn_delta(pte);
0431 #endif
0432
0433 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
0434 if (real_gpa == INVALID_GPA)
0435 return 0;
0436
0437 walker->gfn = real_gpa >> PAGE_SHIFT;
0438
0439 if (!write_fault)
0440 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
0441 else
0442
0443
0444
0445
0446
0447 accessed_dirty &= pte >>
0448 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
0449
0450 if (unlikely(!accessed_dirty)) {
0451 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
0452 addr, write_fault);
0453 if (unlikely(ret < 0))
0454 goto error;
0455 else if (ret)
0456 goto retry_walk;
0457 }
0458
0459 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
0460 __func__, (u64)pte, walker->pte_access,
0461 walker->pt_access[walker->level - 1]);
0462 return 1;
0463
0464 error:
0465 errcode |= write_fault | user_fault;
0466 if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
0467 errcode |= PFERR_FETCH_MASK;
0468
0469 walker->fault.vector = PF_VECTOR;
0470 walker->fault.error_code_valid = true;
0471 walker->fault.error_code = errcode;
0472
0473 #if PTTYPE == PTTYPE_EPT
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487 if (!(errcode & PFERR_RSVD_MASK)) {
0488 vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID |
0489 EPT_VIOLATION_GVA_TRANSLATED);
0490 if (write_fault)
0491 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
0492 if (user_fault)
0493 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
0494 if (fetch_fault)
0495 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
0496
0497
0498
0499
0500
0501 vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) <<
0502 EPT_VIOLATION_RWX_SHIFT;
0503 }
0504 #endif
0505 walker->fault.address = addr;
0506 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
0507 walker->fault.async_page_fault = false;
0508
0509 trace_kvm_mmu_walker_error(walker->fault.error_code);
0510 return 0;
0511 }
0512
0513 static int FNAME(walk_addr)(struct guest_walker *walker,
0514 struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
0515 {
0516 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
0517 access);
0518 }
0519
0520 static bool
0521 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
0522 u64 *spte, pt_element_t gpte, bool no_dirty_log)
0523 {
0524 struct kvm_memory_slot *slot;
0525 unsigned pte_access;
0526 gfn_t gfn;
0527 kvm_pfn_t pfn;
0528
0529 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
0530 return false;
0531
0532 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
0533
0534 gfn = gpte_to_gfn(gpte);
0535 pte_access = sp->role.access & FNAME(gpte_access)(gpte);
0536 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
0537
0538 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn,
0539 no_dirty_log && (pte_access & ACC_WRITE_MASK));
0540 if (!slot)
0541 return false;
0542
0543 pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
0544 if (is_error_pfn(pfn))
0545 return false;
0546
0547 mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
0548 kvm_release_pfn_clean(pfn);
0549 return true;
0550 }
0551
0552 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
0553 struct guest_walker *gw, int level)
0554 {
0555 pt_element_t curr_pte;
0556 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
0557 u64 mask;
0558 int r, index;
0559
0560 if (level == PG_LEVEL_4K) {
0561 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
0562 base_gpa = pte_gpa & ~mask;
0563 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
0564
0565 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
0566 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
0567 curr_pte = gw->prefetch_ptes[index];
0568 } else
0569 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
0570 &curr_pte, sizeof(curr_pte));
0571
0572 return r || curr_pte != gw->ptes[level - 1];
0573 }
0574
0575 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
0576 u64 *sptep)
0577 {
0578 struct kvm_mmu_page *sp;
0579 pt_element_t *gptep = gw->prefetch_ptes;
0580 u64 *spte;
0581 int i;
0582
0583 sp = sptep_to_sp(sptep);
0584
0585 if (sp->role.level > PG_LEVEL_4K)
0586 return;
0587
0588
0589
0590
0591
0592 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
0593 return;
0594
0595 if (sp->role.direct)
0596 return __direct_pte_prefetch(vcpu, sp, sptep);
0597
0598 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
0599 spte = sp->spt + i;
0600
0601 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
0602 if (spte == sptep)
0603 continue;
0604
0605 if (is_shadow_present_pte(*spte))
0606 continue;
0607
0608 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
0609 break;
0610 }
0611 }
0612
0613
0614
0615
0616
0617
0618 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
0619 struct guest_walker *gw)
0620 {
0621 struct kvm_mmu_page *sp = NULL;
0622 struct kvm_shadow_walk_iterator it;
0623 unsigned int direct_access, access;
0624 int top_level, ret;
0625 gfn_t base_gfn = fault->gfn;
0626
0627 WARN_ON_ONCE(gw->gfn != base_gfn);
0628 direct_access = gw->pte_access;
0629
0630 top_level = vcpu->arch.mmu->cpu_role.base.level;
0631 if (top_level == PT32E_ROOT_LEVEL)
0632 top_level = PT32_ROOT_LEVEL;
0633
0634
0635
0636
0637
0638
0639 if (FNAME(gpte_changed)(vcpu, gw, top_level))
0640 goto out_gpte_changed;
0641
0642 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
0643 goto out_gpte_changed;
0644
0645 for (shadow_walk_init(&it, vcpu, fault->addr);
0646 shadow_walk_okay(&it) && it.level > gw->level;
0647 shadow_walk_next(&it)) {
0648 gfn_t table_gfn;
0649
0650 clear_sp_write_flooding_count(it.sptep);
0651
0652 table_gfn = gw->table_gfn[it.level - 2];
0653 access = gw->pt_access[it.level - 2];
0654 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn,
0655 false, access);
0656
0657 if (sp != ERR_PTR(-EEXIST)) {
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674 if (sp->unsync_children &&
0675 mmu_sync_children(vcpu, sp, false))
0676 return RET_PF_RETRY;
0677 }
0678
0679
0680
0681
0682
0683 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
0684 goto out_gpte_changed;
0685
0686 if (sp != ERR_PTR(-EEXIST))
0687 link_shadow_page(vcpu, it.sptep, sp);
0688 }
0689
0690 kvm_mmu_hugepage_adjust(vcpu, fault);
0691
0692 trace_kvm_mmu_spte_requested(fault);
0693
0694 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
0695 clear_sp_write_flooding_count(it.sptep);
0696
0697
0698
0699
0700
0701 if (fault->nx_huge_page_workaround_enabled)
0702 disallowed_hugepage_adjust(fault, *it.sptep, it.level);
0703
0704 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
0705 if (it.level == fault->goal_level)
0706 break;
0707
0708 validate_direct_spte(vcpu, it.sptep, direct_access);
0709
0710 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn,
0711 true, direct_access);
0712 if (sp == ERR_PTR(-EEXIST))
0713 continue;
0714
0715 link_shadow_page(vcpu, it.sptep, sp);
0716 if (fault->huge_page_disallowed &&
0717 fault->req_level >= it.level)
0718 account_huge_nx_page(vcpu->kvm, sp);
0719 }
0720
0721 if (WARN_ON_ONCE(it.level != fault->goal_level))
0722 return -EFAULT;
0723
0724 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
0725 base_gfn, fault->pfn, fault);
0726 if (ret == RET_PF_SPURIOUS)
0727 return ret;
0728
0729 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
0730 return ret;
0731
0732 out_gpte_changed:
0733 return RET_PF_RETRY;
0734 }
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753 static bool
0754 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
0755 struct guest_walker *walker, bool user_fault,
0756 bool *write_fault_to_shadow_pgtable)
0757 {
0758 int level;
0759 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
0760 bool self_changed = false;
0761
0762 if (!(walker->pte_access & ACC_WRITE_MASK ||
0763 (!is_cr0_wp(vcpu->arch.mmu) && !user_fault)))
0764 return false;
0765
0766 for (level = walker->level; level <= walker->max_level; level++) {
0767 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
0768
0769 self_changed |= !(gfn & mask);
0770 *write_fault_to_shadow_pgtable |= !gfn;
0771 }
0772
0773 return self_changed;
0774 }
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
0791 {
0792 struct guest_walker walker;
0793 int r;
0794 unsigned long mmu_seq;
0795 bool is_self_change_mapping;
0796
0797 pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code);
0798 WARN_ON_ONCE(fault->is_tdp);
0799
0800
0801
0802
0803
0804
0805 r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
0806 fault->error_code & ~PFERR_RSVD_MASK);
0807
0808
0809
0810
0811 if (!r) {
0812 pgprintk("%s: guest page fault\n", __func__);
0813 if (!fault->prefetch)
0814 kvm_inject_emulated_page_fault(vcpu, &walker.fault);
0815
0816 return RET_PF_RETRY;
0817 }
0818
0819 fault->gfn = walker.gfn;
0820 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
0821
0822 if (page_fault_handle_page_track(vcpu, fault)) {
0823 shadow_page_table_clear_flood(vcpu, fault->addr);
0824 return RET_PF_EMULATE;
0825 }
0826
0827 r = mmu_topup_memory_caches(vcpu, true);
0828 if (r)
0829 return r;
0830
0831 vcpu->arch.write_fault_to_shadow_pgtable = false;
0832
0833 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
0834 &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable);
0835
0836 if (is_self_change_mapping)
0837 fault->max_level = PG_LEVEL_4K;
0838 else
0839 fault->max_level = walker.level;
0840
0841 mmu_seq = vcpu->kvm->mmu_invalidate_seq;
0842 smp_rmb();
0843
0844 r = kvm_faultin_pfn(vcpu, fault);
0845 if (r != RET_PF_CONTINUE)
0846 return r;
0847
0848 r = handle_abnormal_pfn(vcpu, fault, walker.pte_access);
0849 if (r != RET_PF_CONTINUE)
0850 return r;
0851
0852
0853
0854
0855
0856 if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
0857 !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
0858 walker.pte_access |= ACC_WRITE_MASK;
0859 walker.pte_access &= ~ACC_USER_MASK;
0860
0861
0862
0863
0864
0865
0866
0867 if (is_cr4_smep(vcpu->arch.mmu))
0868 walker.pte_access &= ~ACC_EXEC_MASK;
0869 }
0870
0871 r = RET_PF_RETRY;
0872 write_lock(&vcpu->kvm->mmu_lock);
0873
0874 if (is_page_fault_stale(vcpu, fault, mmu_seq))
0875 goto out_unlock;
0876
0877 r = make_mmu_pages_available(vcpu);
0878 if (r)
0879 goto out_unlock;
0880 r = FNAME(fetch)(vcpu, fault, &walker);
0881
0882 out_unlock:
0883 write_unlock(&vcpu->kvm->mmu_lock);
0884 kvm_release_pfn_clean(fault->pfn);
0885 return r;
0886 }
0887
0888 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
0889 {
0890 int offset = 0;
0891
0892 WARN_ON(sp->role.level != PG_LEVEL_4K);
0893
0894 if (PTTYPE == 32)
0895 offset = sp->role.quadrant << SPTE_LEVEL_BITS;
0896
0897 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
0898 }
0899
0900 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
0901 {
0902 struct kvm_shadow_walk_iterator iterator;
0903 struct kvm_mmu_page *sp;
0904 u64 old_spte;
0905 int level;
0906 u64 *sptep;
0907
0908 vcpu_clear_mmio_info(vcpu, gva);
0909
0910
0911
0912
0913
0914 mmu_topup_memory_caches(vcpu, true);
0915
0916 if (!VALID_PAGE(root_hpa)) {
0917 WARN_ON(1);
0918 return;
0919 }
0920
0921 write_lock(&vcpu->kvm->mmu_lock);
0922 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
0923 level = iterator.level;
0924 sptep = iterator.sptep;
0925
0926 sp = sptep_to_sp(sptep);
0927 old_spte = *sptep;
0928 if (is_last_spte(old_spte, level)) {
0929 pt_element_t gpte;
0930 gpa_t pte_gpa;
0931
0932 if (!sp->unsync)
0933 break;
0934
0935 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
0936 pte_gpa += spte_index(sptep) * sizeof(pt_element_t);
0937
0938 mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
0939 if (is_shadow_present_pte(old_spte))
0940 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
0941 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
0942
0943 if (!rmap_can_add(vcpu))
0944 break;
0945
0946 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
0947 sizeof(pt_element_t)))
0948 break;
0949
0950 FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false);
0951 }
0952
0953 if (!sp->unsync_children)
0954 break;
0955 }
0956 write_unlock(&vcpu->kvm->mmu_lock);
0957 }
0958
0959
0960 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
0961 gpa_t addr, u64 access,
0962 struct x86_exception *exception)
0963 {
0964 struct guest_walker walker;
0965 gpa_t gpa = INVALID_GPA;
0966 int r;
0967
0968 #ifndef CONFIG_X86_64
0969
0970 WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
0971 #endif
0972
0973 r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
0974
0975 if (r) {
0976 gpa = gfn_to_gpa(walker.gfn);
0977 gpa |= addr & ~PAGE_MASK;
0978 } else if (exception)
0979 *exception = walker.fault;
0980
0981 return gpa;
0982 }
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
0996 {
0997 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
0998 int i;
0999 bool host_writable;
1000 gpa_t first_pte_gpa;
1001 bool flush = false;
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012 const union kvm_mmu_page_role sync_role_ign = {
1013 .level = 0xf,
1014 .access = 0x7,
1015 .quadrant = 0x3,
1016 .passthrough = 0x1,
1017 };
1018
1019
1020
1021
1022
1023
1024
1025 if (WARN_ON_ONCE(sp->role.direct ||
1026 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1027 return -1;
1028
1029 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1030
1031 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1032 u64 *sptep, spte;
1033 struct kvm_memory_slot *slot;
1034 unsigned pte_access;
1035 pt_element_t gpte;
1036 gpa_t pte_gpa;
1037 gfn_t gfn;
1038
1039 if (!sp->spt[i])
1040 continue;
1041
1042 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1043
1044 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1045 sizeof(pt_element_t)))
1046 return -1;
1047
1048 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1049 flush = true;
1050 continue;
1051 }
1052
1053 gfn = gpte_to_gfn(gpte);
1054 pte_access = sp->role.access;
1055 pte_access &= FNAME(gpte_access)(gpte);
1056 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1057
1058 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
1059 continue;
1060
1061
1062
1063
1064
1065
1066
1067
1068 if ((!pte_access && !shadow_present_mask) ||
1069 gfn != kvm_mmu_page_get_gfn(sp, i)) {
1070 drop_spte(vcpu->kvm, &sp->spt[i]);
1071 flush = true;
1072 continue;
1073 }
1074
1075
1076 kvm_mmu_page_set_access(sp, i, pte_access);
1077
1078 sptep = &sp->spt[i];
1079 spte = *sptep;
1080 host_writable = spte & shadow_host_writable_mask;
1081 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1082 make_spte(vcpu, sp, slot, pte_access, gfn,
1083 spte_to_pfn(spte), spte, true, false,
1084 host_writable, &spte);
1085
1086 flush |= mmu_spte_update(sptep, spte);
1087 }
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098 return flush;
1099 }
1100
1101 #undef pt_element_t
1102 #undef guest_walker
1103 #undef FNAME
1104 #undef PT_BASE_ADDR_MASK
1105 #undef PT_INDEX
1106 #undef PT_LVL_ADDR_MASK
1107 #undef PT_LVL_OFFSET_MASK
1108 #undef PT_LEVEL_BITS
1109 #undef PT_MAX_FULL_LEVELS
1110 #undef gpte_to_gfn
1111 #undef gpte_to_gfn_lvl
1112 #undef PT_GUEST_ACCESSED_MASK
1113 #undef PT_GUEST_DIRTY_MASK
1114 #undef PT_GUEST_DIRTY_SHIFT
1115 #undef PT_GUEST_ACCESSED_SHIFT
1116 #undef PT_HAVE_ACCESSED_DIRTY