Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Machine check handler.
0004  *
0005  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
0006  * Rest from unknown author(s).
0007  * 2004 Andi Kleen. Rewrote most of it.
0008  * Copyright 2008 Intel Corporation
0009  * Author: Andi Kleen
0010  */
0011 
0012 #include <linux/thread_info.h>
0013 #include <linux/capability.h>
0014 #include <linux/miscdevice.h>
0015 #include <linux/ratelimit.h>
0016 #include <linux/rcupdate.h>
0017 #include <linux/kobject.h>
0018 #include <linux/uaccess.h>
0019 #include <linux/kdebug.h>
0020 #include <linux/kernel.h>
0021 #include <linux/percpu.h>
0022 #include <linux/string.h>
0023 #include <linux/device.h>
0024 #include <linux/syscore_ops.h>
0025 #include <linux/delay.h>
0026 #include <linux/ctype.h>
0027 #include <linux/sched.h>
0028 #include <linux/sysfs.h>
0029 #include <linux/types.h>
0030 #include <linux/slab.h>
0031 #include <linux/init.h>
0032 #include <linux/kmod.h>
0033 #include <linux/poll.h>
0034 #include <linux/nmi.h>
0035 #include <linux/cpu.h>
0036 #include <linux/ras.h>
0037 #include <linux/smp.h>
0038 #include <linux/fs.h>
0039 #include <linux/mm.h>
0040 #include <linux/debugfs.h>
0041 #include <linux/irq_work.h>
0042 #include <linux/export.h>
0043 #include <linux/set_memory.h>
0044 #include <linux/sync_core.h>
0045 #include <linux/task_work.h>
0046 #include <linux/hardirq.h>
0047 
0048 #include <asm/intel-family.h>
0049 #include <asm/processor.h>
0050 #include <asm/traps.h>
0051 #include <asm/tlbflush.h>
0052 #include <asm/mce.h>
0053 #include <asm/msr.h>
0054 #include <asm/reboot.h>
0055 
0056 #include "internal.h"
0057 
0058 /* sysfs synchronization */
0059 static DEFINE_MUTEX(mce_sysfs_mutex);
0060 
0061 #define CREATE_TRACE_POINTS
0062 #include <trace/events/mce.h>
0063 
0064 #define SPINUNIT        100 /* 100ns */
0065 
0066 DEFINE_PER_CPU(unsigned, mce_exception_count);
0067 
0068 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
0069 
0070 struct mce_bank {
0071     u64         ctl;            /* subevents to enable */
0072 
0073     __u64 init          : 1,        /* initialise bank? */
0074           __reserved_1      : 63;
0075 };
0076 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
0077 
0078 #define ATTR_LEN               16
0079 /* One object for each MCE bank, shared by all CPUs */
0080 struct mce_bank_dev {
0081     struct device_attribute attr;           /* device attribute */
0082     char            attrname[ATTR_LEN]; /* attribute name */
0083     u8          bank;           /* bank number */
0084 };
0085 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
0086 
0087 struct mce_vendor_flags mce_flags __read_mostly;
0088 
0089 struct mca_config mca_cfg __read_mostly = {
0090     .bootlog  = -1,
0091     .monarch_timeout = -1
0092 };
0093 
0094 static DEFINE_PER_CPU(struct mce, mces_seen);
0095 static unsigned long mce_need_notify;
0096 
0097 /*
0098  * MCA banks polled by the period polling timer for corrected events.
0099  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
0100  */
0101 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
0102     [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
0103 };
0104 
0105 /*
0106  * MCA banks controlled through firmware first for corrected errors.
0107  * This is a global list of banks for which we won't enable CMCI and we
0108  * won't poll. Firmware controls these banks and is responsible for
0109  * reporting corrected errors through GHES. Uncorrected/recoverable
0110  * errors are still notified through a machine check.
0111  */
0112 mce_banks_t mce_banks_ce_disabled;
0113 
0114 static struct work_struct mce_work;
0115 static struct irq_work mce_irq_work;
0116 
0117 /*
0118  * CPU/chipset specific EDAC code can register a notifier call here to print
0119  * MCE errors in a human-readable form.
0120  */
0121 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
0122 
0123 /* Do initial initialization of a struct mce */
0124 void mce_setup(struct mce *m)
0125 {
0126     memset(m, 0, sizeof(struct mce));
0127     m->cpu = m->extcpu = smp_processor_id();
0128     /* need the internal __ version to avoid deadlocks */
0129     m->time = __ktime_get_real_seconds();
0130     m->cpuvendor = boot_cpu_data.x86_vendor;
0131     m->cpuid = cpuid_eax(1);
0132     m->socketid = cpu_data(m->extcpu).phys_proc_id;
0133     m->apicid = cpu_data(m->extcpu).initial_apicid;
0134     m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
0135     m->ppin = cpu_data(m->extcpu).ppin;
0136     m->microcode = boot_cpu_data.microcode;
0137 }
0138 
0139 DEFINE_PER_CPU(struct mce, injectm);
0140 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
0141 
0142 void mce_log(struct mce *m)
0143 {
0144     if (!mce_gen_pool_add(m))
0145         irq_work_queue(&mce_irq_work);
0146 }
0147 EXPORT_SYMBOL_GPL(mce_log);
0148 
0149 void mce_register_decode_chain(struct notifier_block *nb)
0150 {
0151     if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
0152             nb->priority > MCE_PRIO_HIGHEST))
0153         return;
0154 
0155     blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
0156 }
0157 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
0158 
0159 void mce_unregister_decode_chain(struct notifier_block *nb)
0160 {
0161     blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
0162 }
0163 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
0164 
0165 static void __print_mce(struct mce *m)
0166 {
0167     pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
0168          m->extcpu,
0169          (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
0170          m->mcgstatus, m->bank, m->status);
0171 
0172     if (m->ip) {
0173         pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
0174             !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
0175             m->cs, m->ip);
0176 
0177         if (m->cs == __KERNEL_CS)
0178             pr_cont("{%pS}", (void *)(unsigned long)m->ip);
0179         pr_cont("\n");
0180     }
0181 
0182     pr_emerg(HW_ERR "TSC %llx ", m->tsc);
0183     if (m->addr)
0184         pr_cont("ADDR %llx ", m->addr);
0185     if (m->misc)
0186         pr_cont("MISC %llx ", m->misc);
0187     if (m->ppin)
0188         pr_cont("PPIN %llx ", m->ppin);
0189 
0190     if (mce_flags.smca) {
0191         if (m->synd)
0192             pr_cont("SYND %llx ", m->synd);
0193         if (m->ipid)
0194             pr_cont("IPID %llx ", m->ipid);
0195     }
0196 
0197     pr_cont("\n");
0198 
0199     /*
0200      * Note this output is parsed by external tools and old fields
0201      * should not be changed.
0202      */
0203     pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
0204         m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
0205         m->microcode);
0206 }
0207 
0208 static void print_mce(struct mce *m)
0209 {
0210     __print_mce(m);
0211 
0212     if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
0213         pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
0214 }
0215 
0216 #define PANIC_TIMEOUT 5 /* 5 seconds */
0217 
0218 static atomic_t mce_panicked;
0219 
0220 static int fake_panic;
0221 static atomic_t mce_fake_panicked;
0222 
0223 /* Panic in progress. Enable interrupts and wait for final IPI */
0224 static void wait_for_panic(void)
0225 {
0226     long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
0227 
0228     preempt_disable();
0229     local_irq_enable();
0230     while (timeout-- > 0)
0231         udelay(1);
0232     if (panic_timeout == 0)
0233         panic_timeout = mca_cfg.panic_timeout;
0234     panic("Panicing machine check CPU died");
0235 }
0236 
0237 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
0238 {
0239     struct llist_node *pending;
0240     struct mce_evt_llist *l;
0241     int apei_err = 0;
0242 
0243     /*
0244      * Allow instrumentation around external facilities usage. Not that it
0245      * matters a whole lot since the machine is going to panic anyway.
0246      */
0247     instrumentation_begin();
0248 
0249     if (!fake_panic) {
0250         /*
0251          * Make sure only one CPU runs in machine check panic
0252          */
0253         if (atomic_inc_return(&mce_panicked) > 1)
0254             wait_for_panic();
0255         barrier();
0256 
0257         bust_spinlocks(1);
0258         console_verbose();
0259     } else {
0260         /* Don't log too much for fake panic */
0261         if (atomic_inc_return(&mce_fake_panicked) > 1)
0262             goto out;
0263     }
0264     pending = mce_gen_pool_prepare_records();
0265     /* First print corrected ones that are still unlogged */
0266     llist_for_each_entry(l, pending, llnode) {
0267         struct mce *m = &l->mce;
0268         if (!(m->status & MCI_STATUS_UC)) {
0269             print_mce(m);
0270             if (!apei_err)
0271                 apei_err = apei_write_mce(m);
0272         }
0273     }
0274     /* Now print uncorrected but with the final one last */
0275     llist_for_each_entry(l, pending, llnode) {
0276         struct mce *m = &l->mce;
0277         if (!(m->status & MCI_STATUS_UC))
0278             continue;
0279         if (!final || mce_cmp(m, final)) {
0280             print_mce(m);
0281             if (!apei_err)
0282                 apei_err = apei_write_mce(m);
0283         }
0284     }
0285     if (final) {
0286         print_mce(final);
0287         if (!apei_err)
0288             apei_err = apei_write_mce(final);
0289     }
0290     if (exp)
0291         pr_emerg(HW_ERR "Machine check: %s\n", exp);
0292     if (!fake_panic) {
0293         if (panic_timeout == 0)
0294             panic_timeout = mca_cfg.panic_timeout;
0295         panic(msg);
0296     } else
0297         pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
0298 
0299 out:
0300     instrumentation_end();
0301 }
0302 
0303 /* Support code for software error injection */
0304 
0305 static int msr_to_offset(u32 msr)
0306 {
0307     unsigned bank = __this_cpu_read(injectm.bank);
0308 
0309     if (msr == mca_cfg.rip_msr)
0310         return offsetof(struct mce, ip);
0311     if (msr == mca_msr_reg(bank, MCA_STATUS))
0312         return offsetof(struct mce, status);
0313     if (msr == mca_msr_reg(bank, MCA_ADDR))
0314         return offsetof(struct mce, addr);
0315     if (msr == mca_msr_reg(bank, MCA_MISC))
0316         return offsetof(struct mce, misc);
0317     if (msr == MSR_IA32_MCG_STATUS)
0318         return offsetof(struct mce, mcgstatus);
0319     return -1;
0320 }
0321 
0322 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
0323 {
0324     if (wrmsr) {
0325         pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
0326              (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
0327              regs->ip, (void *)regs->ip);
0328     } else {
0329         pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
0330              (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
0331     }
0332 
0333     show_stack_regs(regs);
0334 
0335     panic("MCA architectural violation!\n");
0336 
0337     while (true)
0338         cpu_relax();
0339 }
0340 
0341 /* MSR access wrappers used for error injection */
0342 noinstr u64 mce_rdmsrl(u32 msr)
0343 {
0344     DECLARE_ARGS(val, low, high);
0345 
0346     if (__this_cpu_read(injectm.finished)) {
0347         int offset;
0348         u64 ret;
0349 
0350         instrumentation_begin();
0351 
0352         offset = msr_to_offset(msr);
0353         if (offset < 0)
0354             ret = 0;
0355         else
0356             ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
0357 
0358         instrumentation_end();
0359 
0360         return ret;
0361     }
0362 
0363     /*
0364      * RDMSR on MCA MSRs should not fault. If they do, this is very much an
0365      * architectural violation and needs to be reported to hw vendor. Panic
0366      * the box to not allow any further progress.
0367      */
0368     asm volatile("1: rdmsr\n"
0369              "2:\n"
0370              _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
0371              : EAX_EDX_RET(val, low, high) : "c" (msr));
0372 
0373 
0374     return EAX_EDX_VAL(val, low, high);
0375 }
0376 
0377 static noinstr void mce_wrmsrl(u32 msr, u64 v)
0378 {
0379     u32 low, high;
0380 
0381     if (__this_cpu_read(injectm.finished)) {
0382         int offset;
0383 
0384         instrumentation_begin();
0385 
0386         offset = msr_to_offset(msr);
0387         if (offset >= 0)
0388             *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
0389 
0390         instrumentation_end();
0391 
0392         return;
0393     }
0394 
0395     low  = (u32)v;
0396     high = (u32)(v >> 32);
0397 
0398     /* See comment in mce_rdmsrl() */
0399     asm volatile("1: wrmsr\n"
0400              "2:\n"
0401              _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
0402              : : "c" (msr), "a"(low), "d" (high) : "memory");
0403 }
0404 
0405 /*
0406  * Collect all global (w.r.t. this processor) status about this machine
0407  * check into our "mce" struct so that we can use it later to assess
0408  * the severity of the problem as we read per-bank specific details.
0409  */
0410 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
0411 {
0412     /*
0413      * Enable instrumentation around mce_setup() which calls external
0414      * facilities.
0415      */
0416     instrumentation_begin();
0417     mce_setup(m);
0418     instrumentation_end();
0419 
0420     m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
0421     if (regs) {
0422         /*
0423          * Get the address of the instruction at the time of
0424          * the machine check error.
0425          */
0426         if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
0427             m->ip = regs->ip;
0428             m->cs = regs->cs;
0429 
0430             /*
0431              * When in VM86 mode make the cs look like ring 3
0432              * always. This is a lie, but it's better than passing
0433              * the additional vm86 bit around everywhere.
0434              */
0435             if (v8086_mode(regs))
0436                 m->cs |= 3;
0437         }
0438         /* Use accurate RIP reporting if available. */
0439         if (mca_cfg.rip_msr)
0440             m->ip = mce_rdmsrl(mca_cfg.rip_msr);
0441     }
0442 }
0443 
0444 int mce_available(struct cpuinfo_x86 *c)
0445 {
0446     if (mca_cfg.disabled)
0447         return 0;
0448     return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
0449 }
0450 
0451 static void mce_schedule_work(void)
0452 {
0453     if (!mce_gen_pool_empty())
0454         schedule_work(&mce_work);
0455 }
0456 
0457 static void mce_irq_work_cb(struct irq_work *entry)
0458 {
0459     mce_schedule_work();
0460 }
0461 
0462 /*
0463  * Check if the address reported by the CPU is in a format we can parse.
0464  * It would be possible to add code for most other cases, but all would
0465  * be somewhat complicated (e.g. segment offset would require an instruction
0466  * parser). So only support physical addresses up to page granularity for now.
0467  */
0468 int mce_usable_address(struct mce *m)
0469 {
0470     if (!(m->status & MCI_STATUS_ADDRV))
0471         return 0;
0472 
0473     /* Checks after this one are Intel/Zhaoxin-specific: */
0474     if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
0475         boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
0476         return 1;
0477 
0478     if (!(m->status & MCI_STATUS_MISCV))
0479         return 0;
0480 
0481     if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
0482         return 0;
0483 
0484     if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
0485         return 0;
0486 
0487     return 1;
0488 }
0489 EXPORT_SYMBOL_GPL(mce_usable_address);
0490 
0491 bool mce_is_memory_error(struct mce *m)
0492 {
0493     switch (m->cpuvendor) {
0494     case X86_VENDOR_AMD:
0495     case X86_VENDOR_HYGON:
0496         return amd_mce_is_memory_error(m);
0497 
0498     case X86_VENDOR_INTEL:
0499     case X86_VENDOR_ZHAOXIN:
0500         /*
0501          * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
0502          *
0503          * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
0504          * indicating a memory error. Bit 8 is used for indicating a
0505          * cache hierarchy error. The combination of bit 2 and bit 3
0506          * is used for indicating a `generic' cache hierarchy error
0507          * But we can't just blindly check the above bits, because if
0508          * bit 11 is set, then it is a bus/interconnect error - and
0509          * either way the above bits just gives more detail on what
0510          * bus/interconnect error happened. Note that bit 12 can be
0511          * ignored, as it's the "filter" bit.
0512          */
0513         return (m->status & 0xef80) == BIT(7) ||
0514                (m->status & 0xef00) == BIT(8) ||
0515                (m->status & 0xeffc) == 0xc;
0516 
0517     default:
0518         return false;
0519     }
0520 }
0521 EXPORT_SYMBOL_GPL(mce_is_memory_error);
0522 
0523 static bool whole_page(struct mce *m)
0524 {
0525     if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
0526         return true;
0527 
0528     return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
0529 }
0530 
0531 bool mce_is_correctable(struct mce *m)
0532 {
0533     if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
0534         return false;
0535 
0536     if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
0537         return false;
0538 
0539     if (m->status & MCI_STATUS_UC)
0540         return false;
0541 
0542     return true;
0543 }
0544 EXPORT_SYMBOL_GPL(mce_is_correctable);
0545 
0546 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
0547                   void *data)
0548 {
0549     struct mce *m = (struct mce *)data;
0550 
0551     if (!m)
0552         return NOTIFY_DONE;
0553 
0554     /* Emit the trace record: */
0555     trace_mce_record(m);
0556 
0557     set_bit(0, &mce_need_notify);
0558 
0559     mce_notify_irq();
0560 
0561     return NOTIFY_DONE;
0562 }
0563 
0564 static struct notifier_block early_nb = {
0565     .notifier_call  = mce_early_notifier,
0566     .priority   = MCE_PRIO_EARLY,
0567 };
0568 
0569 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
0570                   void *data)
0571 {
0572     struct mce *mce = (struct mce *)data;
0573     unsigned long pfn;
0574 
0575     if (!mce || !mce_usable_address(mce))
0576         return NOTIFY_DONE;
0577 
0578     if (mce->severity != MCE_AO_SEVERITY &&
0579         mce->severity != MCE_DEFERRED_SEVERITY)
0580         return NOTIFY_DONE;
0581 
0582     pfn = mce->addr >> PAGE_SHIFT;
0583     if (!memory_failure(pfn, 0)) {
0584         set_mce_nospec(pfn);
0585         mce->kflags |= MCE_HANDLED_UC;
0586     }
0587 
0588     return NOTIFY_OK;
0589 }
0590 
0591 static struct notifier_block mce_uc_nb = {
0592     .notifier_call  = uc_decode_notifier,
0593     .priority   = MCE_PRIO_UC,
0594 };
0595 
0596 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
0597                 void *data)
0598 {
0599     struct mce *m = (struct mce *)data;
0600 
0601     if (!m)
0602         return NOTIFY_DONE;
0603 
0604     if (mca_cfg.print_all || !m->kflags)
0605         __print_mce(m);
0606 
0607     return NOTIFY_DONE;
0608 }
0609 
0610 static struct notifier_block mce_default_nb = {
0611     .notifier_call  = mce_default_notifier,
0612     /* lowest prio, we want it to run last. */
0613     .priority   = MCE_PRIO_LOWEST,
0614 };
0615 
0616 /*
0617  * Read ADDR and MISC registers.
0618  */
0619 static noinstr void mce_read_aux(struct mce *m, int i)
0620 {
0621     if (m->status & MCI_STATUS_MISCV)
0622         m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
0623 
0624     if (m->status & MCI_STATUS_ADDRV) {
0625         m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
0626 
0627         /*
0628          * Mask the reported address by the reported granularity.
0629          */
0630         if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
0631             u8 shift = MCI_MISC_ADDR_LSB(m->misc);
0632             m->addr >>= shift;
0633             m->addr <<= shift;
0634         }
0635 
0636         /*
0637          * Extract [55:<lsb>] where lsb is the least significant
0638          * *valid* bit of the address bits.
0639          */
0640         if (mce_flags.smca) {
0641             u8 lsb = (m->addr >> 56) & 0x3f;
0642 
0643             m->addr &= GENMASK_ULL(55, lsb);
0644         }
0645     }
0646 
0647     if (mce_flags.smca) {
0648         m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
0649 
0650         if (m->status & MCI_STATUS_SYNDV)
0651             m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
0652     }
0653 }
0654 
0655 DEFINE_PER_CPU(unsigned, mce_poll_count);
0656 
0657 /*
0658  * Poll for corrected events or events that happened before reset.
0659  * Those are just logged through /dev/mcelog.
0660  *
0661  * This is executed in standard interrupt context.
0662  *
0663  * Note: spec recommends to panic for fatal unsignalled
0664  * errors here. However this would be quite problematic --
0665  * we would need to reimplement the Monarch handling and
0666  * it would mess up the exclusion between exception handler
0667  * and poll handler -- * so we skip this for now.
0668  * These cases should not happen anyways, or only when the CPU
0669  * is already totally * confused. In this case it's likely it will
0670  * not fully execute the machine check handler either.
0671  */
0672 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
0673 {
0674     struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
0675     bool error_seen = false;
0676     struct mce m;
0677     int i;
0678 
0679     this_cpu_inc(mce_poll_count);
0680 
0681     mce_gather_info(&m, NULL);
0682 
0683     if (flags & MCP_TIMESTAMP)
0684         m.tsc = rdtsc();
0685 
0686     for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
0687         if (!mce_banks[i].ctl || !test_bit(i, *b))
0688             continue;
0689 
0690         m.misc = 0;
0691         m.addr = 0;
0692         m.bank = i;
0693 
0694         barrier();
0695         m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
0696 
0697         /* If this entry is not valid, ignore it */
0698         if (!(m.status & MCI_STATUS_VAL))
0699             continue;
0700 
0701         /*
0702          * If we are logging everything (at CPU online) or this
0703          * is a corrected error, then we must log it.
0704          */
0705         if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
0706             goto log_it;
0707 
0708         /*
0709          * Newer Intel systems that support software error
0710          * recovery need to make additional checks. Other
0711          * CPUs should skip over uncorrected errors, but log
0712          * everything else.
0713          */
0714         if (!mca_cfg.ser) {
0715             if (m.status & MCI_STATUS_UC)
0716                 continue;
0717             goto log_it;
0718         }
0719 
0720         /* Log "not enabled" (speculative) errors */
0721         if (!(m.status & MCI_STATUS_EN))
0722             goto log_it;
0723 
0724         /*
0725          * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
0726          * UC == 1 && PCC == 0 && S == 0
0727          */
0728         if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
0729             goto log_it;
0730 
0731         /*
0732          * Skip anything else. Presumption is that our read of this
0733          * bank is racing with a machine check. Leave the log alone
0734          * for do_machine_check() to deal with it.
0735          */
0736         continue;
0737 
0738 log_it:
0739         error_seen = true;
0740 
0741         if (flags & MCP_DONTLOG)
0742             goto clear_it;
0743 
0744         mce_read_aux(&m, i);
0745         m.severity = mce_severity(&m, NULL, NULL, false);
0746         /*
0747          * Don't get the IP here because it's unlikely to
0748          * have anything to do with the actual error location.
0749          */
0750 
0751         if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
0752             goto clear_it;
0753 
0754         if (flags & MCP_QUEUE_LOG)
0755             mce_gen_pool_add(&m);
0756         else
0757             mce_log(&m);
0758 
0759 clear_it:
0760         /*
0761          * Clear state for this bank.
0762          */
0763         mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
0764     }
0765 
0766     /*
0767      * Don't clear MCG_STATUS here because it's only defined for
0768      * exceptions.
0769      */
0770 
0771     sync_core();
0772 
0773     return error_seen;
0774 }
0775 EXPORT_SYMBOL_GPL(machine_check_poll);
0776 
0777 /*
0778  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
0779  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
0780  * Vol 3B Table 15-20). But this confuses both the code that determines
0781  * whether the machine check occurred in kernel or user mode, and also
0782  * the severity assessment code. Pretend that EIPV was set, and take the
0783  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
0784  */
0785 static __always_inline void
0786 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
0787 {
0788     if (bank != 0)
0789         return;
0790     if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
0791         return;
0792     if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
0793                   MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
0794               MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
0795               MCACOD)) !=
0796              (MCI_STATUS_UC|MCI_STATUS_EN|
0797               MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
0798               MCI_STATUS_AR|MCACOD_INSTR))
0799         return;
0800 
0801     m->mcgstatus |= MCG_STATUS_EIPV;
0802     m->ip = regs->ip;
0803     m->cs = regs->cs;
0804 }
0805 
0806 /*
0807  * Disable fast string copy and return from the MCE handler upon the first SRAR
0808  * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
0809  * CPUs.
0810  * The fast string copy instructions ("REP; MOVS*") could consume an
0811  * uncorrectable memory error in the cache line _right after_ the desired region
0812  * to copy and raise an MCE with RIP pointing to the instruction _after_ the
0813  * "REP; MOVS*".
0814  * This mitigation addresses the issue completely with the caveat of performance
0815  * degradation on the CPU affected. This is still better than the OS crashing on
0816  * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
0817  * kernel context (e.g., copy_page).
0818  *
0819  * Returns true when fast string copy on CPU has been disabled.
0820  */
0821 static noinstr bool quirk_skylake_repmov(void)
0822 {
0823     u64 mcgstatus   = mce_rdmsrl(MSR_IA32_MCG_STATUS);
0824     u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
0825     u64 mc1_status;
0826 
0827     /*
0828      * Apply the quirk only to local machine checks, i.e., no broadcast
0829      * sync is needed.
0830      */
0831     if (!(mcgstatus & MCG_STATUS_LMCES) ||
0832         !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
0833         return false;
0834 
0835     mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
0836 
0837     /* Check for a software-recoverable data fetch error. */
0838     if ((mc1_status &
0839          (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
0840           MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
0841           MCI_STATUS_AR | MCI_STATUS_S)) ==
0842          (MCI_STATUS_VAL |                   MCI_STATUS_UC | MCI_STATUS_EN |
0843           MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
0844           MCI_STATUS_AR | MCI_STATUS_S)) {
0845         misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
0846         mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
0847         mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
0848 
0849         instrumentation_begin();
0850         pr_err_once("Erratum detected, disable fast string copy instructions.\n");
0851         instrumentation_end();
0852 
0853         return true;
0854     }
0855 
0856     return false;
0857 }
0858 
0859 /*
0860  * Do a quick check if any of the events requires a panic.
0861  * This decides if we keep the events around or clear them.
0862  */
0863 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
0864                       struct pt_regs *regs)
0865 {
0866     char *tmp = *msg;
0867     int i;
0868 
0869     for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
0870         m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
0871         if (!(m->status & MCI_STATUS_VAL))
0872             continue;
0873 
0874         arch___set_bit(i, validp);
0875         if (mce_flags.snb_ifu_quirk)
0876             quirk_sandybridge_ifu(i, m, regs);
0877 
0878         m->bank = i;
0879         if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
0880             mce_read_aux(m, i);
0881             *msg = tmp;
0882             return 1;
0883         }
0884     }
0885     return 0;
0886 }
0887 
0888 /*
0889  * Variable to establish order between CPUs while scanning.
0890  * Each CPU spins initially until executing is equal its number.
0891  */
0892 static atomic_t mce_executing;
0893 
0894 /*
0895  * Defines order of CPUs on entry. First CPU becomes Monarch.
0896  */
0897 static atomic_t mce_callin;
0898 
0899 /*
0900  * Track which CPUs entered the MCA broadcast synchronization and which not in
0901  * order to print holdouts.
0902  */
0903 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
0904 
0905 /*
0906  * Check if a timeout waiting for other CPUs happened.
0907  */
0908 static noinstr int mce_timed_out(u64 *t, const char *msg)
0909 {
0910     int ret = 0;
0911 
0912     /* Enable instrumentation around calls to external facilities */
0913     instrumentation_begin();
0914 
0915     /*
0916      * The others already did panic for some reason.
0917      * Bail out like in a timeout.
0918      * rmb() to tell the compiler that system_state
0919      * might have been modified by someone else.
0920      */
0921     rmb();
0922     if (atomic_read(&mce_panicked))
0923         wait_for_panic();
0924     if (!mca_cfg.monarch_timeout)
0925         goto out;
0926     if ((s64)*t < SPINUNIT) {
0927         if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
0928             pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
0929                  cpumask_pr_args(&mce_missing_cpus));
0930         mce_panic(msg, NULL, NULL);
0931 
0932         ret = 1;
0933         goto out;
0934     }
0935     *t -= SPINUNIT;
0936 
0937 out:
0938     touch_nmi_watchdog();
0939 
0940     instrumentation_end();
0941 
0942     return ret;
0943 }
0944 
0945 /*
0946  * The Monarch's reign.  The Monarch is the CPU who entered
0947  * the machine check handler first. It waits for the others to
0948  * raise the exception too and then grades them. When any
0949  * error is fatal panic. Only then let the others continue.
0950  *
0951  * The other CPUs entering the MCE handler will be controlled by the
0952  * Monarch. They are called Subjects.
0953  *
0954  * This way we prevent any potential data corruption in a unrecoverable case
0955  * and also makes sure always all CPU's errors are examined.
0956  *
0957  * Also this detects the case of a machine check event coming from outer
0958  * space (not detected by any CPUs) In this case some external agent wants
0959  * us to shut down, so panic too.
0960  *
0961  * The other CPUs might still decide to panic if the handler happens
0962  * in a unrecoverable place, but in this case the system is in a semi-stable
0963  * state and won't corrupt anything by itself. It's ok to let the others
0964  * continue for a bit first.
0965  *
0966  * All the spin loops have timeouts; when a timeout happens a CPU
0967  * typically elects itself to be Monarch.
0968  */
0969 static void mce_reign(void)
0970 {
0971     int cpu;
0972     struct mce *m = NULL;
0973     int global_worst = 0;
0974     char *msg = NULL;
0975 
0976     /*
0977      * This CPU is the Monarch and the other CPUs have run
0978      * through their handlers.
0979      * Grade the severity of the errors of all the CPUs.
0980      */
0981     for_each_possible_cpu(cpu) {
0982         struct mce *mtmp = &per_cpu(mces_seen, cpu);
0983 
0984         if (mtmp->severity > global_worst) {
0985             global_worst = mtmp->severity;
0986             m = &per_cpu(mces_seen, cpu);
0987         }
0988     }
0989 
0990     /*
0991      * Cannot recover? Panic here then.
0992      * This dumps all the mces in the log buffer and stops the
0993      * other CPUs.
0994      */
0995     if (m && global_worst >= MCE_PANIC_SEVERITY) {
0996         /* call mce_severity() to get "msg" for panic */
0997         mce_severity(m, NULL, &msg, true);
0998         mce_panic("Fatal machine check", m, msg);
0999     }
1000 
1001     /*
1002      * For UC somewhere we let the CPU who detects it handle it.
1003      * Also must let continue the others, otherwise the handling
1004      * CPU could deadlock on a lock.
1005      */
1006 
1007     /*
1008      * No machine check event found. Must be some external
1009      * source or one CPU is hung. Panic.
1010      */
1011     if (global_worst <= MCE_KEEP_SEVERITY)
1012         mce_panic("Fatal machine check from unknown source", NULL, NULL);
1013 
1014     /*
1015      * Now clear all the mces_seen so that they don't reappear on
1016      * the next mce.
1017      */
1018     for_each_possible_cpu(cpu)
1019         memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1020 }
1021 
1022 static atomic_t global_nwo;
1023 
1024 /*
1025  * Start of Monarch synchronization. This waits until all CPUs have
1026  * entered the exception handler and then determines if any of them
1027  * saw a fatal event that requires panic. Then it executes them
1028  * in the entry order.
1029  * TBD double check parallel CPU hotunplug
1030  */
1031 static noinstr int mce_start(int *no_way_out)
1032 {
1033     u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1034     int order, ret = -1;
1035 
1036     if (!timeout)
1037         return ret;
1038 
1039     arch_atomic_add(*no_way_out, &global_nwo);
1040     /*
1041      * Rely on the implied barrier below, such that global_nwo
1042      * is updated before mce_callin.
1043      */
1044     order = arch_atomic_inc_return(&mce_callin);
1045     arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1046 
1047     /* Enable instrumentation around calls to external facilities */
1048     instrumentation_begin();
1049 
1050     /*
1051      * Wait for everyone.
1052      */
1053     while (arch_atomic_read(&mce_callin) != num_online_cpus()) {
1054         if (mce_timed_out(&timeout,
1055                   "Timeout: Not all CPUs entered broadcast exception handler")) {
1056             arch_atomic_set(&global_nwo, 0);
1057             goto out;
1058         }
1059         ndelay(SPINUNIT);
1060     }
1061 
1062     /*
1063      * mce_callin should be read before global_nwo
1064      */
1065     smp_rmb();
1066 
1067     if (order == 1) {
1068         /*
1069          * Monarch: Starts executing now, the others wait.
1070          */
1071         arch_atomic_set(&mce_executing, 1);
1072     } else {
1073         /*
1074          * Subject: Now start the scanning loop one by one in
1075          * the original callin order.
1076          * This way when there are any shared banks it will be
1077          * only seen by one CPU before cleared, avoiding duplicates.
1078          */
1079         while (arch_atomic_read(&mce_executing) < order) {
1080             if (mce_timed_out(&timeout,
1081                       "Timeout: Subject CPUs unable to finish machine check processing")) {
1082                 arch_atomic_set(&global_nwo, 0);
1083                 goto out;
1084             }
1085             ndelay(SPINUNIT);
1086         }
1087     }
1088 
1089     /*
1090      * Cache the global no_way_out state.
1091      */
1092     *no_way_out = arch_atomic_read(&global_nwo);
1093 
1094     ret = order;
1095 
1096 out:
1097     instrumentation_end();
1098 
1099     return ret;
1100 }
1101 
1102 /*
1103  * Synchronize between CPUs after main scanning loop.
1104  * This invokes the bulk of the Monarch processing.
1105  */
1106 static noinstr int mce_end(int order)
1107 {
1108     u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1109     int ret = -1;
1110 
1111     /* Allow instrumentation around external facilities. */
1112     instrumentation_begin();
1113 
1114     if (!timeout)
1115         goto reset;
1116     if (order < 0)
1117         goto reset;
1118 
1119     /*
1120      * Allow others to run.
1121      */
1122     atomic_inc(&mce_executing);
1123 
1124     if (order == 1) {
1125         /*
1126          * Monarch: Wait for everyone to go through their scanning
1127          * loops.
1128          */
1129         while (atomic_read(&mce_executing) <= num_online_cpus()) {
1130             if (mce_timed_out(&timeout,
1131                       "Timeout: Monarch CPU unable to finish machine check processing"))
1132                 goto reset;
1133             ndelay(SPINUNIT);
1134         }
1135 
1136         mce_reign();
1137         barrier();
1138         ret = 0;
1139     } else {
1140         /*
1141          * Subject: Wait for Monarch to finish.
1142          */
1143         while (atomic_read(&mce_executing) != 0) {
1144             if (mce_timed_out(&timeout,
1145                       "Timeout: Monarch CPU did not finish machine check processing"))
1146                 goto reset;
1147             ndelay(SPINUNIT);
1148         }
1149 
1150         /*
1151          * Don't reset anything. That's done by the Monarch.
1152          */
1153         ret = 0;
1154         goto out;
1155     }
1156 
1157     /*
1158      * Reset all global state.
1159      */
1160 reset:
1161     atomic_set(&global_nwo, 0);
1162     atomic_set(&mce_callin, 0);
1163     cpumask_setall(&mce_missing_cpus);
1164     barrier();
1165 
1166     /*
1167      * Let others run again.
1168      */
1169     atomic_set(&mce_executing, 0);
1170 
1171 out:
1172     instrumentation_end();
1173 
1174     return ret;
1175 }
1176 
1177 static __always_inline void mce_clear_state(unsigned long *toclear)
1178 {
1179     int i;
1180 
1181     for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1182         if (arch_test_bit(i, toclear))
1183             mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1184     }
1185 }
1186 
1187 /*
1188  * Cases where we avoid rendezvous handler timeout:
1189  * 1) If this CPU is offline.
1190  *
1191  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1192  *  skip those CPUs which remain looping in the 1st kernel - see
1193  *  crash_nmi_callback().
1194  *
1195  * Note: there still is a small window between kexec-ing and the new,
1196  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1197  * might not get handled properly.
1198  */
1199 static noinstr bool mce_check_crashing_cpu(void)
1200 {
1201     unsigned int cpu = smp_processor_id();
1202 
1203     if (arch_cpu_is_offline(cpu) ||
1204         (crashing_cpu != -1 && crashing_cpu != cpu)) {
1205         u64 mcgstatus;
1206 
1207         mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1208 
1209         if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1210             if (mcgstatus & MCG_STATUS_LMCES)
1211                 return false;
1212         }
1213 
1214         if (mcgstatus & MCG_STATUS_RIPV) {
1215             __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1216             return true;
1217         }
1218     }
1219     return false;
1220 }
1221 
1222 static __always_inline int
1223 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1224         unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1225         int *worst)
1226 {
1227     struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1228     struct mca_config *cfg = &mca_cfg;
1229     int severity, i, taint = 0;
1230 
1231     for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1232         arch___clear_bit(i, toclear);
1233         if (!arch_test_bit(i, valid_banks))
1234             continue;
1235 
1236         if (!mce_banks[i].ctl)
1237             continue;
1238 
1239         m->misc = 0;
1240         m->addr = 0;
1241         m->bank = i;
1242 
1243         m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1244         if (!(m->status & MCI_STATUS_VAL))
1245             continue;
1246 
1247         /*
1248          * Corrected or non-signaled errors are handled by
1249          * machine_check_poll(). Leave them alone, unless this panics.
1250          */
1251         if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1252             !no_way_out)
1253             continue;
1254 
1255         /* Set taint even when machine check was not enabled. */
1256         taint++;
1257 
1258         severity = mce_severity(m, regs, NULL, true);
1259 
1260         /*
1261          * When machine check was for corrected/deferred handler don't
1262          * touch, unless we're panicking.
1263          */
1264         if ((severity == MCE_KEEP_SEVERITY ||
1265              severity == MCE_UCNA_SEVERITY) && !no_way_out)
1266             continue;
1267 
1268         arch___set_bit(i, toclear);
1269 
1270         /* Machine check event was not enabled. Clear, but ignore. */
1271         if (severity == MCE_NO_SEVERITY)
1272             continue;
1273 
1274         mce_read_aux(m, i);
1275 
1276         /* assuming valid severity level != 0 */
1277         m->severity = severity;
1278 
1279         /*
1280          * Enable instrumentation around the mce_log() call which is
1281          * done in #MC context, where instrumentation is disabled.
1282          */
1283         instrumentation_begin();
1284         mce_log(m);
1285         instrumentation_end();
1286 
1287         if (severity > *worst) {
1288             *final = *m;
1289             *worst = severity;
1290         }
1291     }
1292 
1293     /* mce_clear_state will clear *final, save locally for use later */
1294     *m = *final;
1295 
1296     return taint;
1297 }
1298 
1299 static void kill_me_now(struct callback_head *ch)
1300 {
1301     struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1302 
1303     p->mce_count = 0;
1304     force_sig(SIGBUS);
1305 }
1306 
1307 static void kill_me_maybe(struct callback_head *cb)
1308 {
1309     struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1310     int flags = MF_ACTION_REQUIRED;
1311     int ret;
1312 
1313     p->mce_count = 0;
1314     pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1315 
1316     if (!p->mce_ripv)
1317         flags |= MF_MUST_KILL;
1318 
1319     ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1320     if (!ret) {
1321         set_mce_nospec(p->mce_addr >> PAGE_SHIFT);
1322         sync_core();
1323         return;
1324     }
1325 
1326     /*
1327      * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1328      * to the current process with the proper error info,
1329      * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1330      *
1331      * In both cases, no further processing is required.
1332      */
1333     if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1334         return;
1335 
1336     pr_err("Memory error not recovered");
1337     kill_me_now(cb);
1338 }
1339 
1340 static void kill_me_never(struct callback_head *cb)
1341 {
1342     struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1343 
1344     p->mce_count = 0;
1345     pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1346     if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0))
1347         set_mce_nospec(p->mce_addr >> PAGE_SHIFT);
1348 }
1349 
1350 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1351 {
1352     int count = ++current->mce_count;
1353 
1354     /* First call, save all the details */
1355     if (count == 1) {
1356         current->mce_addr = m->addr;
1357         current->mce_kflags = m->kflags;
1358         current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1359         current->mce_whole_page = whole_page(m);
1360         current->mce_kill_me.func = func;
1361     }
1362 
1363     /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1364     if (count > 10)
1365         mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1366 
1367     /* Second or later call, make sure page address matches the one from first call */
1368     if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1369         mce_panic("Consecutive machine checks to different user pages", m, msg);
1370 
1371     /* Do not call task_work_add() more than once */
1372     if (count > 1)
1373         return;
1374 
1375     task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1376 }
1377 
1378 /* Handle unconfigured int18 (should never happen) */
1379 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1380 {
1381     instrumentation_begin();
1382     pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1383            smp_processor_id());
1384     instrumentation_end();
1385 }
1386 
1387 /*
1388  * The actual machine check handler. This only handles real exceptions when
1389  * something got corrupted coming in through int 18.
1390  *
1391  * This is executed in #MC context not subject to normal locking rules.
1392  * This implies that most kernel services cannot be safely used. Don't even
1393  * think about putting a printk in there!
1394  *
1395  * On Intel systems this is entered on all CPUs in parallel through
1396  * MCE broadcast. However some CPUs might be broken beyond repair,
1397  * so be always careful when synchronizing with others.
1398  *
1399  * Tracing and kprobes are disabled: if we interrupted a kernel context
1400  * with IF=1, we need to minimize stack usage.  There are also recursion
1401  * issues: if the machine check was due to a failure of the memory
1402  * backing the user stack, tracing that reads the user stack will cause
1403  * potentially infinite recursion.
1404  *
1405  * Currently, the #MC handler calls out to a number of external facilities
1406  * and, therefore, allows instrumentation around them. The optimal thing to
1407  * have would be to do the absolutely minimal work required in #MC context
1408  * and have instrumentation disabled only around that. Further processing can
1409  * then happen in process context where instrumentation is allowed. Achieving
1410  * that requires careful auditing and modifications. Until then, the code
1411  * allows instrumentation temporarily, where required. *
1412  */
1413 noinstr void do_machine_check(struct pt_regs *regs)
1414 {
1415     int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1416     DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1417     DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1418     struct mce m, *final;
1419     char *msg = NULL;
1420 
1421     if (unlikely(mce_flags.p5))
1422         return pentium_machine_check(regs);
1423     else if (unlikely(mce_flags.winchip))
1424         return winchip_machine_check(regs);
1425     else if (unlikely(!mca_cfg.initialized))
1426         return unexpected_machine_check(regs);
1427 
1428     if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1429         goto clear;
1430 
1431     /*
1432      * Establish sequential order between the CPUs entering the machine
1433      * check handler.
1434      */
1435     order = -1;
1436 
1437     /*
1438      * If no_way_out gets set, there is no safe way to recover from this
1439      * MCE.
1440      */
1441     no_way_out = 0;
1442 
1443     /*
1444      * If kill_current_task is not set, there might be a way to recover from this
1445      * error.
1446      */
1447     kill_current_task = 0;
1448 
1449     /*
1450      * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1451      * on Intel.
1452      */
1453     lmce = 1;
1454 
1455     this_cpu_inc(mce_exception_count);
1456 
1457     mce_gather_info(&m, regs);
1458     m.tsc = rdtsc();
1459 
1460     final = this_cpu_ptr(&mces_seen);
1461     *final = m;
1462 
1463     no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1464 
1465     barrier();
1466 
1467     /*
1468      * When no restart IP might need to kill or panic.
1469      * Assume the worst for now, but if we find the
1470      * severity is MCE_AR_SEVERITY we have other options.
1471      */
1472     if (!(m.mcgstatus & MCG_STATUS_RIPV))
1473         kill_current_task = 1;
1474     /*
1475      * Check if this MCE is signaled to only this logical processor,
1476      * on Intel, Zhaoxin only.
1477      */
1478     if (m.cpuvendor == X86_VENDOR_INTEL ||
1479         m.cpuvendor == X86_VENDOR_ZHAOXIN)
1480         lmce = m.mcgstatus & MCG_STATUS_LMCES;
1481 
1482     /*
1483      * Local machine check may already know that we have to panic.
1484      * Broadcast machine check begins rendezvous in mce_start()
1485      * Go through all banks in exclusion of the other CPUs. This way we
1486      * don't report duplicated events on shared banks because the first one
1487      * to see it will clear it.
1488      */
1489     if (lmce) {
1490         if (no_way_out)
1491             mce_panic("Fatal local machine check", &m, msg);
1492     } else {
1493         order = mce_start(&no_way_out);
1494     }
1495 
1496     taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1497 
1498     if (!no_way_out)
1499         mce_clear_state(toclear);
1500 
1501     /*
1502      * Do most of the synchronization with other CPUs.
1503      * When there's any problem use only local no_way_out state.
1504      */
1505     if (!lmce) {
1506         if (mce_end(order) < 0) {
1507             if (!no_way_out)
1508                 no_way_out = worst >= MCE_PANIC_SEVERITY;
1509 
1510             if (no_way_out)
1511                 mce_panic("Fatal machine check on current CPU", &m, msg);
1512         }
1513     } else {
1514         /*
1515          * If there was a fatal machine check we should have
1516          * already called mce_panic earlier in this function.
1517          * Since we re-read the banks, we might have found
1518          * something new. Check again to see if we found a
1519          * fatal error. We call "mce_severity()" again to
1520          * make sure we have the right "msg".
1521          */
1522         if (worst >= MCE_PANIC_SEVERITY) {
1523             mce_severity(&m, regs, &msg, true);
1524             mce_panic("Local fatal machine check!", &m, msg);
1525         }
1526     }
1527 
1528     /*
1529      * Enable instrumentation around the external facilities like task_work_add()
1530      * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1531      * properly would need a lot more involved reorganization.
1532      */
1533     instrumentation_begin();
1534 
1535     if (taint)
1536         add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1537 
1538     if (worst != MCE_AR_SEVERITY && !kill_current_task)
1539         goto out;
1540 
1541     /* Fault was in user mode and we need to take some action */
1542     if ((m.cs & 3) == 3) {
1543         /* If this triggers there is no way to recover. Die hard. */
1544         BUG_ON(!on_thread_stack() || !user_mode(regs));
1545 
1546         if (kill_current_task)
1547             queue_task_work(&m, msg, kill_me_now);
1548         else
1549             queue_task_work(&m, msg, kill_me_maybe);
1550 
1551     } else {
1552         /*
1553          * Handle an MCE which has happened in kernel space but from
1554          * which the kernel can recover: ex_has_fault_handler() has
1555          * already verified that the rIP at which the error happened is
1556          * a rIP from which the kernel can recover (by jumping to
1557          * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1558          * corresponding exception handler which would do that is the
1559          * proper one.
1560          */
1561         if (m.kflags & MCE_IN_KERNEL_RECOV) {
1562             if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1563                 mce_panic("Failed kernel mode recovery", &m, msg);
1564         }
1565 
1566         if (m.kflags & MCE_IN_KERNEL_COPYIN)
1567             queue_task_work(&m, msg, kill_me_never);
1568     }
1569 
1570 out:
1571     instrumentation_end();
1572 
1573 clear:
1574     mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1575 }
1576 EXPORT_SYMBOL_GPL(do_machine_check);
1577 
1578 #ifndef CONFIG_MEMORY_FAILURE
1579 int memory_failure(unsigned long pfn, int flags)
1580 {
1581     /* mce_severity() should not hand us an ACTION_REQUIRED error */
1582     BUG_ON(flags & MF_ACTION_REQUIRED);
1583     pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1584            "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1585            pfn);
1586 
1587     return 0;
1588 }
1589 #endif
1590 
1591 /*
1592  * Periodic polling timer for "silent" machine check errors.  If the
1593  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1594  * errors, poll 2x slower (up to check_interval seconds).
1595  */
1596 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1597 
1598 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1599 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1600 
1601 static unsigned long mce_adjust_timer_default(unsigned long interval)
1602 {
1603     return interval;
1604 }
1605 
1606 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1607 
1608 static void __start_timer(struct timer_list *t, unsigned long interval)
1609 {
1610     unsigned long when = jiffies + interval;
1611     unsigned long flags;
1612 
1613     local_irq_save(flags);
1614 
1615     if (!timer_pending(t) || time_before(when, t->expires))
1616         mod_timer(t, round_jiffies(when));
1617 
1618     local_irq_restore(flags);
1619 }
1620 
1621 static void mce_timer_fn(struct timer_list *t)
1622 {
1623     struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1624     unsigned long iv;
1625 
1626     WARN_ON(cpu_t != t);
1627 
1628     iv = __this_cpu_read(mce_next_interval);
1629 
1630     if (mce_available(this_cpu_ptr(&cpu_info))) {
1631         machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1632 
1633         if (mce_intel_cmci_poll()) {
1634             iv = mce_adjust_timer(iv);
1635             goto done;
1636         }
1637     }
1638 
1639     /*
1640      * Alert userspace if needed. If we logged an MCE, reduce the polling
1641      * interval, otherwise increase the polling interval.
1642      */
1643     if (mce_notify_irq())
1644         iv = max(iv / 2, (unsigned long) HZ/100);
1645     else
1646         iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1647 
1648 done:
1649     __this_cpu_write(mce_next_interval, iv);
1650     __start_timer(t, iv);
1651 }
1652 
1653 /*
1654  * Ensure that the timer is firing in @interval from now.
1655  */
1656 void mce_timer_kick(unsigned long interval)
1657 {
1658     struct timer_list *t = this_cpu_ptr(&mce_timer);
1659     unsigned long iv = __this_cpu_read(mce_next_interval);
1660 
1661     __start_timer(t, interval);
1662 
1663     if (interval < iv)
1664         __this_cpu_write(mce_next_interval, interval);
1665 }
1666 
1667 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1668 static void mce_timer_delete_all(void)
1669 {
1670     int cpu;
1671 
1672     for_each_online_cpu(cpu)
1673         del_timer_sync(&per_cpu(mce_timer, cpu));
1674 }
1675 
1676 /*
1677  * Notify the user(s) about new machine check events.
1678  * Can be called from interrupt context, but not from machine check/NMI
1679  * context.
1680  */
1681 int mce_notify_irq(void)
1682 {
1683     /* Not more than two messages every minute */
1684     static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1685 
1686     if (test_and_clear_bit(0, &mce_need_notify)) {
1687         mce_work_trigger();
1688 
1689         if (__ratelimit(&ratelimit))
1690             pr_info(HW_ERR "Machine check events logged\n");
1691 
1692         return 1;
1693     }
1694     return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(mce_notify_irq);
1697 
1698 static void __mcheck_cpu_mce_banks_init(void)
1699 {
1700     struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1701     u8 n_banks = this_cpu_read(mce_num_banks);
1702     int i;
1703 
1704     for (i = 0; i < n_banks; i++) {
1705         struct mce_bank *b = &mce_banks[i];
1706 
1707         /*
1708          * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1709          * the required vendor quirks before
1710          * __mcheck_cpu_init_clear_banks() does the final bank setup.
1711          */
1712         b->ctl = -1ULL;
1713         b->init = true;
1714     }
1715 }
1716 
1717 /*
1718  * Initialize Machine Checks for a CPU.
1719  */
1720 static void __mcheck_cpu_cap_init(void)
1721 {
1722     u64 cap;
1723     u8 b;
1724 
1725     rdmsrl(MSR_IA32_MCG_CAP, cap);
1726 
1727     b = cap & MCG_BANKCNT_MASK;
1728 
1729     if (b > MAX_NR_BANKS) {
1730         pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1731             smp_processor_id(), MAX_NR_BANKS, b);
1732         b = MAX_NR_BANKS;
1733     }
1734 
1735     this_cpu_write(mce_num_banks, b);
1736 
1737     __mcheck_cpu_mce_banks_init();
1738 
1739     /* Use accurate RIP reporting if available. */
1740     if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1741         mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1742 
1743     if (cap & MCG_SER_P)
1744         mca_cfg.ser = 1;
1745 }
1746 
1747 static void __mcheck_cpu_init_generic(void)
1748 {
1749     enum mcp_flags m_fl = 0;
1750     mce_banks_t all_banks;
1751     u64 cap;
1752 
1753     if (!mca_cfg.bootlog)
1754         m_fl = MCP_DONTLOG;
1755 
1756     /*
1757      * Log the machine checks left over from the previous reset. Log them
1758      * only, do not start processing them. That will happen in mcheck_late_init()
1759      * when all consumers have been registered on the notifier chain.
1760      */
1761     bitmap_fill(all_banks, MAX_NR_BANKS);
1762     machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1763 
1764     cr4_set_bits(X86_CR4_MCE);
1765 
1766     rdmsrl(MSR_IA32_MCG_CAP, cap);
1767     if (cap & MCG_CTL_P)
1768         wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1769 }
1770 
1771 static void __mcheck_cpu_init_clear_banks(void)
1772 {
1773     struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1774     int i;
1775 
1776     for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1777         struct mce_bank *b = &mce_banks[i];
1778 
1779         if (!b->init)
1780             continue;
1781         wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1782         wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1783     }
1784 }
1785 
1786 /*
1787  * Do a final check to see if there are any unused/RAZ banks.
1788  *
1789  * This must be done after the banks have been initialized and any quirks have
1790  * been applied.
1791  *
1792  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1793  * Otherwise, a user who disables a bank will not be able to re-enable it
1794  * without a system reboot.
1795  */
1796 static void __mcheck_cpu_check_banks(void)
1797 {
1798     struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1799     u64 msrval;
1800     int i;
1801 
1802     for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1803         struct mce_bank *b = &mce_banks[i];
1804 
1805         if (!b->init)
1806             continue;
1807 
1808         rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1809         b->init = !!msrval;
1810     }
1811 }
1812 
1813 /* Add per CPU specific workarounds here */
1814 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1815 {
1816     struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1817     struct mca_config *cfg = &mca_cfg;
1818 
1819     if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1820         pr_info("unknown CPU type - not enabling MCE support\n");
1821         return -EOPNOTSUPP;
1822     }
1823 
1824     /* This should be disabled by the BIOS, but isn't always */
1825     if (c->x86_vendor == X86_VENDOR_AMD) {
1826         if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1827             /*
1828              * disable GART TBL walk error reporting, which
1829              * trips off incorrectly with the IOMMU & 3ware
1830              * & Cerberus:
1831              */
1832             clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1833         }
1834         if (c->x86 < 0x11 && cfg->bootlog < 0) {
1835             /*
1836              * Lots of broken BIOS around that don't clear them
1837              * by default and leave crap in there. Don't log:
1838              */
1839             cfg->bootlog = 0;
1840         }
1841         /*
1842          * Various K7s with broken bank 0 around. Always disable
1843          * by default.
1844          */
1845         if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1846             mce_banks[0].ctl = 0;
1847 
1848         /*
1849          * overflow_recov is supported for F15h Models 00h-0fh
1850          * even though we don't have a CPUID bit for it.
1851          */
1852         if (c->x86 == 0x15 && c->x86_model <= 0xf)
1853             mce_flags.overflow_recov = 1;
1854 
1855     }
1856 
1857     if (c->x86_vendor == X86_VENDOR_INTEL) {
1858         /*
1859          * SDM documents that on family 6 bank 0 should not be written
1860          * because it aliases to another special BIOS controlled
1861          * register.
1862          * But it's not aliased anymore on model 0x1a+
1863          * Don't ignore bank 0 completely because there could be a
1864          * valid event later, merely don't write CTL0.
1865          */
1866 
1867         if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1868             mce_banks[0].init = false;
1869 
1870         /*
1871          * All newer Intel systems support MCE broadcasting. Enable
1872          * synchronization with a one second timeout.
1873          */
1874         if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1875             cfg->monarch_timeout < 0)
1876             cfg->monarch_timeout = USEC_PER_SEC;
1877 
1878         /*
1879          * There are also broken BIOSes on some Pentium M and
1880          * earlier systems:
1881          */
1882         if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1883             cfg->bootlog = 0;
1884 
1885         if (c->x86 == 6 && c->x86_model == 45)
1886             mce_flags.snb_ifu_quirk = 1;
1887 
1888         /*
1889          * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1890          * rep movs.
1891          */
1892         if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X)
1893             mce_flags.skx_repmov_quirk = 1;
1894     }
1895 
1896     if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1897         /*
1898          * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1899          * synchronization with a one second timeout.
1900          */
1901         if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1902             if (cfg->monarch_timeout < 0)
1903                 cfg->monarch_timeout = USEC_PER_SEC;
1904         }
1905     }
1906 
1907     if (cfg->monarch_timeout < 0)
1908         cfg->monarch_timeout = 0;
1909     if (cfg->bootlog != 0)
1910         cfg->panic_timeout = 30;
1911 
1912     return 0;
1913 }
1914 
1915 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1916 {
1917     if (c->x86 != 5)
1918         return 0;
1919 
1920     switch (c->x86_vendor) {
1921     case X86_VENDOR_INTEL:
1922         intel_p5_mcheck_init(c);
1923         mce_flags.p5 = 1;
1924         return 1;
1925     case X86_VENDOR_CENTAUR:
1926         winchip_mcheck_init(c);
1927         mce_flags.winchip = 1;
1928         return 1;
1929     default:
1930         return 0;
1931     }
1932 
1933     return 0;
1934 }
1935 
1936 /*
1937  * Init basic CPU features needed for early decoding of MCEs.
1938  */
1939 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1940 {
1941     if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1942         mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1943         mce_flags.succor     = !!cpu_has(c, X86_FEATURE_SUCCOR);
1944         mce_flags.smca       = !!cpu_has(c, X86_FEATURE_SMCA);
1945         mce_flags.amd_threshold  = 1;
1946     }
1947 }
1948 
1949 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1950 {
1951     struct mca_config *cfg = &mca_cfg;
1952 
1953      /*
1954       * All newer Centaur CPUs support MCE broadcasting. Enable
1955       * synchronization with a one second timeout.
1956       */
1957     if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1958          c->x86 > 6) {
1959         if (cfg->monarch_timeout < 0)
1960             cfg->monarch_timeout = USEC_PER_SEC;
1961     }
1962 }
1963 
1964 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1965 {
1966     struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1967 
1968     /*
1969      * These CPUs have MCA bank 8 which reports only one error type called
1970      * SVAD (System View Address Decoder). The reporting of that error is
1971      * controlled by IA32_MC8.CTL.0.
1972      *
1973      * If enabled, prefetching on these CPUs will cause SVAD MCE when
1974      * virtual machines start and result in a system  panic. Always disable
1975      * bank 8 SVAD error by default.
1976      */
1977     if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1978         (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1979         if (this_cpu_read(mce_num_banks) > 8)
1980             mce_banks[8].ctl = 0;
1981     }
1982 
1983     intel_init_cmci();
1984     intel_init_lmce();
1985     mce_adjust_timer = cmci_intel_adjust_timer;
1986 }
1987 
1988 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1989 {
1990     intel_clear_lmce();
1991 }
1992 
1993 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1994 {
1995     switch (c->x86_vendor) {
1996     case X86_VENDOR_INTEL:
1997         mce_intel_feature_init(c);
1998         mce_adjust_timer = cmci_intel_adjust_timer;
1999         break;
2000 
2001     case X86_VENDOR_AMD: {
2002         mce_amd_feature_init(c);
2003         break;
2004         }
2005 
2006     case X86_VENDOR_HYGON:
2007         mce_hygon_feature_init(c);
2008         break;
2009 
2010     case X86_VENDOR_CENTAUR:
2011         mce_centaur_feature_init(c);
2012         break;
2013 
2014     case X86_VENDOR_ZHAOXIN:
2015         mce_zhaoxin_feature_init(c);
2016         break;
2017 
2018     default:
2019         break;
2020     }
2021 }
2022 
2023 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2024 {
2025     switch (c->x86_vendor) {
2026     case X86_VENDOR_INTEL:
2027         mce_intel_feature_clear(c);
2028         break;
2029 
2030     case X86_VENDOR_ZHAOXIN:
2031         mce_zhaoxin_feature_clear(c);
2032         break;
2033 
2034     default:
2035         break;
2036     }
2037 }
2038 
2039 static void mce_start_timer(struct timer_list *t)
2040 {
2041     unsigned long iv = check_interval * HZ;
2042 
2043     if (mca_cfg.ignore_ce || !iv)
2044         return;
2045 
2046     this_cpu_write(mce_next_interval, iv);
2047     __start_timer(t, iv);
2048 }
2049 
2050 static void __mcheck_cpu_setup_timer(void)
2051 {
2052     struct timer_list *t = this_cpu_ptr(&mce_timer);
2053 
2054     timer_setup(t, mce_timer_fn, TIMER_PINNED);
2055 }
2056 
2057 static void __mcheck_cpu_init_timer(void)
2058 {
2059     struct timer_list *t = this_cpu_ptr(&mce_timer);
2060 
2061     timer_setup(t, mce_timer_fn, TIMER_PINNED);
2062     mce_start_timer(t);
2063 }
2064 
2065 bool filter_mce(struct mce *m)
2066 {
2067     if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2068         return amd_filter_mce(m);
2069     if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2070         return intel_filter_mce(m);
2071 
2072     return false;
2073 }
2074 
2075 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2076 {
2077     irqentry_state_t irq_state;
2078 
2079     WARN_ON_ONCE(user_mode(regs));
2080 
2081     /*
2082      * Only required when from kernel mode. See
2083      * mce_check_crashing_cpu() for details.
2084      */
2085     if (mca_cfg.initialized && mce_check_crashing_cpu())
2086         return;
2087 
2088     irq_state = irqentry_nmi_enter(regs);
2089 
2090     do_machine_check(regs);
2091 
2092     irqentry_nmi_exit(regs, irq_state);
2093 }
2094 
2095 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2096 {
2097     irqentry_enter_from_user_mode(regs);
2098 
2099     do_machine_check(regs);
2100 
2101     irqentry_exit_to_user_mode(regs);
2102 }
2103 
2104 #ifdef CONFIG_X86_64
2105 /* MCE hit kernel mode */
2106 DEFINE_IDTENTRY_MCE(exc_machine_check)
2107 {
2108     unsigned long dr7;
2109 
2110     dr7 = local_db_save();
2111     exc_machine_check_kernel(regs);
2112     local_db_restore(dr7);
2113 }
2114 
2115 /* The user mode variant. */
2116 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2117 {
2118     unsigned long dr7;
2119 
2120     dr7 = local_db_save();
2121     exc_machine_check_user(regs);
2122     local_db_restore(dr7);
2123 }
2124 #else
2125 /* 32bit unified entry point */
2126 DEFINE_IDTENTRY_RAW(exc_machine_check)
2127 {
2128     unsigned long dr7;
2129 
2130     dr7 = local_db_save();
2131     if (user_mode(regs))
2132         exc_machine_check_user(regs);
2133     else
2134         exc_machine_check_kernel(regs);
2135     local_db_restore(dr7);
2136 }
2137 #endif
2138 
2139 /*
2140  * Called for each booted CPU to set up machine checks.
2141  * Must be called with preempt off:
2142  */
2143 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2144 {
2145     if (mca_cfg.disabled)
2146         return;
2147 
2148     if (__mcheck_cpu_ancient_init(c))
2149         return;
2150 
2151     if (!mce_available(c))
2152         return;
2153 
2154     __mcheck_cpu_cap_init();
2155 
2156     if (__mcheck_cpu_apply_quirks(c) < 0) {
2157         mca_cfg.disabled = 1;
2158         return;
2159     }
2160 
2161     if (mce_gen_pool_init()) {
2162         mca_cfg.disabled = 1;
2163         pr_emerg("Couldn't allocate MCE records pool!\n");
2164         return;
2165     }
2166 
2167     mca_cfg.initialized = 1;
2168 
2169     __mcheck_cpu_init_early(c);
2170     __mcheck_cpu_init_generic();
2171     __mcheck_cpu_init_vendor(c);
2172     __mcheck_cpu_init_clear_banks();
2173     __mcheck_cpu_check_banks();
2174     __mcheck_cpu_setup_timer();
2175 }
2176 
2177 /*
2178  * Called for each booted CPU to clear some machine checks opt-ins
2179  */
2180 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2181 {
2182     if (mca_cfg.disabled)
2183         return;
2184 
2185     if (!mce_available(c))
2186         return;
2187 
2188     /*
2189      * Possibly to clear general settings generic to x86
2190      * __mcheck_cpu_clear_generic(c);
2191      */
2192     __mcheck_cpu_clear_vendor(c);
2193 
2194 }
2195 
2196 static void __mce_disable_bank(void *arg)
2197 {
2198     int bank = *((int *)arg);
2199     __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2200     cmci_disable_bank(bank);
2201 }
2202 
2203 void mce_disable_bank(int bank)
2204 {
2205     if (bank >= this_cpu_read(mce_num_banks)) {
2206         pr_warn(FW_BUG
2207             "Ignoring request to disable invalid MCA bank %d.\n",
2208             bank);
2209         return;
2210     }
2211     set_bit(bank, mce_banks_ce_disabled);
2212     on_each_cpu(__mce_disable_bank, &bank, 1);
2213 }
2214 
2215 /*
2216  * mce=off Disables machine check
2217  * mce=no_cmci Disables CMCI
2218  * mce=no_lmce Disables LMCE
2219  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2220  * mce=print_all Print all machine check logs to console
2221  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2222  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2223  *  monarchtimeout is how long to wait for other CPUs on machine
2224  *  check, or 0 to not wait
2225  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2226     and older.
2227  * mce=nobootlog Don't log MCEs from before booting.
2228  * mce=bios_cmci_threshold Don't program the CMCI threshold
2229  * mce=recovery force enable copy_mc_fragile()
2230  */
2231 static int __init mcheck_enable(char *str)
2232 {
2233     struct mca_config *cfg = &mca_cfg;
2234 
2235     if (*str == 0) {
2236         enable_p5_mce();
2237         return 1;
2238     }
2239     if (*str == '=')
2240         str++;
2241     if (!strcmp(str, "off"))
2242         cfg->disabled = 1;
2243     else if (!strcmp(str, "no_cmci"))
2244         cfg->cmci_disabled = true;
2245     else if (!strcmp(str, "no_lmce"))
2246         cfg->lmce_disabled = 1;
2247     else if (!strcmp(str, "dont_log_ce"))
2248         cfg->dont_log_ce = true;
2249     else if (!strcmp(str, "print_all"))
2250         cfg->print_all = true;
2251     else if (!strcmp(str, "ignore_ce"))
2252         cfg->ignore_ce = true;
2253     else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2254         cfg->bootlog = (str[0] == 'b');
2255     else if (!strcmp(str, "bios_cmci_threshold"))
2256         cfg->bios_cmci_threshold = 1;
2257     else if (!strcmp(str, "recovery"))
2258         cfg->recovery = 1;
2259     else if (isdigit(str[0]))
2260         get_option(&str, &(cfg->monarch_timeout));
2261     else {
2262         pr_info("mce argument %s ignored. Please use /sys\n", str);
2263         return 0;
2264     }
2265     return 1;
2266 }
2267 __setup("mce", mcheck_enable);
2268 
2269 int __init mcheck_init(void)
2270 {
2271     mce_register_decode_chain(&early_nb);
2272     mce_register_decode_chain(&mce_uc_nb);
2273     mce_register_decode_chain(&mce_default_nb);
2274 
2275     INIT_WORK(&mce_work, mce_gen_pool_process);
2276     init_irq_work(&mce_irq_work, mce_irq_work_cb);
2277 
2278     return 0;
2279 }
2280 
2281 /*
2282  * mce_syscore: PM support
2283  */
2284 
2285 /*
2286  * Disable machine checks on suspend and shutdown. We can't really handle
2287  * them later.
2288  */
2289 static void mce_disable_error_reporting(void)
2290 {
2291     struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2292     int i;
2293 
2294     for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2295         struct mce_bank *b = &mce_banks[i];
2296 
2297         if (b->init)
2298             wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2299     }
2300     return;
2301 }
2302 
2303 static void vendor_disable_error_reporting(void)
2304 {
2305     /*
2306      * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2307      * MSRs are socket-wide. Disabling them for just a single offlined CPU
2308      * is bad, since it will inhibit reporting for all shared resources on
2309      * the socket like the last level cache (LLC), the integrated memory
2310      * controller (iMC), etc.
2311      */
2312     if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2313         boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2314         boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2315         boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2316         return;
2317 
2318     mce_disable_error_reporting();
2319 }
2320 
2321 static int mce_syscore_suspend(void)
2322 {
2323     vendor_disable_error_reporting();
2324     return 0;
2325 }
2326 
2327 static void mce_syscore_shutdown(void)
2328 {
2329     vendor_disable_error_reporting();
2330 }
2331 
2332 /*
2333  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2334  * Only one CPU is active at this time, the others get re-added later using
2335  * CPU hotplug:
2336  */
2337 static void mce_syscore_resume(void)
2338 {
2339     __mcheck_cpu_init_generic();
2340     __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2341     __mcheck_cpu_init_clear_banks();
2342 }
2343 
2344 static struct syscore_ops mce_syscore_ops = {
2345     .suspend    = mce_syscore_suspend,
2346     .shutdown   = mce_syscore_shutdown,
2347     .resume     = mce_syscore_resume,
2348 };
2349 
2350 /*
2351  * mce_device: Sysfs support
2352  */
2353 
2354 static void mce_cpu_restart(void *data)
2355 {
2356     if (!mce_available(raw_cpu_ptr(&cpu_info)))
2357         return;
2358     __mcheck_cpu_init_generic();
2359     __mcheck_cpu_init_clear_banks();
2360     __mcheck_cpu_init_timer();
2361 }
2362 
2363 /* Reinit MCEs after user configuration changes */
2364 static void mce_restart(void)
2365 {
2366     mce_timer_delete_all();
2367     on_each_cpu(mce_cpu_restart, NULL, 1);
2368 }
2369 
2370 /* Toggle features for corrected errors */
2371 static void mce_disable_cmci(void *data)
2372 {
2373     if (!mce_available(raw_cpu_ptr(&cpu_info)))
2374         return;
2375     cmci_clear();
2376 }
2377 
2378 static void mce_enable_ce(void *all)
2379 {
2380     if (!mce_available(raw_cpu_ptr(&cpu_info)))
2381         return;
2382     cmci_reenable();
2383     cmci_recheck();
2384     if (all)
2385         __mcheck_cpu_init_timer();
2386 }
2387 
2388 static struct bus_type mce_subsys = {
2389     .name       = "machinecheck",
2390     .dev_name   = "machinecheck",
2391 };
2392 
2393 DEFINE_PER_CPU(struct device *, mce_device);
2394 
2395 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2396 {
2397     return container_of(attr, struct mce_bank_dev, attr);
2398 }
2399 
2400 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2401              char *buf)
2402 {
2403     u8 bank = attr_to_bank(attr)->bank;
2404     struct mce_bank *b;
2405 
2406     if (bank >= per_cpu(mce_num_banks, s->id))
2407         return -EINVAL;
2408 
2409     b = &per_cpu(mce_banks_array, s->id)[bank];
2410 
2411     if (!b->init)
2412         return -ENODEV;
2413 
2414     return sprintf(buf, "%llx\n", b->ctl);
2415 }
2416 
2417 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2418             const char *buf, size_t size)
2419 {
2420     u8 bank = attr_to_bank(attr)->bank;
2421     struct mce_bank *b;
2422     u64 new;
2423 
2424     if (kstrtou64(buf, 0, &new) < 0)
2425         return -EINVAL;
2426 
2427     if (bank >= per_cpu(mce_num_banks, s->id))
2428         return -EINVAL;
2429 
2430     b = &per_cpu(mce_banks_array, s->id)[bank];
2431 
2432     if (!b->init)
2433         return -ENODEV;
2434 
2435     b->ctl = new;
2436     mce_restart();
2437 
2438     return size;
2439 }
2440 
2441 static ssize_t set_ignore_ce(struct device *s,
2442                  struct device_attribute *attr,
2443                  const char *buf, size_t size)
2444 {
2445     u64 new;
2446 
2447     if (kstrtou64(buf, 0, &new) < 0)
2448         return -EINVAL;
2449 
2450     mutex_lock(&mce_sysfs_mutex);
2451     if (mca_cfg.ignore_ce ^ !!new) {
2452         if (new) {
2453             /* disable ce features */
2454             mce_timer_delete_all();
2455             on_each_cpu(mce_disable_cmci, NULL, 1);
2456             mca_cfg.ignore_ce = true;
2457         } else {
2458             /* enable ce features */
2459             mca_cfg.ignore_ce = false;
2460             on_each_cpu(mce_enable_ce, (void *)1, 1);
2461         }
2462     }
2463     mutex_unlock(&mce_sysfs_mutex);
2464 
2465     return size;
2466 }
2467 
2468 static ssize_t set_cmci_disabled(struct device *s,
2469                  struct device_attribute *attr,
2470                  const char *buf, size_t size)
2471 {
2472     u64 new;
2473 
2474     if (kstrtou64(buf, 0, &new) < 0)
2475         return -EINVAL;
2476 
2477     mutex_lock(&mce_sysfs_mutex);
2478     if (mca_cfg.cmci_disabled ^ !!new) {
2479         if (new) {
2480             /* disable cmci */
2481             on_each_cpu(mce_disable_cmci, NULL, 1);
2482             mca_cfg.cmci_disabled = true;
2483         } else {
2484             /* enable cmci */
2485             mca_cfg.cmci_disabled = false;
2486             on_each_cpu(mce_enable_ce, NULL, 1);
2487         }
2488     }
2489     mutex_unlock(&mce_sysfs_mutex);
2490 
2491     return size;
2492 }
2493 
2494 static ssize_t store_int_with_restart(struct device *s,
2495                       struct device_attribute *attr,
2496                       const char *buf, size_t size)
2497 {
2498     unsigned long old_check_interval = check_interval;
2499     ssize_t ret = device_store_ulong(s, attr, buf, size);
2500 
2501     if (check_interval == old_check_interval)
2502         return ret;
2503 
2504     mutex_lock(&mce_sysfs_mutex);
2505     mce_restart();
2506     mutex_unlock(&mce_sysfs_mutex);
2507 
2508     return ret;
2509 }
2510 
2511 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2512 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2513 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2514 
2515 static struct dev_ext_attribute dev_attr_check_interval = {
2516     __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2517     &check_interval
2518 };
2519 
2520 static struct dev_ext_attribute dev_attr_ignore_ce = {
2521     __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2522     &mca_cfg.ignore_ce
2523 };
2524 
2525 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2526     __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2527     &mca_cfg.cmci_disabled
2528 };
2529 
2530 static struct device_attribute *mce_device_attrs[] = {
2531     &dev_attr_check_interval.attr,
2532 #ifdef CONFIG_X86_MCELOG_LEGACY
2533     &dev_attr_trigger,
2534 #endif
2535     &dev_attr_monarch_timeout.attr,
2536     &dev_attr_dont_log_ce.attr,
2537     &dev_attr_print_all.attr,
2538     &dev_attr_ignore_ce.attr,
2539     &dev_attr_cmci_disabled.attr,
2540     NULL
2541 };
2542 
2543 static cpumask_var_t mce_device_initialized;
2544 
2545 static void mce_device_release(struct device *dev)
2546 {
2547     kfree(dev);
2548 }
2549 
2550 /* Per CPU device init. All of the CPUs still share the same bank device: */
2551 static int mce_device_create(unsigned int cpu)
2552 {
2553     struct device *dev;
2554     int err;
2555     int i, j;
2556 
2557     if (!mce_available(&boot_cpu_data))
2558         return -EIO;
2559 
2560     dev = per_cpu(mce_device, cpu);
2561     if (dev)
2562         return 0;
2563 
2564     dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2565     if (!dev)
2566         return -ENOMEM;
2567     dev->id  = cpu;
2568     dev->bus = &mce_subsys;
2569     dev->release = &mce_device_release;
2570 
2571     err = device_register(dev);
2572     if (err) {
2573         put_device(dev);
2574         return err;
2575     }
2576 
2577     for (i = 0; mce_device_attrs[i]; i++) {
2578         err = device_create_file(dev, mce_device_attrs[i]);
2579         if (err)
2580             goto error;
2581     }
2582     for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2583         err = device_create_file(dev, &mce_bank_devs[j].attr);
2584         if (err)
2585             goto error2;
2586     }
2587     cpumask_set_cpu(cpu, mce_device_initialized);
2588     per_cpu(mce_device, cpu) = dev;
2589 
2590     return 0;
2591 error2:
2592     while (--j >= 0)
2593         device_remove_file(dev, &mce_bank_devs[j].attr);
2594 error:
2595     while (--i >= 0)
2596         device_remove_file(dev, mce_device_attrs[i]);
2597 
2598     device_unregister(dev);
2599 
2600     return err;
2601 }
2602 
2603 static void mce_device_remove(unsigned int cpu)
2604 {
2605     struct device *dev = per_cpu(mce_device, cpu);
2606     int i;
2607 
2608     if (!cpumask_test_cpu(cpu, mce_device_initialized))
2609         return;
2610 
2611     for (i = 0; mce_device_attrs[i]; i++)
2612         device_remove_file(dev, mce_device_attrs[i]);
2613 
2614     for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2615         device_remove_file(dev, &mce_bank_devs[i].attr);
2616 
2617     device_unregister(dev);
2618     cpumask_clear_cpu(cpu, mce_device_initialized);
2619     per_cpu(mce_device, cpu) = NULL;
2620 }
2621 
2622 /* Make sure there are no machine checks on offlined CPUs. */
2623 static void mce_disable_cpu(void)
2624 {
2625     if (!mce_available(raw_cpu_ptr(&cpu_info)))
2626         return;
2627 
2628     if (!cpuhp_tasks_frozen)
2629         cmci_clear();
2630 
2631     vendor_disable_error_reporting();
2632 }
2633 
2634 static void mce_reenable_cpu(void)
2635 {
2636     struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2637     int i;
2638 
2639     if (!mce_available(raw_cpu_ptr(&cpu_info)))
2640         return;
2641 
2642     if (!cpuhp_tasks_frozen)
2643         cmci_reenable();
2644     for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2645         struct mce_bank *b = &mce_banks[i];
2646 
2647         if (b->init)
2648             wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2649     }
2650 }
2651 
2652 static int mce_cpu_dead(unsigned int cpu)
2653 {
2654     mce_intel_hcpu_update(cpu);
2655 
2656     /* intentionally ignoring frozen here */
2657     if (!cpuhp_tasks_frozen)
2658         cmci_rediscover();
2659     return 0;
2660 }
2661 
2662 static int mce_cpu_online(unsigned int cpu)
2663 {
2664     struct timer_list *t = this_cpu_ptr(&mce_timer);
2665     int ret;
2666 
2667     mce_device_create(cpu);
2668 
2669     ret = mce_threshold_create_device(cpu);
2670     if (ret) {
2671         mce_device_remove(cpu);
2672         return ret;
2673     }
2674     mce_reenable_cpu();
2675     mce_start_timer(t);
2676     return 0;
2677 }
2678 
2679 static int mce_cpu_pre_down(unsigned int cpu)
2680 {
2681     struct timer_list *t = this_cpu_ptr(&mce_timer);
2682 
2683     mce_disable_cpu();
2684     del_timer_sync(t);
2685     mce_threshold_remove_device(cpu);
2686     mce_device_remove(cpu);
2687     return 0;
2688 }
2689 
2690 static __init void mce_init_banks(void)
2691 {
2692     int i;
2693 
2694     for (i = 0; i < MAX_NR_BANKS; i++) {
2695         struct mce_bank_dev *b = &mce_bank_devs[i];
2696         struct device_attribute *a = &b->attr;
2697 
2698         b->bank = i;
2699 
2700         sysfs_attr_init(&a->attr);
2701         a->attr.name    = b->attrname;
2702         snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2703 
2704         a->attr.mode    = 0644;
2705         a->show     = show_bank;
2706         a->store    = set_bank;
2707     }
2708 }
2709 
2710 /*
2711  * When running on XEN, this initcall is ordered against the XEN mcelog
2712  * initcall:
2713  *
2714  *   device_initcall(xen_late_init_mcelog);
2715  *   device_initcall_sync(mcheck_init_device);
2716  */
2717 static __init int mcheck_init_device(void)
2718 {
2719     int err;
2720 
2721     /*
2722      * Check if we have a spare virtual bit. This will only become
2723      * a problem if/when we move beyond 5-level page tables.
2724      */
2725     MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2726 
2727     if (!mce_available(&boot_cpu_data)) {
2728         err = -EIO;
2729         goto err_out;
2730     }
2731 
2732     if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2733         err = -ENOMEM;
2734         goto err_out;
2735     }
2736 
2737     mce_init_banks();
2738 
2739     err = subsys_system_register(&mce_subsys, NULL);
2740     if (err)
2741         goto err_out_mem;
2742 
2743     err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2744                 mce_cpu_dead);
2745     if (err)
2746         goto err_out_mem;
2747 
2748     /*
2749      * Invokes mce_cpu_online() on all CPUs which are online when
2750      * the state is installed.
2751      */
2752     err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2753                 mce_cpu_online, mce_cpu_pre_down);
2754     if (err < 0)
2755         goto err_out_online;
2756 
2757     register_syscore_ops(&mce_syscore_ops);
2758 
2759     return 0;
2760 
2761 err_out_online:
2762     cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2763 
2764 err_out_mem:
2765     free_cpumask_var(mce_device_initialized);
2766 
2767 err_out:
2768     pr_err("Unable to init MCE device (rc: %d)\n", err);
2769 
2770     return err;
2771 }
2772 device_initcall_sync(mcheck_init_device);
2773 
2774 /*
2775  * Old style boot options parsing. Only for compatibility.
2776  */
2777 static int __init mcheck_disable(char *str)
2778 {
2779     mca_cfg.disabled = 1;
2780     return 1;
2781 }
2782 __setup("nomce", mcheck_disable);
2783 
2784 #ifdef CONFIG_DEBUG_FS
2785 struct dentry *mce_get_debugfs_dir(void)
2786 {
2787     static struct dentry *dmce;
2788 
2789     if (!dmce)
2790         dmce = debugfs_create_dir("mce", NULL);
2791 
2792     return dmce;
2793 }
2794 
2795 static void mce_reset(void)
2796 {
2797     atomic_set(&mce_fake_panicked, 0);
2798     atomic_set(&mce_executing, 0);
2799     atomic_set(&mce_callin, 0);
2800     atomic_set(&global_nwo, 0);
2801     cpumask_setall(&mce_missing_cpus);
2802 }
2803 
2804 static int fake_panic_get(void *data, u64 *val)
2805 {
2806     *val = fake_panic;
2807     return 0;
2808 }
2809 
2810 static int fake_panic_set(void *data, u64 val)
2811 {
2812     mce_reset();
2813     fake_panic = val;
2814     return 0;
2815 }
2816 
2817 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2818              "%llu\n");
2819 
2820 static void __init mcheck_debugfs_init(void)
2821 {
2822     struct dentry *dmce;
2823 
2824     dmce = mce_get_debugfs_dir();
2825     debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2826                    &fake_panic_fops);
2827 }
2828 #else
2829 static void __init mcheck_debugfs_init(void) { }
2830 #endif
2831 
2832 static int __init mcheck_late_init(void)
2833 {
2834     if (mca_cfg.recovery)
2835         enable_copy_mc_fragile();
2836 
2837     mcheck_debugfs_init();
2838 
2839     /*
2840      * Flush out everything that has been logged during early boot, now that
2841      * everything has been initialized (workqueues, decoders, ...).
2842      */
2843     mce_schedule_work();
2844 
2845     return 0;
2846 }
2847 late_initcall(mcheck_late_init);