Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /* cpu_feature_enabled() cannot be used this early */
0003 #define USE_EARLY_PGTABLE_L5
0004 
0005 #include <linux/memblock.h>
0006 #include <linux/linkage.h>
0007 #include <linux/bitops.h>
0008 #include <linux/kernel.h>
0009 #include <linux/export.h>
0010 #include <linux/percpu.h>
0011 #include <linux/string.h>
0012 #include <linux/ctype.h>
0013 #include <linux/delay.h>
0014 #include <linux/sched/mm.h>
0015 #include <linux/sched/clock.h>
0016 #include <linux/sched/task.h>
0017 #include <linux/sched/smt.h>
0018 #include <linux/init.h>
0019 #include <linux/kprobes.h>
0020 #include <linux/kgdb.h>
0021 #include <linux/smp.h>
0022 #include <linux/io.h>
0023 #include <linux/syscore_ops.h>
0024 #include <linux/pgtable.h>
0025 
0026 #include <asm/cmdline.h>
0027 #include <asm/stackprotector.h>
0028 #include <asm/perf_event.h>
0029 #include <asm/mmu_context.h>
0030 #include <asm/doublefault.h>
0031 #include <asm/archrandom.h>
0032 #include <asm/hypervisor.h>
0033 #include <asm/processor.h>
0034 #include <asm/tlbflush.h>
0035 #include <asm/debugreg.h>
0036 #include <asm/sections.h>
0037 #include <asm/vsyscall.h>
0038 #include <linux/topology.h>
0039 #include <linux/cpumask.h>
0040 #include <linux/atomic.h>
0041 #include <asm/proto.h>
0042 #include <asm/setup.h>
0043 #include <asm/apic.h>
0044 #include <asm/desc.h>
0045 #include <asm/fpu/api.h>
0046 #include <asm/mtrr.h>
0047 #include <asm/hwcap2.h>
0048 #include <linux/numa.h>
0049 #include <asm/numa.h>
0050 #include <asm/asm.h>
0051 #include <asm/bugs.h>
0052 #include <asm/cpu.h>
0053 #include <asm/mce.h>
0054 #include <asm/msr.h>
0055 #include <asm/memtype.h>
0056 #include <asm/microcode.h>
0057 #include <asm/microcode_intel.h>
0058 #include <asm/intel-family.h>
0059 #include <asm/cpu_device_id.h>
0060 #include <asm/uv/uv.h>
0061 #include <asm/sigframe.h>
0062 #include <asm/traps.h>
0063 #include <asm/sev.h>
0064 
0065 #include "cpu.h"
0066 
0067 u32 elf_hwcap2 __read_mostly;
0068 
0069 /* all of these masks are initialized in setup_cpu_local_masks() */
0070 cpumask_var_t cpu_initialized_mask;
0071 cpumask_var_t cpu_callout_mask;
0072 cpumask_var_t cpu_callin_mask;
0073 
0074 /* representing cpus for which sibling maps can be computed */
0075 cpumask_var_t cpu_sibling_setup_mask;
0076 
0077 /* Number of siblings per CPU package */
0078 int smp_num_siblings = 1;
0079 EXPORT_SYMBOL(smp_num_siblings);
0080 
0081 /* Last level cache ID of each logical CPU */
0082 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
0083 
0084 u16 get_llc_id(unsigned int cpu)
0085 {
0086     return per_cpu(cpu_llc_id, cpu);
0087 }
0088 EXPORT_SYMBOL_GPL(get_llc_id);
0089 
0090 /* L2 cache ID of each logical CPU */
0091 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
0092 
0093 static struct ppin_info {
0094     int feature;
0095     int msr_ppin_ctl;
0096     int msr_ppin;
0097 } ppin_info[] = {
0098     [X86_VENDOR_INTEL] = {
0099         .feature = X86_FEATURE_INTEL_PPIN,
0100         .msr_ppin_ctl = MSR_PPIN_CTL,
0101         .msr_ppin = MSR_PPIN
0102     },
0103     [X86_VENDOR_AMD] = {
0104         .feature = X86_FEATURE_AMD_PPIN,
0105         .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
0106         .msr_ppin = MSR_AMD_PPIN
0107     },
0108 };
0109 
0110 static const struct x86_cpu_id ppin_cpuids[] = {
0111     X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
0112     X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
0113 
0114     /* Legacy models without CPUID enumeration */
0115     X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
0116     X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
0117     X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
0118     X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
0119     X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
0120     X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
0121     X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
0122     X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
0123     X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
0124     X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
0125 
0126     {}
0127 };
0128 
0129 static void ppin_init(struct cpuinfo_x86 *c)
0130 {
0131     const struct x86_cpu_id *id;
0132     unsigned long long val;
0133     struct ppin_info *info;
0134 
0135     id = x86_match_cpu(ppin_cpuids);
0136     if (!id)
0137         return;
0138 
0139     /*
0140      * Testing the presence of the MSR is not enough. Need to check
0141      * that the PPIN_CTL allows reading of the PPIN.
0142      */
0143     info = (struct ppin_info *)id->driver_data;
0144 
0145     if (rdmsrl_safe(info->msr_ppin_ctl, &val))
0146         goto clear_ppin;
0147 
0148     if ((val & 3UL) == 1UL) {
0149         /* PPIN locked in disabled mode */
0150         goto clear_ppin;
0151     }
0152 
0153     /* If PPIN is disabled, try to enable */
0154     if (!(val & 2UL)) {
0155         wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
0156         rdmsrl_safe(info->msr_ppin_ctl, &val);
0157     }
0158 
0159     /* Is the enable bit set? */
0160     if (val & 2UL) {
0161         c->ppin = __rdmsr(info->msr_ppin);
0162         set_cpu_cap(c, info->feature);
0163         return;
0164     }
0165 
0166 clear_ppin:
0167     clear_cpu_cap(c, info->feature);
0168 }
0169 
0170 /* correctly size the local cpu masks */
0171 void __init setup_cpu_local_masks(void)
0172 {
0173     alloc_bootmem_cpumask_var(&cpu_initialized_mask);
0174     alloc_bootmem_cpumask_var(&cpu_callin_mask);
0175     alloc_bootmem_cpumask_var(&cpu_callout_mask);
0176     alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
0177 }
0178 
0179 static void default_init(struct cpuinfo_x86 *c)
0180 {
0181 #ifdef CONFIG_X86_64
0182     cpu_detect_cache_sizes(c);
0183 #else
0184     /* Not much we can do here... */
0185     /* Check if at least it has cpuid */
0186     if (c->cpuid_level == -1) {
0187         /* No cpuid. It must be an ancient CPU */
0188         if (c->x86 == 4)
0189             strcpy(c->x86_model_id, "486");
0190         else if (c->x86 == 3)
0191             strcpy(c->x86_model_id, "386");
0192     }
0193 #endif
0194 }
0195 
0196 static const struct cpu_dev default_cpu = {
0197     .c_init     = default_init,
0198     .c_vendor   = "Unknown",
0199     .c_x86_vendor   = X86_VENDOR_UNKNOWN,
0200 };
0201 
0202 static const struct cpu_dev *this_cpu = &default_cpu;
0203 
0204 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
0205 #ifdef CONFIG_X86_64
0206     /*
0207      * We need valid kernel segments for data and code in long mode too
0208      * IRET will check the segment types  kkeil 2000/10/28
0209      * Also sysret mandates a special GDT layout
0210      *
0211      * TLS descriptors are currently at a different place compared to i386.
0212      * Hopefully nobody expects them at a fixed place (Wine?)
0213      */
0214     [GDT_ENTRY_KERNEL32_CS]     = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
0215     [GDT_ENTRY_KERNEL_CS]       = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
0216     [GDT_ENTRY_KERNEL_DS]       = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
0217     [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
0218     [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
0219     [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
0220 #else
0221     [GDT_ENTRY_KERNEL_CS]       = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
0222     [GDT_ENTRY_KERNEL_DS]       = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
0223     [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
0224     [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
0225     /*
0226      * Segments used for calling PnP BIOS have byte granularity.
0227      * They code segments and data segments have fixed 64k limits,
0228      * the transfer segment sizes are set at run time.
0229      */
0230     /* 32-bit code */
0231     [GDT_ENTRY_PNPBIOS_CS32]    = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
0232     /* 16-bit code */
0233     [GDT_ENTRY_PNPBIOS_CS16]    = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
0234     /* 16-bit data */
0235     [GDT_ENTRY_PNPBIOS_DS]      = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
0236     /* 16-bit data */
0237     [GDT_ENTRY_PNPBIOS_TS1]     = GDT_ENTRY_INIT(0x0092, 0, 0),
0238     /* 16-bit data */
0239     [GDT_ENTRY_PNPBIOS_TS2]     = GDT_ENTRY_INIT(0x0092, 0, 0),
0240     /*
0241      * The APM segments have byte granularity and their bases
0242      * are set at run time.  All have 64k limits.
0243      */
0244     /* 32-bit code */
0245     [GDT_ENTRY_APMBIOS_BASE]    = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
0246     /* 16-bit code */
0247     [GDT_ENTRY_APMBIOS_BASE+1]  = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
0248     /* data */
0249     [GDT_ENTRY_APMBIOS_BASE+2]  = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
0250 
0251     [GDT_ENTRY_ESPFIX_SS]       = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
0252     [GDT_ENTRY_PERCPU]      = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
0253 #endif
0254 } };
0255 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
0256 
0257 #ifdef CONFIG_X86_64
0258 static int __init x86_nopcid_setup(char *s)
0259 {
0260     /* nopcid doesn't accept parameters */
0261     if (s)
0262         return -EINVAL;
0263 
0264     /* do not emit a message if the feature is not present */
0265     if (!boot_cpu_has(X86_FEATURE_PCID))
0266         return 0;
0267 
0268     setup_clear_cpu_cap(X86_FEATURE_PCID);
0269     pr_info("nopcid: PCID feature disabled\n");
0270     return 0;
0271 }
0272 early_param("nopcid", x86_nopcid_setup);
0273 #endif
0274 
0275 static int __init x86_noinvpcid_setup(char *s)
0276 {
0277     /* noinvpcid doesn't accept parameters */
0278     if (s)
0279         return -EINVAL;
0280 
0281     /* do not emit a message if the feature is not present */
0282     if (!boot_cpu_has(X86_FEATURE_INVPCID))
0283         return 0;
0284 
0285     setup_clear_cpu_cap(X86_FEATURE_INVPCID);
0286     pr_info("noinvpcid: INVPCID feature disabled\n");
0287     return 0;
0288 }
0289 early_param("noinvpcid", x86_noinvpcid_setup);
0290 
0291 #ifdef CONFIG_X86_32
0292 static int cachesize_override = -1;
0293 static int disable_x86_serial_nr = 1;
0294 
0295 static int __init cachesize_setup(char *str)
0296 {
0297     get_option(&str, &cachesize_override);
0298     return 1;
0299 }
0300 __setup("cachesize=", cachesize_setup);
0301 
0302 /* Standard macro to see if a specific flag is changeable */
0303 static inline int flag_is_changeable_p(u32 flag)
0304 {
0305     u32 f1, f2;
0306 
0307     /*
0308      * Cyrix and IDT cpus allow disabling of CPUID
0309      * so the code below may return different results
0310      * when it is executed before and after enabling
0311      * the CPUID. Add "volatile" to not allow gcc to
0312      * optimize the subsequent calls to this function.
0313      */
0314     asm volatile ("pushfl       \n\t"
0315               "pushfl       \n\t"
0316               "popl %0      \n\t"
0317               "movl %0, %1  \n\t"
0318               "xorl %2, %0  \n\t"
0319               "pushl %0     \n\t"
0320               "popfl        \n\t"
0321               "pushfl       \n\t"
0322               "popl %0      \n\t"
0323               "popfl        \n\t"
0324 
0325               : "=&r" (f1), "=&r" (f2)
0326               : "ir" (flag));
0327 
0328     return ((f1^f2) & flag) != 0;
0329 }
0330 
0331 /* Probe for the CPUID instruction */
0332 int have_cpuid_p(void)
0333 {
0334     return flag_is_changeable_p(X86_EFLAGS_ID);
0335 }
0336 
0337 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
0338 {
0339     unsigned long lo, hi;
0340 
0341     if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
0342         return;
0343 
0344     /* Disable processor serial number: */
0345 
0346     rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
0347     lo |= 0x200000;
0348     wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
0349 
0350     pr_notice("CPU serial number disabled.\n");
0351     clear_cpu_cap(c, X86_FEATURE_PN);
0352 
0353     /* Disabling the serial number may affect the cpuid level */
0354     c->cpuid_level = cpuid_eax(0);
0355 }
0356 
0357 static int __init x86_serial_nr_setup(char *s)
0358 {
0359     disable_x86_serial_nr = 0;
0360     return 1;
0361 }
0362 __setup("serialnumber", x86_serial_nr_setup);
0363 #else
0364 static inline int flag_is_changeable_p(u32 flag)
0365 {
0366     return 1;
0367 }
0368 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
0369 {
0370 }
0371 #endif
0372 
0373 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
0374 {
0375     if (cpu_has(c, X86_FEATURE_SMEP))
0376         cr4_set_bits(X86_CR4_SMEP);
0377 }
0378 
0379 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
0380 {
0381     unsigned long eflags = native_save_fl();
0382 
0383     /* This should have been cleared long ago */
0384     BUG_ON(eflags & X86_EFLAGS_AC);
0385 
0386     if (cpu_has(c, X86_FEATURE_SMAP))
0387         cr4_set_bits(X86_CR4_SMAP);
0388 }
0389 
0390 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
0391 {
0392     /* Check the boot processor, plus build option for UMIP. */
0393     if (!cpu_feature_enabled(X86_FEATURE_UMIP))
0394         goto out;
0395 
0396     /* Check the current processor's cpuid bits. */
0397     if (!cpu_has(c, X86_FEATURE_UMIP))
0398         goto out;
0399 
0400     cr4_set_bits(X86_CR4_UMIP);
0401 
0402     pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
0403 
0404     return;
0405 
0406 out:
0407     /*
0408      * Make sure UMIP is disabled in case it was enabled in a
0409      * previous boot (e.g., via kexec).
0410      */
0411     cr4_clear_bits(X86_CR4_UMIP);
0412 }
0413 
0414 /* These bits should not change their value after CPU init is finished. */
0415 static const unsigned long cr4_pinned_mask =
0416     X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
0417     X86_CR4_FSGSBASE | X86_CR4_CET;
0418 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
0419 static unsigned long cr4_pinned_bits __ro_after_init;
0420 
0421 void native_write_cr0(unsigned long val)
0422 {
0423     unsigned long bits_missing = 0;
0424 
0425 set_register:
0426     asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
0427 
0428     if (static_branch_likely(&cr_pinning)) {
0429         if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
0430             bits_missing = X86_CR0_WP;
0431             val |= bits_missing;
0432             goto set_register;
0433         }
0434         /* Warn after we've set the missing bits. */
0435         WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
0436     }
0437 }
0438 EXPORT_SYMBOL(native_write_cr0);
0439 
0440 void __no_profile native_write_cr4(unsigned long val)
0441 {
0442     unsigned long bits_changed = 0;
0443 
0444 set_register:
0445     asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
0446 
0447     if (static_branch_likely(&cr_pinning)) {
0448         if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
0449             bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
0450             val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
0451             goto set_register;
0452         }
0453         /* Warn after we've corrected the changed bits. */
0454         WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
0455               bits_changed);
0456     }
0457 }
0458 #if IS_MODULE(CONFIG_LKDTM)
0459 EXPORT_SYMBOL_GPL(native_write_cr4);
0460 #endif
0461 
0462 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
0463 {
0464     unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
0465 
0466     lockdep_assert_irqs_disabled();
0467 
0468     newval = (cr4 & ~clear) | set;
0469     if (newval != cr4) {
0470         this_cpu_write(cpu_tlbstate.cr4, newval);
0471         __write_cr4(newval);
0472     }
0473 }
0474 EXPORT_SYMBOL(cr4_update_irqsoff);
0475 
0476 /* Read the CR4 shadow. */
0477 unsigned long cr4_read_shadow(void)
0478 {
0479     return this_cpu_read(cpu_tlbstate.cr4);
0480 }
0481 EXPORT_SYMBOL_GPL(cr4_read_shadow);
0482 
0483 void cr4_init(void)
0484 {
0485     unsigned long cr4 = __read_cr4();
0486 
0487     if (boot_cpu_has(X86_FEATURE_PCID))
0488         cr4 |= X86_CR4_PCIDE;
0489     if (static_branch_likely(&cr_pinning))
0490         cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
0491 
0492     __write_cr4(cr4);
0493 
0494     /* Initialize cr4 shadow for this CPU. */
0495     this_cpu_write(cpu_tlbstate.cr4, cr4);
0496 }
0497 
0498 /*
0499  * Once CPU feature detection is finished (and boot params have been
0500  * parsed), record any of the sensitive CR bits that are set, and
0501  * enable CR pinning.
0502  */
0503 static void __init setup_cr_pinning(void)
0504 {
0505     cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
0506     static_key_enable(&cr_pinning.key);
0507 }
0508 
0509 static __init int x86_nofsgsbase_setup(char *arg)
0510 {
0511     /* Require an exact match without trailing characters. */
0512     if (strlen(arg))
0513         return 0;
0514 
0515     /* Do not emit a message if the feature is not present. */
0516     if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
0517         return 1;
0518 
0519     setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
0520     pr_info("FSGSBASE disabled via kernel command line\n");
0521     return 1;
0522 }
0523 __setup("nofsgsbase", x86_nofsgsbase_setup);
0524 
0525 /*
0526  * Protection Keys are not available in 32-bit mode.
0527  */
0528 static bool pku_disabled;
0529 
0530 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
0531 {
0532     if (c == &boot_cpu_data) {
0533         if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
0534             return;
0535         /*
0536          * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
0537          * bit to be set.  Enforce it.
0538          */
0539         setup_force_cpu_cap(X86_FEATURE_OSPKE);
0540 
0541     } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
0542         return;
0543     }
0544 
0545     cr4_set_bits(X86_CR4_PKE);
0546     /* Load the default PKRU value */
0547     pkru_write_default();
0548 }
0549 
0550 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
0551 static __init int setup_disable_pku(char *arg)
0552 {
0553     /*
0554      * Do not clear the X86_FEATURE_PKU bit.  All of the
0555      * runtime checks are against OSPKE so clearing the
0556      * bit does nothing.
0557      *
0558      * This way, we will see "pku" in cpuinfo, but not
0559      * "ospke", which is exactly what we want.  It shows
0560      * that the CPU has PKU, but the OS has not enabled it.
0561      * This happens to be exactly how a system would look
0562      * if we disabled the config option.
0563      */
0564     pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
0565     pku_disabled = true;
0566     return 1;
0567 }
0568 __setup("nopku", setup_disable_pku);
0569 #endif /* CONFIG_X86_64 */
0570 
0571 #ifdef CONFIG_X86_KERNEL_IBT
0572 
0573 __noendbr u64 ibt_save(void)
0574 {
0575     u64 msr = 0;
0576 
0577     if (cpu_feature_enabled(X86_FEATURE_IBT)) {
0578         rdmsrl(MSR_IA32_S_CET, msr);
0579         wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
0580     }
0581 
0582     return msr;
0583 }
0584 
0585 __noendbr void ibt_restore(u64 save)
0586 {
0587     u64 msr;
0588 
0589     if (cpu_feature_enabled(X86_FEATURE_IBT)) {
0590         rdmsrl(MSR_IA32_S_CET, msr);
0591         msr &= ~CET_ENDBR_EN;
0592         msr |= (save & CET_ENDBR_EN);
0593         wrmsrl(MSR_IA32_S_CET, msr);
0594     }
0595 }
0596 
0597 #endif
0598 
0599 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
0600 {
0601     u64 msr = CET_ENDBR_EN;
0602 
0603     if (!HAS_KERNEL_IBT ||
0604         !cpu_feature_enabled(X86_FEATURE_IBT))
0605         return;
0606 
0607     wrmsrl(MSR_IA32_S_CET, msr);
0608     cr4_set_bits(X86_CR4_CET);
0609 
0610     if (!ibt_selftest()) {
0611         pr_err("IBT selftest: Failed!\n");
0612         setup_clear_cpu_cap(X86_FEATURE_IBT);
0613         return;
0614     }
0615 }
0616 
0617 __noendbr void cet_disable(void)
0618 {
0619     if (cpu_feature_enabled(X86_FEATURE_IBT))
0620         wrmsrl(MSR_IA32_S_CET, 0);
0621 }
0622 
0623 /*
0624  * Some CPU features depend on higher CPUID levels, which may not always
0625  * be available due to CPUID level capping or broken virtualization
0626  * software.  Add those features to this table to auto-disable them.
0627  */
0628 struct cpuid_dependent_feature {
0629     u32 feature;
0630     u32 level;
0631 };
0632 
0633 static const struct cpuid_dependent_feature
0634 cpuid_dependent_features[] = {
0635     { X86_FEATURE_MWAIT,        0x00000005 },
0636     { X86_FEATURE_DCA,      0x00000009 },
0637     { X86_FEATURE_XSAVE,        0x0000000d },
0638     { 0, 0 }
0639 };
0640 
0641 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
0642 {
0643     const struct cpuid_dependent_feature *df;
0644 
0645     for (df = cpuid_dependent_features; df->feature; df++) {
0646 
0647         if (!cpu_has(c, df->feature))
0648             continue;
0649         /*
0650          * Note: cpuid_level is set to -1 if unavailable, but
0651          * extended_extended_level is set to 0 if unavailable
0652          * and the legitimate extended levels are all negative
0653          * when signed; hence the weird messing around with
0654          * signs here...
0655          */
0656         if (!((s32)df->level < 0 ?
0657              (u32)df->level > (u32)c->extended_cpuid_level :
0658              (s32)df->level > (s32)c->cpuid_level))
0659             continue;
0660 
0661         clear_cpu_cap(c, df->feature);
0662         if (!warn)
0663             continue;
0664 
0665         pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
0666             x86_cap_flag(df->feature), df->level);
0667     }
0668 }
0669 
0670 /*
0671  * Naming convention should be: <Name> [(<Codename>)]
0672  * This table only is used unless init_<vendor>() below doesn't set it;
0673  * in particular, if CPUID levels 0x80000002..4 are supported, this
0674  * isn't used
0675  */
0676 
0677 /* Look up CPU names by table lookup. */
0678 static const char *table_lookup_model(struct cpuinfo_x86 *c)
0679 {
0680 #ifdef CONFIG_X86_32
0681     const struct legacy_cpu_model_info *info;
0682 
0683     if (c->x86_model >= 16)
0684         return NULL;    /* Range check */
0685 
0686     if (!this_cpu)
0687         return NULL;
0688 
0689     info = this_cpu->legacy_models;
0690 
0691     while (info->family) {
0692         if (info->family == c->x86)
0693             return info->model_names[c->x86_model];
0694         info++;
0695     }
0696 #endif
0697     return NULL;        /* Not found */
0698 }
0699 
0700 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
0701 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
0702 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
0703 
0704 void load_percpu_segment(int cpu)
0705 {
0706 #ifdef CONFIG_X86_32
0707     loadsegment(fs, __KERNEL_PERCPU);
0708 #else
0709     __loadsegment_simple(gs, 0);
0710     wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
0711 #endif
0712 }
0713 
0714 #ifdef CONFIG_X86_32
0715 /* The 32-bit entry code needs to find cpu_entry_area. */
0716 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
0717 #endif
0718 
0719 /* Load the original GDT from the per-cpu structure */
0720 void load_direct_gdt(int cpu)
0721 {
0722     struct desc_ptr gdt_descr;
0723 
0724     gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
0725     gdt_descr.size = GDT_SIZE - 1;
0726     load_gdt(&gdt_descr);
0727 }
0728 EXPORT_SYMBOL_GPL(load_direct_gdt);
0729 
0730 /* Load a fixmap remapping of the per-cpu GDT */
0731 void load_fixmap_gdt(int cpu)
0732 {
0733     struct desc_ptr gdt_descr;
0734 
0735     gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
0736     gdt_descr.size = GDT_SIZE - 1;
0737     load_gdt(&gdt_descr);
0738 }
0739 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
0740 
0741 /*
0742  * Current gdt points %fs at the "master" per-cpu area: after this,
0743  * it's on the real one.
0744  */
0745 void switch_to_new_gdt(int cpu)
0746 {
0747     /* Load the original GDT */
0748     load_direct_gdt(cpu);
0749     /* Reload the per-cpu base */
0750     load_percpu_segment(cpu);
0751 }
0752 
0753 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
0754 
0755 static void get_model_name(struct cpuinfo_x86 *c)
0756 {
0757     unsigned int *v;
0758     char *p, *q, *s;
0759 
0760     if (c->extended_cpuid_level < 0x80000004)
0761         return;
0762 
0763     v = (unsigned int *)c->x86_model_id;
0764     cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
0765     cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
0766     cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
0767     c->x86_model_id[48] = 0;
0768 
0769     /* Trim whitespace */
0770     p = q = s = &c->x86_model_id[0];
0771 
0772     while (*p == ' ')
0773         p++;
0774 
0775     while (*p) {
0776         /* Note the last non-whitespace index */
0777         if (!isspace(*p))
0778             s = q;
0779 
0780         *q++ = *p++;
0781     }
0782 
0783     *(s + 1) = '\0';
0784 }
0785 
0786 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
0787 {
0788     unsigned int eax, ebx, ecx, edx;
0789 
0790     c->x86_max_cores = 1;
0791     if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
0792         return;
0793 
0794     cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
0795     if (eax & 0x1f)
0796         c->x86_max_cores = (eax >> 26) + 1;
0797 }
0798 
0799 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
0800 {
0801     unsigned int n, dummy, ebx, ecx, edx, l2size;
0802 
0803     n = c->extended_cpuid_level;
0804 
0805     if (n >= 0x80000005) {
0806         cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
0807         c->x86_cache_size = (ecx>>24) + (edx>>24);
0808 #ifdef CONFIG_X86_64
0809         /* On K8 L1 TLB is inclusive, so don't count it */
0810         c->x86_tlbsize = 0;
0811 #endif
0812     }
0813 
0814     if (n < 0x80000006) /* Some chips just has a large L1. */
0815         return;
0816 
0817     cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
0818     l2size = ecx >> 16;
0819 
0820 #ifdef CONFIG_X86_64
0821     c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
0822 #else
0823     /* do processor-specific cache resizing */
0824     if (this_cpu->legacy_cache_size)
0825         l2size = this_cpu->legacy_cache_size(c, l2size);
0826 
0827     /* Allow user to override all this if necessary. */
0828     if (cachesize_override != -1)
0829         l2size = cachesize_override;
0830 
0831     if (l2size == 0)
0832         return;     /* Again, no L2 cache is possible */
0833 #endif
0834 
0835     c->x86_cache_size = l2size;
0836 }
0837 
0838 u16 __read_mostly tlb_lli_4k[NR_INFO];
0839 u16 __read_mostly tlb_lli_2m[NR_INFO];
0840 u16 __read_mostly tlb_lli_4m[NR_INFO];
0841 u16 __read_mostly tlb_lld_4k[NR_INFO];
0842 u16 __read_mostly tlb_lld_2m[NR_INFO];
0843 u16 __read_mostly tlb_lld_4m[NR_INFO];
0844 u16 __read_mostly tlb_lld_1g[NR_INFO];
0845 
0846 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
0847 {
0848     if (this_cpu->c_detect_tlb)
0849         this_cpu->c_detect_tlb(c);
0850 
0851     pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
0852         tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
0853         tlb_lli_4m[ENTRIES]);
0854 
0855     pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
0856         tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
0857         tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
0858 }
0859 
0860 int detect_ht_early(struct cpuinfo_x86 *c)
0861 {
0862 #ifdef CONFIG_SMP
0863     u32 eax, ebx, ecx, edx;
0864 
0865     if (!cpu_has(c, X86_FEATURE_HT))
0866         return -1;
0867 
0868     if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
0869         return -1;
0870 
0871     if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
0872         return -1;
0873 
0874     cpuid(1, &eax, &ebx, &ecx, &edx);
0875 
0876     smp_num_siblings = (ebx & 0xff0000) >> 16;
0877     if (smp_num_siblings == 1)
0878         pr_info_once("CPU0: Hyper-Threading is disabled\n");
0879 #endif
0880     return 0;
0881 }
0882 
0883 void detect_ht(struct cpuinfo_x86 *c)
0884 {
0885 #ifdef CONFIG_SMP
0886     int index_msb, core_bits;
0887 
0888     if (detect_ht_early(c) < 0)
0889         return;
0890 
0891     index_msb = get_count_order(smp_num_siblings);
0892     c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
0893 
0894     smp_num_siblings = smp_num_siblings / c->x86_max_cores;
0895 
0896     index_msb = get_count_order(smp_num_siblings);
0897 
0898     core_bits = get_count_order(c->x86_max_cores);
0899 
0900     c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
0901                        ((1 << core_bits) - 1);
0902 #endif
0903 }
0904 
0905 static void get_cpu_vendor(struct cpuinfo_x86 *c)
0906 {
0907     char *v = c->x86_vendor_id;
0908     int i;
0909 
0910     for (i = 0; i < X86_VENDOR_NUM; i++) {
0911         if (!cpu_devs[i])
0912             break;
0913 
0914         if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
0915             (cpu_devs[i]->c_ident[1] &&
0916              !strcmp(v, cpu_devs[i]->c_ident[1]))) {
0917 
0918             this_cpu = cpu_devs[i];
0919             c->x86_vendor = this_cpu->c_x86_vendor;
0920             return;
0921         }
0922     }
0923 
0924     pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
0925             "CPU: Your system may be unstable.\n", v);
0926 
0927     c->x86_vendor = X86_VENDOR_UNKNOWN;
0928     this_cpu = &default_cpu;
0929 }
0930 
0931 void cpu_detect(struct cpuinfo_x86 *c)
0932 {
0933     /* Get vendor name */
0934     cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
0935           (unsigned int *)&c->x86_vendor_id[0],
0936           (unsigned int *)&c->x86_vendor_id[8],
0937           (unsigned int *)&c->x86_vendor_id[4]);
0938 
0939     c->x86 = 4;
0940     /* Intel-defined flags: level 0x00000001 */
0941     if (c->cpuid_level >= 0x00000001) {
0942         u32 junk, tfms, cap0, misc;
0943 
0944         cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
0945         c->x86      = x86_family(tfms);
0946         c->x86_model    = x86_model(tfms);
0947         c->x86_stepping = x86_stepping(tfms);
0948 
0949         if (cap0 & (1<<19)) {
0950             c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
0951             c->x86_cache_alignment = c->x86_clflush_size;
0952         }
0953     }
0954 }
0955 
0956 static void apply_forced_caps(struct cpuinfo_x86 *c)
0957 {
0958     int i;
0959 
0960     for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
0961         c->x86_capability[i] &= ~cpu_caps_cleared[i];
0962         c->x86_capability[i] |= cpu_caps_set[i];
0963     }
0964 }
0965 
0966 static void init_speculation_control(struct cpuinfo_x86 *c)
0967 {
0968     /*
0969      * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
0970      * and they also have a different bit for STIBP support. Also,
0971      * a hypervisor might have set the individual AMD bits even on
0972      * Intel CPUs, for finer-grained selection of what's available.
0973      */
0974     if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
0975         set_cpu_cap(c, X86_FEATURE_IBRS);
0976         set_cpu_cap(c, X86_FEATURE_IBPB);
0977         set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
0978     }
0979 
0980     if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
0981         set_cpu_cap(c, X86_FEATURE_STIBP);
0982 
0983     if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
0984         cpu_has(c, X86_FEATURE_VIRT_SSBD))
0985         set_cpu_cap(c, X86_FEATURE_SSBD);
0986 
0987     if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
0988         set_cpu_cap(c, X86_FEATURE_IBRS);
0989         set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
0990     }
0991 
0992     if (cpu_has(c, X86_FEATURE_AMD_IBPB))
0993         set_cpu_cap(c, X86_FEATURE_IBPB);
0994 
0995     if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
0996         set_cpu_cap(c, X86_FEATURE_STIBP);
0997         set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
0998     }
0999 
1000     if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1001         set_cpu_cap(c, X86_FEATURE_SSBD);
1002         set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1003         clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1004     }
1005 }
1006 
1007 void get_cpu_cap(struct cpuinfo_x86 *c)
1008 {
1009     u32 eax, ebx, ecx, edx;
1010 
1011     /* Intel-defined flags: level 0x00000001 */
1012     if (c->cpuid_level >= 0x00000001) {
1013         cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1014 
1015         c->x86_capability[CPUID_1_ECX] = ecx;
1016         c->x86_capability[CPUID_1_EDX] = edx;
1017     }
1018 
1019     /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1020     if (c->cpuid_level >= 0x00000006)
1021         c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1022 
1023     /* Additional Intel-defined flags: level 0x00000007 */
1024     if (c->cpuid_level >= 0x00000007) {
1025         cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1026         c->x86_capability[CPUID_7_0_EBX] = ebx;
1027         c->x86_capability[CPUID_7_ECX] = ecx;
1028         c->x86_capability[CPUID_7_EDX] = edx;
1029 
1030         /* Check valid sub-leaf index before accessing it */
1031         if (eax >= 1) {
1032             cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1033             c->x86_capability[CPUID_7_1_EAX] = eax;
1034         }
1035     }
1036 
1037     /* Extended state features: level 0x0000000d */
1038     if (c->cpuid_level >= 0x0000000d) {
1039         cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1040 
1041         c->x86_capability[CPUID_D_1_EAX] = eax;
1042     }
1043 
1044     /* AMD-defined flags: level 0x80000001 */
1045     eax = cpuid_eax(0x80000000);
1046     c->extended_cpuid_level = eax;
1047 
1048     if ((eax & 0xffff0000) == 0x80000000) {
1049         if (eax >= 0x80000001) {
1050             cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1051 
1052             c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1053             c->x86_capability[CPUID_8000_0001_EDX] = edx;
1054         }
1055     }
1056 
1057     if (c->extended_cpuid_level >= 0x80000007) {
1058         cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1059 
1060         c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1061         c->x86_power = edx;
1062     }
1063 
1064     if (c->extended_cpuid_level >= 0x80000008) {
1065         cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1066         c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1067     }
1068 
1069     if (c->extended_cpuid_level >= 0x8000000a)
1070         c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1071 
1072     if (c->extended_cpuid_level >= 0x8000001f)
1073         c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1074 
1075     init_scattered_cpuid_features(c);
1076     init_speculation_control(c);
1077 
1078     /*
1079      * Clear/Set all flags overridden by options, after probe.
1080      * This needs to happen each time we re-probe, which may happen
1081      * several times during CPU initialization.
1082      */
1083     apply_forced_caps(c);
1084 }
1085 
1086 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1087 {
1088     u32 eax, ebx, ecx, edx;
1089 
1090     if (c->extended_cpuid_level >= 0x80000008) {
1091         cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1092 
1093         c->x86_virt_bits = (eax >> 8) & 0xff;
1094         c->x86_phys_bits = eax & 0xff;
1095     }
1096 #ifdef CONFIG_X86_32
1097     else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1098         c->x86_phys_bits = 36;
1099 #endif
1100     c->x86_cache_bits = c->x86_phys_bits;
1101 }
1102 
1103 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1104 {
1105 #ifdef CONFIG_X86_32
1106     int i;
1107 
1108     /*
1109      * First of all, decide if this is a 486 or higher
1110      * It's a 486 if we can modify the AC flag
1111      */
1112     if (flag_is_changeable_p(X86_EFLAGS_AC))
1113         c->x86 = 4;
1114     else
1115         c->x86 = 3;
1116 
1117     for (i = 0; i < X86_VENDOR_NUM; i++)
1118         if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1119             c->x86_vendor_id[0] = 0;
1120             cpu_devs[i]->c_identify(c);
1121             if (c->x86_vendor_id[0]) {
1122                 get_cpu_vendor(c);
1123                 break;
1124             }
1125         }
1126 #endif
1127 }
1128 
1129 #define NO_SPECULATION      BIT(0)
1130 #define NO_MELTDOWN     BIT(1)
1131 #define NO_SSB          BIT(2)
1132 #define NO_L1TF         BIT(3)
1133 #define NO_MDS          BIT(4)
1134 #define MSBDS_ONLY      BIT(5)
1135 #define NO_SWAPGS       BIT(6)
1136 #define NO_ITLB_MULTIHIT    BIT(7)
1137 #define NO_SPECTRE_V2       BIT(8)
1138 #define NO_MMIO         BIT(9)
1139 #define NO_EIBRS_PBRSB      BIT(10)
1140 
1141 #define VULNWL(vendor, family, model, whitelist)    \
1142     X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1143 
1144 #define VULNWL_INTEL(model, whitelist)      \
1145     VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1146 
1147 #define VULNWL_AMD(family, whitelist)       \
1148     VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1149 
1150 #define VULNWL_HYGON(family, whitelist)     \
1151     VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1152 
1153 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1154     VULNWL(ANY, 4, X86_MODEL_ANY,   NO_SPECULATION),
1155     VULNWL(CENTAUR, 5, X86_MODEL_ANY,   NO_SPECULATION),
1156     VULNWL(INTEL,   5, X86_MODEL_ANY,   NO_SPECULATION),
1157     VULNWL(NSC, 5, X86_MODEL_ANY,   NO_SPECULATION),
1158     VULNWL(VORTEX,  5, X86_MODEL_ANY,   NO_SPECULATION),
1159     VULNWL(VORTEX,  6, X86_MODEL_ANY,   NO_SPECULATION),
1160 
1161     /* Intel Family 6 */
1162     VULNWL_INTEL(TIGERLAKE,         NO_MMIO),
1163     VULNWL_INTEL(TIGERLAKE_L,       NO_MMIO),
1164     VULNWL_INTEL(ALDERLAKE,         NO_MMIO),
1165     VULNWL_INTEL(ALDERLAKE_L,       NO_MMIO),
1166 
1167     VULNWL_INTEL(ATOM_SALTWELL,     NO_SPECULATION | NO_ITLB_MULTIHIT),
1168     VULNWL_INTEL(ATOM_SALTWELL_TABLET,  NO_SPECULATION | NO_ITLB_MULTIHIT),
1169     VULNWL_INTEL(ATOM_SALTWELL_MID,     NO_SPECULATION | NO_ITLB_MULTIHIT),
1170     VULNWL_INTEL(ATOM_BONNELL,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1171     VULNWL_INTEL(ATOM_BONNELL_MID,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1172 
1173     VULNWL_INTEL(ATOM_SILVERMONT,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1174     VULNWL_INTEL(ATOM_SILVERMONT_D,     NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1175     VULNWL_INTEL(ATOM_SILVERMONT_MID,   NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1176     VULNWL_INTEL(ATOM_AIRMONT,      NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1177     VULNWL_INTEL(XEON_PHI_KNL,      NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1178     VULNWL_INTEL(XEON_PHI_KNM,      NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1179 
1180     VULNWL_INTEL(CORE_YONAH,        NO_SSB),
1181 
1182     VULNWL_INTEL(ATOM_AIRMONT_MID,      NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1183     VULNWL_INTEL(ATOM_AIRMONT_NP,       NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1184 
1185     VULNWL_INTEL(ATOM_GOLDMONT,     NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1186     VULNWL_INTEL(ATOM_GOLDMONT_D,       NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1187     VULNWL_INTEL(ATOM_GOLDMONT_PLUS,    NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1188 
1189     /*
1190      * Technically, swapgs isn't serializing on AMD (despite it previously
1191      * being documented as such in the APM).  But according to AMD, %gs is
1192      * updated non-speculatively, and the issuing of %gs-relative memory
1193      * operands will be blocked until the %gs update completes, which is
1194      * good enough for our purposes.
1195      */
1196 
1197     VULNWL_INTEL(ATOM_TREMONT,      NO_EIBRS_PBRSB),
1198     VULNWL_INTEL(ATOM_TREMONT_L,        NO_EIBRS_PBRSB),
1199     VULNWL_INTEL(ATOM_TREMONT_D,        NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1200 
1201     /* AMD Family 0xf - 0x12 */
1202     VULNWL_AMD(0x0f,    NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1203     VULNWL_AMD(0x10,    NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1204     VULNWL_AMD(0x11,    NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1205     VULNWL_AMD(0x12,    NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1206 
1207     /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1208     VULNWL_AMD(X86_FAMILY_ANY,  NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1209     VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1210 
1211     /* Zhaoxin Family 7 */
1212     VULNWL(CENTAUR, 7, X86_MODEL_ANY,   NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1213     VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,   NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1214     {}
1215 };
1216 
1217 #define VULNBL(vendor, family, model, blacklist)    \
1218     X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1219 
1220 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)           \
1221     X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,         \
1222                         INTEL_FAM6_##model, steppings, \
1223                         X86_FEATURE_ANY, issues)
1224 
1225 #define VULNBL_AMD(family, blacklist)       \
1226     VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1227 
1228 #define VULNBL_HYGON(family, blacklist)     \
1229     VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1230 
1231 #define SRBDS       BIT(0)
1232 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1233 #define MMIO        BIT(1)
1234 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1235 #define MMIO_SBDS   BIT(2)
1236 /* CPU is affected by RETbleed, speculating where you would not expect it */
1237 #define RETBLEED    BIT(3)
1238 
1239 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1240     VULNBL_INTEL_STEPPINGS(IVYBRIDGE,   X86_STEPPING_ANY,       SRBDS),
1241     VULNBL_INTEL_STEPPINGS(HASWELL,     X86_STEPPING_ANY,       SRBDS),
1242     VULNBL_INTEL_STEPPINGS(HASWELL_L,   X86_STEPPING_ANY,       SRBDS),
1243     VULNBL_INTEL_STEPPINGS(HASWELL_G,   X86_STEPPING_ANY,       SRBDS),
1244     VULNBL_INTEL_STEPPINGS(HASWELL_X,   X86_STEPPING_ANY,       MMIO),
1245     VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY,       MMIO),
1246     VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY,       SRBDS),
1247     VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY,       MMIO),
1248     VULNBL_INTEL_STEPPINGS(BROADWELL,   X86_STEPPING_ANY,       SRBDS),
1249     VULNBL_INTEL_STEPPINGS(SKYLAKE_L,   X86_STEPPING_ANY,       SRBDS | MMIO | RETBLEED),
1250     VULNBL_INTEL_STEPPINGS(SKYLAKE_X,   X86_STEPPING_ANY,       MMIO | RETBLEED),
1251     VULNBL_INTEL_STEPPINGS(SKYLAKE,     X86_STEPPING_ANY,       SRBDS | MMIO | RETBLEED),
1252     VULNBL_INTEL_STEPPINGS(KABYLAKE_L,  X86_STEPPING_ANY,       SRBDS | MMIO | RETBLEED),
1253     VULNBL_INTEL_STEPPINGS(KABYLAKE,    X86_STEPPING_ANY,       SRBDS | MMIO | RETBLEED),
1254     VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,    X86_STEPPING_ANY,       RETBLEED),
1255     VULNBL_INTEL_STEPPINGS(ICELAKE_L,   X86_STEPPING_ANY,       MMIO | MMIO_SBDS | RETBLEED),
1256     VULNBL_INTEL_STEPPINGS(ICELAKE_D,   X86_STEPPING_ANY,       MMIO),
1257     VULNBL_INTEL_STEPPINGS(ICELAKE_X,   X86_STEPPING_ANY,       MMIO),
1258     VULNBL_INTEL_STEPPINGS(COMETLAKE,   X86_STEPPING_ANY,       MMIO | MMIO_SBDS | RETBLEED),
1259     VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0),    MMIO | RETBLEED),
1260     VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY,       MMIO | MMIO_SBDS | RETBLEED),
1261     VULNBL_INTEL_STEPPINGS(LAKEFIELD,   X86_STEPPING_ANY,       MMIO | MMIO_SBDS | RETBLEED),
1262     VULNBL_INTEL_STEPPINGS(ROCKETLAKE,  X86_STEPPING_ANY,       MMIO | RETBLEED),
1263     VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,    X86_STEPPING_ANY,       MMIO | MMIO_SBDS),
1264     VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,  X86_STEPPING_ANY,       MMIO),
1265     VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,  X86_STEPPING_ANY,       MMIO | MMIO_SBDS),
1266 
1267     VULNBL_AMD(0x15, RETBLEED),
1268     VULNBL_AMD(0x16, RETBLEED),
1269     VULNBL_AMD(0x17, RETBLEED),
1270     VULNBL_HYGON(0x18, RETBLEED),
1271     {}
1272 };
1273 
1274 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1275 {
1276     const struct x86_cpu_id *m = x86_match_cpu(table);
1277 
1278     return m && !!(m->driver_data & which);
1279 }
1280 
1281 u64 x86_read_arch_cap_msr(void)
1282 {
1283     u64 ia32_cap = 0;
1284 
1285     if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1286         rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1287 
1288     return ia32_cap;
1289 }
1290 
1291 static bool arch_cap_mmio_immune(u64 ia32_cap)
1292 {
1293     return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1294         ia32_cap & ARCH_CAP_PSDP_NO &&
1295         ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1296 }
1297 
1298 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1299 {
1300     u64 ia32_cap = x86_read_arch_cap_msr();
1301 
1302     /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1303     if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1304         !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1305         setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1306 
1307     if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1308         return;
1309 
1310     setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1311 
1312     if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1313         setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1314 
1315     if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1316         !(ia32_cap & ARCH_CAP_SSB_NO) &&
1317        !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1318         setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1319 
1320     if (ia32_cap & ARCH_CAP_IBRS_ALL)
1321         setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1322 
1323     if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1324         !(ia32_cap & ARCH_CAP_MDS_NO)) {
1325         setup_force_cpu_bug(X86_BUG_MDS);
1326         if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1327             setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1328     }
1329 
1330     if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1331         setup_force_cpu_bug(X86_BUG_SWAPGS);
1332 
1333     /*
1334      * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1335      *  - TSX is supported or
1336      *  - TSX_CTRL is present
1337      *
1338      * TSX_CTRL check is needed for cases when TSX could be disabled before
1339      * the kernel boot e.g. kexec.
1340      * TSX_CTRL check alone is not sufficient for cases when the microcode
1341      * update is not present or running as guest that don't get TSX_CTRL.
1342      */
1343     if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1344         (cpu_has(c, X86_FEATURE_RTM) ||
1345          (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1346         setup_force_cpu_bug(X86_BUG_TAA);
1347 
1348     /*
1349      * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1350      * in the vulnerability blacklist.
1351      *
1352      * Some of the implications and mitigation of Shared Buffers Data
1353      * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1354      * SRBDS.
1355      */
1356     if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1357          cpu_has(c, X86_FEATURE_RDSEED)) &&
1358         cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1359             setup_force_cpu_bug(X86_BUG_SRBDS);
1360 
1361     /*
1362      * Processor MMIO Stale Data bug enumeration
1363      *
1364      * Affected CPU list is generally enough to enumerate the vulnerability,
1365      * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1366      * not want the guest to enumerate the bug.
1367      *
1368      * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1369      * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1370      */
1371     if (!arch_cap_mmio_immune(ia32_cap)) {
1372         if (cpu_matches(cpu_vuln_blacklist, MMIO))
1373             setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1374         else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1375             setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1376     }
1377 
1378     if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1379         if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1380             setup_force_cpu_bug(X86_BUG_RETBLEED);
1381     }
1382 
1383     if (cpu_has(c, X86_FEATURE_IBRS_ENHANCED) &&
1384         !cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1385         !(ia32_cap & ARCH_CAP_PBRSB_NO))
1386         setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1387 
1388     if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1389         return;
1390 
1391     /* Rogue Data Cache Load? No! */
1392     if (ia32_cap & ARCH_CAP_RDCL_NO)
1393         return;
1394 
1395     setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1396 
1397     if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1398         return;
1399 
1400     setup_force_cpu_bug(X86_BUG_L1TF);
1401 }
1402 
1403 /*
1404  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1405  * unfortunately, that's not true in practice because of early VIA
1406  * chips and (more importantly) broken virtualizers that are not easy
1407  * to detect. In the latter case it doesn't even *fail* reliably, so
1408  * probing for it doesn't even work. Disable it completely on 32-bit
1409  * unless we can find a reliable way to detect all the broken cases.
1410  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1411  */
1412 static void detect_nopl(void)
1413 {
1414 #ifdef CONFIG_X86_32
1415     setup_clear_cpu_cap(X86_FEATURE_NOPL);
1416 #else
1417     setup_force_cpu_cap(X86_FEATURE_NOPL);
1418 #endif
1419 }
1420 
1421 /*
1422  * We parse cpu parameters early because fpu__init_system() is executed
1423  * before parse_early_param().
1424  */
1425 static void __init cpu_parse_early_param(void)
1426 {
1427     char arg[128];
1428     char *argptr = arg, *opt;
1429     int arglen, taint = 0;
1430 
1431 #ifdef CONFIG_X86_32
1432     if (cmdline_find_option_bool(boot_command_line, "no387"))
1433 #ifdef CONFIG_MATH_EMULATION
1434         setup_clear_cpu_cap(X86_FEATURE_FPU);
1435 #else
1436         pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1437 #endif
1438 
1439     if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1440         setup_clear_cpu_cap(X86_FEATURE_FXSR);
1441 #endif
1442 
1443     if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1444         setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1445 
1446     if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1447         setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1448 
1449     if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1450         setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1451 
1452     arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1453     if (arglen <= 0)
1454         return;
1455 
1456     pr_info("Clearing CPUID bits:");
1457 
1458     while (argptr) {
1459         bool found __maybe_unused = false;
1460         unsigned int bit;
1461 
1462         opt = strsep(&argptr, ",");
1463 
1464         /*
1465          * Handle naked numbers first for feature flags which don't
1466          * have names.
1467          */
1468         if (!kstrtouint(opt, 10, &bit)) {
1469             if (bit < NCAPINTS * 32) {
1470 
1471 #ifdef CONFIG_X86_FEATURE_NAMES
1472                 /* empty-string, i.e., ""-defined feature flags */
1473                 if (!x86_cap_flags[bit])
1474                     pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1475                 else
1476 #endif
1477                     pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1478 
1479                 setup_clear_cpu_cap(bit);
1480                 taint++;
1481             }
1482             /*
1483              * The assumption is that there are no feature names with only
1484              * numbers in the name thus go to the next argument.
1485              */
1486             continue;
1487         }
1488 
1489 #ifdef CONFIG_X86_FEATURE_NAMES
1490         for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1491             if (!x86_cap_flag(bit))
1492                 continue;
1493 
1494             if (strcmp(x86_cap_flag(bit), opt))
1495                 continue;
1496 
1497             pr_cont(" %s", opt);
1498             setup_clear_cpu_cap(bit);
1499             taint++;
1500             found = true;
1501             break;
1502         }
1503 
1504         if (!found)
1505             pr_cont(" (unknown: %s)", opt);
1506 #endif
1507     }
1508     pr_cont("\n");
1509 
1510     if (taint)
1511         add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1512 }
1513 
1514 /*
1515  * Do minimum CPU detection early.
1516  * Fields really needed: vendor, cpuid_level, family, model, mask,
1517  * cache alignment.
1518  * The others are not touched to avoid unwanted side effects.
1519  *
1520  * WARNING: this function is only called on the boot CPU.  Don't add code
1521  * here that is supposed to run on all CPUs.
1522  */
1523 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1524 {
1525 #ifdef CONFIG_X86_64
1526     c->x86_clflush_size = 64;
1527     c->x86_phys_bits = 36;
1528     c->x86_virt_bits = 48;
1529 #else
1530     c->x86_clflush_size = 32;
1531     c->x86_phys_bits = 32;
1532     c->x86_virt_bits = 32;
1533 #endif
1534     c->x86_cache_alignment = c->x86_clflush_size;
1535 
1536     memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1537     c->extended_cpuid_level = 0;
1538 
1539     if (!have_cpuid_p())
1540         identify_cpu_without_cpuid(c);
1541 
1542     /* cyrix could have cpuid enabled via c_identify()*/
1543     if (have_cpuid_p()) {
1544         cpu_detect(c);
1545         get_cpu_vendor(c);
1546         get_cpu_cap(c);
1547         get_cpu_address_sizes(c);
1548         setup_force_cpu_cap(X86_FEATURE_CPUID);
1549         cpu_parse_early_param();
1550 
1551         if (this_cpu->c_early_init)
1552             this_cpu->c_early_init(c);
1553 
1554         c->cpu_index = 0;
1555         filter_cpuid_features(c, false);
1556 
1557         if (this_cpu->c_bsp_init)
1558             this_cpu->c_bsp_init(c);
1559     } else {
1560         setup_clear_cpu_cap(X86_FEATURE_CPUID);
1561     }
1562 
1563     setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1564 
1565     cpu_set_bug_bits(c);
1566 
1567     sld_setup(c);
1568 
1569     fpu__init_system(c);
1570 
1571     init_sigframe_size();
1572 
1573 #ifdef CONFIG_X86_32
1574     /*
1575      * Regardless of whether PCID is enumerated, the SDM says
1576      * that it can't be enabled in 32-bit mode.
1577      */
1578     setup_clear_cpu_cap(X86_FEATURE_PCID);
1579 #endif
1580 
1581     /*
1582      * Later in the boot process pgtable_l5_enabled() relies on
1583      * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1584      * enabled by this point we need to clear the feature bit to avoid
1585      * false-positives at the later stage.
1586      *
1587      * pgtable_l5_enabled() can be false here for several reasons:
1588      *  - 5-level paging is disabled compile-time;
1589      *  - it's 32-bit kernel;
1590      *  - machine doesn't support 5-level paging;
1591      *  - user specified 'no5lvl' in kernel command line.
1592      */
1593     if (!pgtable_l5_enabled())
1594         setup_clear_cpu_cap(X86_FEATURE_LA57);
1595 
1596     detect_nopl();
1597 }
1598 
1599 void __init early_cpu_init(void)
1600 {
1601     const struct cpu_dev *const *cdev;
1602     int count = 0;
1603 
1604 #ifdef CONFIG_PROCESSOR_SELECT
1605     pr_info("KERNEL supported cpus:\n");
1606 #endif
1607 
1608     for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1609         const struct cpu_dev *cpudev = *cdev;
1610 
1611         if (count >= X86_VENDOR_NUM)
1612             break;
1613         cpu_devs[count] = cpudev;
1614         count++;
1615 
1616 #ifdef CONFIG_PROCESSOR_SELECT
1617         {
1618             unsigned int j;
1619 
1620             for (j = 0; j < 2; j++) {
1621                 if (!cpudev->c_ident[j])
1622                     continue;
1623                 pr_info("  %s %s\n", cpudev->c_vendor,
1624                     cpudev->c_ident[j]);
1625             }
1626         }
1627 #endif
1628     }
1629     early_identify_cpu(&boot_cpu_data);
1630 }
1631 
1632 static bool detect_null_seg_behavior(void)
1633 {
1634     /*
1635      * Empirically, writing zero to a segment selector on AMD does
1636      * not clear the base, whereas writing zero to a segment
1637      * selector on Intel does clear the base.  Intel's behavior
1638      * allows slightly faster context switches in the common case
1639      * where GS is unused by the prev and next threads.
1640      *
1641      * Since neither vendor documents this anywhere that I can see,
1642      * detect it directly instead of hard-coding the choice by
1643      * vendor.
1644      *
1645      * I've designated AMD's behavior as the "bug" because it's
1646      * counterintuitive and less friendly.
1647      */
1648 
1649     unsigned long old_base, tmp;
1650     rdmsrl(MSR_FS_BASE, old_base);
1651     wrmsrl(MSR_FS_BASE, 1);
1652     loadsegment(fs, 0);
1653     rdmsrl(MSR_FS_BASE, tmp);
1654     wrmsrl(MSR_FS_BASE, old_base);
1655     return tmp == 0;
1656 }
1657 
1658 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1659 {
1660     /* BUG_NULL_SEG is only relevant with 64bit userspace */
1661     if (!IS_ENABLED(CONFIG_X86_64))
1662         return;
1663 
1664     /* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1665     if (c->extended_cpuid_level >= 0x80000021 &&
1666         cpuid_eax(0x80000021) & BIT(6))
1667         return;
1668 
1669     /*
1670      * CPUID bit above wasn't set. If this kernel is still running
1671      * as a HV guest, then the HV has decided not to advertize
1672      * that CPUID bit for whatever reason.  For example, one
1673      * member of the migration pool might be vulnerable.  Which
1674      * means, the bug is present: set the BUG flag and return.
1675      */
1676     if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1677         set_cpu_bug(c, X86_BUG_NULL_SEG);
1678         return;
1679     }
1680 
1681     /*
1682      * Zen2 CPUs also have this behaviour, but no CPUID bit.
1683      * 0x18 is the respective family for Hygon.
1684      */
1685     if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1686         detect_null_seg_behavior())
1687         return;
1688 
1689     /* All the remaining ones are affected */
1690     set_cpu_bug(c, X86_BUG_NULL_SEG);
1691 }
1692 
1693 static void generic_identify(struct cpuinfo_x86 *c)
1694 {
1695     c->extended_cpuid_level = 0;
1696 
1697     if (!have_cpuid_p())
1698         identify_cpu_without_cpuid(c);
1699 
1700     /* cyrix could have cpuid enabled via c_identify()*/
1701     if (!have_cpuid_p())
1702         return;
1703 
1704     cpu_detect(c);
1705 
1706     get_cpu_vendor(c);
1707 
1708     get_cpu_cap(c);
1709 
1710     get_cpu_address_sizes(c);
1711 
1712     if (c->cpuid_level >= 0x00000001) {
1713         c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1714 #ifdef CONFIG_X86_32
1715 # ifdef CONFIG_SMP
1716         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1717 # else
1718         c->apicid = c->initial_apicid;
1719 # endif
1720 #endif
1721         c->phys_proc_id = c->initial_apicid;
1722     }
1723 
1724     get_model_name(c); /* Default name */
1725 
1726     /*
1727      * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1728      * systems that run Linux at CPL > 0 may or may not have the
1729      * issue, but, even if they have the issue, there's absolutely
1730      * nothing we can do about it because we can't use the real IRET
1731      * instruction.
1732      *
1733      * NB: For the time being, only 32-bit kernels support
1734      * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1735      * whether to apply espfix using paravirt hooks.  If any
1736      * non-paravirt system ever shows up that does *not* have the
1737      * ESPFIX issue, we can change this.
1738      */
1739 #ifdef CONFIG_X86_32
1740     set_cpu_bug(c, X86_BUG_ESPFIX);
1741 #endif
1742 }
1743 
1744 /*
1745  * Validate that ACPI/mptables have the same information about the
1746  * effective APIC id and update the package map.
1747  */
1748 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1749 {
1750 #ifdef CONFIG_SMP
1751     unsigned int apicid, cpu = smp_processor_id();
1752 
1753     apicid = apic->cpu_present_to_apicid(cpu);
1754 
1755     if (apicid != c->apicid) {
1756         pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1757                cpu, apicid, c->initial_apicid);
1758     }
1759     BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1760     BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1761 #else
1762     c->logical_proc_id = 0;
1763 #endif
1764 }
1765 
1766 /*
1767  * This does the hard work of actually picking apart the CPU stuff...
1768  */
1769 static void identify_cpu(struct cpuinfo_x86 *c)
1770 {
1771     int i;
1772 
1773     c->loops_per_jiffy = loops_per_jiffy;
1774     c->x86_cache_size = 0;
1775     c->x86_vendor = X86_VENDOR_UNKNOWN;
1776     c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1777     c->x86_vendor_id[0] = '\0'; /* Unset */
1778     c->x86_model_id[0] = '\0';  /* Unset */
1779     c->x86_max_cores = 1;
1780     c->x86_coreid_bits = 0;
1781     c->cu_id = 0xff;
1782 #ifdef CONFIG_X86_64
1783     c->x86_clflush_size = 64;
1784     c->x86_phys_bits = 36;
1785     c->x86_virt_bits = 48;
1786 #else
1787     c->cpuid_level = -1;    /* CPUID not detected */
1788     c->x86_clflush_size = 32;
1789     c->x86_phys_bits = 32;
1790     c->x86_virt_bits = 32;
1791 #endif
1792     c->x86_cache_alignment = c->x86_clflush_size;
1793     memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1794 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1795     memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1796 #endif
1797 
1798     generic_identify(c);
1799 
1800     if (this_cpu->c_identify)
1801         this_cpu->c_identify(c);
1802 
1803     /* Clear/Set all flags overridden by options, after probe */
1804     apply_forced_caps(c);
1805 
1806 #ifdef CONFIG_X86_64
1807     c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1808 #endif
1809 
1810     /*
1811      * Vendor-specific initialization.  In this section we
1812      * canonicalize the feature flags, meaning if there are
1813      * features a certain CPU supports which CPUID doesn't
1814      * tell us, CPUID claiming incorrect flags, or other bugs,
1815      * we handle them here.
1816      *
1817      * At the end of this section, c->x86_capability better
1818      * indicate the features this CPU genuinely supports!
1819      */
1820     if (this_cpu->c_init)
1821         this_cpu->c_init(c);
1822 
1823     /* Disable the PN if appropriate */
1824     squash_the_stupid_serial_number(c);
1825 
1826     /* Set up SMEP/SMAP/UMIP */
1827     setup_smep(c);
1828     setup_smap(c);
1829     setup_umip(c);
1830 
1831     /* Enable FSGSBASE instructions if available. */
1832     if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1833         cr4_set_bits(X86_CR4_FSGSBASE);
1834         elf_hwcap2 |= HWCAP2_FSGSBASE;
1835     }
1836 
1837     /*
1838      * The vendor-specific functions might have changed features.
1839      * Now we do "generic changes."
1840      */
1841 
1842     /* Filter out anything that depends on CPUID levels we don't have */
1843     filter_cpuid_features(c, true);
1844 
1845     /* If the model name is still unset, do table lookup. */
1846     if (!c->x86_model_id[0]) {
1847         const char *p;
1848         p = table_lookup_model(c);
1849         if (p)
1850             strcpy(c->x86_model_id, p);
1851         else
1852             /* Last resort... */
1853             sprintf(c->x86_model_id, "%02x/%02x",
1854                 c->x86, c->x86_model);
1855     }
1856 
1857 #ifdef CONFIG_X86_64
1858     detect_ht(c);
1859 #endif
1860 
1861     x86_init_rdrand(c);
1862     setup_pku(c);
1863     setup_cet(c);
1864 
1865     /*
1866      * Clear/Set all flags overridden by options, need do it
1867      * before following smp all cpus cap AND.
1868      */
1869     apply_forced_caps(c);
1870 
1871     /*
1872      * On SMP, boot_cpu_data holds the common feature set between
1873      * all CPUs; so make sure that we indicate which features are
1874      * common between the CPUs.  The first time this routine gets
1875      * executed, c == &boot_cpu_data.
1876      */
1877     if (c != &boot_cpu_data) {
1878         /* AND the already accumulated flags with these */
1879         for (i = 0; i < NCAPINTS; i++)
1880             boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1881 
1882         /* OR, i.e. replicate the bug flags */
1883         for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1884             c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1885     }
1886 
1887     ppin_init(c);
1888 
1889     /* Init Machine Check Exception if available. */
1890     mcheck_cpu_init(c);
1891 
1892     select_idle_routine(c);
1893 
1894 #ifdef CONFIG_NUMA
1895     numa_add_cpu(smp_processor_id());
1896 #endif
1897 }
1898 
1899 /*
1900  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1901  * on 32-bit kernels:
1902  */
1903 #ifdef CONFIG_X86_32
1904 void enable_sep_cpu(void)
1905 {
1906     struct tss_struct *tss;
1907     int cpu;
1908 
1909     if (!boot_cpu_has(X86_FEATURE_SEP))
1910         return;
1911 
1912     cpu = get_cpu();
1913     tss = &per_cpu(cpu_tss_rw, cpu);
1914 
1915     /*
1916      * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1917      * see the big comment in struct x86_hw_tss's definition.
1918      */
1919 
1920     tss->x86_tss.ss1 = __KERNEL_CS;
1921     wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1922     wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1923     wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1924 
1925     put_cpu();
1926 }
1927 #endif
1928 
1929 void __init identify_boot_cpu(void)
1930 {
1931     identify_cpu(&boot_cpu_data);
1932     if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1933         pr_info("CET detected: Indirect Branch Tracking enabled\n");
1934 #ifdef CONFIG_X86_32
1935     sysenter_setup();
1936     enable_sep_cpu();
1937 #endif
1938     cpu_detect_tlb(&boot_cpu_data);
1939     setup_cr_pinning();
1940 
1941     tsx_init();
1942 }
1943 
1944 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1945 {
1946     BUG_ON(c == &boot_cpu_data);
1947     identify_cpu(c);
1948 #ifdef CONFIG_X86_32
1949     enable_sep_cpu();
1950 #endif
1951     mtrr_ap_init();
1952     validate_apic_and_package_id(c);
1953     x86_spec_ctrl_setup_ap();
1954     update_srbds_msr();
1955 
1956     tsx_ap_init();
1957 }
1958 
1959 void print_cpu_info(struct cpuinfo_x86 *c)
1960 {
1961     const char *vendor = NULL;
1962 
1963     if (c->x86_vendor < X86_VENDOR_NUM) {
1964         vendor = this_cpu->c_vendor;
1965     } else {
1966         if (c->cpuid_level >= 0)
1967             vendor = c->x86_vendor_id;
1968     }
1969 
1970     if (vendor && !strstr(c->x86_model_id, vendor))
1971         pr_cont("%s ", vendor);
1972 
1973     if (c->x86_model_id[0])
1974         pr_cont("%s", c->x86_model_id);
1975     else
1976         pr_cont("%d86", c->x86);
1977 
1978     pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1979 
1980     if (c->x86_stepping || c->cpuid_level >= 0)
1981         pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1982     else
1983         pr_cont(")\n");
1984 }
1985 
1986 /*
1987  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1988  * function prevents it from becoming an environment variable for init.
1989  */
1990 static __init int setup_clearcpuid(char *arg)
1991 {
1992     return 1;
1993 }
1994 __setup("clearcpuid=", setup_clearcpuid);
1995 
1996 #ifdef CONFIG_X86_64
1997 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1998              fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1999 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2000 
2001 /*
2002  * The following percpu variables are hot.  Align current_task to
2003  * cacheline size such that they fall in the same cacheline.
2004  */
2005 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
2006     &init_task;
2007 EXPORT_PER_CPU_SYMBOL(current_task);
2008 
2009 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
2010 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
2011 
2012 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
2013 EXPORT_PER_CPU_SYMBOL(__preempt_count);
2014 
2015 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
2016 
2017 static void wrmsrl_cstar(unsigned long val)
2018 {
2019     /*
2020      * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2021      * is so far ignored by the CPU, but raises a #VE trap in a TDX
2022      * guest. Avoid the pointless write on all Intel CPUs.
2023      */
2024     if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2025         wrmsrl(MSR_CSTAR, val);
2026 }
2027 
2028 /* May not be marked __init: used by software suspend */
2029 void syscall_init(void)
2030 {
2031     wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2032     wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2033 
2034 #ifdef CONFIG_IA32_EMULATION
2035     wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2036     /*
2037      * This only works on Intel CPUs.
2038      * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2039      * This does not cause SYSENTER to jump to the wrong location, because
2040      * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2041      */
2042     wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2043     wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2044             (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2045     wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2046 #else
2047     wrmsrl_cstar((unsigned long)ignore_sysret);
2048     wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2049     wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2050     wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2051 #endif
2052 
2053     /*
2054      * Flags to clear on syscall; clear as much as possible
2055      * to minimize user space-kernel interference.
2056      */
2057     wrmsrl(MSR_SYSCALL_MASK,
2058            X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2059            X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2060            X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2061            X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2062            X86_EFLAGS_AC|X86_EFLAGS_ID);
2063 }
2064 
2065 #else   /* CONFIG_X86_64 */
2066 
2067 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
2068 EXPORT_PER_CPU_SYMBOL(current_task);
2069 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
2070 EXPORT_PER_CPU_SYMBOL(__preempt_count);
2071 
2072 /*
2073  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
2074  * the top of the kernel stack.  Use an extra percpu variable to track the
2075  * top of the kernel stack directly.
2076  */
2077 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
2078     (unsigned long)&init_thread_union + THREAD_SIZE;
2079 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
2080 
2081 #ifdef CONFIG_STACKPROTECTOR
2082 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2083 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2084 #endif
2085 
2086 #endif  /* CONFIG_X86_64 */
2087 
2088 /*
2089  * Clear all 6 debug registers:
2090  */
2091 static void clear_all_debug_regs(void)
2092 {
2093     int i;
2094 
2095     for (i = 0; i < 8; i++) {
2096         /* Ignore db4, db5 */
2097         if ((i == 4) || (i == 5))
2098             continue;
2099 
2100         set_debugreg(0, i);
2101     }
2102 }
2103 
2104 #ifdef CONFIG_KGDB
2105 /*
2106  * Restore debug regs if using kgdbwait and you have a kernel debugger
2107  * connection established.
2108  */
2109 static void dbg_restore_debug_regs(void)
2110 {
2111     if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2112         arch_kgdb_ops.correct_hw_break();
2113 }
2114 #else /* ! CONFIG_KGDB */
2115 #define dbg_restore_debug_regs()
2116 #endif /* ! CONFIG_KGDB */
2117 
2118 static void wait_for_master_cpu(int cpu)
2119 {
2120 #ifdef CONFIG_SMP
2121     /*
2122      * wait for ACK from master CPU before continuing
2123      * with AP initialization
2124      */
2125     WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
2126     while (!cpumask_test_cpu(cpu, cpu_callout_mask))
2127         cpu_relax();
2128 #endif
2129 }
2130 
2131 #ifdef CONFIG_X86_64
2132 static inline void setup_getcpu(int cpu)
2133 {
2134     unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2135     struct desc_struct d = { };
2136 
2137     if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2138         wrmsr(MSR_TSC_AUX, cpudata, 0);
2139 
2140     /* Store CPU and node number in limit. */
2141     d.limit0 = cpudata;
2142     d.limit1 = cpudata >> 16;
2143 
2144     d.type = 5;     /* RO data, expand down, accessed */
2145     d.dpl = 3;      /* Visible to user code */
2146     d.s = 1;        /* Not a system segment */
2147     d.p = 1;        /* Present */
2148     d.d = 1;        /* 32-bit */
2149 
2150     write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2151 }
2152 
2153 static inline void ucode_cpu_init(int cpu)
2154 {
2155     if (cpu)
2156         load_ucode_ap();
2157 }
2158 
2159 static inline void tss_setup_ist(struct tss_struct *tss)
2160 {
2161     /* Set up the per-CPU TSS IST stacks */
2162     tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2163     tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2164     tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2165     tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2166     /* Only mapped when SEV-ES is active */
2167     tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2168 }
2169 
2170 #else /* CONFIG_X86_64 */
2171 
2172 static inline void setup_getcpu(int cpu) { }
2173 
2174 static inline void ucode_cpu_init(int cpu)
2175 {
2176     show_ucode_info_early();
2177 }
2178 
2179 static inline void tss_setup_ist(struct tss_struct *tss) { }
2180 
2181 #endif /* !CONFIG_X86_64 */
2182 
2183 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2184 {
2185     tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2186 
2187 #ifdef CONFIG_X86_IOPL_IOPERM
2188     tss->io_bitmap.prev_max = 0;
2189     tss->io_bitmap.prev_sequence = 0;
2190     memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2191     /*
2192      * Invalidate the extra array entry past the end of the all
2193      * permission bitmap as required by the hardware.
2194      */
2195     tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2196 #endif
2197 }
2198 
2199 /*
2200  * Setup everything needed to handle exceptions from the IDT, including the IST
2201  * exceptions which use paranoid_entry().
2202  */
2203 void cpu_init_exception_handling(void)
2204 {
2205     struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2206     int cpu = raw_smp_processor_id();
2207 
2208     /* paranoid_entry() gets the CPU number from the GDT */
2209     setup_getcpu(cpu);
2210 
2211     /* IST vectors need TSS to be set up. */
2212     tss_setup_ist(tss);
2213     tss_setup_io_bitmap(tss);
2214     set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2215 
2216     load_TR_desc();
2217 
2218     /* GHCB needs to be setup to handle #VC. */
2219     setup_ghcb();
2220 
2221     /* Finally load the IDT */
2222     load_current_idt();
2223 }
2224 
2225 /*
2226  * cpu_init() initializes state that is per-CPU. Some data is already
2227  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2228  * reload it nevertheless, this function acts as a 'CPU state barrier',
2229  * nothing should get across.
2230  */
2231 void cpu_init(void)
2232 {
2233     struct task_struct *cur = current;
2234     int cpu = raw_smp_processor_id();
2235 
2236     wait_for_master_cpu(cpu);
2237 
2238     ucode_cpu_init(cpu);
2239 
2240 #ifdef CONFIG_NUMA
2241     if (this_cpu_read(numa_node) == 0 &&
2242         early_cpu_to_node(cpu) != NUMA_NO_NODE)
2243         set_numa_node(early_cpu_to_node(cpu));
2244 #endif
2245     pr_debug("Initializing CPU#%d\n", cpu);
2246 
2247     if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2248         boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2249         cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2250 
2251     /*
2252      * Initialize the per-CPU GDT with the boot GDT,
2253      * and set up the GDT descriptor:
2254      */
2255     switch_to_new_gdt(cpu);
2256 
2257     if (IS_ENABLED(CONFIG_X86_64)) {
2258         loadsegment(fs, 0);
2259         memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2260         syscall_init();
2261 
2262         wrmsrl(MSR_FS_BASE, 0);
2263         wrmsrl(MSR_KERNEL_GS_BASE, 0);
2264         barrier();
2265 
2266         x2apic_setup();
2267     }
2268 
2269     mmgrab(&init_mm);
2270     cur->active_mm = &init_mm;
2271     BUG_ON(cur->mm);
2272     initialize_tlbstate_and_flush();
2273     enter_lazy_tlb(&init_mm, cur);
2274 
2275     /*
2276      * sp0 points to the entry trampoline stack regardless of what task
2277      * is running.
2278      */
2279     load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2280 
2281     load_mm_ldt(&init_mm);
2282 
2283     clear_all_debug_regs();
2284     dbg_restore_debug_regs();
2285 
2286     doublefault_init_cpu_tss();
2287 
2288     fpu__init_cpu();
2289 
2290     if (is_uv_system())
2291         uv_cpu_init();
2292 
2293     load_fixmap_gdt(cpu);
2294 }
2295 
2296 #ifdef CONFIG_SMP
2297 void cpu_init_secondary(void)
2298 {
2299     /*
2300      * Relies on the BP having set-up the IDT tables, which are loaded
2301      * on this CPU in cpu_init_exception_handling().
2302      */
2303     cpu_init_exception_handling();
2304     cpu_init();
2305 }
2306 #endif
2307 
2308 #ifdef CONFIG_MICROCODE_LATE_LOADING
2309 /*
2310  * The microcode loader calls this upon late microcode load to recheck features,
2311  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2312  * hotplug lock.
2313  */
2314 void microcode_check(void)
2315 {
2316     struct cpuinfo_x86 info;
2317 
2318     perf_check_microcode();
2319 
2320     /* Reload CPUID max function as it might've changed. */
2321     info.cpuid_level = cpuid_eax(0);
2322 
2323     /*
2324      * Copy all capability leafs to pick up the synthetic ones so that
2325      * memcmp() below doesn't fail on that. The ones coming from CPUID will
2326      * get overwritten in get_cpu_cap().
2327      */
2328     memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2329 
2330     get_cpu_cap(&info);
2331 
2332     if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2333         return;
2334 
2335     pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2336     pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2337 }
2338 #endif
2339 
2340 /*
2341  * Invoked from core CPU hotplug code after hotplug operations
2342  */
2343 void arch_smt_update(void)
2344 {
2345     /* Handle the speculative execution misfeatures */
2346     cpu_bugs_smt_update();
2347     /* Check whether IPI broadcasting can be enabled */
2348     apic_smt_update();
2349 }