Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  Local APIC handling, local APIC timers
0004  *
0005  *  (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
0006  *
0007  *  Fixes
0008  *  Maciej W. Rozycki   :   Bits for genuine 82489DX APICs;
0009  *                  thanks to Eric Gilmore
0010  *                  and Rolf G. Tews
0011  *                  for testing these extensively.
0012  *  Maciej W. Rozycki   :   Various updates and fixes.
0013  *  Mikael Pettersson   :   Power Management for UP-APIC.
0014  *  Pavel Machek and
0015  *  Mikael Pettersson   :   PM converted to driver model.
0016  */
0017 
0018 #include <linux/perf_event.h>
0019 #include <linux/kernel_stat.h>
0020 #include <linux/mc146818rtc.h>
0021 #include <linux/acpi_pmtmr.h>
0022 #include <linux/clockchips.h>
0023 #include <linux/interrupt.h>
0024 #include <linux/memblock.h>
0025 #include <linux/ftrace.h>
0026 #include <linux/ioport.h>
0027 #include <linux/export.h>
0028 #include <linux/syscore_ops.h>
0029 #include <linux/delay.h>
0030 #include <linux/timex.h>
0031 #include <linux/i8253.h>
0032 #include <linux/dmar.h>
0033 #include <linux/init.h>
0034 #include <linux/cpu.h>
0035 #include <linux/dmi.h>
0036 #include <linux/smp.h>
0037 #include <linux/mm.h>
0038 
0039 #include <asm/trace/irq_vectors.h>
0040 #include <asm/irq_remapping.h>
0041 #include <asm/pc-conf-reg.h>
0042 #include <asm/perf_event.h>
0043 #include <asm/x86_init.h>
0044 #include <linux/atomic.h>
0045 #include <asm/barrier.h>
0046 #include <asm/mpspec.h>
0047 #include <asm/i8259.h>
0048 #include <asm/proto.h>
0049 #include <asm/traps.h>
0050 #include <asm/apic.h>
0051 #include <asm/acpi.h>
0052 #include <asm/io_apic.h>
0053 #include <asm/desc.h>
0054 #include <asm/hpet.h>
0055 #include <asm/mtrr.h>
0056 #include <asm/time.h>
0057 #include <asm/smp.h>
0058 #include <asm/mce.h>
0059 #include <asm/tsc.h>
0060 #include <asm/hypervisor.h>
0061 #include <asm/cpu_device_id.h>
0062 #include <asm/intel-family.h>
0063 #include <asm/irq_regs.h>
0064 
0065 unsigned int num_processors;
0066 
0067 unsigned disabled_cpus;
0068 
0069 /* Processor that is doing the boot up */
0070 unsigned int boot_cpu_physical_apicid __ro_after_init = -1U;
0071 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
0072 
0073 u8 boot_cpu_apic_version __ro_after_init;
0074 
0075 /*
0076  * The highest APIC ID seen during enumeration.
0077  */
0078 static unsigned int max_physical_apicid;
0079 
0080 /*
0081  * Bitmask of physically existing CPUs:
0082  */
0083 physid_mask_t phys_cpu_present_map;
0084 
0085 /*
0086  * Processor to be disabled specified by kernel parameter
0087  * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to
0088  * avoid undefined behaviour caused by sending INIT from AP to BSP.
0089  */
0090 static unsigned int disabled_cpu_apicid __ro_after_init = BAD_APICID;
0091 
0092 /*
0093  * This variable controls which CPUs receive external NMIs.  By default,
0094  * external NMIs are delivered only to the BSP.
0095  */
0096 static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP;
0097 
0098 /*
0099  * Hypervisor supports 15 bits of APIC ID in MSI Extended Destination ID
0100  */
0101 static bool virt_ext_dest_id __ro_after_init;
0102 
0103 /*
0104  * Map cpu index to physical APIC ID
0105  */
0106 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID);
0107 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID);
0108 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX);
0109 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid);
0110 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
0111 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid);
0112 
0113 #ifdef CONFIG_X86_32
0114 
0115 /*
0116  * On x86_32, the mapping between cpu and logical apicid may vary
0117  * depending on apic in use.  The following early percpu variable is
0118  * used for the mapping.  This is where the behaviors of x86_64 and 32
0119  * actually diverge.  Let's keep it ugly for now.
0120  */
0121 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID);
0122 
0123 /* Local APIC was disabled by the BIOS and enabled by the kernel */
0124 static int enabled_via_apicbase __ro_after_init;
0125 
0126 /*
0127  * Handle interrupt mode configuration register (IMCR).
0128  * This register controls whether the interrupt signals
0129  * that reach the BSP come from the master PIC or from the
0130  * local APIC. Before entering Symmetric I/O Mode, either
0131  * the BIOS or the operating system must switch out of
0132  * PIC Mode by changing the IMCR.
0133  */
0134 static inline void imcr_pic_to_apic(void)
0135 {
0136     /* NMI and 8259 INTR go through APIC */
0137     pc_conf_set(PC_CONF_MPS_IMCR, 0x01);
0138 }
0139 
0140 static inline void imcr_apic_to_pic(void)
0141 {
0142     /* NMI and 8259 INTR go directly to BSP */
0143     pc_conf_set(PC_CONF_MPS_IMCR, 0x00);
0144 }
0145 #endif
0146 
0147 /*
0148  * Knob to control our willingness to enable the local APIC.
0149  *
0150  * +1=force-enable
0151  */
0152 static int force_enable_local_apic __initdata;
0153 
0154 /*
0155  * APIC command line parameters
0156  */
0157 static int __init parse_lapic(char *arg)
0158 {
0159     if (IS_ENABLED(CONFIG_X86_32) && !arg)
0160         force_enable_local_apic = 1;
0161     else if (arg && !strncmp(arg, "notscdeadline", 13))
0162         setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
0163     return 0;
0164 }
0165 early_param("lapic", parse_lapic);
0166 
0167 #ifdef CONFIG_X86_64
0168 static int apic_calibrate_pmtmr __initdata;
0169 static __init int setup_apicpmtimer(char *s)
0170 {
0171     apic_calibrate_pmtmr = 1;
0172     notsc_setup(NULL);
0173     return 1;
0174 }
0175 __setup("apicpmtimer", setup_apicpmtimer);
0176 #endif
0177 
0178 unsigned long mp_lapic_addr __ro_after_init;
0179 int disable_apic __ro_after_init;
0180 /* Disable local APIC timer from the kernel commandline or via dmi quirk */
0181 static int disable_apic_timer __initdata;
0182 /* Local APIC timer works in C2 */
0183 int local_apic_timer_c2_ok __ro_after_init;
0184 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
0185 
0186 /*
0187  * Debug level, exported for io_apic.c
0188  */
0189 int apic_verbosity __ro_after_init;
0190 
0191 int pic_mode __ro_after_init;
0192 
0193 /* Have we found an MP table */
0194 int smp_found_config __ro_after_init;
0195 
0196 static struct resource lapic_resource = {
0197     .name = "Local APIC",
0198     .flags = IORESOURCE_MEM | IORESOURCE_BUSY,
0199 };
0200 
0201 unsigned int lapic_timer_period = 0;
0202 
0203 static void apic_pm_activate(void);
0204 
0205 static unsigned long apic_phys __ro_after_init;
0206 
0207 /*
0208  * Get the LAPIC version
0209  */
0210 static inline int lapic_get_version(void)
0211 {
0212     return GET_APIC_VERSION(apic_read(APIC_LVR));
0213 }
0214 
0215 /*
0216  * Check, if the APIC is integrated or a separate chip
0217  */
0218 static inline int lapic_is_integrated(void)
0219 {
0220     return APIC_INTEGRATED(lapic_get_version());
0221 }
0222 
0223 /*
0224  * Check, whether this is a modern or a first generation APIC
0225  */
0226 static int modern_apic(void)
0227 {
0228     /* AMD systems use old APIC versions, so check the CPU */
0229     if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
0230         boot_cpu_data.x86 >= 0xf)
0231         return 1;
0232 
0233     /* Hygon systems use modern APIC */
0234     if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
0235         return 1;
0236 
0237     return lapic_get_version() >= 0x14;
0238 }
0239 
0240 /*
0241  * right after this call apic become NOOP driven
0242  * so apic->write/read doesn't do anything
0243  */
0244 static void __init apic_disable(void)
0245 {
0246     pr_info("APIC: switched to apic NOOP\n");
0247     apic = &apic_noop;
0248 }
0249 
0250 void native_apic_wait_icr_idle(void)
0251 {
0252     while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
0253         cpu_relax();
0254 }
0255 
0256 u32 native_safe_apic_wait_icr_idle(void)
0257 {
0258     u32 send_status;
0259     int timeout;
0260 
0261     timeout = 0;
0262     do {
0263         send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
0264         if (!send_status)
0265             break;
0266         inc_irq_stat(icr_read_retry_count);
0267         udelay(100);
0268     } while (timeout++ < 1000);
0269 
0270     return send_status;
0271 }
0272 
0273 void native_apic_icr_write(u32 low, u32 id)
0274 {
0275     unsigned long flags;
0276 
0277     local_irq_save(flags);
0278     apic_write(APIC_ICR2, SET_XAPIC_DEST_FIELD(id));
0279     apic_write(APIC_ICR, low);
0280     local_irq_restore(flags);
0281 }
0282 
0283 u64 native_apic_icr_read(void)
0284 {
0285     u32 icr1, icr2;
0286 
0287     icr2 = apic_read(APIC_ICR2);
0288     icr1 = apic_read(APIC_ICR);
0289 
0290     return icr1 | ((u64)icr2 << 32);
0291 }
0292 
0293 #ifdef CONFIG_X86_32
0294 /**
0295  * get_physical_broadcast - Get number of physical broadcast IDs
0296  */
0297 int get_physical_broadcast(void)
0298 {
0299     return modern_apic() ? 0xff : 0xf;
0300 }
0301 #endif
0302 
0303 /**
0304  * lapic_get_maxlvt - get the maximum number of local vector table entries
0305  */
0306 int lapic_get_maxlvt(void)
0307 {
0308     /*
0309      * - we always have APIC integrated on 64bit mode
0310      * - 82489DXs do not report # of LVT entries
0311      */
0312     return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2;
0313 }
0314 
0315 /*
0316  * Local APIC timer
0317  */
0318 
0319 /* Clock divisor */
0320 #define APIC_DIVISOR 16
0321 #define TSC_DIVISOR  8
0322 
0323 /* i82489DX specific */
0324 #define     I82489DX_BASE_DIVIDER       (((0x2) << 18))
0325 
0326 /*
0327  * This function sets up the local APIC timer, with a timeout of
0328  * 'clocks' APIC bus clock. During calibration we actually call
0329  * this function twice on the boot CPU, once with a bogus timeout
0330  * value, second time for real. The other (noncalibrating) CPUs
0331  * call this function only once, with the real, calibrated value.
0332  *
0333  * We do reads before writes even if unnecessary, to get around the
0334  * P5 APIC double write bug.
0335  */
0336 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
0337 {
0338     unsigned int lvtt_value, tmp_value;
0339 
0340     lvtt_value = LOCAL_TIMER_VECTOR;
0341     if (!oneshot)
0342         lvtt_value |= APIC_LVT_TIMER_PERIODIC;
0343     else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
0344         lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
0345 
0346     /*
0347      * The i82489DX APIC uses bit 18 and 19 for the base divider.  This
0348      * overlaps with bit 18 on integrated APICs, but is not documented
0349      * in the SDM. No problem though. i82489DX equipped systems do not
0350      * have TSC deadline timer.
0351      */
0352     if (!lapic_is_integrated())
0353         lvtt_value |= I82489DX_BASE_DIVIDER;
0354 
0355     if (!irqen)
0356         lvtt_value |= APIC_LVT_MASKED;
0357 
0358     apic_write(APIC_LVTT, lvtt_value);
0359 
0360     if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
0361         /*
0362          * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
0363          * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
0364          * According to Intel, MFENCE can do the serialization here.
0365          */
0366         asm volatile("mfence" : : : "memory");
0367         return;
0368     }
0369 
0370     /*
0371      * Divide PICLK by 16
0372      */
0373     tmp_value = apic_read(APIC_TDCR);
0374     apic_write(APIC_TDCR,
0375         (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
0376         APIC_TDR_DIV_16);
0377 
0378     if (!oneshot)
0379         apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
0380 }
0381 
0382 /*
0383  * Setup extended LVT, AMD specific
0384  *
0385  * Software should use the LVT offsets the BIOS provides.  The offsets
0386  * are determined by the subsystems using it like those for MCE
0387  * threshold or IBS.  On K8 only offset 0 (APIC500) and MCE interrupts
0388  * are supported. Beginning with family 10h at least 4 offsets are
0389  * available.
0390  *
0391  * Since the offsets must be consistent for all cores, we keep track
0392  * of the LVT offsets in software and reserve the offset for the same
0393  * vector also to be used on other cores. An offset is freed by
0394  * setting the entry to APIC_EILVT_MASKED.
0395  *
0396  * If the BIOS is right, there should be no conflicts. Otherwise a
0397  * "[Firmware Bug]: ..." error message is generated. However, if
0398  * software does not properly determines the offsets, it is not
0399  * necessarily a BIOS bug.
0400  */
0401 
0402 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
0403 
0404 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
0405 {
0406     return (old & APIC_EILVT_MASKED)
0407         || (new == APIC_EILVT_MASKED)
0408         || ((new & ~APIC_EILVT_MASKED) == old);
0409 }
0410 
0411 static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
0412 {
0413     unsigned int rsvd, vector;
0414 
0415     if (offset >= APIC_EILVT_NR_MAX)
0416         return ~0;
0417 
0418     rsvd = atomic_read(&eilvt_offsets[offset]);
0419     do {
0420         vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */
0421         if (vector && !eilvt_entry_is_changeable(vector, new))
0422             /* may not change if vectors are different */
0423             return rsvd;
0424         rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new);
0425     } while (rsvd != new);
0426 
0427     rsvd &= ~APIC_EILVT_MASKED;
0428     if (rsvd && rsvd != vector)
0429         pr_info("LVT offset %d assigned for vector 0x%02x\n",
0430             offset, rsvd);
0431 
0432     return new;
0433 }
0434 
0435 /*
0436  * If mask=1, the LVT entry does not generate interrupts while mask=0
0437  * enables the vector. See also the BKDGs. Must be called with
0438  * preemption disabled.
0439  */
0440 
0441 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
0442 {
0443     unsigned long reg = APIC_EILVTn(offset);
0444     unsigned int new, old, reserved;
0445 
0446     new = (mask << 16) | (msg_type << 8) | vector;
0447     old = apic_read(reg);
0448     reserved = reserve_eilvt_offset(offset, new);
0449 
0450     if (reserved != new) {
0451         pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
0452                "vector 0x%x, but the register is already in use for "
0453                "vector 0x%x on another cpu\n",
0454                smp_processor_id(), reg, offset, new, reserved);
0455         return -EINVAL;
0456     }
0457 
0458     if (!eilvt_entry_is_changeable(old, new)) {
0459         pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
0460                "vector 0x%x, but the register is already in use for "
0461                "vector 0x%x on this cpu\n",
0462                smp_processor_id(), reg, offset, new, old);
0463         return -EBUSY;
0464     }
0465 
0466     apic_write(reg, new);
0467 
0468     return 0;
0469 }
0470 EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
0471 
0472 /*
0473  * Program the next event, relative to now
0474  */
0475 static int lapic_next_event(unsigned long delta,
0476                 struct clock_event_device *evt)
0477 {
0478     apic_write(APIC_TMICT, delta);
0479     return 0;
0480 }
0481 
0482 static int lapic_next_deadline(unsigned long delta,
0483                    struct clock_event_device *evt)
0484 {
0485     u64 tsc;
0486 
0487     /* This MSR is special and need a special fence: */
0488     weak_wrmsr_fence();
0489 
0490     tsc = rdtsc();
0491     wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
0492     return 0;
0493 }
0494 
0495 static int lapic_timer_shutdown(struct clock_event_device *evt)
0496 {
0497     unsigned int v;
0498 
0499     /* Lapic used as dummy for broadcast ? */
0500     if (evt->features & CLOCK_EVT_FEAT_DUMMY)
0501         return 0;
0502 
0503     v = apic_read(APIC_LVTT);
0504     v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
0505     apic_write(APIC_LVTT, v);
0506     apic_write(APIC_TMICT, 0);
0507     return 0;
0508 }
0509 
0510 static inline int
0511 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
0512 {
0513     /* Lapic used as dummy for broadcast ? */
0514     if (evt->features & CLOCK_EVT_FEAT_DUMMY)
0515         return 0;
0516 
0517     __setup_APIC_LVTT(lapic_timer_period, oneshot, 1);
0518     return 0;
0519 }
0520 
0521 static int lapic_timer_set_periodic(struct clock_event_device *evt)
0522 {
0523     return lapic_timer_set_periodic_oneshot(evt, false);
0524 }
0525 
0526 static int lapic_timer_set_oneshot(struct clock_event_device *evt)
0527 {
0528     return lapic_timer_set_periodic_oneshot(evt, true);
0529 }
0530 
0531 /*
0532  * Local APIC timer broadcast function
0533  */
0534 static void lapic_timer_broadcast(const struct cpumask *mask)
0535 {
0536 #ifdef CONFIG_SMP
0537     apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
0538 #endif
0539 }
0540 
0541 
0542 /*
0543  * The local apic timer can be used for any function which is CPU local.
0544  */
0545 static struct clock_event_device lapic_clockevent = {
0546     .name               = "lapic",
0547     .features           = CLOCK_EVT_FEAT_PERIODIC |
0548                       CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
0549                       | CLOCK_EVT_FEAT_DUMMY,
0550     .shift              = 32,
0551     .set_state_shutdown     = lapic_timer_shutdown,
0552     .set_state_periodic     = lapic_timer_set_periodic,
0553     .set_state_oneshot      = lapic_timer_set_oneshot,
0554     .set_state_oneshot_stopped  = lapic_timer_shutdown,
0555     .set_next_event         = lapic_next_event,
0556     .broadcast          = lapic_timer_broadcast,
0557     .rating             = 100,
0558     .irq                = -1,
0559 };
0560 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
0561 
0562 static const struct x86_cpu_id deadline_match[] __initconst = {
0563     X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */
0564     X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */
0565 
0566     X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_X,    0x0b000020),
0567 
0568     X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011),
0569     X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e),
0570     X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c),
0571     X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003),
0572 
0573     X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136),
0574     X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014),
0575     X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0),
0576 
0577     X86_MATCH_INTEL_FAM6_MODEL( HASWELL,        0x22),
0578     X86_MATCH_INTEL_FAM6_MODEL( HASWELL_L,      0x20),
0579     X86_MATCH_INTEL_FAM6_MODEL( HASWELL_G,      0x17),
0580 
0581     X86_MATCH_INTEL_FAM6_MODEL( BROADWELL,      0x25),
0582     X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_G,    0x17),
0583 
0584     X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE_L,      0xb2),
0585     X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE,        0xb2),
0586 
0587     X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE_L,     0x52),
0588     X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE,       0x52),
0589 
0590     {},
0591 };
0592 
0593 static __init bool apic_validate_deadline_timer(void)
0594 {
0595     const struct x86_cpu_id *m;
0596     u32 rev;
0597 
0598     if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
0599         return false;
0600     if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
0601         return true;
0602 
0603     m = x86_match_cpu(deadline_match);
0604     if (!m)
0605         return true;
0606 
0607     rev = (u32)m->driver_data;
0608 
0609     if (boot_cpu_data.microcode >= rev)
0610         return true;
0611 
0612     setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
0613     pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; "
0614            "please update microcode to version: 0x%x (or later)\n", rev);
0615     return false;
0616 }
0617 
0618 /*
0619  * Setup the local APIC timer for this CPU. Copy the initialized values
0620  * of the boot CPU and register the clock event in the framework.
0621  */
0622 static void setup_APIC_timer(void)
0623 {
0624     struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
0625 
0626     if (this_cpu_has(X86_FEATURE_ARAT)) {
0627         lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
0628         /* Make LAPIC timer preferable over percpu HPET */
0629         lapic_clockevent.rating = 150;
0630     }
0631 
0632     memcpy(levt, &lapic_clockevent, sizeof(*levt));
0633     levt->cpumask = cpumask_of(smp_processor_id());
0634 
0635     if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
0636         levt->name = "lapic-deadline";
0637         levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
0638                     CLOCK_EVT_FEAT_DUMMY);
0639         levt->set_next_event = lapic_next_deadline;
0640         clockevents_config_and_register(levt,
0641                         tsc_khz * (1000 / TSC_DIVISOR),
0642                         0xF, ~0UL);
0643     } else
0644         clockevents_register_device(levt);
0645 }
0646 
0647 /*
0648  * Install the updated TSC frequency from recalibration at the TSC
0649  * deadline clockevent devices.
0650  */
0651 static void __lapic_update_tsc_freq(void *info)
0652 {
0653     struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
0654 
0655     if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
0656         return;
0657 
0658     clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
0659 }
0660 
0661 void lapic_update_tsc_freq(void)
0662 {
0663     /*
0664      * The clockevent device's ->mult and ->shift can both be
0665      * changed. In order to avoid races, schedule the frequency
0666      * update code on each CPU.
0667      */
0668     on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
0669 }
0670 
0671 /*
0672  * In this functions we calibrate APIC bus clocks to the external timer.
0673  *
0674  * We want to do the calibration only once since we want to have local timer
0675  * irqs synchronous. CPUs connected by the same APIC bus have the very same bus
0676  * frequency.
0677  *
0678  * This was previously done by reading the PIT/HPET and waiting for a wrap
0679  * around to find out, that a tick has elapsed. I have a box, where the PIT
0680  * readout is broken, so it never gets out of the wait loop again. This was
0681  * also reported by others.
0682  *
0683  * Monitoring the jiffies value is inaccurate and the clockevents
0684  * infrastructure allows us to do a simple substitution of the interrupt
0685  * handler.
0686  *
0687  * The calibration routine also uses the pm_timer when possible, as the PIT
0688  * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
0689  * back to normal later in the boot process).
0690  */
0691 
0692 #define LAPIC_CAL_LOOPS     (HZ/10)
0693 
0694 static __initdata int lapic_cal_loops = -1;
0695 static __initdata long lapic_cal_t1, lapic_cal_t2;
0696 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
0697 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2;
0698 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
0699 
0700 /*
0701  * Temporary interrupt handler and polled calibration function.
0702  */
0703 static void __init lapic_cal_handler(struct clock_event_device *dev)
0704 {
0705     unsigned long long tsc = 0;
0706     long tapic = apic_read(APIC_TMCCT);
0707     unsigned long pm = acpi_pm_read_early();
0708 
0709     if (boot_cpu_has(X86_FEATURE_TSC))
0710         tsc = rdtsc();
0711 
0712     switch (lapic_cal_loops++) {
0713     case 0:
0714         lapic_cal_t1 = tapic;
0715         lapic_cal_tsc1 = tsc;
0716         lapic_cal_pm1 = pm;
0717         lapic_cal_j1 = jiffies;
0718         break;
0719 
0720     case LAPIC_CAL_LOOPS:
0721         lapic_cal_t2 = tapic;
0722         lapic_cal_tsc2 = tsc;
0723         if (pm < lapic_cal_pm1)
0724             pm += ACPI_PM_OVRRUN;
0725         lapic_cal_pm2 = pm;
0726         lapic_cal_j2 = jiffies;
0727         break;
0728     }
0729 }
0730 
0731 static int __init
0732 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc)
0733 {
0734     const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
0735     const long pm_thresh = pm_100ms / 100;
0736     unsigned long mult;
0737     u64 res;
0738 
0739 #ifndef CONFIG_X86_PM_TIMER
0740     return -1;
0741 #endif
0742 
0743     apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm);
0744 
0745     /* Check, if the PM timer is available */
0746     if (!deltapm)
0747         return -1;
0748 
0749     mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
0750 
0751     if (deltapm > (pm_100ms - pm_thresh) &&
0752         deltapm < (pm_100ms + pm_thresh)) {
0753         apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n");
0754         return 0;
0755     }
0756 
0757     res = (((u64)deltapm) *  mult) >> 22;
0758     do_div(res, 1000000);
0759     pr_warn("APIC calibration not consistent "
0760         "with PM-Timer: %ldms instead of 100ms\n", (long)res);
0761 
0762     /* Correct the lapic counter value */
0763     res = (((u64)(*delta)) * pm_100ms);
0764     do_div(res, deltapm);
0765     pr_info("APIC delta adjusted to PM-Timer: "
0766         "%lu (%ld)\n", (unsigned long)res, *delta);
0767     *delta = (long)res;
0768 
0769     /* Correct the tsc counter value */
0770     if (boot_cpu_has(X86_FEATURE_TSC)) {
0771         res = (((u64)(*deltatsc)) * pm_100ms);
0772         do_div(res, deltapm);
0773         apic_printk(APIC_VERBOSE, "TSC delta adjusted to "
0774                       "PM-Timer: %lu (%ld)\n",
0775                     (unsigned long)res, *deltatsc);
0776         *deltatsc = (long)res;
0777     }
0778 
0779     return 0;
0780 }
0781 
0782 static int __init lapic_init_clockevent(void)
0783 {
0784     if (!lapic_timer_period)
0785         return -1;
0786 
0787     /* Calculate the scaled math multiplication factor */
0788     lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR,
0789                     TICK_NSEC, lapic_clockevent.shift);
0790     lapic_clockevent.max_delta_ns =
0791         clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
0792     lapic_clockevent.max_delta_ticks = 0x7FFFFFFF;
0793     lapic_clockevent.min_delta_ns =
0794         clockevent_delta2ns(0xF, &lapic_clockevent);
0795     lapic_clockevent.min_delta_ticks = 0xF;
0796 
0797     return 0;
0798 }
0799 
0800 bool __init apic_needs_pit(void)
0801 {
0802     /*
0803      * If the frequencies are not known, PIT is required for both TSC
0804      * and apic timer calibration.
0805      */
0806     if (!tsc_khz || !cpu_khz)
0807         return true;
0808 
0809     /* Is there an APIC at all or is it disabled? */
0810     if (!boot_cpu_has(X86_FEATURE_APIC) || disable_apic)
0811         return true;
0812 
0813     /*
0814      * If interrupt delivery mode is legacy PIC or virtual wire without
0815      * configuration, the local APIC timer wont be set up. Make sure
0816      * that the PIT is initialized.
0817      */
0818     if (apic_intr_mode == APIC_PIC ||
0819         apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG)
0820         return true;
0821 
0822     /* Virt guests may lack ARAT, but still have DEADLINE */
0823     if (!boot_cpu_has(X86_FEATURE_ARAT))
0824         return true;
0825 
0826     /* Deadline timer is based on TSC so no further PIT action required */
0827     if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
0828         return false;
0829 
0830     /* APIC timer disabled? */
0831     if (disable_apic_timer)
0832         return true;
0833     /*
0834      * The APIC timer frequency is known already, no PIT calibration
0835      * required. If unknown, let the PIT be initialized.
0836      */
0837     return lapic_timer_period == 0;
0838 }
0839 
0840 static int __init calibrate_APIC_clock(void)
0841 {
0842     struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
0843     u64 tsc_perj = 0, tsc_start = 0;
0844     unsigned long jif_start;
0845     unsigned long deltaj;
0846     long delta, deltatsc;
0847     int pm_referenced = 0;
0848 
0849     if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
0850         return 0;
0851 
0852     /*
0853      * Check if lapic timer has already been calibrated by platform
0854      * specific routine, such as tsc calibration code. If so just fill
0855      * in the clockevent structure and return.
0856      */
0857     if (!lapic_init_clockevent()) {
0858         apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n",
0859                 lapic_timer_period);
0860         /*
0861          * Direct calibration methods must have an always running
0862          * local APIC timer, no need for broadcast timer.
0863          */
0864         lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
0865         return 0;
0866     }
0867 
0868     apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n"
0869             "calibrating APIC timer ...\n");
0870 
0871     /*
0872      * There are platforms w/o global clockevent devices. Instead of
0873      * making the calibration conditional on that, use a polling based
0874      * approach everywhere.
0875      */
0876     local_irq_disable();
0877 
0878     /*
0879      * Setup the APIC counter to maximum. There is no way the lapic
0880      * can underflow in the 100ms detection time frame
0881      */
0882     __setup_APIC_LVTT(0xffffffff, 0, 0);
0883 
0884     /*
0885      * Methods to terminate the calibration loop:
0886      *  1) Global clockevent if available (jiffies)
0887      *  2) TSC if available and frequency is known
0888      */
0889     jif_start = READ_ONCE(jiffies);
0890 
0891     if (tsc_khz) {
0892         tsc_start = rdtsc();
0893         tsc_perj = div_u64((u64)tsc_khz * 1000, HZ);
0894     }
0895 
0896     /*
0897      * Enable interrupts so the tick can fire, if a global
0898      * clockevent device is available
0899      */
0900     local_irq_enable();
0901 
0902     while (lapic_cal_loops <= LAPIC_CAL_LOOPS) {
0903         /* Wait for a tick to elapse */
0904         while (1) {
0905             if (tsc_khz) {
0906                 u64 tsc_now = rdtsc();
0907                 if ((tsc_now - tsc_start) >= tsc_perj) {
0908                     tsc_start += tsc_perj;
0909                     break;
0910                 }
0911             } else {
0912                 unsigned long jif_now = READ_ONCE(jiffies);
0913 
0914                 if (time_after(jif_now, jif_start)) {
0915                     jif_start = jif_now;
0916                     break;
0917                 }
0918             }
0919             cpu_relax();
0920         }
0921 
0922         /* Invoke the calibration routine */
0923         local_irq_disable();
0924         lapic_cal_handler(NULL);
0925         local_irq_enable();
0926     }
0927 
0928     local_irq_disable();
0929 
0930     /* Build delta t1-t2 as apic timer counts down */
0931     delta = lapic_cal_t1 - lapic_cal_t2;
0932     apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta);
0933 
0934     deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
0935 
0936     /* we trust the PM based calibration if possible */
0937     pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
0938                     &delta, &deltatsc);
0939 
0940     lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
0941     lapic_init_clockevent();
0942 
0943     apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta);
0944     apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult);
0945     apic_printk(APIC_VERBOSE, "..... calibration result: %u\n",
0946             lapic_timer_period);
0947 
0948     if (boot_cpu_has(X86_FEATURE_TSC)) {
0949         apic_printk(APIC_VERBOSE, "..... CPU clock speed is "
0950                 "%ld.%04ld MHz.\n",
0951                 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ),
0952                 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ));
0953     }
0954 
0955     apic_printk(APIC_VERBOSE, "..... host bus clock speed is "
0956             "%u.%04u MHz.\n",
0957             lapic_timer_period / (1000000 / HZ),
0958             lapic_timer_period % (1000000 / HZ));
0959 
0960     /*
0961      * Do a sanity check on the APIC calibration result
0962      */
0963     if (lapic_timer_period < (1000000 / HZ)) {
0964         local_irq_enable();
0965         pr_warn("APIC frequency too slow, disabling apic timer\n");
0966         return -1;
0967     }
0968 
0969     levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
0970 
0971     /*
0972      * PM timer calibration failed or not turned on so lets try APIC
0973      * timer based calibration, if a global clockevent device is
0974      * available.
0975      */
0976     if (!pm_referenced && global_clock_event) {
0977         apic_printk(APIC_VERBOSE, "... verify APIC timer\n");
0978 
0979         /*
0980          * Setup the apic timer manually
0981          */
0982         levt->event_handler = lapic_cal_handler;
0983         lapic_timer_set_periodic(levt);
0984         lapic_cal_loops = -1;
0985 
0986         /* Let the interrupts run */
0987         local_irq_enable();
0988 
0989         while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
0990             cpu_relax();
0991 
0992         /* Stop the lapic timer */
0993         local_irq_disable();
0994         lapic_timer_shutdown(levt);
0995 
0996         /* Jiffies delta */
0997         deltaj = lapic_cal_j2 - lapic_cal_j1;
0998         apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj);
0999 
1000         /* Check, if the jiffies result is consistent */
1001         if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
1002             apic_printk(APIC_VERBOSE, "... jiffies result ok\n");
1003         else
1004             levt->features |= CLOCK_EVT_FEAT_DUMMY;
1005     }
1006     local_irq_enable();
1007 
1008     if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
1009         pr_warn("APIC timer disabled due to verification failure\n");
1010         return -1;
1011     }
1012 
1013     return 0;
1014 }
1015 
1016 /*
1017  * Setup the boot APIC
1018  *
1019  * Calibrate and verify the result.
1020  */
1021 void __init setup_boot_APIC_clock(void)
1022 {
1023     /*
1024      * The local apic timer can be disabled via the kernel
1025      * commandline or from the CPU detection code. Register the lapic
1026      * timer as a dummy clock event source on SMP systems, so the
1027      * broadcast mechanism is used. On UP systems simply ignore it.
1028      */
1029     if (disable_apic_timer) {
1030         pr_info("Disabling APIC timer\n");
1031         /* No broadcast on UP ! */
1032         if (num_possible_cpus() > 1) {
1033             lapic_clockevent.mult = 1;
1034             setup_APIC_timer();
1035         }
1036         return;
1037     }
1038 
1039     if (calibrate_APIC_clock()) {
1040         /* No broadcast on UP ! */
1041         if (num_possible_cpus() > 1)
1042             setup_APIC_timer();
1043         return;
1044     }
1045 
1046     /*
1047      * If nmi_watchdog is set to IO_APIC, we need the
1048      * PIT/HPET going.  Otherwise register lapic as a dummy
1049      * device.
1050      */
1051     lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
1052 
1053     /* Setup the lapic or request the broadcast */
1054     setup_APIC_timer();
1055     amd_e400_c1e_apic_setup();
1056 }
1057 
1058 void setup_secondary_APIC_clock(void)
1059 {
1060     setup_APIC_timer();
1061     amd_e400_c1e_apic_setup();
1062 }
1063 
1064 /*
1065  * The guts of the apic timer interrupt
1066  */
1067 static void local_apic_timer_interrupt(void)
1068 {
1069     struct clock_event_device *evt = this_cpu_ptr(&lapic_events);
1070 
1071     /*
1072      * Normally we should not be here till LAPIC has been initialized but
1073      * in some cases like kdump, its possible that there is a pending LAPIC
1074      * timer interrupt from previous kernel's context and is delivered in
1075      * new kernel the moment interrupts are enabled.
1076      *
1077      * Interrupts are enabled early and LAPIC is setup much later, hence
1078      * its possible that when we get here evt->event_handler is NULL.
1079      * Check for event_handler being NULL and discard the interrupt as
1080      * spurious.
1081      */
1082     if (!evt->event_handler) {
1083         pr_warn("Spurious LAPIC timer interrupt on cpu %d\n",
1084             smp_processor_id());
1085         /* Switch it off */
1086         lapic_timer_shutdown(evt);
1087         return;
1088     }
1089 
1090     /*
1091      * the NMI deadlock-detector uses this.
1092      */
1093     inc_irq_stat(apic_timer_irqs);
1094 
1095     evt->event_handler(evt);
1096 }
1097 
1098 /*
1099  * Local APIC timer interrupt. This is the most natural way for doing
1100  * local interrupts, but local timer interrupts can be emulated by
1101  * broadcast interrupts too. [in case the hw doesn't support APIC timers]
1102  *
1103  * [ if a single-CPU system runs an SMP kernel then we call the local
1104  *   interrupt as well. Thus we cannot inline the local irq ... ]
1105  */
1106 DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt)
1107 {
1108     struct pt_regs *old_regs = set_irq_regs(regs);
1109 
1110     ack_APIC_irq();
1111     trace_local_timer_entry(LOCAL_TIMER_VECTOR);
1112     local_apic_timer_interrupt();
1113     trace_local_timer_exit(LOCAL_TIMER_VECTOR);
1114 
1115     set_irq_regs(old_regs);
1116 }
1117 
1118 /*
1119  * Local APIC start and shutdown
1120  */
1121 
1122 /**
1123  * clear_local_APIC - shutdown the local APIC
1124  *
1125  * This is called, when a CPU is disabled and before rebooting, so the state of
1126  * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
1127  * leftovers during boot.
1128  */
1129 void clear_local_APIC(void)
1130 {
1131     int maxlvt;
1132     u32 v;
1133 
1134     /* APIC hasn't been mapped yet */
1135     if (!x2apic_mode && !apic_phys)
1136         return;
1137 
1138     maxlvt = lapic_get_maxlvt();
1139     /*
1140      * Masking an LVT entry can trigger a local APIC error
1141      * if the vector is zero. Mask LVTERR first to prevent this.
1142      */
1143     if (maxlvt >= 3) {
1144         v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
1145         apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
1146     }
1147     /*
1148      * Careful: we have to set masks only first to deassert
1149      * any level-triggered sources.
1150      */
1151     v = apic_read(APIC_LVTT);
1152     apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
1153     v = apic_read(APIC_LVT0);
1154     apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1155     v = apic_read(APIC_LVT1);
1156     apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
1157     if (maxlvt >= 4) {
1158         v = apic_read(APIC_LVTPC);
1159         apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
1160     }
1161 
1162     /* lets not touch this if we didn't frob it */
1163 #ifdef CONFIG_X86_THERMAL_VECTOR
1164     if (maxlvt >= 5) {
1165         v = apic_read(APIC_LVTTHMR);
1166         apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
1167     }
1168 #endif
1169 #ifdef CONFIG_X86_MCE_INTEL
1170     if (maxlvt >= 6) {
1171         v = apic_read(APIC_LVTCMCI);
1172         if (!(v & APIC_LVT_MASKED))
1173             apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
1174     }
1175 #endif
1176 
1177     /*
1178      * Clean APIC state for other OSs:
1179      */
1180     apic_write(APIC_LVTT, APIC_LVT_MASKED);
1181     apic_write(APIC_LVT0, APIC_LVT_MASKED);
1182     apic_write(APIC_LVT1, APIC_LVT_MASKED);
1183     if (maxlvt >= 3)
1184         apic_write(APIC_LVTERR, APIC_LVT_MASKED);
1185     if (maxlvt >= 4)
1186         apic_write(APIC_LVTPC, APIC_LVT_MASKED);
1187 
1188     /* Integrated APIC (!82489DX) ? */
1189     if (lapic_is_integrated()) {
1190         if (maxlvt > 3)
1191             /* Clear ESR due to Pentium errata 3AP and 11AP */
1192             apic_write(APIC_ESR, 0);
1193         apic_read(APIC_ESR);
1194     }
1195 }
1196 
1197 /**
1198  * apic_soft_disable - Clears and software disables the local APIC on hotplug
1199  *
1200  * Contrary to disable_local_APIC() this does not touch the enable bit in
1201  * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC
1202  * bus would require a hardware reset as the APIC would lose track of bus
1203  * arbitration. On systems with FSB delivery APICBASE could be disabled,
1204  * but it has to be guaranteed that no interrupt is sent to the APIC while
1205  * in that state and it's not clear from the SDM whether it still responds
1206  * to INIT/SIPI messages. Stay on the safe side and use software disable.
1207  */
1208 void apic_soft_disable(void)
1209 {
1210     u32 value;
1211 
1212     clear_local_APIC();
1213 
1214     /* Soft disable APIC (implies clearing of registers for 82489DX!). */
1215     value = apic_read(APIC_SPIV);
1216     value &= ~APIC_SPIV_APIC_ENABLED;
1217     apic_write(APIC_SPIV, value);
1218 }
1219 
1220 /**
1221  * disable_local_APIC - clear and disable the local APIC
1222  */
1223 void disable_local_APIC(void)
1224 {
1225     /* APIC hasn't been mapped yet */
1226     if (!x2apic_mode && !apic_phys)
1227         return;
1228 
1229     apic_soft_disable();
1230 
1231 #ifdef CONFIG_X86_32
1232     /*
1233      * When LAPIC was disabled by the BIOS and enabled by the kernel,
1234      * restore the disabled state.
1235      */
1236     if (enabled_via_apicbase) {
1237         unsigned int l, h;
1238 
1239         rdmsr(MSR_IA32_APICBASE, l, h);
1240         l &= ~MSR_IA32_APICBASE_ENABLE;
1241         wrmsr(MSR_IA32_APICBASE, l, h);
1242     }
1243 #endif
1244 }
1245 
1246 /*
1247  * If Linux enabled the LAPIC against the BIOS default disable it down before
1248  * re-entering the BIOS on shutdown.  Otherwise the BIOS may get confused and
1249  * not power-off.  Additionally clear all LVT entries before disable_local_APIC
1250  * for the case where Linux didn't enable the LAPIC.
1251  */
1252 void lapic_shutdown(void)
1253 {
1254     unsigned long flags;
1255 
1256     if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1257         return;
1258 
1259     local_irq_save(flags);
1260 
1261 #ifdef CONFIG_X86_32
1262     if (!enabled_via_apicbase)
1263         clear_local_APIC();
1264     else
1265 #endif
1266         disable_local_APIC();
1267 
1268 
1269     local_irq_restore(flags);
1270 }
1271 
1272 /**
1273  * sync_Arb_IDs - synchronize APIC bus arbitration IDs
1274  */
1275 void __init sync_Arb_IDs(void)
1276 {
1277     /*
1278      * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
1279      * needed on AMD.
1280      */
1281     if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1282         return;
1283 
1284     /*
1285      * Wait for idle.
1286      */
1287     apic_wait_icr_idle();
1288 
1289     apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
1290     apic_write(APIC_ICR, APIC_DEST_ALLINC |
1291             APIC_INT_LEVELTRIG | APIC_DM_INIT);
1292 }
1293 
1294 enum apic_intr_mode_id apic_intr_mode __ro_after_init;
1295 
1296 static int __init __apic_intr_mode_select(void)
1297 {
1298     /* Check kernel option */
1299     if (disable_apic) {
1300         pr_info("APIC disabled via kernel command line\n");
1301         return APIC_PIC;
1302     }
1303 
1304     /* Check BIOS */
1305 #ifdef CONFIG_X86_64
1306     /* On 64-bit, the APIC must be integrated, Check local APIC only */
1307     if (!boot_cpu_has(X86_FEATURE_APIC)) {
1308         disable_apic = 1;
1309         pr_info("APIC disabled by BIOS\n");
1310         return APIC_PIC;
1311     }
1312 #else
1313     /* On 32-bit, the APIC may be integrated APIC or 82489DX */
1314 
1315     /* Neither 82489DX nor integrated APIC ? */
1316     if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) {
1317         disable_apic = 1;
1318         return APIC_PIC;
1319     }
1320 
1321     /* If the BIOS pretends there is an integrated APIC ? */
1322     if (!boot_cpu_has(X86_FEATURE_APIC) &&
1323         APIC_INTEGRATED(boot_cpu_apic_version)) {
1324         disable_apic = 1;
1325         pr_err(FW_BUG "Local APIC %d not detected, force emulation\n",
1326                        boot_cpu_physical_apicid);
1327         return APIC_PIC;
1328     }
1329 #endif
1330 
1331     /* Check MP table or ACPI MADT configuration */
1332     if (!smp_found_config) {
1333         disable_ioapic_support();
1334         if (!acpi_lapic) {
1335             pr_info("APIC: ACPI MADT or MP tables are not detected\n");
1336             return APIC_VIRTUAL_WIRE_NO_CONFIG;
1337         }
1338         return APIC_VIRTUAL_WIRE;
1339     }
1340 
1341 #ifdef CONFIG_SMP
1342     /* If SMP should be disabled, then really disable it! */
1343     if (!setup_max_cpus) {
1344         pr_info("APIC: SMP mode deactivated\n");
1345         return APIC_SYMMETRIC_IO_NO_ROUTING;
1346     }
1347 
1348     if (read_apic_id() != boot_cpu_physical_apicid) {
1349         panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1350              read_apic_id(), boot_cpu_physical_apicid);
1351         /* Or can we switch back to PIC here? */
1352     }
1353 #endif
1354 
1355     return APIC_SYMMETRIC_IO;
1356 }
1357 
1358 /* Select the interrupt delivery mode for the BSP */
1359 void __init apic_intr_mode_select(void)
1360 {
1361     apic_intr_mode = __apic_intr_mode_select();
1362 }
1363 
1364 /*
1365  * An initial setup of the virtual wire mode.
1366  */
1367 void __init init_bsp_APIC(void)
1368 {
1369     unsigned int value;
1370 
1371     /*
1372      * Don't do the setup now if we have a SMP BIOS as the
1373      * through-I/O-APIC virtual wire mode might be active.
1374      */
1375     if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
1376         return;
1377 
1378     /*
1379      * Do not trust the local APIC being empty at bootup.
1380      */
1381     clear_local_APIC();
1382 
1383     /*
1384      * Enable APIC.
1385      */
1386     value = apic_read(APIC_SPIV);
1387     value &= ~APIC_VECTOR_MASK;
1388     value |= APIC_SPIV_APIC_ENABLED;
1389 
1390 #ifdef CONFIG_X86_32
1391     /* This bit is reserved on P4/Xeon and should be cleared */
1392     if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
1393         (boot_cpu_data.x86 == 15))
1394         value &= ~APIC_SPIV_FOCUS_DISABLED;
1395     else
1396 #endif
1397         value |= APIC_SPIV_FOCUS_DISABLED;
1398     value |= SPURIOUS_APIC_VECTOR;
1399     apic_write(APIC_SPIV, value);
1400 
1401     /*
1402      * Set up the virtual wire mode.
1403      */
1404     apic_write(APIC_LVT0, APIC_DM_EXTINT);
1405     value = APIC_DM_NMI;
1406     if (!lapic_is_integrated())     /* 82489DX */
1407         value |= APIC_LVT_LEVEL_TRIGGER;
1408     if (apic_extnmi == APIC_EXTNMI_NONE)
1409         value |= APIC_LVT_MASKED;
1410     apic_write(APIC_LVT1, value);
1411 }
1412 
1413 static void __init apic_bsp_setup(bool upmode);
1414 
1415 /* Init the interrupt delivery mode for the BSP */
1416 void __init apic_intr_mode_init(void)
1417 {
1418     bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT);
1419 
1420     switch (apic_intr_mode) {
1421     case APIC_PIC:
1422         pr_info("APIC: Keep in PIC mode(8259)\n");
1423         return;
1424     case APIC_VIRTUAL_WIRE:
1425         pr_info("APIC: Switch to virtual wire mode setup\n");
1426         break;
1427     case APIC_VIRTUAL_WIRE_NO_CONFIG:
1428         pr_info("APIC: Switch to virtual wire mode setup with no configuration\n");
1429         upmode = true;
1430         break;
1431     case APIC_SYMMETRIC_IO:
1432         pr_info("APIC: Switch to symmetric I/O mode setup\n");
1433         break;
1434     case APIC_SYMMETRIC_IO_NO_ROUTING:
1435         pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n");
1436         break;
1437     }
1438 
1439     default_setup_apic_routing();
1440 
1441     if (x86_platform.apic_post_init)
1442         x86_platform.apic_post_init();
1443 
1444     apic_bsp_setup(upmode);
1445 }
1446 
1447 static void lapic_setup_esr(void)
1448 {
1449     unsigned int oldvalue, value, maxlvt;
1450 
1451     if (!lapic_is_integrated()) {
1452         pr_info("No ESR for 82489DX.\n");
1453         return;
1454     }
1455 
1456     if (apic->disable_esr) {
1457         /*
1458          * Something untraceable is creating bad interrupts on
1459          * secondary quads ... for the moment, just leave the
1460          * ESR disabled - we can't do anything useful with the
1461          * errors anyway - mbligh
1462          */
1463         pr_info("Leaving ESR disabled.\n");
1464         return;
1465     }
1466 
1467     maxlvt = lapic_get_maxlvt();
1468     if (maxlvt > 3)     /* Due to the Pentium erratum 3AP. */
1469         apic_write(APIC_ESR, 0);
1470     oldvalue = apic_read(APIC_ESR);
1471 
1472     /* enables sending errors */
1473     value = ERROR_APIC_VECTOR;
1474     apic_write(APIC_LVTERR, value);
1475 
1476     /*
1477      * spec says clear errors after enabling vector.
1478      */
1479     if (maxlvt > 3)
1480         apic_write(APIC_ESR, 0);
1481     value = apic_read(APIC_ESR);
1482     if (value != oldvalue)
1483         apic_printk(APIC_VERBOSE, "ESR value before enabling "
1484             "vector: 0x%08x  after: 0x%08x\n",
1485             oldvalue, value);
1486 }
1487 
1488 #define APIC_IR_REGS        APIC_ISR_NR
1489 #define APIC_IR_BITS        (APIC_IR_REGS * 32)
1490 #define APIC_IR_MAPSIZE     (APIC_IR_BITS / BITS_PER_LONG)
1491 
1492 union apic_ir {
1493     unsigned long   map[APIC_IR_MAPSIZE];
1494     u32     regs[APIC_IR_REGS];
1495 };
1496 
1497 static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr)
1498 {
1499     int i, bit;
1500 
1501     /* Read the IRRs */
1502     for (i = 0; i < APIC_IR_REGS; i++)
1503         irr->regs[i] = apic_read(APIC_IRR + i * 0x10);
1504 
1505     /* Read the ISRs */
1506     for (i = 0; i < APIC_IR_REGS; i++)
1507         isr->regs[i] = apic_read(APIC_ISR + i * 0x10);
1508 
1509     /*
1510      * If the ISR map is not empty. ACK the APIC and run another round
1511      * to verify whether a pending IRR has been unblocked and turned
1512      * into a ISR.
1513      */
1514     if (!bitmap_empty(isr->map, APIC_IR_BITS)) {
1515         /*
1516          * There can be multiple ISR bits set when a high priority
1517          * interrupt preempted a lower priority one. Issue an ACK
1518          * per set bit.
1519          */
1520         for_each_set_bit(bit, isr->map, APIC_IR_BITS)
1521             ack_APIC_irq();
1522         return true;
1523     }
1524 
1525     return !bitmap_empty(irr->map, APIC_IR_BITS);
1526 }
1527 
1528 /*
1529  * After a crash, we no longer service the interrupts and a pending
1530  * interrupt from previous kernel might still have ISR bit set.
1531  *
1532  * Most probably by now the CPU has serviced that pending interrupt and it
1533  * might not have done the ack_APIC_irq() because it thought, interrupt
1534  * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear
1535  * the ISR bit and cpu thinks it has already serviced the interrupt. Hence
1536  * a vector might get locked. It was noticed for timer irq (vector
1537  * 0x31). Issue an extra EOI to clear ISR.
1538  *
1539  * If there are pending IRR bits they turn into ISR bits after a higher
1540  * priority ISR bit has been acked.
1541  */
1542 static void apic_pending_intr_clear(void)
1543 {
1544     union apic_ir irr, isr;
1545     unsigned int i;
1546 
1547     /* 512 loops are way oversized and give the APIC a chance to obey. */
1548     for (i = 0; i < 512; i++) {
1549         if (!apic_check_and_ack(&irr, &isr))
1550             return;
1551     }
1552     /* Dump the IRR/ISR content if that failed */
1553     pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map);
1554 }
1555 
1556 /**
1557  * setup_local_APIC - setup the local APIC
1558  *
1559  * Used to setup local APIC while initializing BSP or bringing up APs.
1560  * Always called with preemption disabled.
1561  */
1562 static void setup_local_APIC(void)
1563 {
1564     int cpu = smp_processor_id();
1565     unsigned int value;
1566 
1567     if (disable_apic) {
1568         disable_ioapic_support();
1569         return;
1570     }
1571 
1572     /*
1573      * If this comes from kexec/kcrash the APIC might be enabled in
1574      * SPIV. Soft disable it before doing further initialization.
1575      */
1576     value = apic_read(APIC_SPIV);
1577     value &= ~APIC_SPIV_APIC_ENABLED;
1578     apic_write(APIC_SPIV, value);
1579 
1580 #ifdef CONFIG_X86_32
1581     /* Pound the ESR really hard over the head with a big hammer - mbligh */
1582     if (lapic_is_integrated() && apic->disable_esr) {
1583         apic_write(APIC_ESR, 0);
1584         apic_write(APIC_ESR, 0);
1585         apic_write(APIC_ESR, 0);
1586         apic_write(APIC_ESR, 0);
1587     }
1588 #endif
1589     /*
1590      * Double-check whether this APIC is really registered.
1591      * This is meaningless in clustered apic mode, so we skip it.
1592      */
1593     BUG_ON(!apic->apic_id_registered());
1594 
1595     /*
1596      * Intel recommends to set DFR, LDR and TPR before enabling
1597      * an APIC.  See e.g. "AP-388 82489DX User's Manual" (Intel
1598      * document number 292116).  So here it goes...
1599      */
1600     apic->init_apic_ldr();
1601 
1602 #ifdef CONFIG_X86_32
1603     if (apic->dest_mode_logical) {
1604         int logical_apicid, ldr_apicid;
1605 
1606         /*
1607          * APIC LDR is initialized.  If logical_apicid mapping was
1608          * initialized during get_smp_config(), make sure it matches
1609          * the actual value.
1610          */
1611         logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
1612         ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1613         if (logical_apicid != BAD_APICID)
1614             WARN_ON(logical_apicid != ldr_apicid);
1615         /* Always use the value from LDR. */
1616         early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid;
1617     }
1618 #endif
1619 
1620     /*
1621      * Set Task Priority to 'accept all except vectors 0-31'.  An APIC
1622      * vector in the 16-31 range could be delivered if TPR == 0, but we
1623      * would think it's an exception and terrible things will happen.  We
1624      * never change this later on.
1625      */
1626     value = apic_read(APIC_TASKPRI);
1627     value &= ~APIC_TPRI_MASK;
1628     value |= 0x10;
1629     apic_write(APIC_TASKPRI, value);
1630 
1631     /* Clear eventually stale ISR/IRR bits */
1632     apic_pending_intr_clear();
1633 
1634     /*
1635      * Now that we are all set up, enable the APIC
1636      */
1637     value = apic_read(APIC_SPIV);
1638     value &= ~APIC_VECTOR_MASK;
1639     /*
1640      * Enable APIC
1641      */
1642     value |= APIC_SPIV_APIC_ENABLED;
1643 
1644 #ifdef CONFIG_X86_32
1645     /*
1646      * Some unknown Intel IO/APIC (or APIC) errata is biting us with
1647      * certain networking cards. If high frequency interrupts are
1648      * happening on a particular IOAPIC pin, plus the IOAPIC routing
1649      * entry is masked/unmasked at a high rate as well then sooner or
1650      * later IOAPIC line gets 'stuck', no more interrupts are received
1651      * from the device. If focus CPU is disabled then the hang goes
1652      * away, oh well :-(
1653      *
1654      * [ This bug can be reproduced easily with a level-triggered
1655      *   PCI Ne2000 networking cards and PII/PIII processors, dual
1656      *   BX chipset. ]
1657      */
1658     /*
1659      * Actually disabling the focus CPU check just makes the hang less
1660      * frequent as it makes the interrupt distribution model be more
1661      * like LRU than MRU (the short-term load is more even across CPUs).
1662      */
1663 
1664     /*
1665      * - enable focus processor (bit==0)
1666      * - 64bit mode always use processor focus
1667      *   so no need to set it
1668      */
1669     value &= ~APIC_SPIV_FOCUS_DISABLED;
1670 #endif
1671 
1672     /*
1673      * Set spurious IRQ vector
1674      */
1675     value |= SPURIOUS_APIC_VECTOR;
1676     apic_write(APIC_SPIV, value);
1677 
1678     perf_events_lapic_init();
1679 
1680     /*
1681      * Set up LVT0, LVT1:
1682      *
1683      * set up through-local-APIC on the boot CPU's LINT0. This is not
1684      * strictly necessary in pure symmetric-IO mode, but sometimes
1685      * we delegate interrupts to the 8259A.
1686      */
1687     /*
1688      * TODO: set up through-local-APIC from through-I/O-APIC? --macro
1689      */
1690     value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
1691     if (!cpu && (pic_mode || !value || skip_ioapic_setup)) {
1692         value = APIC_DM_EXTINT;
1693         apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu);
1694     } else {
1695         value = APIC_DM_EXTINT | APIC_LVT_MASKED;
1696         apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu);
1697     }
1698     apic_write(APIC_LVT0, value);
1699 
1700     /*
1701      * Only the BSP sees the LINT1 NMI signal by default. This can be
1702      * modified by apic_extnmi= boot option.
1703      */
1704     if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
1705         apic_extnmi == APIC_EXTNMI_ALL)
1706         value = APIC_DM_NMI;
1707     else
1708         value = APIC_DM_NMI | APIC_LVT_MASKED;
1709 
1710     /* Is 82489DX ? */
1711     if (!lapic_is_integrated())
1712         value |= APIC_LVT_LEVEL_TRIGGER;
1713     apic_write(APIC_LVT1, value);
1714 
1715 #ifdef CONFIG_X86_MCE_INTEL
1716     /* Recheck CMCI information after local APIC is up on CPU #0 */
1717     if (!cpu)
1718         cmci_recheck();
1719 #endif
1720 }
1721 
1722 static void end_local_APIC_setup(void)
1723 {
1724     lapic_setup_esr();
1725 
1726 #ifdef CONFIG_X86_32
1727     {
1728         unsigned int value;
1729         /* Disable the local apic timer */
1730         value = apic_read(APIC_LVTT);
1731         value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
1732         apic_write(APIC_LVTT, value);
1733     }
1734 #endif
1735 
1736     apic_pm_activate();
1737 }
1738 
1739 /*
1740  * APIC setup function for application processors. Called from smpboot.c
1741  */
1742 void apic_ap_setup(void)
1743 {
1744     setup_local_APIC();
1745     end_local_APIC_setup();
1746 }
1747 
1748 #ifdef CONFIG_X86_X2APIC
1749 int x2apic_mode;
1750 EXPORT_SYMBOL_GPL(x2apic_mode);
1751 
1752 enum {
1753     X2APIC_OFF,
1754     X2APIC_ON,
1755     X2APIC_DISABLED,
1756 };
1757 static int x2apic_state;
1758 
1759 static void __x2apic_disable(void)
1760 {
1761     u64 msr;
1762 
1763     if (!boot_cpu_has(X86_FEATURE_APIC))
1764         return;
1765 
1766     rdmsrl(MSR_IA32_APICBASE, msr);
1767     if (!(msr & X2APIC_ENABLE))
1768         return;
1769     /* Disable xapic and x2apic first and then reenable xapic mode */
1770     wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
1771     wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
1772     printk_once(KERN_INFO "x2apic disabled\n");
1773 }
1774 
1775 static void __x2apic_enable(void)
1776 {
1777     u64 msr;
1778 
1779     rdmsrl(MSR_IA32_APICBASE, msr);
1780     if (msr & X2APIC_ENABLE)
1781         return;
1782     wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
1783     printk_once(KERN_INFO "x2apic enabled\n");
1784 }
1785 
1786 static int __init setup_nox2apic(char *str)
1787 {
1788     if (x2apic_enabled()) {
1789         int apicid = native_apic_msr_read(APIC_ID);
1790 
1791         if (apicid >= 255) {
1792             pr_warn("Apicid: %08x, cannot enforce nox2apic\n",
1793                 apicid);
1794             return 0;
1795         }
1796         pr_warn("x2apic already enabled.\n");
1797         __x2apic_disable();
1798     }
1799     setup_clear_cpu_cap(X86_FEATURE_X2APIC);
1800     x2apic_state = X2APIC_DISABLED;
1801     x2apic_mode = 0;
1802     return 0;
1803 }
1804 early_param("nox2apic", setup_nox2apic);
1805 
1806 /* Called from cpu_init() to enable x2apic on (secondary) cpus */
1807 void x2apic_setup(void)
1808 {
1809     /*
1810      * If x2apic is not in ON state, disable it if already enabled
1811      * from BIOS.
1812      */
1813     if (x2apic_state != X2APIC_ON) {
1814         __x2apic_disable();
1815         return;
1816     }
1817     __x2apic_enable();
1818 }
1819 
1820 static __init void x2apic_disable(void)
1821 {
1822     u32 x2apic_id, state = x2apic_state;
1823 
1824     x2apic_mode = 0;
1825     x2apic_state = X2APIC_DISABLED;
1826 
1827     if (state != X2APIC_ON)
1828         return;
1829 
1830     x2apic_id = read_apic_id();
1831     if (x2apic_id >= 255)
1832         panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
1833 
1834     __x2apic_disable();
1835     register_lapic_address(mp_lapic_addr);
1836 }
1837 
1838 static __init void x2apic_enable(void)
1839 {
1840     if (x2apic_state != X2APIC_OFF)
1841         return;
1842 
1843     x2apic_mode = 1;
1844     x2apic_state = X2APIC_ON;
1845     __x2apic_enable();
1846 }
1847 
1848 static __init void try_to_enable_x2apic(int remap_mode)
1849 {
1850     if (x2apic_state == X2APIC_DISABLED)
1851         return;
1852 
1853     if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
1854         u32 apic_limit = 255;
1855 
1856         /*
1857          * Using X2APIC without IR is not architecturally supported
1858          * on bare metal but may be supported in guests.
1859          */
1860         if (!x86_init.hyper.x2apic_available()) {
1861             pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
1862             x2apic_disable();
1863             return;
1864         }
1865 
1866         /*
1867          * If the hypervisor supports extended destination ID in
1868          * MSI, that increases the maximum APIC ID that can be
1869          * used for non-remapped IRQ domains.
1870          */
1871         if (x86_init.hyper.msi_ext_dest_id()) {
1872             virt_ext_dest_id = 1;
1873             apic_limit = 32767;
1874         }
1875 
1876         /*
1877          * Without IR, all CPUs can be addressed by IOAPIC/MSI only
1878          * in physical mode, and CPUs with an APIC ID that cannot
1879          * be addressed must not be brought online.
1880          */
1881         x2apic_set_max_apicid(apic_limit);
1882         x2apic_phys = 1;
1883     }
1884     x2apic_enable();
1885 }
1886 
1887 void __init check_x2apic(void)
1888 {
1889     if (x2apic_enabled()) {
1890         pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
1891         x2apic_mode = 1;
1892         x2apic_state = X2APIC_ON;
1893     } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
1894         x2apic_state = X2APIC_DISABLED;
1895     }
1896 }
1897 #else /* CONFIG_X86_X2APIC */
1898 static int __init validate_x2apic(void)
1899 {
1900     if (!apic_is_x2apic_enabled())
1901         return 0;
1902     /*
1903      * Checkme: Can we simply turn off x2apic here instead of panic?
1904      */
1905     panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n");
1906 }
1907 early_initcall(validate_x2apic);
1908 
1909 static inline void try_to_enable_x2apic(int remap_mode) { }
1910 static inline void __x2apic_enable(void) { }
1911 #endif /* !CONFIG_X86_X2APIC */
1912 
1913 void __init enable_IR_x2apic(void)
1914 {
1915     unsigned long flags;
1916     int ret, ir_stat;
1917 
1918     if (skip_ioapic_setup) {
1919         pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
1920         return;
1921     }
1922 
1923     ir_stat = irq_remapping_prepare();
1924     if (ir_stat < 0 && !x2apic_supported())
1925         return;
1926 
1927     ret = save_ioapic_entries();
1928     if (ret) {
1929         pr_info("Saving IO-APIC state failed: %d\n", ret);
1930         return;
1931     }
1932 
1933     local_irq_save(flags);
1934     legacy_pic->mask_all();
1935     mask_ioapic_entries();
1936 
1937     /* If irq_remapping_prepare() succeeded, try to enable it */
1938     if (ir_stat >= 0)
1939         ir_stat = irq_remapping_enable();
1940     /* ir_stat contains the remap mode or an error code */
1941     try_to_enable_x2apic(ir_stat);
1942 
1943     if (ir_stat < 0)
1944         restore_ioapic_entries();
1945     legacy_pic->restore_mask();
1946     local_irq_restore(flags);
1947 }
1948 
1949 #ifdef CONFIG_X86_64
1950 /*
1951  * Detect and enable local APICs on non-SMP boards.
1952  * Original code written by Keir Fraser.
1953  * On AMD64 we trust the BIOS - if it says no APIC it is likely
1954  * not correctly set up (usually the APIC timer won't work etc.)
1955  */
1956 static int __init detect_init_APIC(void)
1957 {
1958     if (!boot_cpu_has(X86_FEATURE_APIC)) {
1959         pr_info("No local APIC present\n");
1960         return -1;
1961     }
1962 
1963     mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1964     return 0;
1965 }
1966 #else
1967 
1968 static int __init apic_verify(void)
1969 {
1970     u32 features, h, l;
1971 
1972     /*
1973      * The APIC feature bit should now be enabled
1974      * in `cpuid'
1975      */
1976     features = cpuid_edx(1);
1977     if (!(features & (1 << X86_FEATURE_APIC))) {
1978         pr_warn("Could not enable APIC!\n");
1979         return -1;
1980     }
1981     set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1982     mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1983 
1984     /* The BIOS may have set up the APIC at some other address */
1985     if (boot_cpu_data.x86 >= 6) {
1986         rdmsr(MSR_IA32_APICBASE, l, h);
1987         if (l & MSR_IA32_APICBASE_ENABLE)
1988             mp_lapic_addr = l & MSR_IA32_APICBASE_BASE;
1989     }
1990 
1991     pr_info("Found and enabled local APIC!\n");
1992     return 0;
1993 }
1994 
1995 int __init apic_force_enable(unsigned long addr)
1996 {
1997     u32 h, l;
1998 
1999     if (disable_apic)
2000         return -1;
2001 
2002     /*
2003      * Some BIOSes disable the local APIC in the APIC_BASE
2004      * MSR. This can only be done in software for Intel P6 or later
2005      * and AMD K7 (Model > 1) or later.
2006      */
2007     if (boot_cpu_data.x86 >= 6) {
2008         rdmsr(MSR_IA32_APICBASE, l, h);
2009         if (!(l & MSR_IA32_APICBASE_ENABLE)) {
2010             pr_info("Local APIC disabled by BIOS -- reenabling.\n");
2011             l &= ~MSR_IA32_APICBASE_BASE;
2012             l |= MSR_IA32_APICBASE_ENABLE | addr;
2013             wrmsr(MSR_IA32_APICBASE, l, h);
2014             enabled_via_apicbase = 1;
2015         }
2016     }
2017     return apic_verify();
2018 }
2019 
2020 /*
2021  * Detect and initialize APIC
2022  */
2023 static int __init detect_init_APIC(void)
2024 {
2025     /* Disabled by kernel option? */
2026     if (disable_apic)
2027         return -1;
2028 
2029     switch (boot_cpu_data.x86_vendor) {
2030     case X86_VENDOR_AMD:
2031         if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
2032             (boot_cpu_data.x86 >= 15))
2033             break;
2034         goto no_apic;
2035     case X86_VENDOR_HYGON:
2036         break;
2037     case X86_VENDOR_INTEL:
2038         if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 ||
2039             (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)))
2040             break;
2041         goto no_apic;
2042     default:
2043         goto no_apic;
2044     }
2045 
2046     if (!boot_cpu_has(X86_FEATURE_APIC)) {
2047         /*
2048          * Over-ride BIOS and try to enable the local APIC only if
2049          * "lapic" specified.
2050          */
2051         if (!force_enable_local_apic) {
2052             pr_info("Local APIC disabled by BIOS -- "
2053                 "you can enable it with \"lapic\"\n");
2054             return -1;
2055         }
2056         if (apic_force_enable(APIC_DEFAULT_PHYS_BASE))
2057             return -1;
2058     } else {
2059         if (apic_verify())
2060             return -1;
2061     }
2062 
2063     apic_pm_activate();
2064 
2065     return 0;
2066 
2067 no_apic:
2068     pr_info("No local APIC present or hardware disabled\n");
2069     return -1;
2070 }
2071 #endif
2072 
2073 /**
2074  * init_apic_mappings - initialize APIC mappings
2075  */
2076 void __init init_apic_mappings(void)
2077 {
2078     unsigned int new_apicid;
2079 
2080     if (apic_validate_deadline_timer())
2081         pr_info("TSC deadline timer available\n");
2082 
2083     if (x2apic_mode) {
2084         boot_cpu_physical_apicid = read_apic_id();
2085         return;
2086     }
2087 
2088     /* If no local APIC can be found return early */
2089     if (!smp_found_config && detect_init_APIC()) {
2090         /* lets NOP'ify apic operations */
2091         pr_info("APIC: disable apic facility\n");
2092         apic_disable();
2093     } else {
2094         apic_phys = mp_lapic_addr;
2095 
2096         /*
2097          * If the system has ACPI MADT tables or MP info, the LAPIC
2098          * address is already registered.
2099          */
2100         if (!acpi_lapic && !smp_found_config)
2101             register_lapic_address(apic_phys);
2102     }
2103 
2104     /*
2105      * Fetch the APIC ID of the BSP in case we have a
2106      * default configuration (or the MP table is broken).
2107      */
2108     new_apicid = read_apic_id();
2109     if (boot_cpu_physical_apicid != new_apicid) {
2110         boot_cpu_physical_apicid = new_apicid;
2111         /*
2112          * yeah -- we lie about apic_version
2113          * in case if apic was disabled via boot option
2114          * but it's not a problem for SMP compiled kernel
2115          * since apic_intr_mode_select is prepared for such
2116          * a case and disable smp mode
2117          */
2118         boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2119     }
2120 }
2121 
2122 void __init register_lapic_address(unsigned long address)
2123 {
2124     mp_lapic_addr = address;
2125 
2126     if (!x2apic_mode) {
2127         set_fixmap_nocache(FIX_APIC_BASE, address);
2128         apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
2129                 APIC_BASE, address);
2130     }
2131     if (boot_cpu_physical_apicid == -1U) {
2132         boot_cpu_physical_apicid  = read_apic_id();
2133         boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2134     }
2135 }
2136 
2137 /*
2138  * Local APIC interrupts
2139  */
2140 
2141 /*
2142  * Common handling code for spurious_interrupt and spurious_vector entry
2143  * points below. No point in allowing the compiler to inline it twice.
2144  */
2145 static noinline void handle_spurious_interrupt(u8 vector)
2146 {
2147     u32 v;
2148 
2149     trace_spurious_apic_entry(vector);
2150 
2151     inc_irq_stat(irq_spurious_count);
2152 
2153     /*
2154      * If this is a spurious interrupt then do not acknowledge
2155      */
2156     if (vector == SPURIOUS_APIC_VECTOR) {
2157         /* See SDM vol 3 */
2158         pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n",
2159             smp_processor_id());
2160         goto out;
2161     }
2162 
2163     /*
2164      * If it is a vectored one, verify it's set in the ISR. If set,
2165      * acknowledge it.
2166      */
2167     v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
2168     if (v & (1 << (vector & 0x1f))) {
2169         pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n",
2170             vector, smp_processor_id());
2171         ack_APIC_irq();
2172     } else {
2173         pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n",
2174             vector, smp_processor_id());
2175     }
2176 out:
2177     trace_spurious_apic_exit(vector);
2178 }
2179 
2180 /**
2181  * spurious_interrupt - Catch all for interrupts raised on unused vectors
2182  * @regs:   Pointer to pt_regs on stack
2183  * @vector: The vector number
2184  *
2185  * This is invoked from ASM entry code to catch all interrupts which
2186  * trigger on an entry which is routed to the common_spurious idtentry
2187  * point.
2188  */
2189 DEFINE_IDTENTRY_IRQ(spurious_interrupt)
2190 {
2191     handle_spurious_interrupt(vector);
2192 }
2193 
2194 DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt)
2195 {
2196     handle_spurious_interrupt(SPURIOUS_APIC_VECTOR);
2197 }
2198 
2199 /*
2200  * This interrupt should never happen with our APIC/SMP architecture
2201  */
2202 DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt)
2203 {
2204     static const char * const error_interrupt_reason[] = {
2205         "Send CS error",        /* APIC Error Bit 0 */
2206         "Receive CS error",     /* APIC Error Bit 1 */
2207         "Send accept error",        /* APIC Error Bit 2 */
2208         "Receive accept error",     /* APIC Error Bit 3 */
2209         "Redirectable IPI",     /* APIC Error Bit 4 */
2210         "Send illegal vector",      /* APIC Error Bit 5 */
2211         "Received illegal vector",  /* APIC Error Bit 6 */
2212         "Illegal register address", /* APIC Error Bit 7 */
2213     };
2214     u32 v, i = 0;
2215 
2216     trace_error_apic_entry(ERROR_APIC_VECTOR);
2217 
2218     /* First tickle the hardware, only then report what went on. -- REW */
2219     if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */
2220         apic_write(APIC_ESR, 0);
2221     v = apic_read(APIC_ESR);
2222     ack_APIC_irq();
2223     atomic_inc(&irq_err_count);
2224 
2225     apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x",
2226             smp_processor_id(), v);
2227 
2228     v &= 0xff;
2229     while (v) {
2230         if (v & 0x1)
2231             apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]);
2232         i++;
2233         v >>= 1;
2234     }
2235 
2236     apic_printk(APIC_DEBUG, KERN_CONT "\n");
2237 
2238     trace_error_apic_exit(ERROR_APIC_VECTOR);
2239 }
2240 
2241 /**
2242  * connect_bsp_APIC - attach the APIC to the interrupt system
2243  */
2244 static void __init connect_bsp_APIC(void)
2245 {
2246 #ifdef CONFIG_X86_32
2247     if (pic_mode) {
2248         /*
2249          * Do not trust the local APIC being empty at bootup.
2250          */
2251         clear_local_APIC();
2252         /*
2253          * PIC mode, enable APIC mode in the IMCR, i.e.  connect BSP's
2254          * local APIC to INT and NMI lines.
2255          */
2256         apic_printk(APIC_VERBOSE, "leaving PIC mode, "
2257                 "enabling APIC mode.\n");
2258         imcr_pic_to_apic();
2259     }
2260 #endif
2261 }
2262 
2263 /**
2264  * disconnect_bsp_APIC - detach the APIC from the interrupt system
2265  * @virt_wire_setup:    indicates, whether virtual wire mode is selected
2266  *
2267  * Virtual wire mode is necessary to deliver legacy interrupts even when the
2268  * APIC is disabled.
2269  */
2270 void disconnect_bsp_APIC(int virt_wire_setup)
2271 {
2272     unsigned int value;
2273 
2274 #ifdef CONFIG_X86_32
2275     if (pic_mode) {
2276         /*
2277          * Put the board back into PIC mode (has an effect only on
2278          * certain older boards).  Note that APIC interrupts, including
2279          * IPIs, won't work beyond this point!  The only exception are
2280          * INIT IPIs.
2281          */
2282         apic_printk(APIC_VERBOSE, "disabling APIC mode, "
2283                 "entering PIC mode.\n");
2284         imcr_apic_to_pic();
2285         return;
2286     }
2287 #endif
2288 
2289     /* Go back to Virtual Wire compatibility mode */
2290 
2291     /* For the spurious interrupt use vector F, and enable it */
2292     value = apic_read(APIC_SPIV);
2293     value &= ~APIC_VECTOR_MASK;
2294     value |= APIC_SPIV_APIC_ENABLED;
2295     value |= 0xf;
2296     apic_write(APIC_SPIV, value);
2297 
2298     if (!virt_wire_setup) {
2299         /*
2300          * For LVT0 make it edge triggered, active high,
2301          * external and enabled
2302          */
2303         value = apic_read(APIC_LVT0);
2304         value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2305             APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2306             APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2307         value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2308         value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
2309         apic_write(APIC_LVT0, value);
2310     } else {
2311         /* Disable LVT0 */
2312         apic_write(APIC_LVT0, APIC_LVT_MASKED);
2313     }
2314 
2315     /*
2316      * For LVT1 make it edge triggered, active high,
2317      * nmi and enabled
2318      */
2319     value = apic_read(APIC_LVT1);
2320     value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2321             APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2322             APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2323     value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2324     value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
2325     apic_write(APIC_LVT1, value);
2326 }
2327 
2328 /*
2329  * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated
2330  * contiguously, it equals to current allocated max logical CPU ID plus 1.
2331  * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range,
2332  * so the maximum of nr_logical_cpuids is nr_cpu_ids.
2333  *
2334  * NOTE: Reserve 0 for BSP.
2335  */
2336 static int nr_logical_cpuids = 1;
2337 
2338 /*
2339  * Used to store mapping between logical CPU IDs and APIC IDs.
2340  */
2341 static int cpuid_to_apicid[] = {
2342     [0 ... NR_CPUS - 1] = -1,
2343 };
2344 
2345 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
2346 {
2347     return phys_id == cpuid_to_apicid[cpu];
2348 }
2349 
2350 #ifdef CONFIG_SMP
2351 /**
2352  * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread
2353  * @apicid: APIC ID to check
2354  */
2355 bool apic_id_is_primary_thread(unsigned int apicid)
2356 {
2357     u32 mask;
2358 
2359     if (smp_num_siblings == 1)
2360         return true;
2361     /* Isolate the SMT bit(s) in the APICID and check for 0 */
2362     mask = (1U << (fls(smp_num_siblings) - 1)) - 1;
2363     return !(apicid & mask);
2364 }
2365 #endif
2366 
2367 /*
2368  * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids
2369  * and cpuid_to_apicid[] synchronized.
2370  */
2371 static int allocate_logical_cpuid(int apicid)
2372 {
2373     int i;
2374 
2375     /*
2376      * cpuid <-> apicid mapping is persistent, so when a cpu is up,
2377      * check if the kernel has allocated a cpuid for it.
2378      */
2379     for (i = 0; i < nr_logical_cpuids; i++) {
2380         if (cpuid_to_apicid[i] == apicid)
2381             return i;
2382     }
2383 
2384     /* Allocate a new cpuid. */
2385     if (nr_logical_cpuids >= nr_cpu_ids) {
2386         WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. "
2387                  "Processor %d/0x%x and the rest are ignored.\n",
2388                  nr_cpu_ids, nr_logical_cpuids, apicid);
2389         return -EINVAL;
2390     }
2391 
2392     cpuid_to_apicid[nr_logical_cpuids] = apicid;
2393     return nr_logical_cpuids++;
2394 }
2395 
2396 int generic_processor_info(int apicid, int version)
2397 {
2398     int cpu, max = nr_cpu_ids;
2399     bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid,
2400                 phys_cpu_present_map);
2401 
2402     /*
2403      * boot_cpu_physical_apicid is designed to have the apicid
2404      * returned by read_apic_id(), i.e, the apicid of the
2405      * currently booting-up processor. However, on some platforms,
2406      * it is temporarily modified by the apicid reported as BSP
2407      * through MP table. Concretely:
2408      *
2409      * - arch/x86/kernel/mpparse.c: MP_processor_info()
2410      * - arch/x86/mm/amdtopology.c: amd_numa_init()
2411      *
2412      * This function is executed with the modified
2413      * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel
2414      * parameter doesn't work to disable APs on kdump 2nd kernel.
2415      *
2416      * Since fixing handling of boot_cpu_physical_apicid requires
2417      * another discussion and tests on each platform, we leave it
2418      * for now and here we use read_apic_id() directly in this
2419      * function, generic_processor_info().
2420      */
2421     if (disabled_cpu_apicid != BAD_APICID &&
2422         disabled_cpu_apicid != read_apic_id() &&
2423         disabled_cpu_apicid == apicid) {
2424         int thiscpu = num_processors + disabled_cpus;
2425 
2426         pr_warn("APIC: Disabling requested cpu."
2427             " Processor %d/0x%x ignored.\n", thiscpu, apicid);
2428 
2429         disabled_cpus++;
2430         return -ENODEV;
2431     }
2432 
2433     /*
2434      * If boot cpu has not been detected yet, then only allow upto
2435      * nr_cpu_ids - 1 processors and keep one slot free for boot cpu
2436      */
2437     if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 &&
2438         apicid != boot_cpu_physical_apicid) {
2439         int thiscpu = max + disabled_cpus - 1;
2440 
2441         pr_warn("APIC: NR_CPUS/possible_cpus limit of %i almost"
2442             " reached. Keeping one slot for boot cpu."
2443             "  Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2444 
2445         disabled_cpus++;
2446         return -ENODEV;
2447     }
2448 
2449     if (num_processors >= nr_cpu_ids) {
2450         int thiscpu = max + disabled_cpus;
2451 
2452         pr_warn("APIC: NR_CPUS/possible_cpus limit of %i reached. "
2453             "Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2454 
2455         disabled_cpus++;
2456         return -EINVAL;
2457     }
2458 
2459     if (apicid == boot_cpu_physical_apicid) {
2460         /*
2461          * x86_bios_cpu_apicid is required to have processors listed
2462          * in same order as logical cpu numbers. Hence the first
2463          * entry is BSP, and so on.
2464          * boot_cpu_init() already hold bit 0 in cpu_present_mask
2465          * for BSP.
2466          */
2467         cpu = 0;
2468 
2469         /* Logical cpuid 0 is reserved for BSP. */
2470         cpuid_to_apicid[0] = apicid;
2471     } else {
2472         cpu = allocate_logical_cpuid(apicid);
2473         if (cpu < 0) {
2474             disabled_cpus++;
2475             return -EINVAL;
2476         }
2477     }
2478 
2479     /*
2480      * Validate version
2481      */
2482     if (version == 0x0) {
2483         pr_warn("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n",
2484             cpu, apicid);
2485         version = 0x10;
2486     }
2487 
2488     if (version != boot_cpu_apic_version) {
2489         pr_warn("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n",
2490             boot_cpu_apic_version, cpu, version);
2491     }
2492 
2493     if (apicid > max_physical_apicid)
2494         max_physical_apicid = apicid;
2495 
2496 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64)
2497     early_per_cpu(x86_cpu_to_apicid, cpu) = apicid;
2498     early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
2499 #endif
2500 #ifdef CONFIG_X86_32
2501     early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
2502         apic->x86_32_early_logical_apicid(cpu);
2503 #endif
2504     set_cpu_possible(cpu, true);
2505     physid_set(apicid, phys_cpu_present_map);
2506     set_cpu_present(cpu, true);
2507     num_processors++;
2508 
2509     return cpu;
2510 }
2511 
2512 int hard_smp_processor_id(void)
2513 {
2514     return read_apic_id();
2515 }
2516 
2517 void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg,
2518                bool dmar)
2519 {
2520     memset(msg, 0, sizeof(*msg));
2521 
2522     msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
2523     msg->arch_addr_lo.dest_mode_logical = apic->dest_mode_logical;
2524     msg->arch_addr_lo.destid_0_7 = cfg->dest_apicid & 0xFF;
2525 
2526     msg->arch_data.delivery_mode = APIC_DELIVERY_MODE_FIXED;
2527     msg->arch_data.vector = cfg->vector;
2528 
2529     msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
2530     /*
2531      * Only the IOMMU itself can use the trick of putting destination
2532      * APIC ID into the high bits of the address. Anything else would
2533      * just be writing to memory if it tried that, and needs IR to
2534      * address APICs which can't be addressed in the normal 32-bit
2535      * address range at 0xFFExxxxx. That is typically just 8 bits, but
2536      * some hypervisors allow the extended destination ID field in bits
2537      * 5-11 to be used, giving support for 15 bits of APIC IDs in total.
2538      */
2539     if (dmar)
2540         msg->arch_addr_hi.destid_8_31 = cfg->dest_apicid >> 8;
2541     else if (virt_ext_dest_id && cfg->dest_apicid < 0x8000)
2542         msg->arch_addr_lo.virt_destid_8_14 = cfg->dest_apicid >> 8;
2543     else
2544         WARN_ON_ONCE(cfg->dest_apicid > 0xFF);
2545 }
2546 
2547 u32 x86_msi_msg_get_destid(struct msi_msg *msg, bool extid)
2548 {
2549     u32 dest = msg->arch_addr_lo.destid_0_7;
2550 
2551     if (extid)
2552         dest |= msg->arch_addr_hi.destid_8_31 << 8;
2553     return dest;
2554 }
2555 EXPORT_SYMBOL_GPL(x86_msi_msg_get_destid);
2556 
2557 #ifdef CONFIG_X86_64
2558 void __init acpi_wake_cpu_handler_update(wakeup_cpu_handler handler)
2559 {
2560     struct apic **drv;
2561 
2562     for (drv = __apicdrivers; drv < __apicdrivers_end; drv++)
2563         (*drv)->wakeup_secondary_cpu_64 = handler;
2564 }
2565 #endif
2566 
2567 /*
2568  * Override the generic EOI implementation with an optimized version.
2569  * Only called during early boot when only one CPU is active and with
2570  * interrupts disabled, so we know this does not race with actual APIC driver
2571  * use.
2572  */
2573 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v))
2574 {
2575     struct apic **drv;
2576 
2577     for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) {
2578         /* Should happen once for each apic */
2579         WARN_ON((*drv)->eoi_write == eoi_write);
2580         (*drv)->native_eoi_write = (*drv)->eoi_write;
2581         (*drv)->eoi_write = eoi_write;
2582     }
2583 }
2584 
2585 static void __init apic_bsp_up_setup(void)
2586 {
2587 #ifdef CONFIG_X86_64
2588     apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid));
2589 #else
2590     /*
2591      * Hack: In case of kdump, after a crash, kernel might be booting
2592      * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid
2593      * might be zero if read from MP tables. Get it from LAPIC.
2594      */
2595 # ifdef CONFIG_CRASH_DUMP
2596     boot_cpu_physical_apicid = read_apic_id();
2597 # endif
2598 #endif
2599     physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
2600 }
2601 
2602 /**
2603  * apic_bsp_setup - Setup function for local apic and io-apic
2604  * @upmode:     Force UP mode (for APIC_init_uniprocessor)
2605  */
2606 static void __init apic_bsp_setup(bool upmode)
2607 {
2608     connect_bsp_APIC();
2609     if (upmode)
2610         apic_bsp_up_setup();
2611     setup_local_APIC();
2612 
2613     enable_IO_APIC();
2614     end_local_APIC_setup();
2615     irq_remap_enable_fault_handling();
2616     setup_IO_APIC();
2617     lapic_update_legacy_vectors();
2618 }
2619 
2620 #ifdef CONFIG_UP_LATE_INIT
2621 void __init up_late_init(void)
2622 {
2623     if (apic_intr_mode == APIC_PIC)
2624         return;
2625 
2626     /* Setup local timer */
2627     x86_init.timers.setup_percpu_clockev();
2628 }
2629 #endif
2630 
2631 /*
2632  * Power management
2633  */
2634 #ifdef CONFIG_PM
2635 
2636 static struct {
2637     /*
2638      * 'active' is true if the local APIC was enabled by us and
2639      * not the BIOS; this signifies that we are also responsible
2640      * for disabling it before entering apm/acpi suspend
2641      */
2642     int active;
2643     /* r/w apic fields */
2644     unsigned int apic_id;
2645     unsigned int apic_taskpri;
2646     unsigned int apic_ldr;
2647     unsigned int apic_dfr;
2648     unsigned int apic_spiv;
2649     unsigned int apic_lvtt;
2650     unsigned int apic_lvtpc;
2651     unsigned int apic_lvt0;
2652     unsigned int apic_lvt1;
2653     unsigned int apic_lvterr;
2654     unsigned int apic_tmict;
2655     unsigned int apic_tdcr;
2656     unsigned int apic_thmr;
2657     unsigned int apic_cmci;
2658 } apic_pm_state;
2659 
2660 static int lapic_suspend(void)
2661 {
2662     unsigned long flags;
2663     int maxlvt;
2664 
2665     if (!apic_pm_state.active)
2666         return 0;
2667 
2668     maxlvt = lapic_get_maxlvt();
2669 
2670     apic_pm_state.apic_id = apic_read(APIC_ID);
2671     apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
2672     apic_pm_state.apic_ldr = apic_read(APIC_LDR);
2673     apic_pm_state.apic_dfr = apic_read(APIC_DFR);
2674     apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
2675     apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
2676     if (maxlvt >= 4)
2677         apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
2678     apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
2679     apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
2680     apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
2681     apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
2682     apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
2683 #ifdef CONFIG_X86_THERMAL_VECTOR
2684     if (maxlvt >= 5)
2685         apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
2686 #endif
2687 #ifdef CONFIG_X86_MCE_INTEL
2688     if (maxlvt >= 6)
2689         apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
2690 #endif
2691 
2692     local_irq_save(flags);
2693 
2694     /*
2695      * Mask IOAPIC before disabling the local APIC to prevent stale IRR
2696      * entries on some implementations.
2697      */
2698     mask_ioapic_entries();
2699 
2700     disable_local_APIC();
2701 
2702     irq_remapping_disable();
2703 
2704     local_irq_restore(flags);
2705     return 0;
2706 }
2707 
2708 static void lapic_resume(void)
2709 {
2710     unsigned int l, h;
2711     unsigned long flags;
2712     int maxlvt;
2713 
2714     if (!apic_pm_state.active)
2715         return;
2716 
2717     local_irq_save(flags);
2718 
2719     /*
2720      * IO-APIC and PIC have their own resume routines.
2721      * We just mask them here to make sure the interrupt
2722      * subsystem is completely quiet while we enable x2apic
2723      * and interrupt-remapping.
2724      */
2725     mask_ioapic_entries();
2726     legacy_pic->mask_all();
2727 
2728     if (x2apic_mode) {
2729         __x2apic_enable();
2730     } else {
2731         /*
2732          * Make sure the APICBASE points to the right address
2733          *
2734          * FIXME! This will be wrong if we ever support suspend on
2735          * SMP! We'll need to do this as part of the CPU restore!
2736          */
2737         if (boot_cpu_data.x86 >= 6) {
2738             rdmsr(MSR_IA32_APICBASE, l, h);
2739             l &= ~MSR_IA32_APICBASE_BASE;
2740             l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
2741             wrmsr(MSR_IA32_APICBASE, l, h);
2742         }
2743     }
2744 
2745     maxlvt = lapic_get_maxlvt();
2746     apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
2747     apic_write(APIC_ID, apic_pm_state.apic_id);
2748     apic_write(APIC_DFR, apic_pm_state.apic_dfr);
2749     apic_write(APIC_LDR, apic_pm_state.apic_ldr);
2750     apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
2751     apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
2752     apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
2753     apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
2754 #ifdef CONFIG_X86_THERMAL_VECTOR
2755     if (maxlvt >= 5)
2756         apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
2757 #endif
2758 #ifdef CONFIG_X86_MCE_INTEL
2759     if (maxlvt >= 6)
2760         apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
2761 #endif
2762     if (maxlvt >= 4)
2763         apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
2764     apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
2765     apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
2766     apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
2767     apic_write(APIC_ESR, 0);
2768     apic_read(APIC_ESR);
2769     apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
2770     apic_write(APIC_ESR, 0);
2771     apic_read(APIC_ESR);
2772 
2773     irq_remapping_reenable(x2apic_mode);
2774 
2775     local_irq_restore(flags);
2776 }
2777 
2778 /*
2779  * This device has no shutdown method - fully functioning local APICs
2780  * are needed on every CPU up until machine_halt/restart/poweroff.
2781  */
2782 
2783 static struct syscore_ops lapic_syscore_ops = {
2784     .resume     = lapic_resume,
2785     .suspend    = lapic_suspend,
2786 };
2787 
2788 static void apic_pm_activate(void)
2789 {
2790     apic_pm_state.active = 1;
2791 }
2792 
2793 static int __init init_lapic_sysfs(void)
2794 {
2795     /* XXX: remove suspend/resume procs if !apic_pm_state.active? */
2796     if (boot_cpu_has(X86_FEATURE_APIC))
2797         register_syscore_ops(&lapic_syscore_ops);
2798 
2799     return 0;
2800 }
2801 
2802 /* local apic needs to resume before other devices access its registers. */
2803 core_initcall(init_lapic_sysfs);
2804 
2805 #else   /* CONFIG_PM */
2806 
2807 static void apic_pm_activate(void) { }
2808 
2809 #endif  /* CONFIG_PM */
2810 
2811 #ifdef CONFIG_X86_64
2812 
2813 static int multi_checked;
2814 static int multi;
2815 
2816 static int set_multi(const struct dmi_system_id *d)
2817 {
2818     if (multi)
2819         return 0;
2820     pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
2821     multi = 1;
2822     return 0;
2823 }
2824 
2825 static const struct dmi_system_id multi_dmi_table[] = {
2826     {
2827         .callback = set_multi,
2828         .ident = "IBM System Summit2",
2829         .matches = {
2830             DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
2831             DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
2832         },
2833     },
2834     {}
2835 };
2836 
2837 static void dmi_check_multi(void)
2838 {
2839     if (multi_checked)
2840         return;
2841 
2842     dmi_check_system(multi_dmi_table);
2843     multi_checked = 1;
2844 }
2845 
2846 /*
2847  * apic_is_clustered_box() -- Check if we can expect good TSC
2848  *
2849  * Thus far, the major user of this is IBM's Summit2 series:
2850  * Clustered boxes may have unsynced TSC problems if they are
2851  * multi-chassis.
2852  * Use DMI to check them
2853  */
2854 int apic_is_clustered_box(void)
2855 {
2856     dmi_check_multi();
2857     return multi;
2858 }
2859 #endif
2860 
2861 /*
2862  * APIC command line parameters
2863  */
2864 static int __init setup_disableapic(char *arg)
2865 {
2866     disable_apic = 1;
2867     setup_clear_cpu_cap(X86_FEATURE_APIC);
2868     return 0;
2869 }
2870 early_param("disableapic", setup_disableapic);
2871 
2872 /* same as disableapic, for compatibility */
2873 static int __init setup_nolapic(char *arg)
2874 {
2875     return setup_disableapic(arg);
2876 }
2877 early_param("nolapic", setup_nolapic);
2878 
2879 static int __init parse_lapic_timer_c2_ok(char *arg)
2880 {
2881     local_apic_timer_c2_ok = 1;
2882     return 0;
2883 }
2884 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
2885 
2886 static int __init parse_disable_apic_timer(char *arg)
2887 {
2888     disable_apic_timer = 1;
2889     return 0;
2890 }
2891 early_param("noapictimer", parse_disable_apic_timer);
2892 
2893 static int __init parse_nolapic_timer(char *arg)
2894 {
2895     disable_apic_timer = 1;
2896     return 0;
2897 }
2898 early_param("nolapic_timer", parse_nolapic_timer);
2899 
2900 static int __init apic_set_verbosity(char *arg)
2901 {
2902     if (!arg)  {
2903 #ifdef CONFIG_X86_64
2904         skip_ioapic_setup = 0;
2905         return 0;
2906 #endif
2907         return -EINVAL;
2908     }
2909 
2910     if (strcmp("debug", arg) == 0)
2911         apic_verbosity = APIC_DEBUG;
2912     else if (strcmp("verbose", arg) == 0)
2913         apic_verbosity = APIC_VERBOSE;
2914 #ifdef CONFIG_X86_64
2915     else {
2916         pr_warn("APIC Verbosity level %s not recognised"
2917             " use apic=verbose or apic=debug\n", arg);
2918         return -EINVAL;
2919     }
2920 #endif
2921 
2922     return 0;
2923 }
2924 early_param("apic", apic_set_verbosity);
2925 
2926 static int __init lapic_insert_resource(void)
2927 {
2928     if (!apic_phys)
2929         return -1;
2930 
2931     /* Put local APIC into the resource map. */
2932     lapic_resource.start = apic_phys;
2933     lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
2934     insert_resource(&iomem_resource, &lapic_resource);
2935 
2936     return 0;
2937 }
2938 
2939 /*
2940  * need call insert after e820__reserve_resources()
2941  * that is using request_resource
2942  */
2943 late_initcall(lapic_insert_resource);
2944 
2945 static int __init apic_set_disabled_cpu_apicid(char *arg)
2946 {
2947     if (!arg || !get_option(&arg, &disabled_cpu_apicid))
2948         return -EINVAL;
2949 
2950     return 0;
2951 }
2952 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid);
2953 
2954 static int __init apic_set_extnmi(char *arg)
2955 {
2956     if (!arg)
2957         return -EINVAL;
2958 
2959     if (!strncmp("all", arg, 3))
2960         apic_extnmi = APIC_EXTNMI_ALL;
2961     else if (!strncmp("none", arg, 4))
2962         apic_extnmi = APIC_EXTNMI_NONE;
2963     else if (!strncmp("bsp", arg, 3))
2964         apic_extnmi = APIC_EXTNMI_BSP;
2965     else {
2966         pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
2967         return -EINVAL;
2968     }
2969 
2970     return 0;
2971 }
2972 early_param("apic_extnmi", apic_set_extnmi);