Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0-only */
0002 /*
0003  * Kernel-based Virtual Machine driver for Linux
0004  *
0005  * This header defines architecture specific interfaces, x86 version
0006  */
0007 
0008 #ifndef _ASM_X86_KVM_HOST_H
0009 #define _ASM_X86_KVM_HOST_H
0010 
0011 #include <linux/types.h>
0012 #include <linux/mm.h>
0013 #include <linux/mmu_notifier.h>
0014 #include <linux/tracepoint.h>
0015 #include <linux/cpumask.h>
0016 #include <linux/irq_work.h>
0017 #include <linux/irq.h>
0018 #include <linux/workqueue.h>
0019 
0020 #include <linux/kvm.h>
0021 #include <linux/kvm_para.h>
0022 #include <linux/kvm_types.h>
0023 #include <linux/perf_event.h>
0024 #include <linux/pvclock_gtod.h>
0025 #include <linux/clocksource.h>
0026 #include <linux/irqbypass.h>
0027 #include <linux/hyperv.h>
0028 
0029 #include <asm/apic.h>
0030 #include <asm/pvclock-abi.h>
0031 #include <asm/desc.h>
0032 #include <asm/mtrr.h>
0033 #include <asm/msr-index.h>
0034 #include <asm/asm.h>
0035 #include <asm/kvm_page_track.h>
0036 #include <asm/kvm_vcpu_regs.h>
0037 #include <asm/hyperv-tlfs.h>
0038 
0039 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
0040 
0041 #define KVM_MAX_VCPUS 1024
0042 
0043 /*
0044  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
0045  * might be larger than the actual number of VCPUs because the
0046  * APIC ID encodes CPU topology information.
0047  *
0048  * In the worst case, we'll need less than one extra bit for the
0049  * Core ID, and less than one extra bit for the Package (Die) ID,
0050  * so ratio of 4 should be enough.
0051  */
0052 #define KVM_VCPU_ID_RATIO 4
0053 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
0054 
0055 /* memory slots that are not exposed to userspace */
0056 #define KVM_INTERNAL_MEM_SLOTS 3
0057 
0058 #define KVM_HALT_POLL_NS_DEFAULT 200000
0059 
0060 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
0061 
0062 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
0063                     KVM_DIRTY_LOG_INITIALLY_SET)
0064 
0065 #define KVM_BUS_LOCK_DETECTION_VALID_MODE   (KVM_BUS_LOCK_DETECTION_OFF | \
0066                          KVM_BUS_LOCK_DETECTION_EXIT)
0067 
0068 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS    (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
0069                          KVM_X86_NOTIFY_VMEXIT_USER)
0070 
0071 /* x86-specific vcpu->requests bit members */
0072 #define KVM_REQ_MIGRATE_TIMER       KVM_ARCH_REQ(0)
0073 #define KVM_REQ_REPORT_TPR_ACCESS   KVM_ARCH_REQ(1)
0074 #define KVM_REQ_TRIPLE_FAULT        KVM_ARCH_REQ(2)
0075 #define KVM_REQ_MMU_SYNC        KVM_ARCH_REQ(3)
0076 #define KVM_REQ_CLOCK_UPDATE        KVM_ARCH_REQ(4)
0077 #define KVM_REQ_LOAD_MMU_PGD        KVM_ARCH_REQ(5)
0078 #define KVM_REQ_EVENT           KVM_ARCH_REQ(6)
0079 #define KVM_REQ_APF_HALT        KVM_ARCH_REQ(7)
0080 #define KVM_REQ_STEAL_UPDATE        KVM_ARCH_REQ(8)
0081 #define KVM_REQ_NMI         KVM_ARCH_REQ(9)
0082 #define KVM_REQ_PMU         KVM_ARCH_REQ(10)
0083 #define KVM_REQ_PMI         KVM_ARCH_REQ(11)
0084 #define KVM_REQ_SMI         KVM_ARCH_REQ(12)
0085 #define KVM_REQ_MASTERCLOCK_UPDATE  KVM_ARCH_REQ(13)
0086 #define KVM_REQ_MCLOCK_INPROGRESS \
0087     KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
0088 #define KVM_REQ_SCAN_IOAPIC \
0089     KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
0090 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
0091 #define KVM_REQ_APIC_PAGE_RELOAD \
0092     KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
0093 #define KVM_REQ_HV_CRASH        KVM_ARCH_REQ(18)
0094 #define KVM_REQ_IOAPIC_EOI_EXIT     KVM_ARCH_REQ(19)
0095 #define KVM_REQ_HV_RESET        KVM_ARCH_REQ(20)
0096 #define KVM_REQ_HV_EXIT         KVM_ARCH_REQ(21)
0097 #define KVM_REQ_HV_STIMER       KVM_ARCH_REQ(22)
0098 #define KVM_REQ_LOAD_EOI_EXITMAP    KVM_ARCH_REQ(23)
0099 #define KVM_REQ_GET_NESTED_STATE_PAGES  KVM_ARCH_REQ(24)
0100 #define KVM_REQ_APICV_UPDATE \
0101     KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
0102 #define KVM_REQ_TLB_FLUSH_CURRENT   KVM_ARCH_REQ(26)
0103 #define KVM_REQ_TLB_FLUSH_GUEST \
0104     KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
0105 #define KVM_REQ_APF_READY       KVM_ARCH_REQ(28)
0106 #define KVM_REQ_MSR_FILTER_CHANGED  KVM_ARCH_REQ(29)
0107 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
0108     KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
0109 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
0110     KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
0111 
0112 #define CR0_RESERVED_BITS                                               \
0113     (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
0114               | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
0115               | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
0116 
0117 #define CR4_RESERVED_BITS                                               \
0118     (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
0119               | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
0120               | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
0121               | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
0122               | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
0123               | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
0124 
0125 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
0126 
0127 
0128 
0129 #define INVALID_PAGE (~(hpa_t)0)
0130 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
0131 
0132 #define INVALID_GPA (~(gpa_t)0)
0133 
0134 /* KVM Hugepage definitions for x86 */
0135 #define KVM_MAX_HUGEPAGE_LEVEL  PG_LEVEL_1G
0136 #define KVM_NR_PAGE_SIZES   (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
0137 #define KVM_HPAGE_GFN_SHIFT(x)  (((x) - 1) * 9)
0138 #define KVM_HPAGE_SHIFT(x)  (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
0139 #define KVM_HPAGE_SIZE(x)   (1UL << KVM_HPAGE_SHIFT(x))
0140 #define KVM_HPAGE_MASK(x)   (~(KVM_HPAGE_SIZE(x) - 1))
0141 #define KVM_PAGES_PER_HPAGE(x)  (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
0142 
0143 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
0144 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
0145 #define KVM_MMU_HASH_SHIFT 12
0146 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
0147 #define KVM_MIN_FREE_MMU_PAGES 5
0148 #define KVM_REFILL_PAGES 25
0149 #define KVM_MAX_CPUID_ENTRIES 256
0150 #define KVM_NR_FIXED_MTRR_REGION 88
0151 #define KVM_NR_VAR_MTRR 8
0152 
0153 #define ASYNC_PF_PER_VCPU 64
0154 
0155 enum kvm_reg {
0156     VCPU_REGS_RAX = __VCPU_REGS_RAX,
0157     VCPU_REGS_RCX = __VCPU_REGS_RCX,
0158     VCPU_REGS_RDX = __VCPU_REGS_RDX,
0159     VCPU_REGS_RBX = __VCPU_REGS_RBX,
0160     VCPU_REGS_RSP = __VCPU_REGS_RSP,
0161     VCPU_REGS_RBP = __VCPU_REGS_RBP,
0162     VCPU_REGS_RSI = __VCPU_REGS_RSI,
0163     VCPU_REGS_RDI = __VCPU_REGS_RDI,
0164 #ifdef CONFIG_X86_64
0165     VCPU_REGS_R8  = __VCPU_REGS_R8,
0166     VCPU_REGS_R9  = __VCPU_REGS_R9,
0167     VCPU_REGS_R10 = __VCPU_REGS_R10,
0168     VCPU_REGS_R11 = __VCPU_REGS_R11,
0169     VCPU_REGS_R12 = __VCPU_REGS_R12,
0170     VCPU_REGS_R13 = __VCPU_REGS_R13,
0171     VCPU_REGS_R14 = __VCPU_REGS_R14,
0172     VCPU_REGS_R15 = __VCPU_REGS_R15,
0173 #endif
0174     VCPU_REGS_RIP,
0175     NR_VCPU_REGS,
0176 
0177     VCPU_EXREG_PDPTR = NR_VCPU_REGS,
0178     VCPU_EXREG_CR0,
0179     VCPU_EXREG_CR3,
0180     VCPU_EXREG_CR4,
0181     VCPU_EXREG_RFLAGS,
0182     VCPU_EXREG_SEGMENTS,
0183     VCPU_EXREG_EXIT_INFO_1,
0184     VCPU_EXREG_EXIT_INFO_2,
0185 };
0186 
0187 enum {
0188     VCPU_SREG_ES,
0189     VCPU_SREG_CS,
0190     VCPU_SREG_SS,
0191     VCPU_SREG_DS,
0192     VCPU_SREG_FS,
0193     VCPU_SREG_GS,
0194     VCPU_SREG_TR,
0195     VCPU_SREG_LDTR,
0196 };
0197 
0198 enum exit_fastpath_completion {
0199     EXIT_FASTPATH_NONE,
0200     EXIT_FASTPATH_REENTER_GUEST,
0201     EXIT_FASTPATH_EXIT_HANDLED,
0202 };
0203 typedef enum exit_fastpath_completion fastpath_t;
0204 
0205 struct x86_emulate_ctxt;
0206 struct x86_exception;
0207 enum x86_intercept;
0208 enum x86_intercept_stage;
0209 
0210 #define KVM_NR_DB_REGS  4
0211 
0212 #define DR6_BUS_LOCK   (1 << 11)
0213 #define DR6_BD      (1 << 13)
0214 #define DR6_BS      (1 << 14)
0215 #define DR6_BT      (1 << 15)
0216 #define DR6_RTM     (1 << 16)
0217 /*
0218  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
0219  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
0220  * they will never be 0 for now, but when they are defined
0221  * in the future it will require no code change.
0222  *
0223  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
0224  */
0225 #define DR6_ACTIVE_LOW  0xffff0ff0
0226 #define DR6_VOLATILE    0x0001e80f
0227 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
0228 
0229 #define DR7_BP_EN_MASK  0x000000ff
0230 #define DR7_GE      (1 << 9)
0231 #define DR7_GD      (1 << 13)
0232 #define DR7_FIXED_1 0x00000400
0233 #define DR7_VOLATILE    0xffff2bff
0234 
0235 #define KVM_GUESTDBG_VALID_MASK \
0236     (KVM_GUESTDBG_ENABLE | \
0237     KVM_GUESTDBG_SINGLESTEP | \
0238     KVM_GUESTDBG_USE_HW_BP | \
0239     KVM_GUESTDBG_USE_SW_BP | \
0240     KVM_GUESTDBG_INJECT_BP | \
0241     KVM_GUESTDBG_INJECT_DB | \
0242     KVM_GUESTDBG_BLOCKIRQ)
0243 
0244 
0245 #define PFERR_PRESENT_BIT 0
0246 #define PFERR_WRITE_BIT 1
0247 #define PFERR_USER_BIT 2
0248 #define PFERR_RSVD_BIT 3
0249 #define PFERR_FETCH_BIT 4
0250 #define PFERR_PK_BIT 5
0251 #define PFERR_SGX_BIT 15
0252 #define PFERR_GUEST_FINAL_BIT 32
0253 #define PFERR_GUEST_PAGE_BIT 33
0254 #define PFERR_IMPLICIT_ACCESS_BIT 48
0255 
0256 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
0257 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
0258 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
0259 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
0260 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
0261 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
0262 #define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
0263 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
0264 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
0265 #define PFERR_IMPLICIT_ACCESS (1ULL << PFERR_IMPLICIT_ACCESS_BIT)
0266 
0267 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |    \
0268                  PFERR_WRITE_MASK |     \
0269                  PFERR_PRESENT_MASK)
0270 
0271 /* apic attention bits */
0272 #define KVM_APIC_CHECK_VAPIC    0
0273 /*
0274  * The following bit is set with PV-EOI, unset on EOI.
0275  * We detect PV-EOI changes by guest by comparing
0276  * this bit with PV-EOI in guest memory.
0277  * See the implementation in apic_update_pv_eoi.
0278  */
0279 #define KVM_APIC_PV_EOI_PENDING 1
0280 
0281 struct kvm_kernel_irq_routing_entry;
0282 
0283 /*
0284  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
0285  * also includes TDP pages) to determine whether or not a page can be used in
0286  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
0287  * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
0288  * 2 bytes per gfn instead of 4 bytes per gfn.
0289  *
0290  * Upper-level shadow pages having gptes are tracked for write-protection via
0291  * gfn_track.  As above, gfn_track is a 16 bit counter, so KVM must not create
0292  * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
0293  * gfn_track will overflow and explosions will ensure.
0294  *
0295  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
0296  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
0297  * incorporates various mode bits and properties of the SP.  Roughly speaking,
0298  * the number of unique SPs that can theoretically be created is 2^n, where n
0299  * is the number of bits that are used to compute the role.
0300  *
0301  * But, even though there are 19 bits in the mask below, not all combinations
0302  * of modes and flags are possible:
0303  *
0304  *   - invalid shadow pages are not accounted, so the bits are effectively 18
0305  *
0306  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
0307  *     execonly and ad_disabled are only used for nested EPT which has
0308  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
0309  *
0310  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
0311  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
0312  *     paging has exactly one upper level, making level completely redundant
0313  *     when has_4_byte_gpte=1.
0314  *
0315  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
0316  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
0317  *
0318  * Therefore, the maximum number of possible upper-level shadow pages for a
0319  * single gfn is a bit less than 2^13.
0320  */
0321 union kvm_mmu_page_role {
0322     u32 word;
0323     struct {
0324         unsigned level:4;
0325         unsigned has_4_byte_gpte:1;
0326         unsigned quadrant:2;
0327         unsigned direct:1;
0328         unsigned access:3;
0329         unsigned invalid:1;
0330         unsigned efer_nx:1;
0331         unsigned cr0_wp:1;
0332         unsigned smep_andnot_wp:1;
0333         unsigned smap_andnot_wp:1;
0334         unsigned ad_disabled:1;
0335         unsigned guest_mode:1;
0336         unsigned passthrough:1;
0337         unsigned :5;
0338 
0339         /*
0340          * This is left at the top of the word so that
0341          * kvm_memslots_for_spte_role can extract it with a
0342          * simple shift.  While there is room, give it a whole
0343          * byte so it is also faster to load it from memory.
0344          */
0345         unsigned smm:8;
0346     };
0347 };
0348 
0349 /*
0350  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
0351  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
0352  * including on nested transitions, if nothing in the full role changes then
0353  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
0354  * don't treat all-zero structure as valid data.
0355  *
0356  * The properties that are tracked in the extended role but not the page role
0357  * are for things that either (a) do not affect the validity of the shadow page
0358  * or (b) are indirectly reflected in the shadow page's role.  For example,
0359  * CR4.PKE only affects permission checks for software walks of the guest page
0360  * tables (because KVM doesn't support Protection Keys with shadow paging), and
0361  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
0362  *
0363  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
0364  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
0365  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
0366  * SMAP aware regardless of CR0.WP.
0367  */
0368 union kvm_mmu_extended_role {
0369     u32 word;
0370     struct {
0371         unsigned int valid:1;
0372         unsigned int execonly:1;
0373         unsigned int cr4_pse:1;
0374         unsigned int cr4_pke:1;
0375         unsigned int cr4_smap:1;
0376         unsigned int cr4_smep:1;
0377         unsigned int cr4_la57:1;
0378         unsigned int efer_lma:1;
0379     };
0380 };
0381 
0382 union kvm_cpu_role {
0383     u64 as_u64;
0384     struct {
0385         union kvm_mmu_page_role base;
0386         union kvm_mmu_extended_role ext;
0387     };
0388 };
0389 
0390 struct kvm_rmap_head {
0391     unsigned long val;
0392 };
0393 
0394 struct kvm_pio_request {
0395     unsigned long linear_rip;
0396     unsigned long count;
0397     int in;
0398     int port;
0399     int size;
0400 };
0401 
0402 #define PT64_ROOT_MAX_LEVEL 5
0403 
0404 struct rsvd_bits_validate {
0405     u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
0406     u64 bad_mt_xwr;
0407 };
0408 
0409 struct kvm_mmu_root_info {
0410     gpa_t pgd;
0411     hpa_t hpa;
0412 };
0413 
0414 #define KVM_MMU_ROOT_INFO_INVALID \
0415     ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
0416 
0417 #define KVM_MMU_NUM_PREV_ROOTS 3
0418 
0419 #define KVM_HAVE_MMU_RWLOCK
0420 
0421 struct kvm_mmu_page;
0422 struct kvm_page_fault;
0423 
0424 /*
0425  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
0426  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
0427  * current mmu mode.
0428  */
0429 struct kvm_mmu {
0430     unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
0431     u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
0432     int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
0433     void (*inject_page_fault)(struct kvm_vcpu *vcpu,
0434                   struct x86_exception *fault);
0435     gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
0436                 gpa_t gva_or_gpa, u64 access,
0437                 struct x86_exception *exception);
0438     int (*sync_page)(struct kvm_vcpu *vcpu,
0439              struct kvm_mmu_page *sp);
0440     void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
0441     struct kvm_mmu_root_info root;
0442     union kvm_cpu_role cpu_role;
0443     union kvm_mmu_page_role root_role;
0444 
0445     /*
0446     * The pkru_mask indicates if protection key checks are needed.  It
0447     * consists of 16 domains indexed by page fault error code bits [4:1],
0448     * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
0449     * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
0450     */
0451     u32 pkru_mask;
0452 
0453     struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
0454 
0455     /*
0456      * Bitmap; bit set = permission fault
0457      * Byte index: page fault error code [4:1]
0458      * Bit index: pte permissions in ACC_* format
0459      */
0460     u8 permissions[16];
0461 
0462     u64 *pae_root;
0463     u64 *pml4_root;
0464     u64 *pml5_root;
0465 
0466     /*
0467      * check zero bits on shadow page table entries, these
0468      * bits include not only hardware reserved bits but also
0469      * the bits spte never used.
0470      */
0471     struct rsvd_bits_validate shadow_zero_check;
0472 
0473     struct rsvd_bits_validate guest_rsvd_check;
0474 
0475     u64 pdptrs[4]; /* pae */
0476 };
0477 
0478 struct kvm_tlb_range {
0479     u64 start_gfn;
0480     u64 pages;
0481 };
0482 
0483 enum pmc_type {
0484     KVM_PMC_GP = 0,
0485     KVM_PMC_FIXED,
0486 };
0487 
0488 struct kvm_pmc {
0489     enum pmc_type type;
0490     u8 idx;
0491     u64 counter;
0492     u64 eventsel;
0493     struct perf_event *perf_event;
0494     struct kvm_vcpu *vcpu;
0495     /*
0496      * eventsel value for general purpose counters,
0497      * ctrl value for fixed counters.
0498      */
0499     u64 current_config;
0500     bool is_paused;
0501     bool intr;
0502 };
0503 
0504 #define KVM_PMC_MAX_FIXED   3
0505 struct kvm_pmu {
0506     unsigned nr_arch_gp_counters;
0507     unsigned nr_arch_fixed_counters;
0508     unsigned available_event_types;
0509     u64 fixed_ctr_ctrl;
0510     u64 fixed_ctr_ctrl_mask;
0511     u64 global_ctrl;
0512     u64 global_status;
0513     u64 counter_bitmask[2];
0514     u64 global_ctrl_mask;
0515     u64 global_ovf_ctrl_mask;
0516     u64 reserved_bits;
0517     u64 raw_event_mask;
0518     u8 version;
0519     struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
0520     struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
0521     struct irq_work irq_work;
0522     DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
0523     DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
0524     DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
0525 
0526     u64 ds_area;
0527     u64 pebs_enable;
0528     u64 pebs_enable_mask;
0529     u64 pebs_data_cfg;
0530     u64 pebs_data_cfg_mask;
0531 
0532     /*
0533      * If a guest counter is cross-mapped to host counter with different
0534      * index, its PEBS capability will be temporarily disabled.
0535      *
0536      * The user should make sure that this mask is updated
0537      * after disabling interrupts and before perf_guest_get_msrs();
0538      */
0539     u64 host_cross_mapped_mask;
0540 
0541     /*
0542      * The gate to release perf_events not marked in
0543      * pmc_in_use only once in a vcpu time slice.
0544      */
0545     bool need_cleanup;
0546 
0547     /*
0548      * The total number of programmed perf_events and it helps to avoid
0549      * redundant check before cleanup if guest don't use vPMU at all.
0550      */
0551     u8 event_count;
0552 };
0553 
0554 struct kvm_pmu_ops;
0555 
0556 enum {
0557     KVM_DEBUGREG_BP_ENABLED = 1,
0558     KVM_DEBUGREG_WONT_EXIT = 2,
0559 };
0560 
0561 struct kvm_mtrr_range {
0562     u64 base;
0563     u64 mask;
0564     struct list_head node;
0565 };
0566 
0567 struct kvm_mtrr {
0568     struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
0569     mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
0570     u64 deftype;
0571 
0572     struct list_head head;
0573 };
0574 
0575 /* Hyper-V SynIC timer */
0576 struct kvm_vcpu_hv_stimer {
0577     struct hrtimer timer;
0578     int index;
0579     union hv_stimer_config config;
0580     u64 count;
0581     u64 exp_time;
0582     struct hv_message msg;
0583     bool msg_pending;
0584 };
0585 
0586 /* Hyper-V synthetic interrupt controller (SynIC)*/
0587 struct kvm_vcpu_hv_synic {
0588     u64 version;
0589     u64 control;
0590     u64 msg_page;
0591     u64 evt_page;
0592     atomic64_t sint[HV_SYNIC_SINT_COUNT];
0593     atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
0594     DECLARE_BITMAP(auto_eoi_bitmap, 256);
0595     DECLARE_BITMAP(vec_bitmap, 256);
0596     bool active;
0597     bool dont_zero_synic_pages;
0598 };
0599 
0600 /* Hyper-V per vcpu emulation context */
0601 struct kvm_vcpu_hv {
0602     struct kvm_vcpu *vcpu;
0603     u32 vp_index;
0604     u64 hv_vapic;
0605     s64 runtime_offset;
0606     struct kvm_vcpu_hv_synic synic;
0607     struct kvm_hyperv_exit exit;
0608     struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
0609     DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
0610     bool enforce_cpuid;
0611     struct {
0612         u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
0613         u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
0614         u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
0615         u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
0616         u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
0617         u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
0618     } cpuid_cache;
0619 };
0620 
0621 /* Xen HVM per vcpu emulation context */
0622 struct kvm_vcpu_xen {
0623     u64 hypercall_rip;
0624     u32 current_runstate;
0625     u8 upcall_vector;
0626     struct gfn_to_pfn_cache vcpu_info_cache;
0627     struct gfn_to_pfn_cache vcpu_time_info_cache;
0628     struct gfn_to_pfn_cache runstate_cache;
0629     u64 last_steal;
0630     u64 runstate_entry_time;
0631     u64 runstate_times[4];
0632     unsigned long evtchn_pending_sel;
0633     u32 vcpu_id; /* The Xen / ACPI vCPU ID */
0634     u32 timer_virq;
0635     u64 timer_expires; /* In guest epoch */
0636     atomic_t timer_pending;
0637     struct hrtimer timer;
0638     int poll_evtchn;
0639     struct timer_list poll_timer;
0640 };
0641 
0642 struct kvm_vcpu_arch {
0643     /*
0644      * rip and regs accesses must go through
0645      * kvm_{register,rip}_{read,write} functions.
0646      */
0647     unsigned long regs[NR_VCPU_REGS];
0648     u32 regs_avail;
0649     u32 regs_dirty;
0650 
0651     unsigned long cr0;
0652     unsigned long cr0_guest_owned_bits;
0653     unsigned long cr2;
0654     unsigned long cr3;
0655     unsigned long cr4;
0656     unsigned long cr4_guest_owned_bits;
0657     unsigned long cr4_guest_rsvd_bits;
0658     unsigned long cr8;
0659     u32 host_pkru;
0660     u32 pkru;
0661     u32 hflags;
0662     u64 efer;
0663     u64 apic_base;
0664     struct kvm_lapic *apic;    /* kernel irqchip context */
0665     bool load_eoi_exitmap_pending;
0666     DECLARE_BITMAP(ioapic_handled_vectors, 256);
0667     unsigned long apic_attention;
0668     int32_t apic_arb_prio;
0669     int mp_state;
0670     u64 ia32_misc_enable_msr;
0671     u64 smbase;
0672     u64 smi_count;
0673     bool at_instruction_boundary;
0674     bool tpr_access_reporting;
0675     bool xsaves_enabled;
0676     bool xfd_no_write_intercept;
0677     u64 ia32_xss;
0678     u64 microcode_version;
0679     u64 arch_capabilities;
0680     u64 perf_capabilities;
0681 
0682     /*
0683      * Paging state of the vcpu
0684      *
0685      * If the vcpu runs in guest mode with two level paging this still saves
0686      * the paging mode of the l1 guest. This context is always used to
0687      * handle faults.
0688      */
0689     struct kvm_mmu *mmu;
0690 
0691     /* Non-nested MMU for L1 */
0692     struct kvm_mmu root_mmu;
0693 
0694     /* L1 MMU when running nested */
0695     struct kvm_mmu guest_mmu;
0696 
0697     /*
0698      * Paging state of an L2 guest (used for nested npt)
0699      *
0700      * This context will save all necessary information to walk page tables
0701      * of an L2 guest. This context is only initialized for page table
0702      * walking and not for faulting since we never handle l2 page faults on
0703      * the host.
0704      */
0705     struct kvm_mmu nested_mmu;
0706 
0707     /*
0708      * Pointer to the mmu context currently used for
0709      * gva_to_gpa translations.
0710      */
0711     struct kvm_mmu *walk_mmu;
0712 
0713     struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
0714     struct kvm_mmu_memory_cache mmu_shadow_page_cache;
0715     struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
0716     struct kvm_mmu_memory_cache mmu_page_header_cache;
0717 
0718     /*
0719      * QEMU userspace and the guest each have their own FPU state.
0720      * In vcpu_run, we switch between the user and guest FPU contexts.
0721      * While running a VCPU, the VCPU thread will have the guest FPU
0722      * context.
0723      *
0724      * Note that while the PKRU state lives inside the fpu registers,
0725      * it is switched out separately at VMENTER and VMEXIT time. The
0726      * "guest_fpstate" state here contains the guest FPU context, with the
0727      * host PRKU bits.
0728      */
0729     struct fpu_guest guest_fpu;
0730 
0731     u64 xcr0;
0732     u64 guest_supported_xcr0;
0733 
0734     struct kvm_pio_request pio;
0735     void *pio_data;
0736     void *sev_pio_data;
0737     unsigned sev_pio_count;
0738 
0739     u8 event_exit_inst_len;
0740 
0741     struct kvm_queued_exception {
0742         bool pending;
0743         bool injected;
0744         bool has_error_code;
0745         u8 nr;
0746         u32 error_code;
0747         unsigned long payload;
0748         bool has_payload;
0749         u8 nested_apf;
0750     } exception;
0751 
0752     struct kvm_queued_interrupt {
0753         bool injected;
0754         bool soft;
0755         u8 nr;
0756     } interrupt;
0757 
0758     int halt_request; /* real mode on Intel only */
0759 
0760     int cpuid_nent;
0761     struct kvm_cpuid_entry2 *cpuid_entries;
0762     u32 kvm_cpuid_base;
0763 
0764     u64 reserved_gpa_bits;
0765     int maxphyaddr;
0766 
0767     /* emulate context */
0768 
0769     struct x86_emulate_ctxt *emulate_ctxt;
0770     bool emulate_regs_need_sync_to_vcpu;
0771     bool emulate_regs_need_sync_from_vcpu;
0772     int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
0773 
0774     gpa_t time;
0775     struct pvclock_vcpu_time_info hv_clock;
0776     unsigned int hw_tsc_khz;
0777     struct gfn_to_pfn_cache pv_time;
0778     /* set guest stopped flag in pvclock flags field */
0779     bool pvclock_set_guest_stopped_request;
0780 
0781     struct {
0782         u8 preempted;
0783         u64 msr_val;
0784         u64 last_steal;
0785         struct gfn_to_hva_cache cache;
0786     } st;
0787 
0788     u64 l1_tsc_offset;
0789     u64 tsc_offset; /* current tsc offset */
0790     u64 last_guest_tsc;
0791     u64 last_host_tsc;
0792     u64 tsc_offset_adjustment;
0793     u64 this_tsc_nsec;
0794     u64 this_tsc_write;
0795     u64 this_tsc_generation;
0796     bool tsc_catchup;
0797     bool tsc_always_catchup;
0798     s8 virtual_tsc_shift;
0799     u32 virtual_tsc_mult;
0800     u32 virtual_tsc_khz;
0801     s64 ia32_tsc_adjust_msr;
0802     u64 msr_ia32_power_ctl;
0803     u64 l1_tsc_scaling_ratio;
0804     u64 tsc_scaling_ratio; /* current scaling ratio */
0805 
0806     atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
0807     unsigned nmi_pending; /* NMI queued after currently running handler */
0808     bool nmi_injected;    /* Trying to inject an NMI this entry */
0809     bool smi_pending;    /* SMI queued after currently running handler */
0810     u8 handling_intr_from_guest;
0811 
0812     struct kvm_mtrr mtrr_state;
0813     u64 pat;
0814 
0815     unsigned switch_db_regs;
0816     unsigned long db[KVM_NR_DB_REGS];
0817     unsigned long dr6;
0818     unsigned long dr7;
0819     unsigned long eff_db[KVM_NR_DB_REGS];
0820     unsigned long guest_debug_dr7;
0821     u64 msr_platform_info;
0822     u64 msr_misc_features_enables;
0823 
0824     u64 mcg_cap;
0825     u64 mcg_status;
0826     u64 mcg_ctl;
0827     u64 mcg_ext_ctl;
0828     u64 *mce_banks;
0829     u64 *mci_ctl2_banks;
0830 
0831     /* Cache MMIO info */
0832     u64 mmio_gva;
0833     unsigned mmio_access;
0834     gfn_t mmio_gfn;
0835     u64 mmio_gen;
0836 
0837     struct kvm_pmu pmu;
0838 
0839     /* used for guest single stepping over the given code position */
0840     unsigned long singlestep_rip;
0841 
0842     bool hyperv_enabled;
0843     struct kvm_vcpu_hv *hyperv;
0844     struct kvm_vcpu_xen xen;
0845 
0846     cpumask_var_t wbinvd_dirty_mask;
0847 
0848     unsigned long last_retry_eip;
0849     unsigned long last_retry_addr;
0850 
0851     struct {
0852         bool halted;
0853         gfn_t gfns[ASYNC_PF_PER_VCPU];
0854         struct gfn_to_hva_cache data;
0855         u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
0856         u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
0857         u16 vec;
0858         u32 id;
0859         bool send_user_only;
0860         u32 host_apf_flags;
0861         unsigned long nested_apf_token;
0862         bool delivery_as_pf_vmexit;
0863         bool pageready_pending;
0864     } apf;
0865 
0866     /* OSVW MSRs (AMD only) */
0867     struct {
0868         u64 length;
0869         u64 status;
0870     } osvw;
0871 
0872     struct {
0873         u64 msr_val;
0874         struct gfn_to_hva_cache data;
0875     } pv_eoi;
0876 
0877     u64 msr_kvm_poll_control;
0878 
0879     /*
0880      * Indicates the guest is trying to write a gfn that contains one or
0881      * more of the PTEs used to translate the write itself, i.e. the access
0882      * is changing its own translation in the guest page tables.  KVM exits
0883      * to userspace if emulation of the faulting instruction fails and this
0884      * flag is set, as KVM cannot make forward progress.
0885      *
0886      * If emulation fails for a write to guest page tables, KVM unprotects
0887      * (zaps) the shadow page for the target gfn and resumes the guest to
0888      * retry the non-emulatable instruction (on hardware).  Unprotecting the
0889      * gfn doesn't allow forward progress for a self-changing access because
0890      * doing so also zaps the translation for the gfn, i.e. retrying the
0891      * instruction will hit a !PRESENT fault, which results in a new shadow
0892      * page and sends KVM back to square one.
0893      */
0894     bool write_fault_to_shadow_pgtable;
0895 
0896     /* set at EPT violation at this point */
0897     unsigned long exit_qualification;
0898 
0899     /* pv related host specific info */
0900     struct {
0901         bool pv_unhalted;
0902     } pv;
0903 
0904     int pending_ioapic_eoi;
0905     int pending_external_vector;
0906 
0907     /* be preempted when it's in kernel-mode(cpl=0) */
0908     bool preempted_in_kernel;
0909 
0910     /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
0911     bool l1tf_flush_l1d;
0912 
0913     /* Host CPU on which VM-entry was most recently attempted */
0914     int last_vmentry_cpu;
0915 
0916     /* AMD MSRC001_0015 Hardware Configuration */
0917     u64 msr_hwcr;
0918 
0919     /* pv related cpuid info */
0920     struct {
0921         /*
0922          * value of the eax register in the KVM_CPUID_FEATURES CPUID
0923          * leaf.
0924          */
0925         u32 features;
0926 
0927         /*
0928          * indicates whether pv emulation should be disabled if features
0929          * are not present in the guest's cpuid
0930          */
0931         bool enforce;
0932     } pv_cpuid;
0933 
0934     /* Protected Guests */
0935     bool guest_state_protected;
0936 
0937     /*
0938      * Set when PDPTS were loaded directly by the userspace without
0939      * reading the guest memory
0940      */
0941     bool pdptrs_from_userspace;
0942 
0943 #if IS_ENABLED(CONFIG_HYPERV)
0944     hpa_t hv_root_tdp;
0945 #endif
0946 };
0947 
0948 struct kvm_lpage_info {
0949     int disallow_lpage;
0950 };
0951 
0952 struct kvm_arch_memory_slot {
0953     struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
0954     struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
0955     unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
0956 };
0957 
0958 /*
0959  * We use as the mode the number of bits allocated in the LDR for the
0960  * logical processor ID.  It happens that these are all powers of two.
0961  * This makes it is very easy to detect cases where the APICs are
0962  * configured for multiple modes; in that case, we cannot use the map and
0963  * hence cannot use kvm_irq_delivery_to_apic_fast either.
0964  */
0965 #define KVM_APIC_MODE_XAPIC_CLUSTER          4
0966 #define KVM_APIC_MODE_XAPIC_FLAT             8
0967 #define KVM_APIC_MODE_X2APIC                16
0968 
0969 struct kvm_apic_map {
0970     struct rcu_head rcu;
0971     u8 mode;
0972     u32 max_apic_id;
0973     union {
0974         struct kvm_lapic *xapic_flat_map[8];
0975         struct kvm_lapic *xapic_cluster_map[16][4];
0976     };
0977     struct kvm_lapic *phys_map[];
0978 };
0979 
0980 /* Hyper-V synthetic debugger (SynDbg)*/
0981 struct kvm_hv_syndbg {
0982     struct {
0983         u64 control;
0984         u64 status;
0985         u64 send_page;
0986         u64 recv_page;
0987         u64 pending_page;
0988     } control;
0989     u64 options;
0990 };
0991 
0992 /* Current state of Hyper-V TSC page clocksource */
0993 enum hv_tsc_page_status {
0994     /* TSC page was not set up or disabled */
0995     HV_TSC_PAGE_UNSET = 0,
0996     /* TSC page MSR was written by the guest, update pending */
0997     HV_TSC_PAGE_GUEST_CHANGED,
0998     /* TSC page update was triggered from the host side */
0999     HV_TSC_PAGE_HOST_CHANGED,
1000     /* TSC page was properly set up and is currently active  */
1001     HV_TSC_PAGE_SET,
1002     /* TSC page was set up with an inaccessible GPA */
1003     HV_TSC_PAGE_BROKEN,
1004 };
1005 
1006 /* Hyper-V emulation context */
1007 struct kvm_hv {
1008     struct mutex hv_lock;
1009     u64 hv_guest_os_id;
1010     u64 hv_hypercall;
1011     u64 hv_tsc_page;
1012     enum hv_tsc_page_status hv_tsc_page_status;
1013 
1014     /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1015     u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1016     u64 hv_crash_ctl;
1017 
1018     struct ms_hyperv_tsc_page tsc_ref;
1019 
1020     struct idr conn_to_evt;
1021 
1022     u64 hv_reenlightenment_control;
1023     u64 hv_tsc_emulation_control;
1024     u64 hv_tsc_emulation_status;
1025 
1026     /* How many vCPUs have VP index != vCPU index */
1027     atomic_t num_mismatched_vp_indexes;
1028 
1029     /*
1030      * How many SynICs use 'AutoEOI' feature
1031      * (protected by arch.apicv_update_lock)
1032      */
1033     unsigned int synic_auto_eoi_used;
1034 
1035     struct hv_partition_assist_pg *hv_pa_pg;
1036     struct kvm_hv_syndbg hv_syndbg;
1037 };
1038 
1039 struct msr_bitmap_range {
1040     u32 flags;
1041     u32 nmsrs;
1042     u32 base;
1043     unsigned long *bitmap;
1044 };
1045 
1046 /* Xen emulation context */
1047 struct kvm_xen {
1048     u32 xen_version;
1049     bool long_mode;
1050     u8 upcall_vector;
1051     struct gfn_to_pfn_cache shinfo_cache;
1052     struct idr evtchn_ports;
1053     unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1054 };
1055 
1056 enum kvm_irqchip_mode {
1057     KVM_IRQCHIP_NONE,
1058     KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1059     KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1060 };
1061 
1062 struct kvm_x86_msr_filter {
1063     u8 count;
1064     bool default_allow:1;
1065     struct msr_bitmap_range ranges[16];
1066 };
1067 
1068 enum kvm_apicv_inhibit {
1069 
1070     /********************************************************************/
1071     /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1072     /********************************************************************/
1073 
1074     /*
1075      * APIC acceleration is disabled by a module parameter
1076      * and/or not supported in hardware.
1077      */
1078     APICV_INHIBIT_REASON_DISABLE,
1079 
1080     /*
1081      * APIC acceleration is inhibited because AutoEOI feature is
1082      * being used by a HyperV guest.
1083      */
1084     APICV_INHIBIT_REASON_HYPERV,
1085 
1086     /*
1087      * APIC acceleration is inhibited because the userspace didn't yet
1088      * enable the kernel/split irqchip.
1089      */
1090     APICV_INHIBIT_REASON_ABSENT,
1091 
1092     /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1093      * (out of band, debug measure of blocking all interrupts on this vCPU)
1094      * was enabled, to avoid AVIC/APICv bypassing it.
1095      */
1096     APICV_INHIBIT_REASON_BLOCKIRQ,
1097 
1098     /*
1099      * For simplicity, the APIC acceleration is inhibited
1100      * first time either APIC ID or APIC base are changed by the guest
1101      * from their reset values.
1102      */
1103     APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1104     APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1105 
1106     /******************************************************/
1107     /* INHIBITs that are relevant only to the AMD's AVIC. */
1108     /******************************************************/
1109 
1110     /*
1111      * AVIC is inhibited on a vCPU because it runs a nested guest.
1112      *
1113      * This is needed because unlike APICv, the peers of this vCPU
1114      * cannot use the doorbell mechanism to signal interrupts via AVIC when
1115      * a vCPU runs nested.
1116      */
1117     APICV_INHIBIT_REASON_NESTED,
1118 
1119     /*
1120      * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1121      * which cannot be injected when the AVIC is enabled, thus AVIC
1122      * is inhibited while KVM waits for IRQ window.
1123      */
1124     APICV_INHIBIT_REASON_IRQWIN,
1125 
1126     /*
1127      * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1128      * which AVIC doesn't support for edge triggered interrupts.
1129      */
1130     APICV_INHIBIT_REASON_PIT_REINJ,
1131 
1132     /*
1133      * AVIC is disabled because SEV doesn't support it.
1134      */
1135     APICV_INHIBIT_REASON_SEV,
1136 };
1137 
1138 struct kvm_arch {
1139     unsigned long n_used_mmu_pages;
1140     unsigned long n_requested_mmu_pages;
1141     unsigned long n_max_mmu_pages;
1142     unsigned int indirect_shadow_pages;
1143     u8 mmu_valid_gen;
1144     struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1145     struct list_head active_mmu_pages;
1146     struct list_head zapped_obsolete_pages;
1147     struct list_head lpage_disallowed_mmu_pages;
1148     struct kvm_page_track_notifier_node mmu_sp_tracker;
1149     struct kvm_page_track_notifier_head track_notifier_head;
1150     /*
1151      * Protects marking pages unsync during page faults, as TDP MMU page
1152      * faults only take mmu_lock for read.  For simplicity, the unsync
1153      * pages lock is always taken when marking pages unsync regardless of
1154      * whether mmu_lock is held for read or write.
1155      */
1156     spinlock_t mmu_unsync_pages_lock;
1157 
1158     struct list_head assigned_dev_head;
1159     struct iommu_domain *iommu_domain;
1160     bool iommu_noncoherent;
1161 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1162     atomic_t noncoherent_dma_count;
1163 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1164     atomic_t assigned_device_count;
1165     struct kvm_pic *vpic;
1166     struct kvm_ioapic *vioapic;
1167     struct kvm_pit *vpit;
1168     atomic_t vapics_in_nmi_mode;
1169     struct mutex apic_map_lock;
1170     struct kvm_apic_map __rcu *apic_map;
1171     atomic_t apic_map_dirty;
1172 
1173     /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1174     struct rw_semaphore apicv_update_lock;
1175 
1176     bool apic_access_memslot_enabled;
1177     unsigned long apicv_inhibit_reasons;
1178 
1179     gpa_t wall_clock;
1180 
1181     bool mwait_in_guest;
1182     bool hlt_in_guest;
1183     bool pause_in_guest;
1184     bool cstate_in_guest;
1185 
1186     unsigned long irq_sources_bitmap;
1187     s64 kvmclock_offset;
1188 
1189     /*
1190      * This also protects nr_vcpus_matched_tsc which is read from a
1191      * preemption-disabled region, so it must be a raw spinlock.
1192      */
1193     raw_spinlock_t tsc_write_lock;
1194     u64 last_tsc_nsec;
1195     u64 last_tsc_write;
1196     u32 last_tsc_khz;
1197     u64 last_tsc_offset;
1198     u64 cur_tsc_nsec;
1199     u64 cur_tsc_write;
1200     u64 cur_tsc_offset;
1201     u64 cur_tsc_generation;
1202     int nr_vcpus_matched_tsc;
1203 
1204     u32 default_tsc_khz;
1205 
1206     seqcount_raw_spinlock_t pvclock_sc;
1207     bool use_master_clock;
1208     u64 master_kernel_ns;
1209     u64 master_cycle_now;
1210     struct delayed_work kvmclock_update_work;
1211     struct delayed_work kvmclock_sync_work;
1212 
1213     struct kvm_xen_hvm_config xen_hvm_config;
1214 
1215     /* reads protected by irq_srcu, writes by irq_lock */
1216     struct hlist_head mask_notifier_list;
1217 
1218     struct kvm_hv hyperv;
1219     struct kvm_xen xen;
1220 
1221     bool backwards_tsc_observed;
1222     bool boot_vcpu_runs_old_kvmclock;
1223     u32 bsp_vcpu_id;
1224 
1225     u64 disabled_quirks;
1226     int cpu_dirty_logging_count;
1227 
1228     enum kvm_irqchip_mode irqchip_mode;
1229     u8 nr_reserved_ioapic_pins;
1230 
1231     bool disabled_lapic_found;
1232 
1233     bool x2apic_format;
1234     bool x2apic_broadcast_quirk_disabled;
1235 
1236     bool guest_can_read_msr_platform_info;
1237     bool exception_payload_enabled;
1238 
1239     bool triple_fault_event;
1240 
1241     bool bus_lock_detection_enabled;
1242     bool enable_pmu;
1243 
1244     u32 notify_window;
1245     u32 notify_vmexit_flags;
1246     /*
1247      * If exit_on_emulation_error is set, and the in-kernel instruction
1248      * emulator fails to emulate an instruction, allow userspace
1249      * the opportunity to look at it.
1250      */
1251     bool exit_on_emulation_error;
1252 
1253     /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1254     u32 user_space_msr_mask;
1255     struct kvm_x86_msr_filter __rcu *msr_filter;
1256 
1257     u32 hypercall_exit_enabled;
1258 
1259     /* Guest can access the SGX PROVISIONKEY. */
1260     bool sgx_provisioning_allowed;
1261 
1262     struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1263     struct task_struct *nx_lpage_recovery_thread;
1264 
1265 #ifdef CONFIG_X86_64
1266     /*
1267      * Whether the TDP MMU is enabled for this VM. This contains a
1268      * snapshot of the TDP MMU module parameter from when the VM was
1269      * created and remains unchanged for the life of the VM. If this is
1270      * true, TDP MMU handler functions will run for various MMU
1271      * operations.
1272      */
1273     bool tdp_mmu_enabled;
1274 
1275     /*
1276      * List of struct kvm_mmu_pages being used as roots.
1277      * All struct kvm_mmu_pages in the list should have
1278      * tdp_mmu_page set.
1279      *
1280      * For reads, this list is protected by:
1281      *  the MMU lock in read mode + RCU or
1282      *  the MMU lock in write mode
1283      *
1284      * For writes, this list is protected by:
1285      *  the MMU lock in read mode + the tdp_mmu_pages_lock or
1286      *  the MMU lock in write mode
1287      *
1288      * Roots will remain in the list until their tdp_mmu_root_count
1289      * drops to zero, at which point the thread that decremented the
1290      * count to zero should removed the root from the list and clean
1291      * it up, freeing the root after an RCU grace period.
1292      */
1293     struct list_head tdp_mmu_roots;
1294 
1295     /*
1296      * List of struct kvmp_mmu_pages not being used as roots.
1297      * All struct kvm_mmu_pages in the list should have
1298      * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1299      */
1300     struct list_head tdp_mmu_pages;
1301 
1302     /*
1303      * Protects accesses to the following fields when the MMU lock
1304      * is held in read mode:
1305      *  - tdp_mmu_roots (above)
1306      *  - tdp_mmu_pages (above)
1307      *  - the link field of struct kvm_mmu_pages used by the TDP MMU
1308      *  - lpage_disallowed_mmu_pages
1309      *  - the lpage_disallowed_link field of struct kvm_mmu_pages used
1310      *    by the TDP MMU
1311      * It is acceptable, but not necessary, to acquire this lock when
1312      * the thread holds the MMU lock in write mode.
1313      */
1314     spinlock_t tdp_mmu_pages_lock;
1315     struct workqueue_struct *tdp_mmu_zap_wq;
1316 #endif /* CONFIG_X86_64 */
1317 
1318     /*
1319      * If set, at least one shadow root has been allocated. This flag
1320      * is used as one input when determining whether certain memslot
1321      * related allocations are necessary.
1322      */
1323     bool shadow_root_allocated;
1324 
1325 #if IS_ENABLED(CONFIG_HYPERV)
1326     hpa_t   hv_root_tdp;
1327     spinlock_t hv_root_tdp_lock;
1328 #endif
1329     /*
1330      * VM-scope maximum vCPU ID. Used to determine the size of structures
1331      * that increase along with the maximum vCPU ID, in which case, using
1332      * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1333      */
1334     u32 max_vcpu_ids;
1335 
1336     bool disable_nx_huge_pages;
1337 
1338     /*
1339      * Memory caches used to allocate shadow pages when performing eager
1340      * page splitting. No need for a shadowed_info_cache since eager page
1341      * splitting only allocates direct shadow pages.
1342      *
1343      * Protected by kvm->slots_lock.
1344      */
1345     struct kvm_mmu_memory_cache split_shadow_page_cache;
1346     struct kvm_mmu_memory_cache split_page_header_cache;
1347 
1348     /*
1349      * Memory cache used to allocate pte_list_desc structs while splitting
1350      * huge pages. In the worst case, to split one huge page, 512
1351      * pte_list_desc structs are needed to add each lower level leaf sptep
1352      * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1353      * page table.
1354      *
1355      * Protected by kvm->slots_lock.
1356      */
1357 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1358     struct kvm_mmu_memory_cache split_desc_cache;
1359 };
1360 
1361 struct kvm_vm_stat {
1362     struct kvm_vm_stat_generic generic;
1363     u64 mmu_shadow_zapped;
1364     u64 mmu_pte_write;
1365     u64 mmu_pde_zapped;
1366     u64 mmu_flooded;
1367     u64 mmu_recycled;
1368     u64 mmu_cache_miss;
1369     u64 mmu_unsync;
1370     union {
1371         struct {
1372             atomic64_t pages_4k;
1373             atomic64_t pages_2m;
1374             atomic64_t pages_1g;
1375         };
1376         atomic64_t pages[KVM_NR_PAGE_SIZES];
1377     };
1378     u64 nx_lpage_splits;
1379     u64 max_mmu_page_hash_collisions;
1380     u64 max_mmu_rmap_size;
1381 };
1382 
1383 struct kvm_vcpu_stat {
1384     struct kvm_vcpu_stat_generic generic;
1385     u64 pf_taken;
1386     u64 pf_fixed;
1387     u64 pf_emulate;
1388     u64 pf_spurious;
1389     u64 pf_fast;
1390     u64 pf_mmio_spte_created;
1391     u64 pf_guest;
1392     u64 tlb_flush;
1393     u64 invlpg;
1394 
1395     u64 exits;
1396     u64 io_exits;
1397     u64 mmio_exits;
1398     u64 signal_exits;
1399     u64 irq_window_exits;
1400     u64 nmi_window_exits;
1401     u64 l1d_flush;
1402     u64 halt_exits;
1403     u64 request_irq_exits;
1404     u64 irq_exits;
1405     u64 host_state_reload;
1406     u64 fpu_reload;
1407     u64 insn_emulation;
1408     u64 insn_emulation_fail;
1409     u64 hypercalls;
1410     u64 irq_injections;
1411     u64 nmi_injections;
1412     u64 req_event;
1413     u64 nested_run;
1414     u64 directed_yield_attempted;
1415     u64 directed_yield_successful;
1416     u64 preemption_reported;
1417     u64 preemption_other;
1418     u64 guest_mode;
1419     u64 notify_window_exits;
1420 };
1421 
1422 struct x86_instruction_info;
1423 
1424 struct msr_data {
1425     bool host_initiated;
1426     u32 index;
1427     u64 data;
1428 };
1429 
1430 struct kvm_lapic_irq {
1431     u32 vector;
1432     u16 delivery_mode;
1433     u16 dest_mode;
1434     bool level;
1435     u16 trig_mode;
1436     u32 shorthand;
1437     u32 dest_id;
1438     bool msi_redir_hint;
1439 };
1440 
1441 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1442 {
1443     return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1444 }
1445 
1446 struct kvm_x86_ops {
1447     const char *name;
1448 
1449     int (*hardware_enable)(void);
1450     void (*hardware_disable)(void);
1451     void (*hardware_unsetup)(void);
1452     bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1453     void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1454 
1455     unsigned int vm_size;
1456     int (*vm_init)(struct kvm *kvm);
1457     void (*vm_destroy)(struct kvm *kvm);
1458 
1459     /* Create, but do not attach this VCPU */
1460     int (*vcpu_precreate)(struct kvm *kvm);
1461     int (*vcpu_create)(struct kvm_vcpu *vcpu);
1462     void (*vcpu_free)(struct kvm_vcpu *vcpu);
1463     void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1464 
1465     void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1466     void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1467     void (*vcpu_put)(struct kvm_vcpu *vcpu);
1468 
1469     void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1470     int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1471     int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1472     u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1473     void (*get_segment)(struct kvm_vcpu *vcpu,
1474                 struct kvm_segment *var, int seg);
1475     int (*get_cpl)(struct kvm_vcpu *vcpu);
1476     void (*set_segment)(struct kvm_vcpu *vcpu,
1477                 struct kvm_segment *var, int seg);
1478     void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1479     void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1480     void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1481     bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1482     void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1483     int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1484     void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1485     void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1486     void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1487     void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1488     void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1489     void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1490     void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1491     unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1492     void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1493     bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1494 
1495     void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1496     void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1497     int  (*tlb_remote_flush)(struct kvm *kvm);
1498     int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
1499             struct kvm_tlb_range *range);
1500 
1501     /*
1502      * Flush any TLB entries associated with the given GVA.
1503      * Does not need to flush GPA->HPA mappings.
1504      * Can potentially get non-canonical addresses through INVLPGs, which
1505      * the implementation may choose to ignore if appropriate.
1506      */
1507     void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1508 
1509     /*
1510      * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1511      * does not need to flush GPA->HPA mappings.
1512      */
1513     void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1514 
1515     int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1516     enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
1517     int (*handle_exit)(struct kvm_vcpu *vcpu,
1518         enum exit_fastpath_completion exit_fastpath);
1519     int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1520     void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1521     void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1522     u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1523     void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1524                 unsigned char *hypercall_addr);
1525     void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1526     void (*inject_nmi)(struct kvm_vcpu *vcpu);
1527     void (*queue_exception)(struct kvm_vcpu *vcpu);
1528     void (*cancel_injection)(struct kvm_vcpu *vcpu);
1529     int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1530     int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1531     bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1532     void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1533     void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1534     void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1535     void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1536     bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1537     void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1538     void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1539     void (*hwapic_isr_update)(int isr);
1540     bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1541     void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1542     void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1543     void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1544     void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1545                   int trig_mode, int vector);
1546     int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1547     int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1548     int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1549     u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1550 
1551     void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1552                  int root_level);
1553 
1554     bool (*has_wbinvd_exit)(void);
1555 
1556     u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1557     u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1558     void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1559     void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1560 
1561     /*
1562      * Retrieve somewhat arbitrary exit information.  Intended to
1563      * be used only from within tracepoints or error paths.
1564      */
1565     void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1566                   u64 *info1, u64 *info2,
1567                   u32 *exit_int_info, u32 *exit_int_info_err_code);
1568 
1569     int (*check_intercept)(struct kvm_vcpu *vcpu,
1570                    struct x86_instruction_info *info,
1571                    enum x86_intercept_stage stage,
1572                    struct x86_exception *exception);
1573     void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1574 
1575     void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1576 
1577     void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1578 
1579     /*
1580      * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1581      * value indicates CPU dirty logging is unsupported or disabled.
1582      */
1583     int cpu_dirty_log_size;
1584     void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1585 
1586     const struct kvm_x86_nested_ops *nested_ops;
1587 
1588     void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1589     void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1590 
1591     int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1592                   uint32_t guest_irq, bool set);
1593     void (*pi_start_assignment)(struct kvm *kvm);
1594     void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1595     bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1596 
1597     int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1598                 bool *expired);
1599     void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1600 
1601     void (*setup_mce)(struct kvm_vcpu *vcpu);
1602 
1603     int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1604     int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1605     int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1606     void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1607 
1608     int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1609     int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1610     int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1611     int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1612     int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1613     void (*guest_memory_reclaimed)(struct kvm *kvm);
1614 
1615     int (*get_msr_feature)(struct kvm_msr_entry *entry);
1616 
1617     bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1618                     void *insn, int insn_len);
1619 
1620     bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1621     int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1622 
1623     void (*migrate_timers)(struct kvm_vcpu *vcpu);
1624     void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1625     int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1626 
1627     void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1628 
1629     /*
1630      * Returns vCPU specific APICv inhibit reasons
1631      */
1632     unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1633 };
1634 
1635 struct kvm_x86_nested_ops {
1636     void (*leave_nested)(struct kvm_vcpu *vcpu);
1637     int (*check_events)(struct kvm_vcpu *vcpu);
1638     bool (*handle_page_fault_workaround)(struct kvm_vcpu *vcpu,
1639                          struct x86_exception *fault);
1640     bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
1641     void (*triple_fault)(struct kvm_vcpu *vcpu);
1642     int (*get_state)(struct kvm_vcpu *vcpu,
1643              struct kvm_nested_state __user *user_kvm_nested_state,
1644              unsigned user_data_size);
1645     int (*set_state)(struct kvm_vcpu *vcpu,
1646              struct kvm_nested_state __user *user_kvm_nested_state,
1647              struct kvm_nested_state *kvm_state);
1648     bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1649     int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1650 
1651     int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1652                 uint16_t *vmcs_version);
1653     uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1654 };
1655 
1656 struct kvm_x86_init_ops {
1657     int (*cpu_has_kvm_support)(void);
1658     int (*disabled_by_bios)(void);
1659     int (*check_processor_compatibility)(void);
1660     int (*hardware_setup)(void);
1661     unsigned int (*handle_intel_pt_intr)(void);
1662 
1663     struct kvm_x86_ops *runtime_ops;
1664     struct kvm_pmu_ops *pmu_ops;
1665 };
1666 
1667 struct kvm_arch_async_pf {
1668     u32 token;
1669     gfn_t gfn;
1670     unsigned long cr3;
1671     bool direct_map;
1672 };
1673 
1674 extern u32 __read_mostly kvm_nr_uret_msrs;
1675 extern u64 __read_mostly host_efer;
1676 extern bool __read_mostly allow_smaller_maxphyaddr;
1677 extern bool __read_mostly enable_apicv;
1678 extern struct kvm_x86_ops kvm_x86_ops;
1679 
1680 #define KVM_X86_OP(func) \
1681     DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1682 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1683 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1684 #include <asm/kvm-x86-ops.h>
1685 
1686 #define __KVM_HAVE_ARCH_VM_ALLOC
1687 static inline struct kvm *kvm_arch_alloc_vm(void)
1688 {
1689     return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1690 }
1691 
1692 #define __KVM_HAVE_ARCH_VM_FREE
1693 void kvm_arch_free_vm(struct kvm *kvm);
1694 
1695 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1696 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1697 {
1698     if (kvm_x86_ops.tlb_remote_flush &&
1699         !static_call(kvm_x86_tlb_remote_flush)(kvm))
1700         return 0;
1701     else
1702         return -ENOTSUPP;
1703 }
1704 
1705 #define kvm_arch_pmi_in_guest(vcpu) \
1706     ((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1707 
1708 void __init kvm_mmu_x86_module_init(void);
1709 int kvm_mmu_vendor_module_init(void);
1710 void kvm_mmu_vendor_module_exit(void);
1711 
1712 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1713 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1714 int kvm_mmu_init_vm(struct kvm *kvm);
1715 void kvm_mmu_uninit_vm(struct kvm *kvm);
1716 
1717 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1718 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1719 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1720                       const struct kvm_memory_slot *memslot,
1721                       int start_level);
1722 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1723                        const struct kvm_memory_slot *memslot,
1724                        int target_level);
1725 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1726                   const struct kvm_memory_slot *memslot,
1727                   u64 start, u64 end,
1728                   int target_level);
1729 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1730                    const struct kvm_memory_slot *memslot);
1731 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1732                    const struct kvm_memory_slot *memslot);
1733 void kvm_mmu_zap_all(struct kvm *kvm);
1734 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1735 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1736 
1737 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1738 
1739 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1740               const void *val, int bytes);
1741 
1742 struct kvm_irq_mask_notifier {
1743     void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1744     int irq;
1745     struct hlist_node link;
1746 };
1747 
1748 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1749                     struct kvm_irq_mask_notifier *kimn);
1750 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1751                       struct kvm_irq_mask_notifier *kimn);
1752 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1753                  bool mask);
1754 
1755 extern bool tdp_enabled;
1756 
1757 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1758 
1759 /*
1760  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1761  *          userspace I/O) to indicate that the emulation context
1762  *          should be reused as is, i.e. skip initialization of
1763  *          emulation context, instruction fetch and decode.
1764  *
1765  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1766  *            Indicates that only select instructions (tagged with
1767  *            EmulateOnUD) should be emulated (to minimize the emulator
1768  *            attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1769  *
1770  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1771  *         decode the instruction length.  For use *only* by
1772  *         kvm_x86_ops.skip_emulated_instruction() implementations if
1773  *         EMULTYPE_COMPLETE_USER_EXIT is not set.
1774  *
1775  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1776  *               retry native execution under certain conditions,
1777  *               Can only be set in conjunction with EMULTYPE_PF.
1778  *
1779  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1780  *               triggered by KVM's magic "force emulation" prefix,
1781  *               which is opt in via module param (off by default).
1782  *               Bypasses EmulateOnUD restriction despite emulating
1783  *               due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1784  *               Used to test the full emulator from userspace.
1785  *
1786  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1787  *          backdoor emulation, which is opt in via module param.
1788  *          VMware backdoor emulation handles select instructions
1789  *          and reinjects the #GP for all other cases.
1790  *
1791  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1792  *       case the CR2/GPA value pass on the stack is valid.
1793  *
1794  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1795  *               state and inject single-step #DBs after skipping
1796  *               an instruction (after completing userspace I/O).
1797  */
1798 #define EMULTYPE_NO_DECODE      (1 << 0)
1799 #define EMULTYPE_TRAP_UD        (1 << 1)
1800 #define EMULTYPE_SKIP           (1 << 2)
1801 #define EMULTYPE_ALLOW_RETRY_PF     (1 << 3)
1802 #define EMULTYPE_TRAP_UD_FORCED     (1 << 4)
1803 #define EMULTYPE_VMWARE_GP      (1 << 5)
1804 #define EMULTYPE_PF         (1 << 6)
1805 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
1806 
1807 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1808 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1809                     void *insn, int insn_len);
1810 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1811                       u64 *data, u8 ndata);
1812 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1813 
1814 void kvm_enable_efer_bits(u64);
1815 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1816 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1817 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1818 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1819 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1820 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1821 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1822 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1823 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1824 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1825 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1826 
1827 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1828 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1829 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1830 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
1831 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1832 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1833 
1834 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1835 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1836 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1837 
1838 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1839             int reason, bool has_error_code, u32 error_code);
1840 
1841 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1842 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1843 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1844 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1845 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1846 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1847 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1848 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1849 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1850 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1851 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1852 
1853 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1854 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1855 
1856 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1857 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1858 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1859 
1860 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1861 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1862 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1863 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1864 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1865 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1866 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1867                     struct x86_exception *fault);
1868 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1869 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1870 
1871 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1872                        int irq_source_id, int level)
1873 {
1874     /* Logical OR for level trig interrupt */
1875     if (level)
1876         __set_bit(irq_source_id, irq_state);
1877     else
1878         __clear_bit(irq_source_id, irq_state);
1879 
1880     return !!(*irq_state);
1881 }
1882 
1883 #define KVM_MMU_ROOT_CURRENT        BIT(0)
1884 #define KVM_MMU_ROOT_PREVIOUS(i)    BIT(1+i)
1885 #define KVM_MMU_ROOTS_ALL       (~0UL)
1886 
1887 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1888 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1889 
1890 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1891 
1892 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1893 
1894 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1895 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
1896             ulong roots_to_free);
1897 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
1898 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1899                   struct x86_exception *exception);
1900 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1901                    struct x86_exception *exception);
1902 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1903                    struct x86_exception *exception);
1904 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1905                 struct x86_exception *exception);
1906 
1907 bool kvm_apicv_activated(struct kvm *kvm);
1908 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
1909 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1910 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1911                       enum kvm_apicv_inhibit reason, bool set);
1912 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1913                     enum kvm_apicv_inhibit reason, bool set);
1914 
1915 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
1916                      enum kvm_apicv_inhibit reason)
1917 {
1918     kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
1919 }
1920 
1921 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
1922                        enum kvm_apicv_inhibit reason)
1923 {
1924     kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
1925 }
1926 
1927 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1928 
1929 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1930                void *insn, int insn_len);
1931 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1932 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1933                 gva_t gva, hpa_t root_hpa);
1934 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1935 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1936 
1937 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
1938                int tdp_max_root_level, int tdp_huge_page_level);
1939 
1940 static inline u16 kvm_read_ldt(void)
1941 {
1942     u16 ldt;
1943     asm("sldt %0" : "=g"(ldt));
1944     return ldt;
1945 }
1946 
1947 static inline void kvm_load_ldt(u16 sel)
1948 {
1949     asm("lldt %0" : : "rm"(sel));
1950 }
1951 
1952 #ifdef CONFIG_X86_64
1953 static inline unsigned long read_msr(unsigned long msr)
1954 {
1955     u64 value;
1956 
1957     rdmsrl(msr, value);
1958     return value;
1959 }
1960 #endif
1961 
1962 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1963 {
1964     kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1965 }
1966 
1967 #define TSS_IOPB_BASE_OFFSET 0x66
1968 #define TSS_BASE_SIZE 0x68
1969 #define TSS_IOPB_SIZE (65536 / 8)
1970 #define TSS_REDIRECTION_SIZE (256 / 8)
1971 #define RMODE_TSS_SIZE                          \
1972     (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1973 
1974 enum {
1975     TASK_SWITCH_CALL = 0,
1976     TASK_SWITCH_IRET = 1,
1977     TASK_SWITCH_JMP = 2,
1978     TASK_SWITCH_GATE = 3,
1979 };
1980 
1981 #define HF_GIF_MASK     (1 << 0)
1982 #define HF_NMI_MASK     (1 << 3)
1983 #define HF_IRET_MASK        (1 << 4)
1984 #define HF_GUEST_MASK       (1 << 5) /* VCPU is in guest-mode */
1985 #define HF_SMM_MASK     (1 << 6)
1986 #define HF_SMM_INSIDE_NMI_MASK  (1 << 7)
1987 
1988 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1989 #define KVM_ADDRESS_SPACE_NUM 2
1990 
1991 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1992 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1993 
1994 #define KVM_ARCH_WANT_MMU_NOTIFIER
1995 
1996 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1997 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1998 int kvm_cpu_has_extint(struct kvm_vcpu *v);
1999 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2000 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2001 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2002 
2003 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2004             unsigned long ipi_bitmap_high, u32 min,
2005             unsigned long icr, int op_64_bit);
2006 
2007 int kvm_add_user_return_msr(u32 msr);
2008 int kvm_find_user_return_msr(u32 msr);
2009 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2010 
2011 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2012 {
2013     return kvm_find_user_return_msr(msr) >= 0;
2014 }
2015 
2016 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2017 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2018 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2019 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2020 
2021 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2022 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2023 
2024 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2025 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2026                        unsigned long *vcpu_bitmap);
2027 
2028 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2029                      struct kvm_async_pf *work);
2030 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2031                  struct kvm_async_pf *work);
2032 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2033                    struct kvm_async_pf *work);
2034 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2035 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2036 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2037 
2038 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2039 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2040 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
2041 
2042 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2043                      u32 size);
2044 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2045 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2046 
2047 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2048                  struct kvm_vcpu **dest_vcpu);
2049 
2050 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2051              struct kvm_lapic_irq *irq);
2052 
2053 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2054 {
2055     /* We can only post Fixed and LowPrio IRQs */
2056     return (irq->delivery_mode == APIC_DM_FIXED ||
2057         irq->delivery_mode == APIC_DM_LOWEST);
2058 }
2059 
2060 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2061 {
2062     static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2063 }
2064 
2065 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2066 {
2067     static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2068 }
2069 
2070 static inline int kvm_cpu_get_apicid(int mps_cpu)
2071 {
2072 #ifdef CONFIG_X86_LOCAL_APIC
2073     return default_cpu_present_to_apicid(mps_cpu);
2074 #else
2075     WARN_ON_ONCE(1);
2076     return BAD_APICID;
2077 #endif
2078 }
2079 
2080 #define put_smstate(type, buf, offset, val)                      \
2081     *(type *)((buf) + (offset) - 0x7e00) = val
2082 
2083 #define GET_SMSTATE(type, buf, offset)      \
2084     (*(type *)((buf) + (offset) - 0x7e00))
2085 
2086 int kvm_cpu_dirty_log_size(void);
2087 
2088 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2089 
2090 #define KVM_CLOCK_VALID_FLAGS                       \
2091     (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2092 
2093 #define KVM_X86_VALID_QUIRKS            \
2094     (KVM_X86_QUIRK_LINT0_REENABLED |    \
2095      KVM_X86_QUIRK_CD_NW_CLEARED |      \
2096      KVM_X86_QUIRK_LAPIC_MMIO_HOLE |    \
2097      KVM_X86_QUIRK_OUT_7E_INC_RIP |     \
2098      KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |   \
2099      KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
2100      KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2101 
2102 #endif /* _ASM_X86_KVM_HOST_H */