Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Per core/cpu state
0004  *
0005  * Used to coordinate shared registers between HT threads or
0006  * among events on a single PMU.
0007  */
0008 
0009 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0010 
0011 #include <linux/stddef.h>
0012 #include <linux/types.h>
0013 #include <linux/init.h>
0014 #include <linux/slab.h>
0015 #include <linux/export.h>
0016 #include <linux/nmi.h>
0017 #include <linux/kvm_host.h>
0018 
0019 #include <asm/cpufeature.h>
0020 #include <asm/hardirq.h>
0021 #include <asm/intel-family.h>
0022 #include <asm/intel_pt.h>
0023 #include <asm/apic.h>
0024 #include <asm/cpu_device_id.h>
0025 
0026 #include "../perf_event.h"
0027 
0028 /*
0029  * Intel PerfMon, used on Core and later.
0030  */
0031 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
0032 {
0033     [PERF_COUNT_HW_CPU_CYCLES]      = 0x003c,
0034     [PERF_COUNT_HW_INSTRUCTIONS]        = 0x00c0,
0035     [PERF_COUNT_HW_CACHE_REFERENCES]    = 0x4f2e,
0036     [PERF_COUNT_HW_CACHE_MISSES]        = 0x412e,
0037     [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
0038     [PERF_COUNT_HW_BRANCH_MISSES]       = 0x00c5,
0039     [PERF_COUNT_HW_BUS_CYCLES]      = 0x013c,
0040     [PERF_COUNT_HW_REF_CPU_CYCLES]      = 0x0300, /* pseudo-encoding */
0041 };
0042 
0043 static struct event_constraint intel_core_event_constraints[] __read_mostly =
0044 {
0045     INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
0046     INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
0047     INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
0048     INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
0049     INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
0050     INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
0051     EVENT_CONSTRAINT_END
0052 };
0053 
0054 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
0055 {
0056     FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
0057     FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
0058     FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
0059     INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
0060     INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
0061     INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
0062     INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
0063     INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
0064     INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
0065     INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
0066     INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
0067     INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
0068     INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
0069     EVENT_CONSTRAINT_END
0070 };
0071 
0072 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
0073 {
0074     FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
0075     FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
0076     FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
0077     INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
0078     INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
0079     INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
0080     INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
0081     INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
0082     INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
0083     INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
0084     INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
0085     EVENT_CONSTRAINT_END
0086 };
0087 
0088 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
0089 {
0090     /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
0091     INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
0092     INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
0093     EVENT_EXTRA_END
0094 };
0095 
0096 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
0097 {
0098     FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
0099     FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
0100     FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
0101     INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
0102     INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
0103     INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
0104     INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
0105     EVENT_CONSTRAINT_END
0106 };
0107 
0108 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
0109 {
0110     FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
0111     FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
0112     FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
0113     INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
0114     INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
0115     INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
0116     INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
0117     INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
0118     INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
0119     INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
0120     INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
0121     INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
0122 
0123     /*
0124      * When HT is off these events can only run on the bottom 4 counters
0125      * When HT is on, they are impacted by the HT bug and require EXCL access
0126      */
0127     INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
0128     INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
0129     INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
0130     INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
0131 
0132     EVENT_CONSTRAINT_END
0133 };
0134 
0135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
0136 {
0137     FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
0138     FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
0139     FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
0140     INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
0141     INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
0142     INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
0143     INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
0144     INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
0145     INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
0146     INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
0147     INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
0148     INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
0149     INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
0150 
0151     /*
0152      * When HT is off these events can only run on the bottom 4 counters
0153      * When HT is on, they are impacted by the HT bug and require EXCL access
0154      */
0155     INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
0156     INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
0157     INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
0158     INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
0159 
0160     EVENT_CONSTRAINT_END
0161 };
0162 
0163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
0164 {
0165     /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
0166     INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
0167     INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
0168     INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
0169     EVENT_EXTRA_END
0170 };
0171 
0172 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
0173 {
0174     EVENT_CONSTRAINT_END
0175 };
0176 
0177 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
0178 {
0179     FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
0180     FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
0181     FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
0182     EVENT_CONSTRAINT_END
0183 };
0184 
0185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
0186 {
0187     FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
0188     FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
0189     FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
0190     FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
0191     FIXED_EVENT_CONSTRAINT(0x0500, 4),
0192     FIXED_EVENT_CONSTRAINT(0x0600, 5),
0193     FIXED_EVENT_CONSTRAINT(0x0700, 6),
0194     FIXED_EVENT_CONSTRAINT(0x0800, 7),
0195     FIXED_EVENT_CONSTRAINT(0x0900, 8),
0196     FIXED_EVENT_CONSTRAINT(0x0a00, 9),
0197     FIXED_EVENT_CONSTRAINT(0x0b00, 10),
0198     FIXED_EVENT_CONSTRAINT(0x0c00, 11),
0199     FIXED_EVENT_CONSTRAINT(0x0d00, 12),
0200     FIXED_EVENT_CONSTRAINT(0x0e00, 13),
0201     FIXED_EVENT_CONSTRAINT(0x0f00, 14),
0202     FIXED_EVENT_CONSTRAINT(0x1000, 15),
0203     EVENT_CONSTRAINT_END
0204 };
0205 
0206 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
0207 {
0208     FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
0209     FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
0210     FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
0211     EVENT_CONSTRAINT_END
0212 };
0213 
0214 static struct event_constraint intel_skl_event_constraints[] = {
0215     FIXED_EVENT_CONSTRAINT(0x00c0, 0),  /* INST_RETIRED.ANY */
0216     FIXED_EVENT_CONSTRAINT(0x003c, 1),  /* CPU_CLK_UNHALTED.CORE */
0217     FIXED_EVENT_CONSTRAINT(0x0300, 2),  /* CPU_CLK_UNHALTED.REF */
0218     INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
0219 
0220     /*
0221      * when HT is off, these can only run on the bottom 4 counters
0222      */
0223     INTEL_EVENT_CONSTRAINT(0xd0, 0xf),  /* MEM_INST_RETIRED.* */
0224     INTEL_EVENT_CONSTRAINT(0xd1, 0xf),  /* MEM_LOAD_RETIRED.* */
0225     INTEL_EVENT_CONSTRAINT(0xd2, 0xf),  /* MEM_LOAD_L3_HIT_RETIRED.* */
0226     INTEL_EVENT_CONSTRAINT(0xcd, 0xf),  /* MEM_TRANS_RETIRED.* */
0227     INTEL_EVENT_CONSTRAINT(0xc6, 0xf),  /* FRONTEND_RETIRED.* */
0228 
0229     EVENT_CONSTRAINT_END
0230 };
0231 
0232 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
0233     INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
0234     INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
0235     EVENT_EXTRA_END
0236 };
0237 
0238 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
0239     /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
0240     INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
0241     INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
0242     INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
0243     EVENT_EXTRA_END
0244 };
0245 
0246 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
0247     /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
0248     INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
0249     INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
0250     INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
0251     EVENT_EXTRA_END
0252 };
0253 
0254 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
0255     INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
0256     INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
0257     INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
0258     /*
0259      * Note the low 8 bits eventsel code is not a continuous field, containing
0260      * some #GPing bits. These are masked out.
0261      */
0262     INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
0263     EVENT_EXTRA_END
0264 };
0265 
0266 static struct event_constraint intel_icl_event_constraints[] = {
0267     FIXED_EVENT_CONSTRAINT(0x00c0, 0),  /* INST_RETIRED.ANY */
0268     FIXED_EVENT_CONSTRAINT(0x01c0, 0),  /* old INST_RETIRED.PREC_DIST */
0269     FIXED_EVENT_CONSTRAINT(0x0100, 0),  /* INST_RETIRED.PREC_DIST */
0270     FIXED_EVENT_CONSTRAINT(0x003c, 1),  /* CPU_CLK_UNHALTED.CORE */
0271     FIXED_EVENT_CONSTRAINT(0x0300, 2),  /* CPU_CLK_UNHALTED.REF */
0272     FIXED_EVENT_CONSTRAINT(0x0400, 3),  /* SLOTS */
0273     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
0274     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
0275     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
0276     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
0277     INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
0278     INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
0279     INTEL_EVENT_CONSTRAINT(0x32, 0xf),  /* SW_PREFETCH_ACCESS.* */
0280     INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
0281     INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
0282     INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
0283     INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
0284     INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
0285     INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
0286     INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
0287     INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
0288     INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
0289     INTEL_EVENT_CONSTRAINT(0xef, 0xf),
0290     INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
0291     EVENT_CONSTRAINT_END
0292 };
0293 
0294 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
0295     INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
0296     INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
0297     INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
0298     INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
0299     EVENT_EXTRA_END
0300 };
0301 
0302 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
0303     INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
0304     INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
0305     INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
0306     INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
0307     INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
0308     INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
0309     EVENT_EXTRA_END
0310 };
0311 
0312 static struct event_constraint intel_spr_event_constraints[] = {
0313     FIXED_EVENT_CONSTRAINT(0x00c0, 0),  /* INST_RETIRED.ANY */
0314     FIXED_EVENT_CONSTRAINT(0x0100, 0),  /* INST_RETIRED.PREC_DIST */
0315     FIXED_EVENT_CONSTRAINT(0x003c, 1),  /* CPU_CLK_UNHALTED.CORE */
0316     FIXED_EVENT_CONSTRAINT(0x0300, 2),  /* CPU_CLK_UNHALTED.REF */
0317     FIXED_EVENT_CONSTRAINT(0x0400, 3),  /* SLOTS */
0318     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
0319     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
0320     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
0321     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
0322     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
0323     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
0324     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
0325     METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
0326 
0327     INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
0328     INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
0329     /*
0330      * Generally event codes < 0x90 are restricted to counters 0-3.
0331      * The 0x2E and 0x3C are exception, which has no restriction.
0332      */
0333     INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
0334 
0335     INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
0336     INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
0337     INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
0338     INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
0339     INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
0340     INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
0341     INTEL_EVENT_CONSTRAINT(0xce, 0x1),
0342     INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
0343     /*
0344      * Generally event codes >= 0x90 are likely to have no restrictions.
0345      * The exception are defined as above.
0346      */
0347     INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
0348 
0349     EVENT_CONSTRAINT_END
0350 };
0351 
0352 
0353 EVENT_ATTR_STR(mem-loads,   mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
0354 EVENT_ATTR_STR(mem-loads,   mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
0355 EVENT_ATTR_STR(mem-stores,  mem_st_snb, "event=0xcd,umask=0x2");
0356 
0357 static struct attribute *nhm_mem_events_attrs[] = {
0358     EVENT_PTR(mem_ld_nhm),
0359     NULL,
0360 };
0361 
0362 /*
0363  * topdown events for Intel Core CPUs.
0364  *
0365  * The events are all in slots, which is a free slot in a 4 wide
0366  * pipeline. Some events are already reported in slots, for cycle
0367  * events we multiply by the pipeline width (4).
0368  *
0369  * With Hyper Threading on, topdown metrics are either summed or averaged
0370  * between the threads of a core: (count_t0 + count_t1).
0371  *
0372  * For the average case the metric is always scaled to pipeline width,
0373  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
0374  */
0375 
0376 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
0377     "event=0x3c,umask=0x0",         /* cpu_clk_unhalted.thread */
0378     "event=0x3c,umask=0x0,any=1");      /* cpu_clk_unhalted.thread_any */
0379 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
0380 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
0381     "event=0xe,umask=0x1");         /* uops_issued.any */
0382 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
0383     "event=0xc2,umask=0x2");        /* uops_retired.retire_slots */
0384 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
0385     "event=0x9c,umask=0x1");        /* idq_uops_not_delivered_core */
0386 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
0387     "event=0xd,umask=0x3,cmask=1",      /* int_misc.recovery_cycles */
0388     "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
0389 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
0390     "4", "2");
0391 
0392 EVENT_ATTR_STR(slots,           slots,          "event=0x00,umask=0x4");
0393 EVENT_ATTR_STR(topdown-retiring,    td_retiring,        "event=0x00,umask=0x80");
0394 EVENT_ATTR_STR(topdown-bad-spec,    td_bad_spec,        "event=0x00,umask=0x81");
0395 EVENT_ATTR_STR(topdown-fe-bound,    td_fe_bound,        "event=0x00,umask=0x82");
0396 EVENT_ATTR_STR(topdown-be-bound,    td_be_bound,        "event=0x00,umask=0x83");
0397 EVENT_ATTR_STR(topdown-heavy-ops,   td_heavy_ops,       "event=0x00,umask=0x84");
0398 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,   "event=0x00,umask=0x85");
0399 EVENT_ATTR_STR(topdown-fetch-lat,   td_fetch_lat,       "event=0x00,umask=0x86");
0400 EVENT_ATTR_STR(topdown-mem-bound,   td_mem_bound,       "event=0x00,umask=0x87");
0401 
0402 static struct attribute *snb_events_attrs[] = {
0403     EVENT_PTR(td_slots_issued),
0404     EVENT_PTR(td_slots_retired),
0405     EVENT_PTR(td_fetch_bubbles),
0406     EVENT_PTR(td_total_slots),
0407     EVENT_PTR(td_total_slots_scale),
0408     EVENT_PTR(td_recovery_bubbles),
0409     EVENT_PTR(td_recovery_bubbles_scale),
0410     NULL,
0411 };
0412 
0413 static struct attribute *snb_mem_events_attrs[] = {
0414     EVENT_PTR(mem_ld_snb),
0415     EVENT_PTR(mem_st_snb),
0416     NULL,
0417 };
0418 
0419 static struct event_constraint intel_hsw_event_constraints[] = {
0420     FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
0421     FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
0422     FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
0423     INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
0424     INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
0425     INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
0426     /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
0427     INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
0428     /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
0429     INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
0430     /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
0431     INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
0432 
0433     /*
0434      * When HT is off these events can only run on the bottom 4 counters
0435      * When HT is on, they are impacted by the HT bug and require EXCL access
0436      */
0437     INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
0438     INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
0439     INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
0440     INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
0441 
0442     EVENT_CONSTRAINT_END
0443 };
0444 
0445 static struct event_constraint intel_bdw_event_constraints[] = {
0446     FIXED_EVENT_CONSTRAINT(0x00c0, 0),  /* INST_RETIRED.ANY */
0447     FIXED_EVENT_CONSTRAINT(0x003c, 1),  /* CPU_CLK_UNHALTED.CORE */
0448     FIXED_EVENT_CONSTRAINT(0x0300, 2),  /* CPU_CLK_UNHALTED.REF */
0449     INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
0450     INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),    /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
0451     /*
0452      * when HT is off, these can only run on the bottom 4 counters
0453      */
0454     INTEL_EVENT_CONSTRAINT(0xd0, 0xf),  /* MEM_INST_RETIRED.* */
0455     INTEL_EVENT_CONSTRAINT(0xd1, 0xf),  /* MEM_LOAD_RETIRED.* */
0456     INTEL_EVENT_CONSTRAINT(0xd2, 0xf),  /* MEM_LOAD_L3_HIT_RETIRED.* */
0457     INTEL_EVENT_CONSTRAINT(0xcd, 0xf),  /* MEM_TRANS_RETIRED.* */
0458     EVENT_CONSTRAINT_END
0459 };
0460 
0461 static u64 intel_pmu_event_map(int hw_event)
0462 {
0463     return intel_perfmon_event_map[hw_event];
0464 }
0465 
0466 static __initconst const u64 spr_hw_cache_event_ids
0467                 [PERF_COUNT_HW_CACHE_MAX]
0468                 [PERF_COUNT_HW_CACHE_OP_MAX]
0469                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
0470 {
0471  [ C(L1D ) ] = {
0472     [ C(OP_READ) ] = {
0473         [ C(RESULT_ACCESS) ] = 0x81d0,
0474         [ C(RESULT_MISS)   ] = 0xe124,
0475     },
0476     [ C(OP_WRITE) ] = {
0477         [ C(RESULT_ACCESS) ] = 0x82d0,
0478     },
0479  },
0480  [ C(L1I ) ] = {
0481     [ C(OP_READ) ] = {
0482         [ C(RESULT_MISS)   ] = 0xe424,
0483     },
0484     [ C(OP_WRITE) ] = {
0485         [ C(RESULT_ACCESS) ] = -1,
0486         [ C(RESULT_MISS)   ] = -1,
0487     },
0488  },
0489  [ C(LL  ) ] = {
0490     [ C(OP_READ) ] = {
0491         [ C(RESULT_ACCESS) ] = 0x12a,
0492         [ C(RESULT_MISS)   ] = 0x12a,
0493     },
0494     [ C(OP_WRITE) ] = {
0495         [ C(RESULT_ACCESS) ] = 0x12a,
0496         [ C(RESULT_MISS)   ] = 0x12a,
0497     },
0498  },
0499  [ C(DTLB) ] = {
0500     [ C(OP_READ) ] = {
0501         [ C(RESULT_ACCESS) ] = 0x81d0,
0502         [ C(RESULT_MISS)   ] = 0xe12,
0503     },
0504     [ C(OP_WRITE) ] = {
0505         [ C(RESULT_ACCESS) ] = 0x82d0,
0506         [ C(RESULT_MISS)   ] = 0xe13,
0507     },
0508  },
0509  [ C(ITLB) ] = {
0510     [ C(OP_READ) ] = {
0511         [ C(RESULT_ACCESS) ] = -1,
0512         [ C(RESULT_MISS)   ] = 0xe11,
0513     },
0514     [ C(OP_WRITE) ] = {
0515         [ C(RESULT_ACCESS) ] = -1,
0516         [ C(RESULT_MISS)   ] = -1,
0517     },
0518     [ C(OP_PREFETCH) ] = {
0519         [ C(RESULT_ACCESS) ] = -1,
0520         [ C(RESULT_MISS)   ] = -1,
0521     },
0522  },
0523  [ C(BPU ) ] = {
0524     [ C(OP_READ) ] = {
0525         [ C(RESULT_ACCESS) ] = 0x4c4,
0526         [ C(RESULT_MISS)   ] = 0x4c5,
0527     },
0528     [ C(OP_WRITE) ] = {
0529         [ C(RESULT_ACCESS) ] = -1,
0530         [ C(RESULT_MISS)   ] = -1,
0531     },
0532     [ C(OP_PREFETCH) ] = {
0533         [ C(RESULT_ACCESS) ] = -1,
0534         [ C(RESULT_MISS)   ] = -1,
0535     },
0536  },
0537  [ C(NODE) ] = {
0538     [ C(OP_READ) ] = {
0539         [ C(RESULT_ACCESS) ] = 0x12a,
0540         [ C(RESULT_MISS)   ] = 0x12a,
0541     },
0542  },
0543 };
0544 
0545 static __initconst const u64 spr_hw_cache_extra_regs
0546                 [PERF_COUNT_HW_CACHE_MAX]
0547                 [PERF_COUNT_HW_CACHE_OP_MAX]
0548                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
0549 {
0550  [ C(LL  ) ] = {
0551     [ C(OP_READ) ] = {
0552         [ C(RESULT_ACCESS) ] = 0x10001,
0553         [ C(RESULT_MISS)   ] = 0x3fbfc00001,
0554     },
0555     [ C(OP_WRITE) ] = {
0556         [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
0557         [ C(RESULT_MISS)   ] = 0x3f3fc00002,
0558     },
0559  },
0560  [ C(NODE) ] = {
0561     [ C(OP_READ) ] = {
0562         [ C(RESULT_ACCESS) ] = 0x10c000001,
0563         [ C(RESULT_MISS)   ] = 0x3fb3000001,
0564     },
0565  },
0566 };
0567 
0568 /*
0569  * Notes on the events:
0570  * - data reads do not include code reads (comparable to earlier tables)
0571  * - data counts include speculative execution (except L1 write, dtlb, bpu)
0572  * - remote node access includes remote memory, remote cache, remote mmio.
0573  * - prefetches are not included in the counts.
0574  * - icache miss does not include decoded icache
0575  */
0576 
0577 #define SKL_DEMAND_DATA_RD      BIT_ULL(0)
0578 #define SKL_DEMAND_RFO          BIT_ULL(1)
0579 #define SKL_ANY_RESPONSE        BIT_ULL(16)
0580 #define SKL_SUPPLIER_NONE       BIT_ULL(17)
0581 #define SKL_L3_MISS_LOCAL_DRAM      BIT_ULL(26)
0582 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
0583 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
0584 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
0585 #define SKL_L3_MISS         (SKL_L3_MISS_LOCAL_DRAM| \
0586                      SKL_L3_MISS_REMOTE_HOP0_DRAM| \
0587                      SKL_L3_MISS_REMOTE_HOP1_DRAM| \
0588                      SKL_L3_MISS_REMOTE_HOP2P_DRAM)
0589 #define SKL_SPL_HIT         BIT_ULL(30)
0590 #define SKL_SNOOP_NONE          BIT_ULL(31)
0591 #define SKL_SNOOP_NOT_NEEDED        BIT_ULL(32)
0592 #define SKL_SNOOP_MISS          BIT_ULL(33)
0593 #define SKL_SNOOP_HIT_NO_FWD        BIT_ULL(34)
0594 #define SKL_SNOOP_HIT_WITH_FWD      BIT_ULL(35)
0595 #define SKL_SNOOP_HITM          BIT_ULL(36)
0596 #define SKL_SNOOP_NON_DRAM      BIT_ULL(37)
0597 #define SKL_ANY_SNOOP           (SKL_SPL_HIT|SKL_SNOOP_NONE| \
0598                      SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
0599                      SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
0600                      SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
0601 #define SKL_DEMAND_READ         SKL_DEMAND_DATA_RD
0602 #define SKL_SNOOP_DRAM          (SKL_SNOOP_NONE| \
0603                      SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
0604                      SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
0605                      SKL_SNOOP_HITM|SKL_SPL_HIT)
0606 #define SKL_DEMAND_WRITE        SKL_DEMAND_RFO
0607 #define SKL_LLC_ACCESS          SKL_ANY_RESPONSE
0608 #define SKL_L3_MISS_REMOTE      (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
0609                      SKL_L3_MISS_REMOTE_HOP1_DRAM| \
0610                      SKL_L3_MISS_REMOTE_HOP2P_DRAM)
0611 
0612 static __initconst const u64 skl_hw_cache_event_ids
0613                 [PERF_COUNT_HW_CACHE_MAX]
0614                 [PERF_COUNT_HW_CACHE_OP_MAX]
0615                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
0616 {
0617  [ C(L1D ) ] = {
0618     [ C(OP_READ) ] = {
0619         [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
0620         [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
0621     },
0622     [ C(OP_WRITE) ] = {
0623         [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
0624         [ C(RESULT_MISS)   ] = 0x0,
0625     },
0626     [ C(OP_PREFETCH) ] = {
0627         [ C(RESULT_ACCESS) ] = 0x0,
0628         [ C(RESULT_MISS)   ] = 0x0,
0629     },
0630  },
0631  [ C(L1I ) ] = {
0632     [ C(OP_READ) ] = {
0633         [ C(RESULT_ACCESS) ] = 0x0,
0634         [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
0635     },
0636     [ C(OP_WRITE) ] = {
0637         [ C(RESULT_ACCESS) ] = -1,
0638         [ C(RESULT_MISS)   ] = -1,
0639     },
0640     [ C(OP_PREFETCH) ] = {
0641         [ C(RESULT_ACCESS) ] = 0x0,
0642         [ C(RESULT_MISS)   ] = 0x0,
0643     },
0644  },
0645  [ C(LL  ) ] = {
0646     [ C(OP_READ) ] = {
0647         [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
0648         [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
0649     },
0650     [ C(OP_WRITE) ] = {
0651         [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
0652         [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
0653     },
0654     [ C(OP_PREFETCH) ] = {
0655         [ C(RESULT_ACCESS) ] = 0x0,
0656         [ C(RESULT_MISS)   ] = 0x0,
0657     },
0658  },
0659  [ C(DTLB) ] = {
0660     [ C(OP_READ) ] = {
0661         [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
0662         [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
0663     },
0664     [ C(OP_WRITE) ] = {
0665         [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
0666         [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
0667     },
0668     [ C(OP_PREFETCH) ] = {
0669         [ C(RESULT_ACCESS) ] = 0x0,
0670         [ C(RESULT_MISS)   ] = 0x0,
0671     },
0672  },
0673  [ C(ITLB) ] = {
0674     [ C(OP_READ) ] = {
0675         [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
0676         [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
0677     },
0678     [ C(OP_WRITE) ] = {
0679         [ C(RESULT_ACCESS) ] = -1,
0680         [ C(RESULT_MISS)   ] = -1,
0681     },
0682     [ C(OP_PREFETCH) ] = {
0683         [ C(RESULT_ACCESS) ] = -1,
0684         [ C(RESULT_MISS)   ] = -1,
0685     },
0686  },
0687  [ C(BPU ) ] = {
0688     [ C(OP_READ) ] = {
0689         [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
0690         [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
0691     },
0692     [ C(OP_WRITE) ] = {
0693         [ C(RESULT_ACCESS) ] = -1,
0694         [ C(RESULT_MISS)   ] = -1,
0695     },
0696     [ C(OP_PREFETCH) ] = {
0697         [ C(RESULT_ACCESS) ] = -1,
0698         [ C(RESULT_MISS)   ] = -1,
0699     },
0700  },
0701  [ C(NODE) ] = {
0702     [ C(OP_READ) ] = {
0703         [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
0704         [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
0705     },
0706     [ C(OP_WRITE) ] = {
0707         [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
0708         [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
0709     },
0710     [ C(OP_PREFETCH) ] = {
0711         [ C(RESULT_ACCESS) ] = 0x0,
0712         [ C(RESULT_MISS)   ] = 0x0,
0713     },
0714  },
0715 };
0716 
0717 static __initconst const u64 skl_hw_cache_extra_regs
0718                 [PERF_COUNT_HW_CACHE_MAX]
0719                 [PERF_COUNT_HW_CACHE_OP_MAX]
0720                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
0721 {
0722  [ C(LL  ) ] = {
0723     [ C(OP_READ) ] = {
0724         [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
0725                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
0726         [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
0727                        SKL_L3_MISS|SKL_ANY_SNOOP|
0728                        SKL_SUPPLIER_NONE,
0729     },
0730     [ C(OP_WRITE) ] = {
0731         [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
0732                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
0733         [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
0734                        SKL_L3_MISS|SKL_ANY_SNOOP|
0735                        SKL_SUPPLIER_NONE,
0736     },
0737     [ C(OP_PREFETCH) ] = {
0738         [ C(RESULT_ACCESS) ] = 0x0,
0739         [ C(RESULT_MISS)   ] = 0x0,
0740     },
0741  },
0742  [ C(NODE) ] = {
0743     [ C(OP_READ) ] = {
0744         [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
0745                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
0746         [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
0747                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
0748     },
0749     [ C(OP_WRITE) ] = {
0750         [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
0751                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
0752         [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
0753                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
0754     },
0755     [ C(OP_PREFETCH) ] = {
0756         [ C(RESULT_ACCESS) ] = 0x0,
0757         [ C(RESULT_MISS)   ] = 0x0,
0758     },
0759  },
0760 };
0761 
0762 #define SNB_DMND_DATA_RD    (1ULL << 0)
0763 #define SNB_DMND_RFO        (1ULL << 1)
0764 #define SNB_DMND_IFETCH     (1ULL << 2)
0765 #define SNB_DMND_WB     (1ULL << 3)
0766 #define SNB_PF_DATA_RD      (1ULL << 4)
0767 #define SNB_PF_RFO      (1ULL << 5)
0768 #define SNB_PF_IFETCH       (1ULL << 6)
0769 #define SNB_LLC_DATA_RD     (1ULL << 7)
0770 #define SNB_LLC_RFO     (1ULL << 8)
0771 #define SNB_LLC_IFETCH      (1ULL << 9)
0772 #define SNB_BUS_LOCKS       (1ULL << 10)
0773 #define SNB_STRM_ST     (1ULL << 11)
0774 #define SNB_OTHER       (1ULL << 15)
0775 #define SNB_RESP_ANY        (1ULL << 16)
0776 #define SNB_NO_SUPP     (1ULL << 17)
0777 #define SNB_LLC_HITM        (1ULL << 18)
0778 #define SNB_LLC_HITE        (1ULL << 19)
0779 #define SNB_LLC_HITS        (1ULL << 20)
0780 #define SNB_LLC_HITF        (1ULL << 21)
0781 #define SNB_LOCAL       (1ULL << 22)
0782 #define SNB_REMOTE      (0xffULL << 23)
0783 #define SNB_SNP_NONE        (1ULL << 31)
0784 #define SNB_SNP_NOT_NEEDED  (1ULL << 32)
0785 #define SNB_SNP_MISS        (1ULL << 33)
0786 #define SNB_NO_FWD      (1ULL << 34)
0787 #define SNB_SNP_FWD     (1ULL << 35)
0788 #define SNB_HITM        (1ULL << 36)
0789 #define SNB_NON_DRAM        (1ULL << 37)
0790 
0791 #define SNB_DMND_READ       (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
0792 #define SNB_DMND_WRITE      (SNB_DMND_RFO|SNB_LLC_RFO)
0793 #define SNB_DMND_PREFETCH   (SNB_PF_DATA_RD|SNB_PF_RFO)
0794 
0795 #define SNB_SNP_ANY     (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
0796                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
0797                  SNB_HITM)
0798 
0799 #define SNB_DRAM_ANY        (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
0800 #define SNB_DRAM_REMOTE     (SNB_REMOTE|SNB_SNP_ANY)
0801 
0802 #define SNB_L3_ACCESS       SNB_RESP_ANY
0803 #define SNB_L3_MISS     (SNB_DRAM_ANY|SNB_NON_DRAM)
0804 
0805 static __initconst const u64 snb_hw_cache_extra_regs
0806                 [PERF_COUNT_HW_CACHE_MAX]
0807                 [PERF_COUNT_HW_CACHE_OP_MAX]
0808                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
0809 {
0810  [ C(LL  ) ] = {
0811     [ C(OP_READ) ] = {
0812         [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
0813         [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
0814     },
0815     [ C(OP_WRITE) ] = {
0816         [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
0817         [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
0818     },
0819     [ C(OP_PREFETCH) ] = {
0820         [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
0821         [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
0822     },
0823  },
0824  [ C(NODE) ] = {
0825     [ C(OP_READ) ] = {
0826         [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
0827         [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
0828     },
0829     [ C(OP_WRITE) ] = {
0830         [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
0831         [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
0832     },
0833     [ C(OP_PREFETCH) ] = {
0834         [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
0835         [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
0836     },
0837  },
0838 };
0839 
0840 static __initconst const u64 snb_hw_cache_event_ids
0841                 [PERF_COUNT_HW_CACHE_MAX]
0842                 [PERF_COUNT_HW_CACHE_OP_MAX]
0843                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
0844 {
0845  [ C(L1D) ] = {
0846     [ C(OP_READ) ] = {
0847         [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
0848         [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
0849     },
0850     [ C(OP_WRITE) ] = {
0851         [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
0852         [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
0853     },
0854     [ C(OP_PREFETCH) ] = {
0855         [ C(RESULT_ACCESS) ] = 0x0,
0856         [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
0857     },
0858  },
0859  [ C(L1I ) ] = {
0860     [ C(OP_READ) ] = {
0861         [ C(RESULT_ACCESS) ] = 0x0,
0862         [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
0863     },
0864     [ C(OP_WRITE) ] = {
0865         [ C(RESULT_ACCESS) ] = -1,
0866         [ C(RESULT_MISS)   ] = -1,
0867     },
0868     [ C(OP_PREFETCH) ] = {
0869         [ C(RESULT_ACCESS) ] = 0x0,
0870         [ C(RESULT_MISS)   ] = 0x0,
0871     },
0872  },
0873  [ C(LL  ) ] = {
0874     [ C(OP_READ) ] = {
0875         /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
0876         [ C(RESULT_ACCESS) ] = 0x01b7,
0877         /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
0878         [ C(RESULT_MISS)   ] = 0x01b7,
0879     },
0880     [ C(OP_WRITE) ] = {
0881         /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
0882         [ C(RESULT_ACCESS) ] = 0x01b7,
0883         /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
0884         [ C(RESULT_MISS)   ] = 0x01b7,
0885     },
0886     [ C(OP_PREFETCH) ] = {
0887         /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
0888         [ C(RESULT_ACCESS) ] = 0x01b7,
0889         /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
0890         [ C(RESULT_MISS)   ] = 0x01b7,
0891     },
0892  },
0893  [ C(DTLB) ] = {
0894     [ C(OP_READ) ] = {
0895         [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
0896         [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
0897     },
0898     [ C(OP_WRITE) ] = {
0899         [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
0900         [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
0901     },
0902     [ C(OP_PREFETCH) ] = {
0903         [ C(RESULT_ACCESS) ] = 0x0,
0904         [ C(RESULT_MISS)   ] = 0x0,
0905     },
0906  },
0907  [ C(ITLB) ] = {
0908     [ C(OP_READ) ] = {
0909         [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
0910         [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
0911     },
0912     [ C(OP_WRITE) ] = {
0913         [ C(RESULT_ACCESS) ] = -1,
0914         [ C(RESULT_MISS)   ] = -1,
0915     },
0916     [ C(OP_PREFETCH) ] = {
0917         [ C(RESULT_ACCESS) ] = -1,
0918         [ C(RESULT_MISS)   ] = -1,
0919     },
0920  },
0921  [ C(BPU ) ] = {
0922     [ C(OP_READ) ] = {
0923         [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
0924         [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
0925     },
0926     [ C(OP_WRITE) ] = {
0927         [ C(RESULT_ACCESS) ] = -1,
0928         [ C(RESULT_MISS)   ] = -1,
0929     },
0930     [ C(OP_PREFETCH) ] = {
0931         [ C(RESULT_ACCESS) ] = -1,
0932         [ C(RESULT_MISS)   ] = -1,
0933     },
0934  },
0935  [ C(NODE) ] = {
0936     [ C(OP_READ) ] = {
0937         [ C(RESULT_ACCESS) ] = 0x01b7,
0938         [ C(RESULT_MISS)   ] = 0x01b7,
0939     },
0940     [ C(OP_WRITE) ] = {
0941         [ C(RESULT_ACCESS) ] = 0x01b7,
0942         [ C(RESULT_MISS)   ] = 0x01b7,
0943     },
0944     [ C(OP_PREFETCH) ] = {
0945         [ C(RESULT_ACCESS) ] = 0x01b7,
0946         [ C(RESULT_MISS)   ] = 0x01b7,
0947     },
0948  },
0949 
0950 };
0951 
0952 /*
0953  * Notes on the events:
0954  * - data reads do not include code reads (comparable to earlier tables)
0955  * - data counts include speculative execution (except L1 write, dtlb, bpu)
0956  * - remote node access includes remote memory, remote cache, remote mmio.
0957  * - prefetches are not included in the counts because they are not
0958  *   reliably counted.
0959  */
0960 
0961 #define HSW_DEMAND_DATA_RD      BIT_ULL(0)
0962 #define HSW_DEMAND_RFO          BIT_ULL(1)
0963 #define HSW_ANY_RESPONSE        BIT_ULL(16)
0964 #define HSW_SUPPLIER_NONE       BIT_ULL(17)
0965 #define HSW_L3_MISS_LOCAL_DRAM      BIT_ULL(22)
0966 #define HSW_L3_MISS_REMOTE_HOP0     BIT_ULL(27)
0967 #define HSW_L3_MISS_REMOTE_HOP1     BIT_ULL(28)
0968 #define HSW_L3_MISS_REMOTE_HOP2P    BIT_ULL(29)
0969 #define HSW_L3_MISS         (HSW_L3_MISS_LOCAL_DRAM| \
0970                      HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
0971                      HSW_L3_MISS_REMOTE_HOP2P)
0972 #define HSW_SNOOP_NONE          BIT_ULL(31)
0973 #define HSW_SNOOP_NOT_NEEDED        BIT_ULL(32)
0974 #define HSW_SNOOP_MISS          BIT_ULL(33)
0975 #define HSW_SNOOP_HIT_NO_FWD        BIT_ULL(34)
0976 #define HSW_SNOOP_HIT_WITH_FWD      BIT_ULL(35)
0977 #define HSW_SNOOP_HITM          BIT_ULL(36)
0978 #define HSW_SNOOP_NON_DRAM      BIT_ULL(37)
0979 #define HSW_ANY_SNOOP           (HSW_SNOOP_NONE| \
0980                      HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
0981                      HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
0982                      HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
0983 #define HSW_SNOOP_DRAM          (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
0984 #define HSW_DEMAND_READ         HSW_DEMAND_DATA_RD
0985 #define HSW_DEMAND_WRITE        HSW_DEMAND_RFO
0986 #define HSW_L3_MISS_REMOTE      (HSW_L3_MISS_REMOTE_HOP0|\
0987                      HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
0988 #define HSW_LLC_ACCESS          HSW_ANY_RESPONSE
0989 
0990 #define BDW_L3_MISS_LOCAL       BIT(26)
0991 #define BDW_L3_MISS         (BDW_L3_MISS_LOCAL| \
0992                      HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
0993                      HSW_L3_MISS_REMOTE_HOP2P)
0994 
0995 
0996 static __initconst const u64 hsw_hw_cache_event_ids
0997                 [PERF_COUNT_HW_CACHE_MAX]
0998                 [PERF_COUNT_HW_CACHE_OP_MAX]
0999                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1000 {
1001  [ C(L1D ) ] = {
1002     [ C(OP_READ) ] = {
1003         [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1004         [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
1005     },
1006     [ C(OP_WRITE) ] = {
1007         [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1008         [ C(RESULT_MISS)   ] = 0x0,
1009     },
1010     [ C(OP_PREFETCH) ] = {
1011         [ C(RESULT_ACCESS) ] = 0x0,
1012         [ C(RESULT_MISS)   ] = 0x0,
1013     },
1014  },
1015  [ C(L1I ) ] = {
1016     [ C(OP_READ) ] = {
1017         [ C(RESULT_ACCESS) ] = 0x0,
1018         [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
1019     },
1020     [ C(OP_WRITE) ] = {
1021         [ C(RESULT_ACCESS) ] = -1,
1022         [ C(RESULT_MISS)   ] = -1,
1023     },
1024     [ C(OP_PREFETCH) ] = {
1025         [ C(RESULT_ACCESS) ] = 0x0,
1026         [ C(RESULT_MISS)   ] = 0x0,
1027     },
1028  },
1029  [ C(LL  ) ] = {
1030     [ C(OP_READ) ] = {
1031         [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1032         [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1033     },
1034     [ C(OP_WRITE) ] = {
1035         [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1036         [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1037     },
1038     [ C(OP_PREFETCH) ] = {
1039         [ C(RESULT_ACCESS) ] = 0x0,
1040         [ C(RESULT_MISS)   ] = 0x0,
1041     },
1042  },
1043  [ C(DTLB) ] = {
1044     [ C(OP_READ) ] = {
1045         [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1046         [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1047     },
1048     [ C(OP_WRITE) ] = {
1049         [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1050         [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1051     },
1052     [ C(OP_PREFETCH) ] = {
1053         [ C(RESULT_ACCESS) ] = 0x0,
1054         [ C(RESULT_MISS)   ] = 0x0,
1055     },
1056  },
1057  [ C(ITLB) ] = {
1058     [ C(OP_READ) ] = {
1059         [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1060         [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1061     },
1062     [ C(OP_WRITE) ] = {
1063         [ C(RESULT_ACCESS) ] = -1,
1064         [ C(RESULT_MISS)   ] = -1,
1065     },
1066     [ C(OP_PREFETCH) ] = {
1067         [ C(RESULT_ACCESS) ] = -1,
1068         [ C(RESULT_MISS)   ] = -1,
1069     },
1070  },
1071  [ C(BPU ) ] = {
1072     [ C(OP_READ) ] = {
1073         [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1074         [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1075     },
1076     [ C(OP_WRITE) ] = {
1077         [ C(RESULT_ACCESS) ] = -1,
1078         [ C(RESULT_MISS)   ] = -1,
1079     },
1080     [ C(OP_PREFETCH) ] = {
1081         [ C(RESULT_ACCESS) ] = -1,
1082         [ C(RESULT_MISS)   ] = -1,
1083     },
1084  },
1085  [ C(NODE) ] = {
1086     [ C(OP_READ) ] = {
1087         [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1088         [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1089     },
1090     [ C(OP_WRITE) ] = {
1091         [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1092         [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1093     },
1094     [ C(OP_PREFETCH) ] = {
1095         [ C(RESULT_ACCESS) ] = 0x0,
1096         [ C(RESULT_MISS)   ] = 0x0,
1097     },
1098  },
1099 };
1100 
1101 static __initconst const u64 hsw_hw_cache_extra_regs
1102                 [PERF_COUNT_HW_CACHE_MAX]
1103                 [PERF_COUNT_HW_CACHE_OP_MAX]
1104                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1105 {
1106  [ C(LL  ) ] = {
1107     [ C(OP_READ) ] = {
1108         [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1109                        HSW_LLC_ACCESS,
1110         [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1111                        HSW_L3_MISS|HSW_ANY_SNOOP,
1112     },
1113     [ C(OP_WRITE) ] = {
1114         [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1115                        HSW_LLC_ACCESS,
1116         [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1117                        HSW_L3_MISS|HSW_ANY_SNOOP,
1118     },
1119     [ C(OP_PREFETCH) ] = {
1120         [ C(RESULT_ACCESS) ] = 0x0,
1121         [ C(RESULT_MISS)   ] = 0x0,
1122     },
1123  },
1124  [ C(NODE) ] = {
1125     [ C(OP_READ) ] = {
1126         [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1127                        HSW_L3_MISS_LOCAL_DRAM|
1128                        HSW_SNOOP_DRAM,
1129         [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1130                        HSW_L3_MISS_REMOTE|
1131                        HSW_SNOOP_DRAM,
1132     },
1133     [ C(OP_WRITE) ] = {
1134         [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1135                        HSW_L3_MISS_LOCAL_DRAM|
1136                        HSW_SNOOP_DRAM,
1137         [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1138                        HSW_L3_MISS_REMOTE|
1139                        HSW_SNOOP_DRAM,
1140     },
1141     [ C(OP_PREFETCH) ] = {
1142         [ C(RESULT_ACCESS) ] = 0x0,
1143         [ C(RESULT_MISS)   ] = 0x0,
1144     },
1145  },
1146 };
1147 
1148 static __initconst const u64 westmere_hw_cache_event_ids
1149                 [PERF_COUNT_HW_CACHE_MAX]
1150                 [PERF_COUNT_HW_CACHE_OP_MAX]
1151                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1152 {
1153  [ C(L1D) ] = {
1154     [ C(OP_READ) ] = {
1155         [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1156         [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1157     },
1158     [ C(OP_WRITE) ] = {
1159         [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1160         [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1161     },
1162     [ C(OP_PREFETCH) ] = {
1163         [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1164         [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1165     },
1166  },
1167  [ C(L1I ) ] = {
1168     [ C(OP_READ) ] = {
1169         [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1170         [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1171     },
1172     [ C(OP_WRITE) ] = {
1173         [ C(RESULT_ACCESS) ] = -1,
1174         [ C(RESULT_MISS)   ] = -1,
1175     },
1176     [ C(OP_PREFETCH) ] = {
1177         [ C(RESULT_ACCESS) ] = 0x0,
1178         [ C(RESULT_MISS)   ] = 0x0,
1179     },
1180  },
1181  [ C(LL  ) ] = {
1182     [ C(OP_READ) ] = {
1183         /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1184         [ C(RESULT_ACCESS) ] = 0x01b7,
1185         /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1186         [ C(RESULT_MISS)   ] = 0x01b7,
1187     },
1188     /*
1189      * Use RFO, not WRITEBACK, because a write miss would typically occur
1190      * on RFO.
1191      */
1192     [ C(OP_WRITE) ] = {
1193         /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1194         [ C(RESULT_ACCESS) ] = 0x01b7,
1195         /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1196         [ C(RESULT_MISS)   ] = 0x01b7,
1197     },
1198     [ C(OP_PREFETCH) ] = {
1199         /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1200         [ C(RESULT_ACCESS) ] = 0x01b7,
1201         /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1202         [ C(RESULT_MISS)   ] = 0x01b7,
1203     },
1204  },
1205  [ C(DTLB) ] = {
1206     [ C(OP_READ) ] = {
1207         [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1208         [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1209     },
1210     [ C(OP_WRITE) ] = {
1211         [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1212         [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1213     },
1214     [ C(OP_PREFETCH) ] = {
1215         [ C(RESULT_ACCESS) ] = 0x0,
1216         [ C(RESULT_MISS)   ] = 0x0,
1217     },
1218  },
1219  [ C(ITLB) ] = {
1220     [ C(OP_READ) ] = {
1221         [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1222         [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1223     },
1224     [ C(OP_WRITE) ] = {
1225         [ C(RESULT_ACCESS) ] = -1,
1226         [ C(RESULT_MISS)   ] = -1,
1227     },
1228     [ C(OP_PREFETCH) ] = {
1229         [ C(RESULT_ACCESS) ] = -1,
1230         [ C(RESULT_MISS)   ] = -1,
1231     },
1232  },
1233  [ C(BPU ) ] = {
1234     [ C(OP_READ) ] = {
1235         [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1236         [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1237     },
1238     [ C(OP_WRITE) ] = {
1239         [ C(RESULT_ACCESS) ] = -1,
1240         [ C(RESULT_MISS)   ] = -1,
1241     },
1242     [ C(OP_PREFETCH) ] = {
1243         [ C(RESULT_ACCESS) ] = -1,
1244         [ C(RESULT_MISS)   ] = -1,
1245     },
1246  },
1247  [ C(NODE) ] = {
1248     [ C(OP_READ) ] = {
1249         [ C(RESULT_ACCESS) ] = 0x01b7,
1250         [ C(RESULT_MISS)   ] = 0x01b7,
1251     },
1252     [ C(OP_WRITE) ] = {
1253         [ C(RESULT_ACCESS) ] = 0x01b7,
1254         [ C(RESULT_MISS)   ] = 0x01b7,
1255     },
1256     [ C(OP_PREFETCH) ] = {
1257         [ C(RESULT_ACCESS) ] = 0x01b7,
1258         [ C(RESULT_MISS)   ] = 0x01b7,
1259     },
1260  },
1261 };
1262 
1263 /*
1264  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1265  * See IA32 SDM Vol 3B 30.6.1.3
1266  */
1267 
1268 #define NHM_DMND_DATA_RD    (1 << 0)
1269 #define NHM_DMND_RFO        (1 << 1)
1270 #define NHM_DMND_IFETCH     (1 << 2)
1271 #define NHM_DMND_WB     (1 << 3)
1272 #define NHM_PF_DATA_RD      (1 << 4)
1273 #define NHM_PF_DATA_RFO     (1 << 5)
1274 #define NHM_PF_IFETCH       (1 << 6)
1275 #define NHM_OFFCORE_OTHER   (1 << 7)
1276 #define NHM_UNCORE_HIT      (1 << 8)
1277 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1278 #define NHM_OTHER_CORE_HITM (1 << 10)
1279                     /* reserved */
1280 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1281 #define NHM_REMOTE_DRAM     (1 << 13)
1282 #define NHM_LOCAL_DRAM      (1 << 14)
1283 #define NHM_NON_DRAM        (1 << 15)
1284 
1285 #define NHM_LOCAL       (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1286 #define NHM_REMOTE      (NHM_REMOTE_DRAM)
1287 
1288 #define NHM_DMND_READ       (NHM_DMND_DATA_RD)
1289 #define NHM_DMND_WRITE      (NHM_DMND_RFO|NHM_DMND_WB)
1290 #define NHM_DMND_PREFETCH   (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1291 
1292 #define NHM_L3_HIT  (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1293 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1294 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1295 
1296 static __initconst const u64 nehalem_hw_cache_extra_regs
1297                 [PERF_COUNT_HW_CACHE_MAX]
1298                 [PERF_COUNT_HW_CACHE_OP_MAX]
1299                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1300 {
1301  [ C(LL  ) ] = {
1302     [ C(OP_READ) ] = {
1303         [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1304         [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1305     },
1306     [ C(OP_WRITE) ] = {
1307         [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1308         [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1309     },
1310     [ C(OP_PREFETCH) ] = {
1311         [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1312         [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1313     },
1314  },
1315  [ C(NODE) ] = {
1316     [ C(OP_READ) ] = {
1317         [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1318         [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1319     },
1320     [ C(OP_WRITE) ] = {
1321         [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1322         [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1323     },
1324     [ C(OP_PREFETCH) ] = {
1325         [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1326         [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1327     },
1328  },
1329 };
1330 
1331 static __initconst const u64 nehalem_hw_cache_event_ids
1332                 [PERF_COUNT_HW_CACHE_MAX]
1333                 [PERF_COUNT_HW_CACHE_OP_MAX]
1334                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1335 {
1336  [ C(L1D) ] = {
1337     [ C(OP_READ) ] = {
1338         [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1339         [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1340     },
1341     [ C(OP_WRITE) ] = {
1342         [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1343         [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1344     },
1345     [ C(OP_PREFETCH) ] = {
1346         [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1347         [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1348     },
1349  },
1350  [ C(L1I ) ] = {
1351     [ C(OP_READ) ] = {
1352         [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1353         [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1354     },
1355     [ C(OP_WRITE) ] = {
1356         [ C(RESULT_ACCESS) ] = -1,
1357         [ C(RESULT_MISS)   ] = -1,
1358     },
1359     [ C(OP_PREFETCH) ] = {
1360         [ C(RESULT_ACCESS) ] = 0x0,
1361         [ C(RESULT_MISS)   ] = 0x0,
1362     },
1363  },
1364  [ C(LL  ) ] = {
1365     [ C(OP_READ) ] = {
1366         /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1367         [ C(RESULT_ACCESS) ] = 0x01b7,
1368         /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1369         [ C(RESULT_MISS)   ] = 0x01b7,
1370     },
1371     /*
1372      * Use RFO, not WRITEBACK, because a write miss would typically occur
1373      * on RFO.
1374      */
1375     [ C(OP_WRITE) ] = {
1376         /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1377         [ C(RESULT_ACCESS) ] = 0x01b7,
1378         /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1379         [ C(RESULT_MISS)   ] = 0x01b7,
1380     },
1381     [ C(OP_PREFETCH) ] = {
1382         /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1383         [ C(RESULT_ACCESS) ] = 0x01b7,
1384         /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1385         [ C(RESULT_MISS)   ] = 0x01b7,
1386     },
1387  },
1388  [ C(DTLB) ] = {
1389     [ C(OP_READ) ] = {
1390         [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1391         [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1392     },
1393     [ C(OP_WRITE) ] = {
1394         [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1395         [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1396     },
1397     [ C(OP_PREFETCH) ] = {
1398         [ C(RESULT_ACCESS) ] = 0x0,
1399         [ C(RESULT_MISS)   ] = 0x0,
1400     },
1401  },
1402  [ C(ITLB) ] = {
1403     [ C(OP_READ) ] = {
1404         [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1405         [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1406     },
1407     [ C(OP_WRITE) ] = {
1408         [ C(RESULT_ACCESS) ] = -1,
1409         [ C(RESULT_MISS)   ] = -1,
1410     },
1411     [ C(OP_PREFETCH) ] = {
1412         [ C(RESULT_ACCESS) ] = -1,
1413         [ C(RESULT_MISS)   ] = -1,
1414     },
1415  },
1416  [ C(BPU ) ] = {
1417     [ C(OP_READ) ] = {
1418         [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1419         [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1420     },
1421     [ C(OP_WRITE) ] = {
1422         [ C(RESULT_ACCESS) ] = -1,
1423         [ C(RESULT_MISS)   ] = -1,
1424     },
1425     [ C(OP_PREFETCH) ] = {
1426         [ C(RESULT_ACCESS) ] = -1,
1427         [ C(RESULT_MISS)   ] = -1,
1428     },
1429  },
1430  [ C(NODE) ] = {
1431     [ C(OP_READ) ] = {
1432         [ C(RESULT_ACCESS) ] = 0x01b7,
1433         [ C(RESULT_MISS)   ] = 0x01b7,
1434     },
1435     [ C(OP_WRITE) ] = {
1436         [ C(RESULT_ACCESS) ] = 0x01b7,
1437         [ C(RESULT_MISS)   ] = 0x01b7,
1438     },
1439     [ C(OP_PREFETCH) ] = {
1440         [ C(RESULT_ACCESS) ] = 0x01b7,
1441         [ C(RESULT_MISS)   ] = 0x01b7,
1442     },
1443  },
1444 };
1445 
1446 static __initconst const u64 core2_hw_cache_event_ids
1447                 [PERF_COUNT_HW_CACHE_MAX]
1448                 [PERF_COUNT_HW_CACHE_OP_MAX]
1449                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1450 {
1451  [ C(L1D) ] = {
1452     [ C(OP_READ) ] = {
1453         [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1454         [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1455     },
1456     [ C(OP_WRITE) ] = {
1457         [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1458         [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1459     },
1460     [ C(OP_PREFETCH) ] = {
1461         [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1462         [ C(RESULT_MISS)   ] = 0,
1463     },
1464  },
1465  [ C(L1I ) ] = {
1466     [ C(OP_READ) ] = {
1467         [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1468         [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1469     },
1470     [ C(OP_WRITE) ] = {
1471         [ C(RESULT_ACCESS) ] = -1,
1472         [ C(RESULT_MISS)   ] = -1,
1473     },
1474     [ C(OP_PREFETCH) ] = {
1475         [ C(RESULT_ACCESS) ] = 0,
1476         [ C(RESULT_MISS)   ] = 0,
1477     },
1478  },
1479  [ C(LL  ) ] = {
1480     [ C(OP_READ) ] = {
1481         [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1482         [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1483     },
1484     [ C(OP_WRITE) ] = {
1485         [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1486         [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1487     },
1488     [ C(OP_PREFETCH) ] = {
1489         [ C(RESULT_ACCESS) ] = 0,
1490         [ C(RESULT_MISS)   ] = 0,
1491     },
1492  },
1493  [ C(DTLB) ] = {
1494     [ C(OP_READ) ] = {
1495         [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1496         [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1497     },
1498     [ C(OP_WRITE) ] = {
1499         [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1500         [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1501     },
1502     [ C(OP_PREFETCH) ] = {
1503         [ C(RESULT_ACCESS) ] = 0,
1504         [ C(RESULT_MISS)   ] = 0,
1505     },
1506  },
1507  [ C(ITLB) ] = {
1508     [ C(OP_READ) ] = {
1509         [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1510         [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1511     },
1512     [ C(OP_WRITE) ] = {
1513         [ C(RESULT_ACCESS) ] = -1,
1514         [ C(RESULT_MISS)   ] = -1,
1515     },
1516     [ C(OP_PREFETCH) ] = {
1517         [ C(RESULT_ACCESS) ] = -1,
1518         [ C(RESULT_MISS)   ] = -1,
1519     },
1520  },
1521  [ C(BPU ) ] = {
1522     [ C(OP_READ) ] = {
1523         [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1524         [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1525     },
1526     [ C(OP_WRITE) ] = {
1527         [ C(RESULT_ACCESS) ] = -1,
1528         [ C(RESULT_MISS)   ] = -1,
1529     },
1530     [ C(OP_PREFETCH) ] = {
1531         [ C(RESULT_ACCESS) ] = -1,
1532         [ C(RESULT_MISS)   ] = -1,
1533     },
1534  },
1535 };
1536 
1537 static __initconst const u64 atom_hw_cache_event_ids
1538                 [PERF_COUNT_HW_CACHE_MAX]
1539                 [PERF_COUNT_HW_CACHE_OP_MAX]
1540                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1541 {
1542  [ C(L1D) ] = {
1543     [ C(OP_READ) ] = {
1544         [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1545         [ C(RESULT_MISS)   ] = 0,
1546     },
1547     [ C(OP_WRITE) ] = {
1548         [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1549         [ C(RESULT_MISS)   ] = 0,
1550     },
1551     [ C(OP_PREFETCH) ] = {
1552         [ C(RESULT_ACCESS) ] = 0x0,
1553         [ C(RESULT_MISS)   ] = 0,
1554     },
1555  },
1556  [ C(L1I ) ] = {
1557     [ C(OP_READ) ] = {
1558         [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1559         [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1560     },
1561     [ C(OP_WRITE) ] = {
1562         [ C(RESULT_ACCESS) ] = -1,
1563         [ C(RESULT_MISS)   ] = -1,
1564     },
1565     [ C(OP_PREFETCH) ] = {
1566         [ C(RESULT_ACCESS) ] = 0,
1567         [ C(RESULT_MISS)   ] = 0,
1568     },
1569  },
1570  [ C(LL  ) ] = {
1571     [ C(OP_READ) ] = {
1572         [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1573         [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1574     },
1575     [ C(OP_WRITE) ] = {
1576         [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1577         [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1578     },
1579     [ C(OP_PREFETCH) ] = {
1580         [ C(RESULT_ACCESS) ] = 0,
1581         [ C(RESULT_MISS)   ] = 0,
1582     },
1583  },
1584  [ C(DTLB) ] = {
1585     [ C(OP_READ) ] = {
1586         [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1587         [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1588     },
1589     [ C(OP_WRITE) ] = {
1590         [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1591         [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1592     },
1593     [ C(OP_PREFETCH) ] = {
1594         [ C(RESULT_ACCESS) ] = 0,
1595         [ C(RESULT_MISS)   ] = 0,
1596     },
1597  },
1598  [ C(ITLB) ] = {
1599     [ C(OP_READ) ] = {
1600         [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1601         [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1602     },
1603     [ C(OP_WRITE) ] = {
1604         [ C(RESULT_ACCESS) ] = -1,
1605         [ C(RESULT_MISS)   ] = -1,
1606     },
1607     [ C(OP_PREFETCH) ] = {
1608         [ C(RESULT_ACCESS) ] = -1,
1609         [ C(RESULT_MISS)   ] = -1,
1610     },
1611  },
1612  [ C(BPU ) ] = {
1613     [ C(OP_READ) ] = {
1614         [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1615         [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1616     },
1617     [ C(OP_WRITE) ] = {
1618         [ C(RESULT_ACCESS) ] = -1,
1619         [ C(RESULT_MISS)   ] = -1,
1620     },
1621     [ C(OP_PREFETCH) ] = {
1622         [ C(RESULT_ACCESS) ] = -1,
1623         [ C(RESULT_MISS)   ] = -1,
1624     },
1625  },
1626 };
1627 
1628 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1629 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1630 /* no_alloc_cycles.not_delivered */
1631 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1632            "event=0xca,umask=0x50");
1633 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1634 /* uops_retired.all */
1635 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1636            "event=0xc2,umask=0x10");
1637 /* uops_retired.all */
1638 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1639            "event=0xc2,umask=0x10");
1640 
1641 static struct attribute *slm_events_attrs[] = {
1642     EVENT_PTR(td_total_slots_slm),
1643     EVENT_PTR(td_total_slots_scale_slm),
1644     EVENT_PTR(td_fetch_bubbles_slm),
1645     EVENT_PTR(td_fetch_bubbles_scale_slm),
1646     EVENT_PTR(td_slots_issued_slm),
1647     EVENT_PTR(td_slots_retired_slm),
1648     NULL
1649 };
1650 
1651 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1652 {
1653     /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1654     INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1655     INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1656     EVENT_EXTRA_END
1657 };
1658 
1659 #define SLM_DMND_READ       SNB_DMND_DATA_RD
1660 #define SLM_DMND_WRITE      SNB_DMND_RFO
1661 #define SLM_DMND_PREFETCH   (SNB_PF_DATA_RD|SNB_PF_RFO)
1662 
1663 #define SLM_SNP_ANY     (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1664 #define SLM_LLC_ACCESS      SNB_RESP_ANY
1665 #define SLM_LLC_MISS        (SLM_SNP_ANY|SNB_NON_DRAM)
1666 
1667 static __initconst const u64 slm_hw_cache_extra_regs
1668                 [PERF_COUNT_HW_CACHE_MAX]
1669                 [PERF_COUNT_HW_CACHE_OP_MAX]
1670                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1671 {
1672  [ C(LL  ) ] = {
1673     [ C(OP_READ) ] = {
1674         [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1675         [ C(RESULT_MISS)   ] = 0,
1676     },
1677     [ C(OP_WRITE) ] = {
1678         [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1679         [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1680     },
1681     [ C(OP_PREFETCH) ] = {
1682         [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1683         [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1684     },
1685  },
1686 };
1687 
1688 static __initconst const u64 slm_hw_cache_event_ids
1689                 [PERF_COUNT_HW_CACHE_MAX]
1690                 [PERF_COUNT_HW_CACHE_OP_MAX]
1691                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1692 {
1693  [ C(L1D) ] = {
1694     [ C(OP_READ) ] = {
1695         [ C(RESULT_ACCESS) ] = 0,
1696         [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1697     },
1698     [ C(OP_WRITE) ] = {
1699         [ C(RESULT_ACCESS) ] = 0,
1700         [ C(RESULT_MISS)   ] = 0,
1701     },
1702     [ C(OP_PREFETCH) ] = {
1703         [ C(RESULT_ACCESS) ] = 0,
1704         [ C(RESULT_MISS)   ] = 0,
1705     },
1706  },
1707  [ C(L1I ) ] = {
1708     [ C(OP_READ) ] = {
1709         [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1710         [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1711     },
1712     [ C(OP_WRITE) ] = {
1713         [ C(RESULT_ACCESS) ] = -1,
1714         [ C(RESULT_MISS)   ] = -1,
1715     },
1716     [ C(OP_PREFETCH) ] = {
1717         [ C(RESULT_ACCESS) ] = 0,
1718         [ C(RESULT_MISS)   ] = 0,
1719     },
1720  },
1721  [ C(LL  ) ] = {
1722     [ C(OP_READ) ] = {
1723         /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1724         [ C(RESULT_ACCESS) ] = 0x01b7,
1725         [ C(RESULT_MISS)   ] = 0,
1726     },
1727     [ C(OP_WRITE) ] = {
1728         /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1729         [ C(RESULT_ACCESS) ] = 0x01b7,
1730         /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1731         [ C(RESULT_MISS)   ] = 0x01b7,
1732     },
1733     [ C(OP_PREFETCH) ] = {
1734         /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1735         [ C(RESULT_ACCESS) ] = 0x01b7,
1736         /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1737         [ C(RESULT_MISS)   ] = 0x01b7,
1738     },
1739  },
1740  [ C(DTLB) ] = {
1741     [ C(OP_READ) ] = {
1742         [ C(RESULT_ACCESS) ] = 0,
1743         [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1744     },
1745     [ C(OP_WRITE) ] = {
1746         [ C(RESULT_ACCESS) ] = 0,
1747         [ C(RESULT_MISS)   ] = 0,
1748     },
1749     [ C(OP_PREFETCH) ] = {
1750         [ C(RESULT_ACCESS) ] = 0,
1751         [ C(RESULT_MISS)   ] = 0,
1752     },
1753  },
1754  [ C(ITLB) ] = {
1755     [ C(OP_READ) ] = {
1756         [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1757         [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1758     },
1759     [ C(OP_WRITE) ] = {
1760         [ C(RESULT_ACCESS) ] = -1,
1761         [ C(RESULT_MISS)   ] = -1,
1762     },
1763     [ C(OP_PREFETCH) ] = {
1764         [ C(RESULT_ACCESS) ] = -1,
1765         [ C(RESULT_MISS)   ] = -1,
1766     },
1767  },
1768  [ C(BPU ) ] = {
1769     [ C(OP_READ) ] = {
1770         [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1771         [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1772     },
1773     [ C(OP_WRITE) ] = {
1774         [ C(RESULT_ACCESS) ] = -1,
1775         [ C(RESULT_MISS)   ] = -1,
1776     },
1777     [ C(OP_PREFETCH) ] = {
1778         [ C(RESULT_ACCESS) ] = -1,
1779         [ C(RESULT_MISS)   ] = -1,
1780     },
1781  },
1782 };
1783 
1784 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1785 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1786 /* UOPS_NOT_DELIVERED.ANY */
1787 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1788 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1789 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1790 /* UOPS_RETIRED.ANY */
1791 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1792 /* UOPS_ISSUED.ANY */
1793 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1794 
1795 static struct attribute *glm_events_attrs[] = {
1796     EVENT_PTR(td_total_slots_glm),
1797     EVENT_PTR(td_total_slots_scale_glm),
1798     EVENT_PTR(td_fetch_bubbles_glm),
1799     EVENT_PTR(td_recovery_bubbles_glm),
1800     EVENT_PTR(td_slots_issued_glm),
1801     EVENT_PTR(td_slots_retired_glm),
1802     NULL
1803 };
1804 
1805 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1806     /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1807     INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1808     INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1809     EVENT_EXTRA_END
1810 };
1811 
1812 #define GLM_DEMAND_DATA_RD      BIT_ULL(0)
1813 #define GLM_DEMAND_RFO          BIT_ULL(1)
1814 #define GLM_ANY_RESPONSE        BIT_ULL(16)
1815 #define GLM_SNP_NONE_OR_MISS        BIT_ULL(33)
1816 #define GLM_DEMAND_READ         GLM_DEMAND_DATA_RD
1817 #define GLM_DEMAND_WRITE        GLM_DEMAND_RFO
1818 #define GLM_DEMAND_PREFETCH     (SNB_PF_DATA_RD|SNB_PF_RFO)
1819 #define GLM_LLC_ACCESS          GLM_ANY_RESPONSE
1820 #define GLM_SNP_ANY         (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1821 #define GLM_LLC_MISS            (GLM_SNP_ANY|SNB_NON_DRAM)
1822 
1823 static __initconst const u64 glm_hw_cache_event_ids
1824                 [PERF_COUNT_HW_CACHE_MAX]
1825                 [PERF_COUNT_HW_CACHE_OP_MAX]
1826                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1827     [C(L1D)] = {
1828         [C(OP_READ)] = {
1829             [C(RESULT_ACCESS)]  = 0x81d0,   /* MEM_UOPS_RETIRED.ALL_LOADS */
1830             [C(RESULT_MISS)]    = 0x0,
1831         },
1832         [C(OP_WRITE)] = {
1833             [C(RESULT_ACCESS)]  = 0x82d0,   /* MEM_UOPS_RETIRED.ALL_STORES */
1834             [C(RESULT_MISS)]    = 0x0,
1835         },
1836         [C(OP_PREFETCH)] = {
1837             [C(RESULT_ACCESS)]  = 0x0,
1838             [C(RESULT_MISS)]    = 0x0,
1839         },
1840     },
1841     [C(L1I)] = {
1842         [C(OP_READ)] = {
1843             [C(RESULT_ACCESS)]  = 0x0380,   /* ICACHE.ACCESSES */
1844             [C(RESULT_MISS)]    = 0x0280,   /* ICACHE.MISSES */
1845         },
1846         [C(OP_WRITE)] = {
1847             [C(RESULT_ACCESS)]  = -1,
1848             [C(RESULT_MISS)]    = -1,
1849         },
1850         [C(OP_PREFETCH)] = {
1851             [C(RESULT_ACCESS)]  = 0x0,
1852             [C(RESULT_MISS)]    = 0x0,
1853         },
1854     },
1855     [C(LL)] = {
1856         [C(OP_READ)] = {
1857             [C(RESULT_ACCESS)]  = 0x1b7,    /* OFFCORE_RESPONSE */
1858             [C(RESULT_MISS)]    = 0x1b7,    /* OFFCORE_RESPONSE */
1859         },
1860         [C(OP_WRITE)] = {
1861             [C(RESULT_ACCESS)]  = 0x1b7,    /* OFFCORE_RESPONSE */
1862             [C(RESULT_MISS)]    = 0x1b7,    /* OFFCORE_RESPONSE */
1863         },
1864         [C(OP_PREFETCH)] = {
1865             [C(RESULT_ACCESS)]  = 0x1b7,    /* OFFCORE_RESPONSE */
1866             [C(RESULT_MISS)]    = 0x1b7,    /* OFFCORE_RESPONSE */
1867         },
1868     },
1869     [C(DTLB)] = {
1870         [C(OP_READ)] = {
1871             [C(RESULT_ACCESS)]  = 0x81d0,   /* MEM_UOPS_RETIRED.ALL_LOADS */
1872             [C(RESULT_MISS)]    = 0x0,
1873         },
1874         [C(OP_WRITE)] = {
1875             [C(RESULT_ACCESS)]  = 0x82d0,   /* MEM_UOPS_RETIRED.ALL_STORES */
1876             [C(RESULT_MISS)]    = 0x0,
1877         },
1878         [C(OP_PREFETCH)] = {
1879             [C(RESULT_ACCESS)]  = 0x0,
1880             [C(RESULT_MISS)]    = 0x0,
1881         },
1882     },
1883     [C(ITLB)] = {
1884         [C(OP_READ)] = {
1885             [C(RESULT_ACCESS)]  = 0x00c0,   /* INST_RETIRED.ANY_P */
1886             [C(RESULT_MISS)]    = 0x0481,   /* ITLB.MISS */
1887         },
1888         [C(OP_WRITE)] = {
1889             [C(RESULT_ACCESS)]  = -1,
1890             [C(RESULT_MISS)]    = -1,
1891         },
1892         [C(OP_PREFETCH)] = {
1893             [C(RESULT_ACCESS)]  = -1,
1894             [C(RESULT_MISS)]    = -1,
1895         },
1896     },
1897     [C(BPU)] = {
1898         [C(OP_READ)] = {
1899             [C(RESULT_ACCESS)]  = 0x00c4,   /* BR_INST_RETIRED.ALL_BRANCHES */
1900             [C(RESULT_MISS)]    = 0x00c5,   /* BR_MISP_RETIRED.ALL_BRANCHES */
1901         },
1902         [C(OP_WRITE)] = {
1903             [C(RESULT_ACCESS)]  = -1,
1904             [C(RESULT_MISS)]    = -1,
1905         },
1906         [C(OP_PREFETCH)] = {
1907             [C(RESULT_ACCESS)]  = -1,
1908             [C(RESULT_MISS)]    = -1,
1909         },
1910     },
1911 };
1912 
1913 static __initconst const u64 glm_hw_cache_extra_regs
1914                 [PERF_COUNT_HW_CACHE_MAX]
1915                 [PERF_COUNT_HW_CACHE_OP_MAX]
1916                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1917     [C(LL)] = {
1918         [C(OP_READ)] = {
1919             [C(RESULT_ACCESS)]  = GLM_DEMAND_READ|
1920                           GLM_LLC_ACCESS,
1921             [C(RESULT_MISS)]    = GLM_DEMAND_READ|
1922                           GLM_LLC_MISS,
1923         },
1924         [C(OP_WRITE)] = {
1925             [C(RESULT_ACCESS)]  = GLM_DEMAND_WRITE|
1926                           GLM_LLC_ACCESS,
1927             [C(RESULT_MISS)]    = GLM_DEMAND_WRITE|
1928                           GLM_LLC_MISS,
1929         },
1930         [C(OP_PREFETCH)] = {
1931             [C(RESULT_ACCESS)]  = GLM_DEMAND_PREFETCH|
1932                           GLM_LLC_ACCESS,
1933             [C(RESULT_MISS)]    = GLM_DEMAND_PREFETCH|
1934                           GLM_LLC_MISS,
1935         },
1936     },
1937 };
1938 
1939 static __initconst const u64 glp_hw_cache_event_ids
1940                 [PERF_COUNT_HW_CACHE_MAX]
1941                 [PERF_COUNT_HW_CACHE_OP_MAX]
1942                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1943     [C(L1D)] = {
1944         [C(OP_READ)] = {
1945             [C(RESULT_ACCESS)]  = 0x81d0,   /* MEM_UOPS_RETIRED.ALL_LOADS */
1946             [C(RESULT_MISS)]    = 0x0,
1947         },
1948         [C(OP_WRITE)] = {
1949             [C(RESULT_ACCESS)]  = 0x82d0,   /* MEM_UOPS_RETIRED.ALL_STORES */
1950             [C(RESULT_MISS)]    = 0x0,
1951         },
1952         [C(OP_PREFETCH)] = {
1953             [C(RESULT_ACCESS)]  = 0x0,
1954             [C(RESULT_MISS)]    = 0x0,
1955         },
1956     },
1957     [C(L1I)] = {
1958         [C(OP_READ)] = {
1959             [C(RESULT_ACCESS)]  = 0x0380,   /* ICACHE.ACCESSES */
1960             [C(RESULT_MISS)]    = 0x0280,   /* ICACHE.MISSES */
1961         },
1962         [C(OP_WRITE)] = {
1963             [C(RESULT_ACCESS)]  = -1,
1964             [C(RESULT_MISS)]    = -1,
1965         },
1966         [C(OP_PREFETCH)] = {
1967             [C(RESULT_ACCESS)]  = 0x0,
1968             [C(RESULT_MISS)]    = 0x0,
1969         },
1970     },
1971     [C(LL)] = {
1972         [C(OP_READ)] = {
1973             [C(RESULT_ACCESS)]  = 0x1b7,    /* OFFCORE_RESPONSE */
1974             [C(RESULT_MISS)]    = 0x1b7,    /* OFFCORE_RESPONSE */
1975         },
1976         [C(OP_WRITE)] = {
1977             [C(RESULT_ACCESS)]  = 0x1b7,    /* OFFCORE_RESPONSE */
1978             [C(RESULT_MISS)]    = 0x1b7,    /* OFFCORE_RESPONSE */
1979         },
1980         [C(OP_PREFETCH)] = {
1981             [C(RESULT_ACCESS)]  = 0x0,
1982             [C(RESULT_MISS)]    = 0x0,
1983         },
1984     },
1985     [C(DTLB)] = {
1986         [C(OP_READ)] = {
1987             [C(RESULT_ACCESS)]  = 0x81d0,   /* MEM_UOPS_RETIRED.ALL_LOADS */
1988             [C(RESULT_MISS)]    = 0xe08,    /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1989         },
1990         [C(OP_WRITE)] = {
1991             [C(RESULT_ACCESS)]  = 0x82d0,   /* MEM_UOPS_RETIRED.ALL_STORES */
1992             [C(RESULT_MISS)]    = 0xe49,    /* DTLB_STORE_MISSES.WALK_COMPLETED */
1993         },
1994         [C(OP_PREFETCH)] = {
1995             [C(RESULT_ACCESS)]  = 0x0,
1996             [C(RESULT_MISS)]    = 0x0,
1997         },
1998     },
1999     [C(ITLB)] = {
2000         [C(OP_READ)] = {
2001             [C(RESULT_ACCESS)]  = 0x00c0,   /* INST_RETIRED.ANY_P */
2002             [C(RESULT_MISS)]    = 0x0481,   /* ITLB.MISS */
2003         },
2004         [C(OP_WRITE)] = {
2005             [C(RESULT_ACCESS)]  = -1,
2006             [C(RESULT_MISS)]    = -1,
2007         },
2008         [C(OP_PREFETCH)] = {
2009             [C(RESULT_ACCESS)]  = -1,
2010             [C(RESULT_MISS)]    = -1,
2011         },
2012     },
2013     [C(BPU)] = {
2014         [C(OP_READ)] = {
2015             [C(RESULT_ACCESS)]  = 0x00c4,   /* BR_INST_RETIRED.ALL_BRANCHES */
2016             [C(RESULT_MISS)]    = 0x00c5,   /* BR_MISP_RETIRED.ALL_BRANCHES */
2017         },
2018         [C(OP_WRITE)] = {
2019             [C(RESULT_ACCESS)]  = -1,
2020             [C(RESULT_MISS)]    = -1,
2021         },
2022         [C(OP_PREFETCH)] = {
2023             [C(RESULT_ACCESS)]  = -1,
2024             [C(RESULT_MISS)]    = -1,
2025         },
2026     },
2027 };
2028 
2029 static __initconst const u64 glp_hw_cache_extra_regs
2030                 [PERF_COUNT_HW_CACHE_MAX]
2031                 [PERF_COUNT_HW_CACHE_OP_MAX]
2032                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2033     [C(LL)] = {
2034         [C(OP_READ)] = {
2035             [C(RESULT_ACCESS)]  = GLM_DEMAND_READ|
2036                           GLM_LLC_ACCESS,
2037             [C(RESULT_MISS)]    = GLM_DEMAND_READ|
2038                           GLM_LLC_MISS,
2039         },
2040         [C(OP_WRITE)] = {
2041             [C(RESULT_ACCESS)]  = GLM_DEMAND_WRITE|
2042                           GLM_LLC_ACCESS,
2043             [C(RESULT_MISS)]    = GLM_DEMAND_WRITE|
2044                           GLM_LLC_MISS,
2045         },
2046         [C(OP_PREFETCH)] = {
2047             [C(RESULT_ACCESS)]  = 0x0,
2048             [C(RESULT_MISS)]    = 0x0,
2049         },
2050     },
2051 };
2052 
2053 #define TNT_LOCAL_DRAM          BIT_ULL(26)
2054 #define TNT_DEMAND_READ         GLM_DEMAND_DATA_RD
2055 #define TNT_DEMAND_WRITE        GLM_DEMAND_RFO
2056 #define TNT_LLC_ACCESS          GLM_ANY_RESPONSE
2057 #define TNT_SNP_ANY         (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2058                      SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2059 #define TNT_LLC_MISS            (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2060 
2061 static __initconst const u64 tnt_hw_cache_extra_regs
2062                 [PERF_COUNT_HW_CACHE_MAX]
2063                 [PERF_COUNT_HW_CACHE_OP_MAX]
2064                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2065     [C(LL)] = {
2066         [C(OP_READ)] = {
2067             [C(RESULT_ACCESS)]  = TNT_DEMAND_READ|
2068                           TNT_LLC_ACCESS,
2069             [C(RESULT_MISS)]    = TNT_DEMAND_READ|
2070                           TNT_LLC_MISS,
2071         },
2072         [C(OP_WRITE)] = {
2073             [C(RESULT_ACCESS)]  = TNT_DEMAND_WRITE|
2074                           TNT_LLC_ACCESS,
2075             [C(RESULT_MISS)]    = TNT_DEMAND_WRITE|
2076                           TNT_LLC_MISS,
2077         },
2078         [C(OP_PREFETCH)] = {
2079             [C(RESULT_ACCESS)]  = 0x0,
2080             [C(RESULT_MISS)]    = 0x0,
2081         },
2082     },
2083 };
2084 
2085 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2086 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2087 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2088 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2089 
2090 static struct attribute *tnt_events_attrs[] = {
2091     EVENT_PTR(td_fe_bound_tnt),
2092     EVENT_PTR(td_retiring_tnt),
2093     EVENT_PTR(td_bad_spec_tnt),
2094     EVENT_PTR(td_be_bound_tnt),
2095     NULL,
2096 };
2097 
2098 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2099     /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2100     INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2101     INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2102     EVENT_EXTRA_END
2103 };
2104 
2105 EVENT_ATTR_STR(mem-loads,   mem_ld_grt, "event=0xd0,umask=0x5,ldlat=3");
2106 EVENT_ATTR_STR(mem-stores,  mem_st_grt, "event=0xd0,umask=0x6");
2107 
2108 static struct attribute *grt_mem_attrs[] = {
2109     EVENT_PTR(mem_ld_grt),
2110     EVENT_PTR(mem_st_grt),
2111     NULL
2112 };
2113 
2114 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2115     /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2116     INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2117     INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2118     INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2119     EVENT_EXTRA_END
2120 };
2121 
2122 #define KNL_OT_L2_HITE      BIT_ULL(19) /* Other Tile L2 Hit */
2123 #define KNL_OT_L2_HITF      BIT_ULL(20) /* Other Tile L2 Hit */
2124 #define KNL_MCDRAM_LOCAL    BIT_ULL(21)
2125 #define KNL_MCDRAM_FAR      BIT_ULL(22)
2126 #define KNL_DDR_LOCAL       BIT_ULL(23)
2127 #define KNL_DDR_FAR     BIT_ULL(24)
2128 #define KNL_DRAM_ANY        (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2129                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2130 #define KNL_L2_READ     SLM_DMND_READ
2131 #define KNL_L2_WRITE        SLM_DMND_WRITE
2132 #define KNL_L2_PREFETCH     SLM_DMND_PREFETCH
2133 #define KNL_L2_ACCESS       SLM_LLC_ACCESS
2134 #define KNL_L2_MISS     (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2135                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2136                           SNB_NON_DRAM)
2137 
2138 static __initconst const u64 knl_hw_cache_extra_regs
2139                 [PERF_COUNT_HW_CACHE_MAX]
2140                 [PERF_COUNT_HW_CACHE_OP_MAX]
2141                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2142     [C(LL)] = {
2143         [C(OP_READ)] = {
2144             [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2145             [C(RESULT_MISS)]   = 0,
2146         },
2147         [C(OP_WRITE)] = {
2148             [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2149             [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2150         },
2151         [C(OP_PREFETCH)] = {
2152             [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2153             [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2154         },
2155     },
2156 };
2157 
2158 /*
2159  * Used from PMIs where the LBRs are already disabled.
2160  *
2161  * This function could be called consecutively. It is required to remain in
2162  * disabled state if called consecutively.
2163  *
2164  * During consecutive calls, the same disable value will be written to related
2165  * registers, so the PMU state remains unchanged.
2166  *
2167  * intel_bts events don't coexist with intel PMU's BTS events because of
2168  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2169  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2170  *
2171  * Avoid PEBS_ENABLE MSR access in PMIs.
2172  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2173  * It doesn't matter if the PEBS is enabled or not.
2174  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2175  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2176  * However, there are some cases which may change PEBS status, e.g. PMI
2177  * throttle. The PEBS_ENABLE should be updated where the status changes.
2178  */
2179 static __always_inline void __intel_pmu_disable_all(bool bts)
2180 {
2181     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2182 
2183     wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2184 
2185     if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2186         intel_pmu_disable_bts();
2187 }
2188 
2189 static __always_inline void intel_pmu_disable_all(void)
2190 {
2191     __intel_pmu_disable_all(true);
2192     intel_pmu_pebs_disable_all();
2193     intel_pmu_lbr_disable_all();
2194 }
2195 
2196 static void __intel_pmu_enable_all(int added, bool pmi)
2197 {
2198     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2199     u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2200 
2201     intel_pmu_lbr_enable_all(pmi);
2202     wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2203            intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2204 
2205     if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2206         struct perf_event *event =
2207             cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2208 
2209         if (WARN_ON_ONCE(!event))
2210             return;
2211 
2212         intel_pmu_enable_bts(event->hw.config);
2213     }
2214 }
2215 
2216 static void intel_pmu_enable_all(int added)
2217 {
2218     intel_pmu_pebs_enable_all();
2219     __intel_pmu_enable_all(added, false);
2220 }
2221 
2222 static noinline int
2223 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2224                   unsigned int cnt, unsigned long flags)
2225 {
2226     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2227 
2228     intel_pmu_lbr_read();
2229     cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2230 
2231     memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2232     intel_pmu_enable_all(0);
2233     local_irq_restore(flags);
2234     return cnt;
2235 }
2236 
2237 static int
2238 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2239 {
2240     unsigned long flags;
2241 
2242     /* must not have branches... */
2243     local_irq_save(flags);
2244     __intel_pmu_disable_all(false); /* we don't care about BTS */
2245     __intel_pmu_lbr_disable();
2246     /*            ... until here */
2247     return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2248 }
2249 
2250 static int
2251 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2252 {
2253     unsigned long flags;
2254 
2255     /* must not have branches... */
2256     local_irq_save(flags);
2257     __intel_pmu_disable_all(false); /* we don't care about BTS */
2258     __intel_pmu_arch_lbr_disable();
2259     /*            ... until here */
2260     return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2261 }
2262 
2263 /*
2264  * Workaround for:
2265  *   Intel Errata AAK100 (model 26)
2266  *   Intel Errata AAP53  (model 30)
2267  *   Intel Errata BD53   (model 44)
2268  *
2269  * The official story:
2270  *   These chips need to be 'reset' when adding counters by programming the
2271  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2272  *   in sequence on the same PMC or on different PMCs.
2273  *
2274  * In practice it appears some of these events do in fact count, and
2275  * we need to program all 4 events.
2276  */
2277 static void intel_pmu_nhm_workaround(void)
2278 {
2279     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2280     static const unsigned long nhm_magic[4] = {
2281         0x4300B5,
2282         0x4300D2,
2283         0x4300B1,
2284         0x4300B1
2285     };
2286     struct perf_event *event;
2287     int i;
2288 
2289     /*
2290      * The Errata requires below steps:
2291      * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2292      * 2) Configure 4 PERFEVTSELx with the magic events and clear
2293      *    the corresponding PMCx;
2294      * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2295      * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2296      * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2297      */
2298 
2299     /*
2300      * The real steps we choose are a little different from above.
2301      * A) To reduce MSR operations, we don't run step 1) as they
2302      *    are already cleared before this function is called;
2303      * B) Call x86_perf_event_update to save PMCx before configuring
2304      *    PERFEVTSELx with magic number;
2305      * C) With step 5), we do clear only when the PERFEVTSELx is
2306      *    not used currently.
2307      * D) Call x86_perf_event_set_period to restore PMCx;
2308      */
2309 
2310     /* We always operate 4 pairs of PERF Counters */
2311     for (i = 0; i < 4; i++) {
2312         event = cpuc->events[i];
2313         if (event)
2314             x86_perf_event_update(event);
2315     }
2316 
2317     for (i = 0; i < 4; i++) {
2318         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2319         wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2320     }
2321 
2322     wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2323     wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2324 
2325     for (i = 0; i < 4; i++) {
2326         event = cpuc->events[i];
2327 
2328         if (event) {
2329             x86_perf_event_set_period(event);
2330             __x86_pmu_enable_event(&event->hw,
2331                     ARCH_PERFMON_EVENTSEL_ENABLE);
2332         } else
2333             wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2334     }
2335 }
2336 
2337 static void intel_pmu_nhm_enable_all(int added)
2338 {
2339     if (added)
2340         intel_pmu_nhm_workaround();
2341     intel_pmu_enable_all(added);
2342 }
2343 
2344 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2345 {
2346     u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2347 
2348     if (cpuc->tfa_shadow != val) {
2349         cpuc->tfa_shadow = val;
2350         wrmsrl(MSR_TSX_FORCE_ABORT, val);
2351     }
2352 }
2353 
2354 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2355 {
2356     /*
2357      * We're going to use PMC3, make sure TFA is set before we touch it.
2358      */
2359     if (cntr == 3)
2360         intel_set_tfa(cpuc, true);
2361 }
2362 
2363 static void intel_tfa_pmu_enable_all(int added)
2364 {
2365     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2366 
2367     /*
2368      * If we find PMC3 is no longer used when we enable the PMU, we can
2369      * clear TFA.
2370      */
2371     if (!test_bit(3, cpuc->active_mask))
2372         intel_set_tfa(cpuc, false);
2373 
2374     intel_pmu_enable_all(added);
2375 }
2376 
2377 static inline u64 intel_pmu_get_status(void)
2378 {
2379     u64 status;
2380 
2381     rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2382 
2383     return status;
2384 }
2385 
2386 static inline void intel_pmu_ack_status(u64 ack)
2387 {
2388     wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2389 }
2390 
2391 static inline bool event_is_checkpointed(struct perf_event *event)
2392 {
2393     return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2394 }
2395 
2396 static inline void intel_set_masks(struct perf_event *event, int idx)
2397 {
2398     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2399 
2400     if (event->attr.exclude_host)
2401         __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2402     if (event->attr.exclude_guest)
2403         __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2404     if (event_is_checkpointed(event))
2405         __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2406 }
2407 
2408 static inline void intel_clear_masks(struct perf_event *event, int idx)
2409 {
2410     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2411 
2412     __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2413     __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2414     __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2415 }
2416 
2417 static void intel_pmu_disable_fixed(struct perf_event *event)
2418 {
2419     struct hw_perf_event *hwc = &event->hw;
2420     u64 ctrl_val, mask;
2421     int idx = hwc->idx;
2422 
2423     if (is_topdown_idx(idx)) {
2424         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2425 
2426         /*
2427          * When there are other active TopDown events,
2428          * don't disable the fixed counter 3.
2429          */
2430         if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2431             return;
2432         idx = INTEL_PMC_IDX_FIXED_SLOTS;
2433     }
2434 
2435     intel_clear_masks(event, idx);
2436 
2437     mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2438     rdmsrl(hwc->config_base, ctrl_val);
2439     ctrl_val &= ~mask;
2440     wrmsrl(hwc->config_base, ctrl_val);
2441 }
2442 
2443 static void intel_pmu_disable_event(struct perf_event *event)
2444 {
2445     struct hw_perf_event *hwc = &event->hw;
2446     int idx = hwc->idx;
2447 
2448     switch (idx) {
2449     case 0 ... INTEL_PMC_IDX_FIXED - 1:
2450         intel_clear_masks(event, idx);
2451         x86_pmu_disable_event(event);
2452         break;
2453     case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2454     case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2455         intel_pmu_disable_fixed(event);
2456         break;
2457     case INTEL_PMC_IDX_FIXED_BTS:
2458         intel_pmu_disable_bts();
2459         intel_pmu_drain_bts_buffer();
2460         return;
2461     case INTEL_PMC_IDX_FIXED_VLBR:
2462         intel_clear_masks(event, idx);
2463         break;
2464     default:
2465         intel_clear_masks(event, idx);
2466         pr_warn("Failed to disable the event with invalid index %d\n",
2467             idx);
2468         return;
2469     }
2470 
2471     /*
2472      * Needs to be called after x86_pmu_disable_event,
2473      * so we don't trigger the event without PEBS bit set.
2474      */
2475     if (unlikely(event->attr.precise_ip))
2476         intel_pmu_pebs_disable(event);
2477 }
2478 
2479 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2480 {
2481     if (is_pebs_pt(event))
2482         perf_report_aux_output_id(event, idx);
2483 }
2484 
2485 static void intel_pmu_del_event(struct perf_event *event)
2486 {
2487     if (needs_branch_stack(event))
2488         intel_pmu_lbr_del(event);
2489     if (event->attr.precise_ip)
2490         intel_pmu_pebs_del(event);
2491 }
2492 
2493 static int icl_set_topdown_event_period(struct perf_event *event)
2494 {
2495     struct hw_perf_event *hwc = &event->hw;
2496     s64 left = local64_read(&hwc->period_left);
2497 
2498     /*
2499      * The values in PERF_METRICS MSR are derived from fixed counter 3.
2500      * Software should start both registers, PERF_METRICS and fixed
2501      * counter 3, from zero.
2502      * Clear PERF_METRICS and Fixed counter 3 in initialization.
2503      * After that, both MSRs will be cleared for each read.
2504      * Don't need to clear them again.
2505      */
2506     if (left == x86_pmu.max_period) {
2507         wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2508         wrmsrl(MSR_PERF_METRICS, 0);
2509         hwc->saved_slots = 0;
2510         hwc->saved_metric = 0;
2511     }
2512 
2513     if ((hwc->saved_slots) && is_slots_event(event)) {
2514         wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2515         wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2516     }
2517 
2518     perf_event_update_userpage(event);
2519 
2520     return 0;
2521 }
2522 
2523 static int adl_set_topdown_event_period(struct perf_event *event)
2524 {
2525     struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2526 
2527     if (pmu->cpu_type != hybrid_big)
2528         return 0;
2529 
2530     return icl_set_topdown_event_period(event);
2531 }
2532 
2533 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2534 {
2535     u32 val;
2536 
2537     /*
2538      * The metric is reported as an 8bit integer fraction
2539      * summing up to 0xff.
2540      * slots-in-metric = (Metric / 0xff) * slots
2541      */
2542     val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2543     return  mul_u64_u32_div(slots, val, 0xff);
2544 }
2545 
2546 static u64 icl_get_topdown_value(struct perf_event *event,
2547                        u64 slots, u64 metrics)
2548 {
2549     int idx = event->hw.idx;
2550     u64 delta;
2551 
2552     if (is_metric_idx(idx))
2553         delta = icl_get_metrics_event_value(metrics, slots, idx);
2554     else
2555         delta = slots;
2556 
2557     return delta;
2558 }
2559 
2560 static void __icl_update_topdown_event(struct perf_event *event,
2561                        u64 slots, u64 metrics,
2562                        u64 last_slots, u64 last_metrics)
2563 {
2564     u64 delta, last = 0;
2565 
2566     delta = icl_get_topdown_value(event, slots, metrics);
2567     if (last_slots)
2568         last = icl_get_topdown_value(event, last_slots, last_metrics);
2569 
2570     /*
2571      * The 8bit integer fraction of metric may be not accurate,
2572      * especially when the changes is very small.
2573      * For example, if only a few bad_spec happens, the fraction
2574      * may be reduced from 1 to 0. If so, the bad_spec event value
2575      * will be 0 which is definitely less than the last value.
2576      * Avoid update event->count for this case.
2577      */
2578     if (delta > last) {
2579         delta -= last;
2580         local64_add(delta, &event->count);
2581     }
2582 }
2583 
2584 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2585                       u64 metrics, int metric_end)
2586 {
2587     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2588     struct perf_event *other;
2589     int idx;
2590 
2591     event->hw.saved_slots = slots;
2592     event->hw.saved_metric = metrics;
2593 
2594     for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2595         if (!is_topdown_idx(idx))
2596             continue;
2597         other = cpuc->events[idx];
2598         other->hw.saved_slots = slots;
2599         other->hw.saved_metric = metrics;
2600     }
2601 }
2602 
2603 /*
2604  * Update all active Topdown events.
2605  *
2606  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2607  * modify by a NMI. PMU has to be disabled before calling this function.
2608  */
2609 
2610 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2611 {
2612     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2613     struct perf_event *other;
2614     u64 slots, metrics;
2615     bool reset = true;
2616     int idx;
2617 
2618     /* read Fixed counter 3 */
2619     rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2620     if (!slots)
2621         return 0;
2622 
2623     /* read PERF_METRICS */
2624     rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2625 
2626     for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2627         if (!is_topdown_idx(idx))
2628             continue;
2629         other = cpuc->events[idx];
2630         __icl_update_topdown_event(other, slots, metrics,
2631                        event ? event->hw.saved_slots : 0,
2632                        event ? event->hw.saved_metric : 0);
2633     }
2634 
2635     /*
2636      * Check and update this event, which may have been cleared
2637      * in active_mask e.g. x86_pmu_stop()
2638      */
2639     if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2640         __icl_update_topdown_event(event, slots, metrics,
2641                        event->hw.saved_slots,
2642                        event->hw.saved_metric);
2643 
2644         /*
2645          * In x86_pmu_stop(), the event is cleared in active_mask first,
2646          * then drain the delta, which indicates context switch for
2647          * counting.
2648          * Save metric and slots for context switch.
2649          * Don't need to reset the PERF_METRICS and Fixed counter 3.
2650          * Because the values will be restored in next schedule in.
2651          */
2652         update_saved_topdown_regs(event, slots, metrics, metric_end);
2653         reset = false;
2654     }
2655 
2656     if (reset) {
2657         /* The fixed counter 3 has to be written before the PERF_METRICS. */
2658         wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2659         wrmsrl(MSR_PERF_METRICS, 0);
2660         if (event)
2661             update_saved_topdown_regs(event, 0, 0, metric_end);
2662     }
2663 
2664     return slots;
2665 }
2666 
2667 static u64 icl_update_topdown_event(struct perf_event *event)
2668 {
2669     return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2670                          x86_pmu.num_topdown_events - 1);
2671 }
2672 
2673 static u64 adl_update_topdown_event(struct perf_event *event)
2674 {
2675     struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2676 
2677     if (pmu->cpu_type != hybrid_big)
2678         return 0;
2679 
2680     return icl_update_topdown_event(event);
2681 }
2682 
2683 
2684 static void intel_pmu_read_topdown_event(struct perf_event *event)
2685 {
2686     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2687 
2688     /* Only need to call update_topdown_event() once for group read. */
2689     if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2690         !is_slots_event(event))
2691         return;
2692 
2693     perf_pmu_disable(event->pmu);
2694     x86_pmu.update_topdown_event(event);
2695     perf_pmu_enable(event->pmu);
2696 }
2697 
2698 static void intel_pmu_read_event(struct perf_event *event)
2699 {
2700     if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2701         intel_pmu_auto_reload_read(event);
2702     else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2703         intel_pmu_read_topdown_event(event);
2704     else
2705         x86_perf_event_update(event);
2706 }
2707 
2708 static void intel_pmu_enable_fixed(struct perf_event *event)
2709 {
2710     struct hw_perf_event *hwc = &event->hw;
2711     u64 ctrl_val, mask, bits = 0;
2712     int idx = hwc->idx;
2713 
2714     if (is_topdown_idx(idx)) {
2715         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2716         /*
2717          * When there are other active TopDown events,
2718          * don't enable the fixed counter 3 again.
2719          */
2720         if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2721             return;
2722 
2723         idx = INTEL_PMC_IDX_FIXED_SLOTS;
2724     }
2725 
2726     intel_set_masks(event, idx);
2727 
2728     /*
2729      * Enable IRQ generation (0x8), if not PEBS,
2730      * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2731      * if requested:
2732      */
2733     if (!event->attr.precise_ip)
2734         bits |= 0x8;
2735     if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2736         bits |= 0x2;
2737     if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2738         bits |= 0x1;
2739 
2740     /*
2741      * ANY bit is supported in v3 and up
2742      */
2743     if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2744         bits |= 0x4;
2745 
2746     idx -= INTEL_PMC_IDX_FIXED;
2747     bits <<= (idx * 4);
2748     mask = 0xfULL << (idx * 4);
2749 
2750     if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2751         bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2752         mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2753     }
2754 
2755     rdmsrl(hwc->config_base, ctrl_val);
2756     ctrl_val &= ~mask;
2757     ctrl_val |= bits;
2758     wrmsrl(hwc->config_base, ctrl_val);
2759 }
2760 
2761 static void intel_pmu_enable_event(struct perf_event *event)
2762 {
2763     struct hw_perf_event *hwc = &event->hw;
2764     int idx = hwc->idx;
2765 
2766     if (unlikely(event->attr.precise_ip))
2767         intel_pmu_pebs_enable(event);
2768 
2769     switch (idx) {
2770     case 0 ... INTEL_PMC_IDX_FIXED - 1:
2771         intel_set_masks(event, idx);
2772         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2773         break;
2774     case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2775     case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2776         intel_pmu_enable_fixed(event);
2777         break;
2778     case INTEL_PMC_IDX_FIXED_BTS:
2779         if (!__this_cpu_read(cpu_hw_events.enabled))
2780             return;
2781         intel_pmu_enable_bts(hwc->config);
2782         break;
2783     case INTEL_PMC_IDX_FIXED_VLBR:
2784         intel_set_masks(event, idx);
2785         break;
2786     default:
2787         pr_warn("Failed to enable the event with invalid index %d\n",
2788             idx);
2789     }
2790 }
2791 
2792 static void intel_pmu_add_event(struct perf_event *event)
2793 {
2794     if (event->attr.precise_ip)
2795         intel_pmu_pebs_add(event);
2796     if (needs_branch_stack(event))
2797         intel_pmu_lbr_add(event);
2798 }
2799 
2800 /*
2801  * Save and restart an expired event. Called by NMI contexts,
2802  * so it has to be careful about preempting normal event ops:
2803  */
2804 int intel_pmu_save_and_restart(struct perf_event *event)
2805 {
2806     x86_perf_event_update(event);
2807     /*
2808      * For a checkpointed counter always reset back to 0.  This
2809      * avoids a situation where the counter overflows, aborts the
2810      * transaction and is then set back to shortly before the
2811      * overflow, and overflows and aborts again.
2812      */
2813     if (unlikely(event_is_checkpointed(event))) {
2814         /* No race with NMIs because the counter should not be armed */
2815         wrmsrl(event->hw.event_base, 0);
2816         local64_set(&event->hw.prev_count, 0);
2817     }
2818     return x86_perf_event_set_period(event);
2819 }
2820 
2821 static void intel_pmu_reset(void)
2822 {
2823     struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2824     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2825     int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2826     int num_counters = hybrid(cpuc->pmu, num_counters);
2827     unsigned long flags;
2828     int idx;
2829 
2830     if (!num_counters)
2831         return;
2832 
2833     local_irq_save(flags);
2834 
2835     pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2836 
2837     for (idx = 0; idx < num_counters; idx++) {
2838         wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2839         wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2840     }
2841     for (idx = 0; idx < num_counters_fixed; idx++) {
2842         if (fixed_counter_disabled(idx, cpuc->pmu))
2843             continue;
2844         wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2845     }
2846 
2847     if (ds)
2848         ds->bts_index = ds->bts_buffer_base;
2849 
2850     /* Ack all overflows and disable fixed counters */
2851     if (x86_pmu.version >= 2) {
2852         intel_pmu_ack_status(intel_pmu_get_status());
2853         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2854     }
2855 
2856     /* Reset LBRs and LBR freezing */
2857     if (x86_pmu.lbr_nr) {
2858         update_debugctlmsr(get_debugctlmsr() &
2859             ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2860     }
2861 
2862     local_irq_restore(flags);
2863 }
2864 
2865 /*
2866  * We may be running with guest PEBS events created by KVM, and the
2867  * PEBS records are logged into the guest's DS and invisible to host.
2868  *
2869  * In the case of guest PEBS overflow, we only trigger a fake event
2870  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2871  * The guest will then vm-entry and check the guest DS area to read
2872  * the guest PEBS records.
2873  *
2874  * The contents and other behavior of the guest event do not matter.
2875  */
2876 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2877                       struct perf_sample_data *data)
2878 {
2879     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2880     u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2881     struct perf_event *event = NULL;
2882     int bit;
2883 
2884     if (!unlikely(perf_guest_state()))
2885         return;
2886 
2887     if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2888         !guest_pebs_idxs)
2889         return;
2890 
2891     for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2892              INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2893         event = cpuc->events[bit];
2894         if (!event->attr.precise_ip)
2895             continue;
2896 
2897         perf_sample_data_init(data, 0, event->hw.last_period);
2898         if (perf_event_overflow(event, data, regs))
2899             x86_pmu_stop(event, 0);
2900 
2901         /* Inject one fake event is enough. */
2902         break;
2903     }
2904 }
2905 
2906 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2907 {
2908     struct perf_sample_data data;
2909     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2910     int bit;
2911     int handled = 0;
2912     u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2913 
2914     inc_irq_stat(apic_perf_irqs);
2915 
2916     /*
2917      * Ignore a range of extra bits in status that do not indicate
2918      * overflow by themselves.
2919      */
2920     status &= ~(GLOBAL_STATUS_COND_CHG |
2921             GLOBAL_STATUS_ASIF |
2922             GLOBAL_STATUS_LBRS_FROZEN);
2923     if (!status)
2924         return 0;
2925     /*
2926      * In case multiple PEBS events are sampled at the same time,
2927      * it is possible to have GLOBAL_STATUS bit 62 set indicating
2928      * PEBS buffer overflow and also seeing at most 3 PEBS counters
2929      * having their bits set in the status register. This is a sign
2930      * that there was at least one PEBS record pending at the time
2931      * of the PMU interrupt. PEBS counters must only be processed
2932      * via the drain_pebs() calls and not via the regular sample
2933      * processing loop coming after that the function, otherwise
2934      * phony regular samples may be generated in the sampling buffer
2935      * not marked with the EXACT tag. Another possibility is to have
2936      * one PEBS event and at least one non-PEBS event which overflows
2937      * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2938      * not be set, yet the overflow status bit for the PEBS counter will
2939      * be on Skylake.
2940      *
2941      * To avoid this problem, we systematically ignore the PEBS-enabled
2942      * counters from the GLOBAL_STATUS mask and we always process PEBS
2943      * events via drain_pebs().
2944      */
2945     status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
2946 
2947     /*
2948      * PEBS overflow sets bit 62 in the global status register
2949      */
2950     if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2951         u64 pebs_enabled = cpuc->pebs_enabled;
2952 
2953         handled++;
2954         x86_pmu_handle_guest_pebs(regs, &data);
2955         x86_pmu.drain_pebs(regs, &data);
2956         status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2957 
2958         /*
2959          * PMI throttle may be triggered, which stops the PEBS event.
2960          * Although cpuc->pebs_enabled is updated accordingly, the
2961          * MSR_IA32_PEBS_ENABLE is not updated. Because the
2962          * cpuc->enabled has been forced to 0 in PMI.
2963          * Update the MSR if pebs_enabled is changed.
2964          */
2965         if (pebs_enabled != cpuc->pebs_enabled)
2966             wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2967     }
2968 
2969     /*
2970      * Intel PT
2971      */
2972     if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2973         handled++;
2974         if (!perf_guest_handle_intel_pt_intr())
2975             intel_pt_interrupt();
2976     }
2977 
2978     /*
2979      * Intel Perf metrics
2980      */
2981     if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2982         handled++;
2983         if (x86_pmu.update_topdown_event)
2984             x86_pmu.update_topdown_event(NULL);
2985     }
2986 
2987     /*
2988      * Checkpointed counters can lead to 'spurious' PMIs because the
2989      * rollback caused by the PMI will have cleared the overflow status
2990      * bit. Therefore always force probe these counters.
2991      */
2992     status |= cpuc->intel_cp_status;
2993 
2994     for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2995         struct perf_event *event = cpuc->events[bit];
2996 
2997         handled++;
2998 
2999         if (!test_bit(bit, cpuc->active_mask))
3000             continue;
3001 
3002         if (!intel_pmu_save_and_restart(event))
3003             continue;
3004 
3005         perf_sample_data_init(&data, 0, event->hw.last_period);
3006 
3007         if (has_branch_stack(event))
3008             data.br_stack = &cpuc->lbr_stack;
3009 
3010         if (perf_event_overflow(event, &data, regs))
3011             x86_pmu_stop(event, 0);
3012     }
3013 
3014     return handled;
3015 }
3016 
3017 /*
3018  * This handler is triggered by the local APIC, so the APIC IRQ handling
3019  * rules apply:
3020  */
3021 static int intel_pmu_handle_irq(struct pt_regs *regs)
3022 {
3023     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3024     bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3025     bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3026     int loops;
3027     u64 status;
3028     int handled;
3029     int pmu_enabled;
3030 
3031     /*
3032      * Save the PMU state.
3033      * It needs to be restored when leaving the handler.
3034      */
3035     pmu_enabled = cpuc->enabled;
3036     /*
3037      * In general, the early ACK is only applied for old platforms.
3038      * For the big core starts from Haswell, the late ACK should be
3039      * applied.
3040      * For the small core after Tremont, we have to do the ACK right
3041      * before re-enabling counters, which is in the middle of the
3042      * NMI handler.
3043      */
3044     if (!late_ack && !mid_ack)
3045         apic_write(APIC_LVTPC, APIC_DM_NMI);
3046     intel_bts_disable_local();
3047     cpuc->enabled = 0;
3048     __intel_pmu_disable_all(true);
3049     handled = intel_pmu_drain_bts_buffer();
3050     handled += intel_bts_interrupt();
3051     status = intel_pmu_get_status();
3052     if (!status)
3053         goto done;
3054 
3055     loops = 0;
3056 again:
3057     intel_pmu_lbr_read();
3058     intel_pmu_ack_status(status);
3059     if (++loops > 100) {
3060         static bool warned;
3061 
3062         if (!warned) {
3063             WARN(1, "perfevents: irq loop stuck!\n");
3064             perf_event_print_debug();
3065             warned = true;
3066         }
3067         intel_pmu_reset();
3068         goto done;
3069     }
3070 
3071     handled += handle_pmi_common(regs, status);
3072 
3073     /*
3074      * Repeat if there is more work to be done:
3075      */
3076     status = intel_pmu_get_status();
3077     if (status)
3078         goto again;
3079 
3080 done:
3081     if (mid_ack)
3082         apic_write(APIC_LVTPC, APIC_DM_NMI);
3083     /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3084     cpuc->enabled = pmu_enabled;
3085     if (pmu_enabled)
3086         __intel_pmu_enable_all(0, true);
3087     intel_bts_enable_local();
3088 
3089     /*
3090      * Only unmask the NMI after the overflow counters
3091      * have been reset. This avoids spurious NMIs on
3092      * Haswell CPUs.
3093      */
3094     if (late_ack)
3095         apic_write(APIC_LVTPC, APIC_DM_NMI);
3096     return handled;
3097 }
3098 
3099 static struct event_constraint *
3100 intel_bts_constraints(struct perf_event *event)
3101 {
3102     if (unlikely(intel_pmu_has_bts(event)))
3103         return &bts_constraint;
3104 
3105     return NULL;
3106 }
3107 
3108 /*
3109  * Note: matches a fake event, like Fixed2.
3110  */
3111 static struct event_constraint *
3112 intel_vlbr_constraints(struct perf_event *event)
3113 {
3114     struct event_constraint *c = &vlbr_constraint;
3115 
3116     if (unlikely(constraint_match(c, event->hw.config))) {
3117         event->hw.flags |= c->flags;
3118         return c;
3119     }
3120 
3121     return NULL;
3122 }
3123 
3124 static int intel_alt_er(struct cpu_hw_events *cpuc,
3125             int idx, u64 config)
3126 {
3127     struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3128     int alt_idx = idx;
3129 
3130     if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3131         return idx;
3132 
3133     if (idx == EXTRA_REG_RSP_0)
3134         alt_idx = EXTRA_REG_RSP_1;
3135 
3136     if (idx == EXTRA_REG_RSP_1)
3137         alt_idx = EXTRA_REG_RSP_0;
3138 
3139     if (config & ~extra_regs[alt_idx].valid_mask)
3140         return idx;
3141 
3142     return alt_idx;
3143 }
3144 
3145 static void intel_fixup_er(struct perf_event *event, int idx)
3146 {
3147     struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3148     event->hw.extra_reg.idx = idx;
3149 
3150     if (idx == EXTRA_REG_RSP_0) {
3151         event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3152         event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3153         event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3154     } else if (idx == EXTRA_REG_RSP_1) {
3155         event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3156         event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3157         event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3158     }
3159 }
3160 
3161 /*
3162  * manage allocation of shared extra msr for certain events
3163  *
3164  * sharing can be:
3165  * per-cpu: to be shared between the various events on a single PMU
3166  * per-core: per-cpu + shared by HT threads
3167  */
3168 static struct event_constraint *
3169 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3170                    struct perf_event *event,
3171                    struct hw_perf_event_extra *reg)
3172 {
3173     struct event_constraint *c = &emptyconstraint;
3174     struct er_account *era;
3175     unsigned long flags;
3176     int idx = reg->idx;
3177 
3178     /*
3179      * reg->alloc can be set due to existing state, so for fake cpuc we
3180      * need to ignore this, otherwise we might fail to allocate proper fake
3181      * state for this extra reg constraint. Also see the comment below.
3182      */
3183     if (reg->alloc && !cpuc->is_fake)
3184         return NULL; /* call x86_get_event_constraint() */
3185 
3186 again:
3187     era = &cpuc->shared_regs->regs[idx];
3188     /*
3189      * we use spin_lock_irqsave() to avoid lockdep issues when
3190      * passing a fake cpuc
3191      */
3192     raw_spin_lock_irqsave(&era->lock, flags);
3193 
3194     if (!atomic_read(&era->ref) || era->config == reg->config) {
3195 
3196         /*
3197          * If its a fake cpuc -- as per validate_{group,event}() we
3198          * shouldn't touch event state and we can avoid doing so
3199          * since both will only call get_event_constraints() once
3200          * on each event, this avoids the need for reg->alloc.
3201          *
3202          * Not doing the ER fixup will only result in era->reg being
3203          * wrong, but since we won't actually try and program hardware
3204          * this isn't a problem either.
3205          */
3206         if (!cpuc->is_fake) {
3207             if (idx != reg->idx)
3208                 intel_fixup_er(event, idx);
3209 
3210             /*
3211              * x86_schedule_events() can call get_event_constraints()
3212              * multiple times on events in the case of incremental
3213              * scheduling(). reg->alloc ensures we only do the ER
3214              * allocation once.
3215              */
3216             reg->alloc = 1;
3217         }
3218 
3219         /* lock in msr value */
3220         era->config = reg->config;
3221         era->reg = reg->reg;
3222 
3223         /* one more user */
3224         atomic_inc(&era->ref);
3225 
3226         /*
3227          * need to call x86_get_event_constraint()
3228          * to check if associated event has constraints
3229          */
3230         c = NULL;
3231     } else {
3232         idx = intel_alt_er(cpuc, idx, reg->config);
3233         if (idx != reg->idx) {
3234             raw_spin_unlock_irqrestore(&era->lock, flags);
3235             goto again;
3236         }
3237     }
3238     raw_spin_unlock_irqrestore(&era->lock, flags);
3239 
3240     return c;
3241 }
3242 
3243 static void
3244 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3245                    struct hw_perf_event_extra *reg)
3246 {
3247     struct er_account *era;
3248 
3249     /*
3250      * Only put constraint if extra reg was actually allocated. Also takes
3251      * care of event which do not use an extra shared reg.
3252      *
3253      * Also, if this is a fake cpuc we shouldn't touch any event state
3254      * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3255      * either since it'll be thrown out.
3256      */
3257     if (!reg->alloc || cpuc->is_fake)
3258         return;
3259 
3260     era = &cpuc->shared_regs->regs[reg->idx];
3261 
3262     /* one fewer user */
3263     atomic_dec(&era->ref);
3264 
3265     /* allocate again next time */
3266     reg->alloc = 0;
3267 }
3268 
3269 static struct event_constraint *
3270 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3271                   struct perf_event *event)
3272 {
3273     struct event_constraint *c = NULL, *d;
3274     struct hw_perf_event_extra *xreg, *breg;
3275 
3276     xreg = &event->hw.extra_reg;
3277     if (xreg->idx != EXTRA_REG_NONE) {
3278         c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3279         if (c == &emptyconstraint)
3280             return c;
3281     }
3282     breg = &event->hw.branch_reg;
3283     if (breg->idx != EXTRA_REG_NONE) {
3284         d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3285         if (d == &emptyconstraint) {
3286             __intel_shared_reg_put_constraints(cpuc, xreg);
3287             c = d;
3288         }
3289     }
3290     return c;
3291 }
3292 
3293 struct event_constraint *
3294 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3295               struct perf_event *event)
3296 {
3297     struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3298     struct event_constraint *c;
3299 
3300     if (event_constraints) {
3301         for_each_event_constraint(c, event_constraints) {
3302             if (constraint_match(c, event->hw.config)) {
3303                 event->hw.flags |= c->flags;
3304                 return c;
3305             }
3306         }
3307     }
3308 
3309     return &hybrid_var(cpuc->pmu, unconstrained);
3310 }
3311 
3312 static struct event_constraint *
3313 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3314                 struct perf_event *event)
3315 {
3316     struct event_constraint *c;
3317 
3318     c = intel_vlbr_constraints(event);
3319     if (c)
3320         return c;
3321 
3322     c = intel_bts_constraints(event);
3323     if (c)
3324         return c;
3325 
3326     c = intel_shared_regs_constraints(cpuc, event);
3327     if (c)
3328         return c;
3329 
3330     c = intel_pebs_constraints(event);
3331     if (c)
3332         return c;
3333 
3334     return x86_get_event_constraints(cpuc, idx, event);
3335 }
3336 
3337 static void
3338 intel_start_scheduling(struct cpu_hw_events *cpuc)
3339 {
3340     struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3341     struct intel_excl_states *xl;
3342     int tid = cpuc->excl_thread_id;
3343 
3344     /*
3345      * nothing needed if in group validation mode
3346      */
3347     if (cpuc->is_fake || !is_ht_workaround_enabled())
3348         return;
3349 
3350     /*
3351      * no exclusion needed
3352      */
3353     if (WARN_ON_ONCE(!excl_cntrs))
3354         return;
3355 
3356     xl = &excl_cntrs->states[tid];
3357 
3358     xl->sched_started = true;
3359     /*
3360      * lock shared state until we are done scheduling
3361      * in stop_event_scheduling()
3362      * makes scheduling appear as a transaction
3363      */
3364     raw_spin_lock(&excl_cntrs->lock);
3365 }
3366 
3367 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3368 {
3369     struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3370     struct event_constraint *c = cpuc->event_constraint[idx];
3371     struct intel_excl_states *xl;
3372     int tid = cpuc->excl_thread_id;
3373 
3374     if (cpuc->is_fake || !is_ht_workaround_enabled())
3375         return;
3376 
3377     if (WARN_ON_ONCE(!excl_cntrs))
3378         return;
3379 
3380     if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3381         return;
3382 
3383     xl = &excl_cntrs->states[tid];
3384 
3385     lockdep_assert_held(&excl_cntrs->lock);
3386 
3387     if (c->flags & PERF_X86_EVENT_EXCL)
3388         xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3389     else
3390         xl->state[cntr] = INTEL_EXCL_SHARED;
3391 }
3392 
3393 static void
3394 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3395 {
3396     struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3397     struct intel_excl_states *xl;
3398     int tid = cpuc->excl_thread_id;
3399 
3400     /*
3401      * nothing needed if in group validation mode
3402      */
3403     if (cpuc->is_fake || !is_ht_workaround_enabled())
3404         return;
3405     /*
3406      * no exclusion needed
3407      */
3408     if (WARN_ON_ONCE(!excl_cntrs))
3409         return;
3410 
3411     xl = &excl_cntrs->states[tid];
3412 
3413     xl->sched_started = false;
3414     /*
3415      * release shared state lock (acquired in intel_start_scheduling())
3416      */
3417     raw_spin_unlock(&excl_cntrs->lock);
3418 }
3419 
3420 static struct event_constraint *
3421 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3422 {
3423     WARN_ON_ONCE(!cpuc->constraint_list);
3424 
3425     if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3426         struct event_constraint *cx;
3427 
3428         /*
3429          * grab pre-allocated constraint entry
3430          */
3431         cx = &cpuc->constraint_list[idx];
3432 
3433         /*
3434          * initialize dynamic constraint
3435          * with static constraint
3436          */
3437         *cx = *c;
3438 
3439         /*
3440          * mark constraint as dynamic
3441          */
3442         cx->flags |= PERF_X86_EVENT_DYNAMIC;
3443         c = cx;
3444     }
3445 
3446     return c;
3447 }
3448 
3449 static struct event_constraint *
3450 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3451                int idx, struct event_constraint *c)
3452 {
3453     struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3454     struct intel_excl_states *xlo;
3455     int tid = cpuc->excl_thread_id;
3456     int is_excl, i, w;
3457 
3458     /*
3459      * validating a group does not require
3460      * enforcing cross-thread  exclusion
3461      */
3462     if (cpuc->is_fake || !is_ht_workaround_enabled())
3463         return c;
3464 
3465     /*
3466      * no exclusion needed
3467      */
3468     if (WARN_ON_ONCE(!excl_cntrs))
3469         return c;
3470 
3471     /*
3472      * because we modify the constraint, we need
3473      * to make a copy. Static constraints come
3474      * from static const tables.
3475      *
3476      * only needed when constraint has not yet
3477      * been cloned (marked dynamic)
3478      */
3479     c = dyn_constraint(cpuc, c, idx);
3480 
3481     /*
3482      * From here on, the constraint is dynamic.
3483      * Either it was just allocated above, or it
3484      * was allocated during a earlier invocation
3485      * of this function
3486      */
3487 
3488     /*
3489      * state of sibling HT
3490      */
3491     xlo = &excl_cntrs->states[tid ^ 1];
3492 
3493     /*
3494      * event requires exclusive counter access
3495      * across HT threads
3496      */
3497     is_excl = c->flags & PERF_X86_EVENT_EXCL;
3498     if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3499         event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3500         if (!cpuc->n_excl++)
3501             WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3502     }
3503 
3504     /*
3505      * Modify static constraint with current dynamic
3506      * state of thread
3507      *
3508      * EXCLUSIVE: sibling counter measuring exclusive event
3509      * SHARED   : sibling counter measuring non-exclusive event
3510      * UNUSED   : sibling counter unused
3511      */
3512     w = c->weight;
3513     for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3514         /*
3515          * exclusive event in sibling counter
3516          * our corresponding counter cannot be used
3517          * regardless of our event
3518          */
3519         if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3520             __clear_bit(i, c->idxmsk);
3521             w--;
3522             continue;
3523         }
3524         /*
3525          * if measuring an exclusive event, sibling
3526          * measuring non-exclusive, then counter cannot
3527          * be used
3528          */
3529         if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3530             __clear_bit(i, c->idxmsk);
3531             w--;
3532             continue;
3533         }
3534     }
3535 
3536     /*
3537      * if we return an empty mask, then switch
3538      * back to static empty constraint to avoid
3539      * the cost of freeing later on
3540      */
3541     if (!w)
3542         c = &emptyconstraint;
3543 
3544     c->weight = w;
3545 
3546     return c;
3547 }
3548 
3549 static struct event_constraint *
3550 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3551                 struct perf_event *event)
3552 {
3553     struct event_constraint *c1, *c2;
3554 
3555     c1 = cpuc->event_constraint[idx];
3556 
3557     /*
3558      * first time only
3559      * - static constraint: no change across incremental scheduling calls
3560      * - dynamic constraint: handled by intel_get_excl_constraints()
3561      */
3562     c2 = __intel_get_event_constraints(cpuc, idx, event);
3563     if (c1) {
3564             WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3565         bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3566         c1->weight = c2->weight;
3567         c2 = c1;
3568     }
3569 
3570     if (cpuc->excl_cntrs)
3571         return intel_get_excl_constraints(cpuc, event, idx, c2);
3572 
3573     return c2;
3574 }
3575 
3576 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3577         struct perf_event *event)
3578 {
3579     struct hw_perf_event *hwc = &event->hw;
3580     struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3581     int tid = cpuc->excl_thread_id;
3582     struct intel_excl_states *xl;
3583 
3584     /*
3585      * nothing needed if in group validation mode
3586      */
3587     if (cpuc->is_fake)
3588         return;
3589 
3590     if (WARN_ON_ONCE(!excl_cntrs))
3591         return;
3592 
3593     if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3594         hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3595         if (!--cpuc->n_excl)
3596             WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3597     }
3598 
3599     /*
3600      * If event was actually assigned, then mark the counter state as
3601      * unused now.
3602      */
3603     if (hwc->idx >= 0) {
3604         xl = &excl_cntrs->states[tid];
3605 
3606         /*
3607          * put_constraint may be called from x86_schedule_events()
3608          * which already has the lock held so here make locking
3609          * conditional.
3610          */
3611         if (!xl->sched_started)
3612             raw_spin_lock(&excl_cntrs->lock);
3613 
3614         xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3615 
3616         if (!xl->sched_started)
3617             raw_spin_unlock(&excl_cntrs->lock);
3618     }
3619 }
3620 
3621 static void
3622 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3623                     struct perf_event *event)
3624 {
3625     struct hw_perf_event_extra *reg;
3626 
3627     reg = &event->hw.extra_reg;
3628     if (reg->idx != EXTRA_REG_NONE)
3629         __intel_shared_reg_put_constraints(cpuc, reg);
3630 
3631     reg = &event->hw.branch_reg;
3632     if (reg->idx != EXTRA_REG_NONE)
3633         __intel_shared_reg_put_constraints(cpuc, reg);
3634 }
3635 
3636 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3637                     struct perf_event *event)
3638 {
3639     intel_put_shared_regs_event_constraints(cpuc, event);
3640 
3641     /*
3642      * is PMU has exclusive counter restrictions, then
3643      * all events are subject to and must call the
3644      * put_excl_constraints() routine
3645      */
3646     if (cpuc->excl_cntrs)
3647         intel_put_excl_constraints(cpuc, event);
3648 }
3649 
3650 static void intel_pebs_aliases_core2(struct perf_event *event)
3651 {
3652     if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3653         /*
3654          * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3655          * (0x003c) so that we can use it with PEBS.
3656          *
3657          * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3658          * PEBS capable. However we can use INST_RETIRED.ANY_P
3659          * (0x00c0), which is a PEBS capable event, to get the same
3660          * count.
3661          *
3662          * INST_RETIRED.ANY_P counts the number of cycles that retires
3663          * CNTMASK instructions. By setting CNTMASK to a value (16)
3664          * larger than the maximum number of instructions that can be
3665          * retired per cycle (4) and then inverting the condition, we
3666          * count all cycles that retire 16 or less instructions, which
3667          * is every cycle.
3668          *
3669          * Thereby we gain a PEBS capable cycle counter.
3670          */
3671         u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3672 
3673         alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3674         event->hw.config = alt_config;
3675     }
3676 }
3677 
3678 static void intel_pebs_aliases_snb(struct perf_event *event)
3679 {
3680     if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3681         /*
3682          * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3683          * (0x003c) so that we can use it with PEBS.
3684          *
3685          * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3686          * PEBS capable. However we can use UOPS_RETIRED.ALL
3687          * (0x01c2), which is a PEBS capable event, to get the same
3688          * count.
3689          *
3690          * UOPS_RETIRED.ALL counts the number of cycles that retires
3691          * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3692          * larger than the maximum number of micro-ops that can be
3693          * retired per cycle (4) and then inverting the condition, we
3694          * count all cycles that retire 16 or less micro-ops, which
3695          * is every cycle.
3696          *
3697          * Thereby we gain a PEBS capable cycle counter.
3698          */
3699         u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3700 
3701         alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3702         event->hw.config = alt_config;
3703     }
3704 }
3705 
3706 static void intel_pebs_aliases_precdist(struct perf_event *event)
3707 {
3708     if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3709         /*
3710          * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3711          * (0x003c) so that we can use it with PEBS.
3712          *
3713          * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3714          * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3715          * (0x01c0), which is a PEBS capable event, to get the same
3716          * count.
3717          *
3718          * The PREC_DIST event has special support to minimize sample
3719          * shadowing effects. One drawback is that it can be
3720          * only programmed on counter 1, but that seems like an
3721          * acceptable trade off.
3722          */
3723         u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3724 
3725         alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3726         event->hw.config = alt_config;
3727     }
3728 }
3729 
3730 static void intel_pebs_aliases_ivb(struct perf_event *event)
3731 {
3732     if (event->attr.precise_ip < 3)
3733         return intel_pebs_aliases_snb(event);
3734     return intel_pebs_aliases_precdist(event);
3735 }
3736 
3737 static void intel_pebs_aliases_skl(struct perf_event *event)
3738 {
3739     if (event->attr.precise_ip < 3)
3740         return intel_pebs_aliases_core2(event);
3741     return intel_pebs_aliases_precdist(event);
3742 }
3743 
3744 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3745 {
3746     unsigned long flags = x86_pmu.large_pebs_flags;
3747 
3748     if (event->attr.use_clockid)
3749         flags &= ~PERF_SAMPLE_TIME;
3750     if (!event->attr.exclude_kernel)
3751         flags &= ~PERF_SAMPLE_REGS_USER;
3752     if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3753         flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3754     return flags;
3755 }
3756 
3757 static int intel_pmu_bts_config(struct perf_event *event)
3758 {
3759     struct perf_event_attr *attr = &event->attr;
3760 
3761     if (unlikely(intel_pmu_has_bts(event))) {
3762         /* BTS is not supported by this architecture. */
3763         if (!x86_pmu.bts_active)
3764             return -EOPNOTSUPP;
3765 
3766         /* BTS is currently only allowed for user-mode. */
3767         if (!attr->exclude_kernel)
3768             return -EOPNOTSUPP;
3769 
3770         /* BTS is not allowed for precise events. */
3771         if (attr->precise_ip)
3772             return -EOPNOTSUPP;
3773 
3774         /* disallow bts if conflicting events are present */
3775         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3776             return -EBUSY;
3777 
3778         event->destroy = hw_perf_lbr_event_destroy;
3779     }
3780 
3781     return 0;
3782 }
3783 
3784 static int core_pmu_hw_config(struct perf_event *event)
3785 {
3786     int ret = x86_pmu_hw_config(event);
3787 
3788     if (ret)
3789         return ret;
3790 
3791     return intel_pmu_bts_config(event);
3792 }
3793 
3794 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3795                      ((x86_pmu.num_topdown_events - 1) << 8))
3796 
3797 static bool is_available_metric_event(struct perf_event *event)
3798 {
3799     return is_metric_event(event) &&
3800         event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3801 }
3802 
3803 static inline bool is_mem_loads_event(struct perf_event *event)
3804 {
3805     return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3806 }
3807 
3808 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3809 {
3810     return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3811 }
3812 
3813 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3814 {
3815     if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3816         return false;
3817 
3818     if (is_hybrid())
3819         return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3820 
3821     return true;
3822 }
3823 
3824 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3825 {
3826     union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3827 
3828     return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3829 }
3830 
3831 static int intel_pmu_hw_config(struct perf_event *event)
3832 {
3833     int ret = x86_pmu_hw_config(event);
3834 
3835     if (ret)
3836         return ret;
3837 
3838     ret = intel_pmu_bts_config(event);
3839     if (ret)
3840         return ret;
3841 
3842     if (event->attr.precise_ip) {
3843         if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3844             return -EINVAL;
3845 
3846         if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3847             event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3848             if (!(event->attr.sample_type &
3849                   ~intel_pmu_large_pebs_flags(event))) {
3850                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3851                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3852             }
3853         }
3854         if (x86_pmu.pebs_aliases)
3855             x86_pmu.pebs_aliases(event);
3856 
3857         if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3858             event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3859     }
3860 
3861     if (needs_branch_stack(event)) {
3862         ret = intel_pmu_setup_lbr_filter(event);
3863         if (ret)
3864             return ret;
3865         event->attach_state |= PERF_ATTACH_SCHED_CB;
3866 
3867         /*
3868          * BTS is set up earlier in this path, so don't account twice
3869          */
3870         if (!unlikely(intel_pmu_has_bts(event))) {
3871             /* disallow lbr if conflicting events are present */
3872             if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3873                 return -EBUSY;
3874 
3875             event->destroy = hw_perf_lbr_event_destroy;
3876         }
3877     }
3878 
3879     if (event->attr.aux_output) {
3880         if (!event->attr.precise_ip)
3881             return -EINVAL;
3882 
3883         event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3884     }
3885 
3886     if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3887         (event->attr.type == PERF_TYPE_HW_CACHE))
3888         return 0;
3889 
3890     /*
3891      * Config Topdown slots and metric events
3892      *
3893      * The slots event on Fixed Counter 3 can support sampling,
3894      * which will be handled normally in x86_perf_event_update().
3895      *
3896      * Metric events don't support sampling and require being paired
3897      * with a slots event as group leader. When the slots event
3898      * is used in a metrics group, it too cannot support sampling.
3899      */
3900     if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3901         if (event->attr.config1 || event->attr.config2)
3902             return -EINVAL;
3903 
3904         /*
3905          * The TopDown metrics events and slots event don't
3906          * support any filters.
3907          */
3908         if (event->attr.config & X86_ALL_EVENT_FLAGS)
3909             return -EINVAL;
3910 
3911         if (is_available_metric_event(event)) {
3912             struct perf_event *leader = event->group_leader;
3913 
3914             /* The metric events don't support sampling. */
3915             if (is_sampling_event(event))
3916                 return -EINVAL;
3917 
3918             /* The metric events require a slots group leader. */
3919             if (!is_slots_event(leader))
3920                 return -EINVAL;
3921 
3922             /*
3923              * The leader/SLOTS must not be a sampling event for
3924              * metric use; hardware requires it starts at 0 when used
3925              * in conjunction with MSR_PERF_METRICS.
3926              */
3927             if (is_sampling_event(leader))
3928                 return -EINVAL;
3929 
3930             event->event_caps |= PERF_EV_CAP_SIBLING;
3931             /*
3932              * Only once we have a METRICs sibling do we
3933              * need TopDown magic.
3934              */
3935             leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3936             event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3937         }
3938     }
3939 
3940     /*
3941      * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3942      * doesn't function quite right. As a work-around it needs to always be
3943      * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3944      * The actual count of this second event is irrelevant it just needs
3945      * to be active to make the first event function correctly.
3946      *
3947      * In a group, the auxiliary event must be in front of the load latency
3948      * event. The rule is to simplify the implementation of the check.
3949      * That's because perf cannot have a complete group at the moment.
3950      */
3951     if (require_mem_loads_aux_event(event) &&
3952         (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3953         is_mem_loads_event(event)) {
3954         struct perf_event *leader = event->group_leader;
3955         struct perf_event *sibling = NULL;
3956 
3957         if (!is_mem_loads_aux_event(leader)) {
3958             for_each_sibling_event(sibling, leader) {
3959                 if (is_mem_loads_aux_event(sibling))
3960                     break;
3961             }
3962             if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3963                 return -ENODATA;
3964         }
3965     }
3966 
3967     if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3968         return 0;
3969 
3970     if (x86_pmu.version < 3)
3971         return -EINVAL;
3972 
3973     ret = perf_allow_cpu(&event->attr);
3974     if (ret)
3975         return ret;
3976 
3977     event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3978 
3979     return 0;
3980 }
3981 
3982 /*
3983  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
3984  * The host perf conext helps to prepare the values of the real hardware for
3985  * a set of msrs that need to be switched atomically in a vmx transaction.
3986  *
3987  * For example, the pseudocode needed to add a new msr should look like:
3988  *
3989  * arr[(*nr)++] = (struct perf_guest_switch_msr){
3990  *  .msr = the hardware msr address,
3991  *  .host = the value the hardware has when it doesn't run a guest,
3992  *  .guest = the value the hardware has when it runs a guest,
3993  * };
3994  *
3995  * These values have nothing to do with the emulated values the guest sees
3996  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
3997  * specifically in the intel_pmu_{get,set}_msr().
3998  */
3999 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4000 {
4001     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4002     struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4003     struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4004     u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4005     u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4006     int global_ctrl, pebs_enable;
4007 
4008     *nr = 0;
4009     global_ctrl = (*nr)++;
4010     arr[global_ctrl] = (struct perf_guest_switch_msr){
4011         .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4012         .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4013         .guest = intel_ctrl & (~cpuc->intel_ctrl_host_mask | ~pebs_mask),
4014     };
4015 
4016     if (!x86_pmu.pebs)
4017         return arr;
4018 
4019     /*
4020      * If PMU counter has PEBS enabled it is not enough to
4021      * disable counter on a guest entry since PEBS memory
4022      * write can overshoot guest entry and corrupt guest
4023      * memory. Disabling PEBS solves the problem.
4024      *
4025      * Don't do this if the CPU already enforces it.
4026      */
4027     if (x86_pmu.pebs_no_isolation) {
4028         arr[(*nr)++] = (struct perf_guest_switch_msr){
4029             .msr = MSR_IA32_PEBS_ENABLE,
4030             .host = cpuc->pebs_enabled,
4031             .guest = 0,
4032         };
4033         return arr;
4034     }
4035 
4036     if (!kvm_pmu || !x86_pmu.pebs_ept)
4037         return arr;
4038 
4039     arr[(*nr)++] = (struct perf_guest_switch_msr){
4040         .msr = MSR_IA32_DS_AREA,
4041         .host = (unsigned long)cpuc->ds,
4042         .guest = kvm_pmu->ds_area,
4043     };
4044 
4045     if (x86_pmu.intel_cap.pebs_baseline) {
4046         arr[(*nr)++] = (struct perf_guest_switch_msr){
4047             .msr = MSR_PEBS_DATA_CFG,
4048             .host = cpuc->pebs_data_cfg,
4049             .guest = kvm_pmu->pebs_data_cfg,
4050         };
4051     }
4052 
4053     pebs_enable = (*nr)++;
4054     arr[pebs_enable] = (struct perf_guest_switch_msr){
4055         .msr = MSR_IA32_PEBS_ENABLE,
4056         .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4057         .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4058     };
4059 
4060     if (arr[pebs_enable].host) {
4061         /* Disable guest PEBS if host PEBS is enabled. */
4062         arr[pebs_enable].guest = 0;
4063     } else {
4064         /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4065         arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4066         arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4067         /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4068         arr[global_ctrl].guest |= arr[pebs_enable].guest;
4069     }
4070 
4071     return arr;
4072 }
4073 
4074 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4075 {
4076     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4077     struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4078     int idx;
4079 
4080     for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
4081         struct perf_event *event = cpuc->events[idx];
4082 
4083         arr[idx].msr = x86_pmu_config_addr(idx);
4084         arr[idx].host = arr[idx].guest = 0;
4085 
4086         if (!test_bit(idx, cpuc->active_mask))
4087             continue;
4088 
4089         arr[idx].host = arr[idx].guest =
4090             event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4091 
4092         if (event->attr.exclude_host)
4093             arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4094         else if (event->attr.exclude_guest)
4095             arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4096     }
4097 
4098     *nr = x86_pmu.num_counters;
4099     return arr;
4100 }
4101 
4102 static void core_pmu_enable_event(struct perf_event *event)
4103 {
4104     if (!event->attr.exclude_host)
4105         x86_pmu_enable_event(event);
4106 }
4107 
4108 static void core_pmu_enable_all(int added)
4109 {
4110     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4111     int idx;
4112 
4113     for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4114         struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4115 
4116         if (!test_bit(idx, cpuc->active_mask) ||
4117                 cpuc->events[idx]->attr.exclude_host)
4118             continue;
4119 
4120         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4121     }
4122 }
4123 
4124 static int hsw_hw_config(struct perf_event *event)
4125 {
4126     int ret = intel_pmu_hw_config(event);
4127 
4128     if (ret)
4129         return ret;
4130     if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4131         return 0;
4132     event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4133 
4134     /*
4135      * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4136      * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4137      * this combination.
4138      */
4139     if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4140          ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4141           event->attr.precise_ip > 0))
4142         return -EOPNOTSUPP;
4143 
4144     if (event_is_checkpointed(event)) {
4145         /*
4146          * Sampling of checkpointed events can cause situations where
4147          * the CPU constantly aborts because of a overflow, which is
4148          * then checkpointed back and ignored. Forbid checkpointing
4149          * for sampling.
4150          *
4151          * But still allow a long sampling period, so that perf stat
4152          * from KVM works.
4153          */
4154         if (event->attr.sample_period > 0 &&
4155             event->attr.sample_period < 0x7fffffff)
4156             return -EOPNOTSUPP;
4157     }
4158     return 0;
4159 }
4160 
4161 static struct event_constraint counter0_constraint =
4162             INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4163 
4164 static struct event_constraint counter2_constraint =
4165             EVENT_CONSTRAINT(0, 0x4, 0);
4166 
4167 static struct event_constraint fixed0_constraint =
4168             FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4169 
4170 static struct event_constraint fixed0_counter0_constraint =
4171             INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4172 
4173 static struct event_constraint *
4174 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4175               struct perf_event *event)
4176 {
4177     struct event_constraint *c;
4178 
4179     c = intel_get_event_constraints(cpuc, idx, event);
4180 
4181     /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4182     if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4183         if (c->idxmsk64 & (1U << 2))
4184             return &counter2_constraint;
4185         return &emptyconstraint;
4186     }
4187 
4188     return c;
4189 }
4190 
4191 static struct event_constraint *
4192 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4193               struct perf_event *event)
4194 {
4195     /*
4196      * Fixed counter 0 has less skid.
4197      * Force instruction:ppp in Fixed counter 0
4198      */
4199     if ((event->attr.precise_ip == 3) &&
4200         constraint_match(&fixed0_constraint, event->hw.config))
4201         return &fixed0_constraint;
4202 
4203     return hsw_get_event_constraints(cpuc, idx, event);
4204 }
4205 
4206 static struct event_constraint *
4207 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4208               struct perf_event *event)
4209 {
4210     struct event_constraint *c;
4211 
4212     c = icl_get_event_constraints(cpuc, idx, event);
4213 
4214     /*
4215      * The :ppp indicates the Precise Distribution (PDist) facility, which
4216      * is only supported on the GP counter 0. If a :ppp event which is not
4217      * available on the GP counter 0, error out.
4218      * Exception: Instruction PDIR is only available on the fixed counter 0.
4219      */
4220     if ((event->attr.precise_ip == 3) &&
4221         !constraint_match(&fixed0_constraint, event->hw.config)) {
4222         if (c->idxmsk64 & BIT_ULL(0))
4223             return &counter0_constraint;
4224 
4225         return &emptyconstraint;
4226     }
4227 
4228     return c;
4229 }
4230 
4231 static struct event_constraint *
4232 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4233               struct perf_event *event)
4234 {
4235     struct event_constraint *c;
4236 
4237     /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4238     if (event->attr.precise_ip == 3)
4239         return &counter0_constraint;
4240 
4241     c = intel_get_event_constraints(cpuc, idx, event);
4242 
4243     return c;
4244 }
4245 
4246 static struct event_constraint *
4247 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4248               struct perf_event *event)
4249 {
4250     struct event_constraint *c;
4251 
4252     c = intel_get_event_constraints(cpuc, idx, event);
4253 
4254     /*
4255      * :ppp means to do reduced skid PEBS,
4256      * which is available on PMC0 and fixed counter 0.
4257      */
4258     if (event->attr.precise_ip == 3) {
4259         /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4260         if (constraint_match(&fixed0_constraint, event->hw.config))
4261             return &fixed0_counter0_constraint;
4262 
4263         return &counter0_constraint;
4264     }
4265 
4266     return c;
4267 }
4268 
4269 static bool allow_tsx_force_abort = true;
4270 
4271 static struct event_constraint *
4272 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4273               struct perf_event *event)
4274 {
4275     struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4276 
4277     /*
4278      * Without TFA we must not use PMC3.
4279      */
4280     if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4281         c = dyn_constraint(cpuc, c, idx);
4282         c->idxmsk64 &= ~(1ULL << 3);
4283         c->weight--;
4284     }
4285 
4286     return c;
4287 }
4288 
4289 static struct event_constraint *
4290 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4291               struct perf_event *event)
4292 {
4293     struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4294 
4295     if (pmu->cpu_type == hybrid_big)
4296         return spr_get_event_constraints(cpuc, idx, event);
4297     else if (pmu->cpu_type == hybrid_small)
4298         return tnt_get_event_constraints(cpuc, idx, event);
4299 
4300     WARN_ON(1);
4301     return &emptyconstraint;
4302 }
4303 
4304 static int adl_hw_config(struct perf_event *event)
4305 {
4306     struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4307 
4308     if (pmu->cpu_type == hybrid_big)
4309         return hsw_hw_config(event);
4310     else if (pmu->cpu_type == hybrid_small)
4311         return intel_pmu_hw_config(event);
4312 
4313     WARN_ON(1);
4314     return -EOPNOTSUPP;
4315 }
4316 
4317 static u8 adl_get_hybrid_cpu_type(void)
4318 {
4319     return hybrid_big;
4320 }
4321 
4322 /*
4323  * Broadwell:
4324  *
4325  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4326  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4327  * the two to enforce a minimum period of 128 (the smallest value that has bits
4328  * 0-5 cleared and >= 100).
4329  *
4330  * Because of how the code in x86_perf_event_set_period() works, the truncation
4331  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4332  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4333  *
4334  * Therefore the effective (average) period matches the requested period,
4335  * despite coarser hardware granularity.
4336  */
4337 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4338 {
4339     if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4340             X86_CONFIG(.event=0xc0, .umask=0x01)) {
4341         if (left < 128)
4342             left = 128;
4343         left &= ~0x3fULL;
4344     }
4345     return left;
4346 }
4347 
4348 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4349 {
4350     return max(left, 32ULL);
4351 }
4352 
4353 static u64 spr_limit_period(struct perf_event *event, u64 left)
4354 {
4355     if (event->attr.precise_ip == 3)
4356         return max(left, 128ULL);
4357 
4358     return left;
4359 }
4360 
4361 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4362 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4363 PMU_FORMAT_ATTR(edge,   "config:18" );
4364 PMU_FORMAT_ATTR(pc, "config:19" );
4365 PMU_FORMAT_ATTR(any,    "config:21" ); /* v3 + */
4366 PMU_FORMAT_ATTR(inv,    "config:23" );
4367 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4368 PMU_FORMAT_ATTR(in_tx,  "config:32");
4369 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4370 
4371 static struct attribute *intel_arch_formats_attr[] = {
4372     &format_attr_event.attr,
4373     &format_attr_umask.attr,
4374     &format_attr_edge.attr,
4375     &format_attr_pc.attr,
4376     &format_attr_inv.attr,
4377     &format_attr_cmask.attr,
4378     NULL,
4379 };
4380 
4381 ssize_t intel_event_sysfs_show(char *page, u64 config)
4382 {
4383     u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4384 
4385     return x86_event_sysfs_show(page, config, event);
4386 }
4387 
4388 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4389 {
4390     struct intel_shared_regs *regs;
4391     int i;
4392 
4393     regs = kzalloc_node(sizeof(struct intel_shared_regs),
4394                 GFP_KERNEL, cpu_to_node(cpu));
4395     if (regs) {
4396         /*
4397          * initialize the locks to keep lockdep happy
4398          */
4399         for (i = 0; i < EXTRA_REG_MAX; i++)
4400             raw_spin_lock_init(&regs->regs[i].lock);
4401 
4402         regs->core_id = -1;
4403     }
4404     return regs;
4405 }
4406 
4407 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4408 {
4409     struct intel_excl_cntrs *c;
4410 
4411     c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4412              GFP_KERNEL, cpu_to_node(cpu));
4413     if (c) {
4414         raw_spin_lock_init(&c->lock);
4415         c->core_id = -1;
4416     }
4417     return c;
4418 }
4419 
4420 
4421 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4422 {
4423     cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4424 
4425     if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4426         cpuc->shared_regs = allocate_shared_regs(cpu);
4427         if (!cpuc->shared_regs)
4428             goto err;
4429     }
4430 
4431     if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4432         size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4433 
4434         cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4435         if (!cpuc->constraint_list)
4436             goto err_shared_regs;
4437     }
4438 
4439     if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4440         cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4441         if (!cpuc->excl_cntrs)
4442             goto err_constraint_list;
4443 
4444         cpuc->excl_thread_id = 0;
4445     }
4446 
4447     return 0;
4448 
4449 err_constraint_list:
4450     kfree(cpuc->constraint_list);
4451     cpuc->constraint_list = NULL;
4452 
4453 err_shared_regs:
4454     kfree(cpuc->shared_regs);
4455     cpuc->shared_regs = NULL;
4456 
4457 err:
4458     return -ENOMEM;
4459 }
4460 
4461 static int intel_pmu_cpu_prepare(int cpu)
4462 {
4463     return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4464 }
4465 
4466 static void flip_smm_bit(void *data)
4467 {
4468     unsigned long set = *(unsigned long *)data;
4469 
4470     if (set > 0) {
4471         msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4472                 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4473     } else {
4474         msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4475                   DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4476     }
4477 }
4478 
4479 static bool init_hybrid_pmu(int cpu)
4480 {
4481     struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4482     u8 cpu_type = get_this_hybrid_cpu_type();
4483     struct x86_hybrid_pmu *pmu = NULL;
4484     int i;
4485 
4486     if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4487         cpu_type = x86_pmu.get_hybrid_cpu_type();
4488 
4489     for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4490         if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4491             pmu = &x86_pmu.hybrid_pmu[i];
4492             break;
4493         }
4494     }
4495     if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4496         cpuc->pmu = NULL;
4497         return false;
4498     }
4499 
4500     /* Only check and dump the PMU information for the first CPU */
4501     if (!cpumask_empty(&pmu->supported_cpus))
4502         goto end;
4503 
4504     if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4505         return false;
4506 
4507     pr_info("%s PMU driver: ", pmu->name);
4508 
4509     if (pmu->intel_cap.pebs_output_pt_available)
4510         pr_cont("PEBS-via-PT ");
4511 
4512     pr_cont("\n");
4513 
4514     x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4515                  pmu->intel_ctrl);
4516 
4517 end:
4518     cpumask_set_cpu(cpu, &pmu->supported_cpus);
4519     cpuc->pmu = &pmu->pmu;
4520 
4521     x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4522 
4523     return true;
4524 }
4525 
4526 static void intel_pmu_cpu_starting(int cpu)
4527 {
4528     struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4529     int core_id = topology_core_id(cpu);
4530     int i;
4531 
4532     if (is_hybrid() && !init_hybrid_pmu(cpu))
4533         return;
4534 
4535     init_debug_store_on_cpu(cpu);
4536     /*
4537      * Deal with CPUs that don't clear their LBRs on power-up.
4538      */
4539     intel_pmu_lbr_reset();
4540 
4541     cpuc->lbr_sel = NULL;
4542 
4543     if (x86_pmu.flags & PMU_FL_TFA) {
4544         WARN_ON_ONCE(cpuc->tfa_shadow);
4545         cpuc->tfa_shadow = ~0ULL;
4546         intel_set_tfa(cpuc, false);
4547     }
4548 
4549     if (x86_pmu.version > 1)
4550         flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4551 
4552     /*
4553      * Disable perf metrics if any added CPU doesn't support it.
4554      *
4555      * Turn off the check for a hybrid architecture, because the
4556      * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4557      * the architecture features. The perf metrics is a model-specific
4558      * feature for now. The corresponding bit should always be 0 on
4559      * a hybrid platform, e.g., Alder Lake.
4560      */
4561     if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4562         union perf_capabilities perf_cap;
4563 
4564         rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4565         if (!perf_cap.perf_metrics) {
4566             x86_pmu.intel_cap.perf_metrics = 0;
4567             x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4568         }
4569     }
4570 
4571     if (!cpuc->shared_regs)
4572         return;
4573 
4574     if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4575         for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4576             struct intel_shared_regs *pc;
4577 
4578             pc = per_cpu(cpu_hw_events, i).shared_regs;
4579             if (pc && pc->core_id == core_id) {
4580                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4581                 cpuc->shared_regs = pc;
4582                 break;
4583             }
4584         }
4585         cpuc->shared_regs->core_id = core_id;
4586         cpuc->shared_regs->refcnt++;
4587     }
4588 
4589     if (x86_pmu.lbr_sel_map)
4590         cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4591 
4592     if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4593         for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4594             struct cpu_hw_events *sibling;
4595             struct intel_excl_cntrs *c;
4596 
4597             sibling = &per_cpu(cpu_hw_events, i);
4598             c = sibling->excl_cntrs;
4599             if (c && c->core_id == core_id) {
4600                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4601                 cpuc->excl_cntrs = c;
4602                 if (!sibling->excl_thread_id)
4603                     cpuc->excl_thread_id = 1;
4604                 break;
4605             }
4606         }
4607         cpuc->excl_cntrs->core_id = core_id;
4608         cpuc->excl_cntrs->refcnt++;
4609     }
4610 }
4611 
4612 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4613 {
4614     struct intel_excl_cntrs *c;
4615 
4616     c = cpuc->excl_cntrs;
4617     if (c) {
4618         if (c->core_id == -1 || --c->refcnt == 0)
4619             kfree(c);
4620         cpuc->excl_cntrs = NULL;
4621     }
4622 
4623     kfree(cpuc->constraint_list);
4624     cpuc->constraint_list = NULL;
4625 }
4626 
4627 static void intel_pmu_cpu_dying(int cpu)
4628 {
4629     fini_debug_store_on_cpu(cpu);
4630 }
4631 
4632 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4633 {
4634     struct intel_shared_regs *pc;
4635 
4636     pc = cpuc->shared_regs;
4637     if (pc) {
4638         if (pc->core_id == -1 || --pc->refcnt == 0)
4639             kfree(pc);
4640         cpuc->shared_regs = NULL;
4641     }
4642 
4643     free_excl_cntrs(cpuc);
4644 }
4645 
4646 static void intel_pmu_cpu_dead(int cpu)
4647 {
4648     struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4649 
4650     intel_cpuc_finish(cpuc);
4651 
4652     if (is_hybrid() && cpuc->pmu)
4653         cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4654 }
4655 
4656 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4657                  bool sched_in)
4658 {
4659     intel_pmu_pebs_sched_task(ctx, sched_in);
4660     intel_pmu_lbr_sched_task(ctx, sched_in);
4661 }
4662 
4663 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4664                     struct perf_event_context *next)
4665 {
4666     intel_pmu_lbr_swap_task_ctx(prev, next);
4667 }
4668 
4669 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4670 {
4671     return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4672 }
4673 
4674 static void intel_aux_output_init(void)
4675 {
4676     /* Refer also intel_pmu_aux_output_match() */
4677     if (x86_pmu.intel_cap.pebs_output_pt_available)
4678         x86_pmu.assign = intel_pmu_assign_event;
4679 }
4680 
4681 static int intel_pmu_aux_output_match(struct perf_event *event)
4682 {
4683     /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4684     if (!x86_pmu.intel_cap.pebs_output_pt_available)
4685         return 0;
4686 
4687     return is_intel_pt_event(event);
4688 }
4689 
4690 static int intel_pmu_filter_match(struct perf_event *event)
4691 {
4692     struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4693     unsigned int cpu = smp_processor_id();
4694 
4695     return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4696 }
4697 
4698 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4699 
4700 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4701 
4702 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4703 
4704 static struct attribute *intel_arch3_formats_attr[] = {
4705     &format_attr_event.attr,
4706     &format_attr_umask.attr,
4707     &format_attr_edge.attr,
4708     &format_attr_pc.attr,
4709     &format_attr_any.attr,
4710     &format_attr_inv.attr,
4711     &format_attr_cmask.attr,
4712     NULL,
4713 };
4714 
4715 static struct attribute *hsw_format_attr[] = {
4716     &format_attr_in_tx.attr,
4717     &format_attr_in_tx_cp.attr,
4718     &format_attr_offcore_rsp.attr,
4719     &format_attr_ldlat.attr,
4720     NULL
4721 };
4722 
4723 static struct attribute *nhm_format_attr[] = {
4724     &format_attr_offcore_rsp.attr,
4725     &format_attr_ldlat.attr,
4726     NULL
4727 };
4728 
4729 static struct attribute *slm_format_attr[] = {
4730     &format_attr_offcore_rsp.attr,
4731     NULL
4732 };
4733 
4734 static struct attribute *skl_format_attr[] = {
4735     &format_attr_frontend.attr,
4736     NULL,
4737 };
4738 
4739 static __initconst const struct x86_pmu core_pmu = {
4740     .name           = "core",
4741     .handle_irq     = x86_pmu_handle_irq,
4742     .disable_all        = x86_pmu_disable_all,
4743     .enable_all     = core_pmu_enable_all,
4744     .enable         = core_pmu_enable_event,
4745     .disable        = x86_pmu_disable_event,
4746     .hw_config      = core_pmu_hw_config,
4747     .schedule_events    = x86_schedule_events,
4748     .eventsel       = MSR_ARCH_PERFMON_EVENTSEL0,
4749     .perfctr        = MSR_ARCH_PERFMON_PERFCTR0,
4750     .event_map      = intel_pmu_event_map,
4751     .max_events     = ARRAY_SIZE(intel_perfmon_event_map),
4752     .apic           = 1,
4753     .large_pebs_flags   = LARGE_PEBS_FLAGS,
4754 
4755     /*
4756      * Intel PMCs cannot be accessed sanely above 32-bit width,
4757      * so we install an artificial 1<<31 period regardless of
4758      * the generic event period:
4759      */
4760     .max_period     = (1ULL<<31) - 1,
4761     .get_event_constraints  = intel_get_event_constraints,
4762     .put_event_constraints  = intel_put_event_constraints,
4763     .event_constraints  = intel_core_event_constraints,
4764     .guest_get_msrs     = core_guest_get_msrs,
4765     .format_attrs       = intel_arch_formats_attr,
4766     .events_sysfs_show  = intel_event_sysfs_show,
4767 
4768     /*
4769      * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4770      * together with PMU version 1 and thus be using core_pmu with
4771      * shared_regs. We need following callbacks here to allocate
4772      * it properly.
4773      */
4774     .cpu_prepare        = intel_pmu_cpu_prepare,
4775     .cpu_starting       = intel_pmu_cpu_starting,
4776     .cpu_dying      = intel_pmu_cpu_dying,
4777     .cpu_dead       = intel_pmu_cpu_dead,
4778 
4779     .check_period       = intel_pmu_check_period,
4780 
4781     .lbr_reset      = intel_pmu_lbr_reset_64,
4782     .lbr_read       = intel_pmu_lbr_read_64,
4783     .lbr_save       = intel_pmu_lbr_save,
4784     .lbr_restore        = intel_pmu_lbr_restore,
4785 };
4786 
4787 static __initconst const struct x86_pmu intel_pmu = {
4788     .name           = "Intel",
4789     .handle_irq     = intel_pmu_handle_irq,
4790     .disable_all        = intel_pmu_disable_all,
4791     .enable_all     = intel_pmu_enable_all,
4792     .enable         = intel_pmu_enable_event,
4793     .disable        = intel_pmu_disable_event,
4794     .add            = intel_pmu_add_event,
4795     .del            = intel_pmu_del_event,
4796     .read           = intel_pmu_read_event,
4797     .hw_config      = intel_pmu_hw_config,
4798     .schedule_events    = x86_schedule_events,
4799     .eventsel       = MSR_ARCH_PERFMON_EVENTSEL0,
4800     .perfctr        = MSR_ARCH_PERFMON_PERFCTR0,
4801     .event_map      = intel_pmu_event_map,
4802     .max_events     = ARRAY_SIZE(intel_perfmon_event_map),
4803     .apic           = 1,
4804     .large_pebs_flags   = LARGE_PEBS_FLAGS,
4805     /*
4806      * Intel PMCs cannot be accessed sanely above 32 bit width,
4807      * so we install an artificial 1<<31 period regardless of
4808      * the generic event period:
4809      */
4810     .max_period     = (1ULL << 31) - 1,
4811     .get_event_constraints  = intel_get_event_constraints,
4812     .put_event_constraints  = intel_put_event_constraints,
4813     .pebs_aliases       = intel_pebs_aliases_core2,
4814 
4815     .format_attrs       = intel_arch3_formats_attr,
4816     .events_sysfs_show  = intel_event_sysfs_show,
4817 
4818     .cpu_prepare        = intel_pmu_cpu_prepare,
4819     .cpu_starting       = intel_pmu_cpu_starting,
4820     .cpu_dying      = intel_pmu_cpu_dying,
4821     .cpu_dead       = intel_pmu_cpu_dead,
4822 
4823     .guest_get_msrs     = intel_guest_get_msrs,
4824     .sched_task     = intel_pmu_sched_task,
4825     .swap_task_ctx      = intel_pmu_swap_task_ctx,
4826 
4827     .check_period       = intel_pmu_check_period,
4828 
4829     .aux_output_match   = intel_pmu_aux_output_match,
4830 
4831     .lbr_reset      = intel_pmu_lbr_reset_64,
4832     .lbr_read       = intel_pmu_lbr_read_64,
4833     .lbr_save       = intel_pmu_lbr_save,
4834     .lbr_restore        = intel_pmu_lbr_restore,
4835 
4836     /*
4837      * SMM has access to all 4 rings and while traditionally SMM code only
4838      * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
4839      *
4840      * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
4841      * between SMM or not, this results in what should be pure userspace
4842      * counters including SMM data.
4843      *
4844      * This is a clear privilege issue, therefore globally disable
4845      * counting SMM by default.
4846      */
4847     .attr_freeze_on_smi = 1,
4848 };
4849 
4850 static __init void intel_clovertown_quirk(void)
4851 {
4852     /*
4853      * PEBS is unreliable due to:
4854      *
4855      *   AJ67  - PEBS may experience CPL leaks
4856      *   AJ68  - PEBS PMI may be delayed by one event
4857      *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4858      *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4859      *
4860      * AJ67 could be worked around by restricting the OS/USR flags.
4861      * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4862      *
4863      * AJ106 could possibly be worked around by not allowing LBR
4864      *       usage from PEBS, including the fixup.
4865      * AJ68  could possibly be worked around by always programming
4866      *   a pebs_event_reset[0] value and coping with the lost events.
4867      *
4868      * But taken together it might just make sense to not enable PEBS on
4869      * these chips.
4870      */
4871     pr_warn("PEBS disabled due to CPU errata\n");
4872     x86_pmu.pebs = 0;
4873     x86_pmu.pebs_constraints = NULL;
4874 }
4875 
4876 static const struct x86_cpu_desc isolation_ucodes[] = {
4877     INTEL_CPU_DESC(INTEL_FAM6_HASWELL,       3, 0x0000001f),
4878     INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,         1, 0x0000001e),
4879     INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,         1, 0x00000015),
4880     INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,         2, 0x00000037),
4881     INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,         4, 0x0000000a),
4882     INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,         4, 0x00000023),
4883     INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,       1, 0x00000014),
4884     INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,       2, 0x00000010),
4885     INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,       3, 0x07000009),
4886     INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,       4, 0x0f000009),
4887     INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,       5, 0x0e000002),
4888     INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,       1, 0x0b000014),
4889     INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,         3, 0x00000021),
4890     INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,         4, 0x00000000),
4891     INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,         5, 0x00000000),
4892     INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,         6, 0x00000000),
4893     INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,         7, 0x00000000),
4894     INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,         3, 0x0000007c),
4895     INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,       3, 0x0000007c),
4896     INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,      9, 0x0000004e),
4897     INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,        9, 0x0000004e),
4898     INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,       10, 0x0000004e),
4899     INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,       11, 0x0000004e),
4900     INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,       12, 0x0000004e),
4901     INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,     10, 0x0000004e),
4902     INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,     11, 0x0000004e),
4903     INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,     12, 0x0000004e),
4904     INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,     13, 0x0000004e),
4905     {}
4906 };
4907 
4908 static void intel_check_pebs_isolation(void)
4909 {
4910     x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4911 }
4912 
4913 static __init void intel_pebs_isolation_quirk(void)
4914 {
4915     WARN_ON_ONCE(x86_pmu.check_microcode);
4916     x86_pmu.check_microcode = intel_check_pebs_isolation;
4917     intel_check_pebs_isolation();
4918 }
4919 
4920 static const struct x86_cpu_desc pebs_ucodes[] = {
4921     INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,      7, 0x00000028),
4922     INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,    6, 0x00000618),
4923     INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,    7, 0x0000070c),
4924     {}
4925 };
4926 
4927 static bool intel_snb_pebs_broken(void)
4928 {
4929     return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4930 }
4931 
4932 static void intel_snb_check_microcode(void)
4933 {
4934     if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4935         return;
4936 
4937     /*
4938      * Serialized by the microcode lock..
4939      */
4940     if (x86_pmu.pebs_broken) {
4941         pr_info("PEBS enabled due to microcode update\n");
4942         x86_pmu.pebs_broken = 0;
4943     } else {
4944         pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4945         x86_pmu.pebs_broken = 1;
4946     }
4947 }
4948 
4949 static bool is_lbr_from(unsigned long msr)
4950 {
4951     unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4952 
4953     return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4954 }
4955 
4956 /*
4957  * Under certain circumstances, access certain MSR may cause #GP.
4958  * The function tests if the input MSR can be safely accessed.
4959  */
4960 static bool check_msr(unsigned long msr, u64 mask)
4961 {
4962     u64 val_old, val_new, val_tmp;
4963 
4964     /*
4965      * Disable the check for real HW, so we don't
4966      * mess with potentially enabled registers:
4967      */
4968     if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4969         return true;
4970 
4971     /*
4972      * Read the current value, change it and read it back to see if it
4973      * matches, this is needed to detect certain hardware emulators
4974      * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4975      */
4976     if (rdmsrl_safe(msr, &val_old))
4977         return false;
4978 
4979     /*
4980      * Only change the bits which can be updated by wrmsrl.
4981      */
4982     val_tmp = val_old ^ mask;
4983 
4984     if (is_lbr_from(msr))
4985         val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4986 
4987     if (wrmsrl_safe(msr, val_tmp) ||
4988         rdmsrl_safe(msr, &val_new))
4989         return false;
4990 
4991     /*
4992      * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4993      * should equal rdmsrl()'s even with the quirk.
4994      */
4995     if (val_new != val_tmp)
4996         return false;
4997 
4998     if (is_lbr_from(msr))
4999         val_old = lbr_from_signext_quirk_wr(val_old);
5000 
5001     /* Here it's sure that the MSR can be safely accessed.
5002      * Restore the old value and return.
5003      */
5004     wrmsrl(msr, val_old);
5005 
5006     return true;
5007 }
5008 
5009 static __init void intel_sandybridge_quirk(void)
5010 {
5011     x86_pmu.check_microcode = intel_snb_check_microcode;
5012     cpus_read_lock();
5013     intel_snb_check_microcode();
5014     cpus_read_unlock();
5015 }
5016 
5017 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5018     { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5019     { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5020     { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5021     { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5022     { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5023     { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5024     { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5025 };
5026 
5027 static __init void intel_arch_events_quirk(void)
5028 {
5029     int bit;
5030 
5031     /* disable event that reported as not present by cpuid */
5032     for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5033         intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5034         pr_warn("CPUID marked event: \'%s\' unavailable\n",
5035             intel_arch_events_map[bit].name);
5036     }
5037 }
5038 
5039 static __init void intel_nehalem_quirk(void)
5040 {
5041     union cpuid10_ebx ebx;
5042 
5043     ebx.full = x86_pmu.events_maskl;
5044     if (ebx.split.no_branch_misses_retired) {
5045         /*
5046          * Erratum AAJ80 detected, we work it around by using
5047          * the BR_MISP_EXEC.ANY event. This will over-count
5048          * branch-misses, but it's still much better than the
5049          * architectural event which is often completely bogus:
5050          */
5051         intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5052         ebx.split.no_branch_misses_retired = 0;
5053         x86_pmu.events_maskl = ebx.full;
5054         pr_info("CPU erratum AAJ80 worked around\n");
5055     }
5056 }
5057 
5058 /*
5059  * enable software workaround for errata:
5060  * SNB: BJ122
5061  * IVB: BV98
5062  * HSW: HSD29
5063  *
5064  * Only needed when HT is enabled. However detecting
5065  * if HT is enabled is difficult (model specific). So instead,
5066  * we enable the workaround in the early boot, and verify if
5067  * it is needed in a later initcall phase once we have valid
5068  * topology information to check if HT is actually enabled
5069  */
5070 static __init void intel_ht_bug(void)
5071 {
5072     x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5073 
5074     x86_pmu.start_scheduling = intel_start_scheduling;
5075     x86_pmu.commit_scheduling = intel_commit_scheduling;
5076     x86_pmu.stop_scheduling = intel_stop_scheduling;
5077 }
5078 
5079 EVENT_ATTR_STR(mem-loads,   mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
5080 EVENT_ATTR_STR(mem-stores,  mem_st_hsw, "event=0xd0,umask=0x82")
5081 
5082 /* Haswell special events */
5083 EVENT_ATTR_STR(tx-start,    tx_start,   "event=0xc9,umask=0x1");
5084 EVENT_ATTR_STR(tx-commit,   tx_commit,  "event=0xc9,umask=0x2");
5085 EVENT_ATTR_STR(tx-abort,    tx_abort,   "event=0xc9,umask=0x4");
5086 EVENT_ATTR_STR(tx-capacity, tx_capacity,    "event=0x54,umask=0x2");
5087 EVENT_ATTR_STR(tx-conflict, tx_conflict,    "event=0x54,umask=0x1");
5088 EVENT_ATTR_STR(el-start,    el_start,   "event=0xc8,umask=0x1");
5089 EVENT_ATTR_STR(el-commit,   el_commit,  "event=0xc8,umask=0x2");
5090 EVENT_ATTR_STR(el-abort,    el_abort,   "event=0xc8,umask=0x4");
5091 EVENT_ATTR_STR(el-capacity, el_capacity,    "event=0x54,umask=0x2");
5092 EVENT_ATTR_STR(el-conflict, el_conflict,    "event=0x54,umask=0x1");
5093 EVENT_ATTR_STR(cycles-t,    cycles_t,   "event=0x3c,in_tx=1");
5094 EVENT_ATTR_STR(cycles-ct,   cycles_ct,  "event=0x3c,in_tx=1,in_tx_cp=1");
5095 
5096 static struct attribute *hsw_events_attrs[] = {
5097     EVENT_PTR(td_slots_issued),
5098     EVENT_PTR(td_slots_retired),
5099     EVENT_PTR(td_fetch_bubbles),
5100     EVENT_PTR(td_total_slots),
5101     EVENT_PTR(td_total_slots_scale),
5102     EVENT_PTR(td_recovery_bubbles),
5103     EVENT_PTR(td_recovery_bubbles_scale),
5104     NULL
5105 };
5106 
5107 static struct attribute *hsw_mem_events_attrs[] = {
5108     EVENT_PTR(mem_ld_hsw),
5109     EVENT_PTR(mem_st_hsw),
5110     NULL,
5111 };
5112 
5113 static struct attribute *hsw_tsx_events_attrs[] = {
5114     EVENT_PTR(tx_start),
5115     EVENT_PTR(tx_commit),
5116     EVENT_PTR(tx_abort),
5117     EVENT_PTR(tx_capacity),
5118     EVENT_PTR(tx_conflict),
5119     EVENT_PTR(el_start),
5120     EVENT_PTR(el_commit),
5121     EVENT_PTR(el_abort),
5122     EVENT_PTR(el_capacity),
5123     EVENT_PTR(el_conflict),
5124     EVENT_PTR(cycles_t),
5125     EVENT_PTR(cycles_ct),
5126     NULL
5127 };
5128 
5129 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5130 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5131 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5132 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5133 
5134 static struct attribute *icl_events_attrs[] = {
5135     EVENT_PTR(mem_ld_hsw),
5136     EVENT_PTR(mem_st_hsw),
5137     NULL,
5138 };
5139 
5140 static struct attribute *icl_td_events_attrs[] = {
5141     EVENT_PTR(slots),
5142     EVENT_PTR(td_retiring),
5143     EVENT_PTR(td_bad_spec),
5144     EVENT_PTR(td_fe_bound),
5145     EVENT_PTR(td_be_bound),
5146     NULL,
5147 };
5148 
5149 static struct attribute *icl_tsx_events_attrs[] = {
5150     EVENT_PTR(tx_start),
5151     EVENT_PTR(tx_abort),
5152     EVENT_PTR(tx_commit),
5153     EVENT_PTR(tx_capacity_read),
5154     EVENT_PTR(tx_capacity_write),
5155     EVENT_PTR(tx_conflict),
5156     EVENT_PTR(el_start),
5157     EVENT_PTR(el_abort),
5158     EVENT_PTR(el_commit),
5159     EVENT_PTR(el_capacity_read),
5160     EVENT_PTR(el_capacity_write),
5161     EVENT_PTR(el_conflict),
5162     EVENT_PTR(cycles_t),
5163     EVENT_PTR(cycles_ct),
5164     NULL,
5165 };
5166 
5167 
5168 EVENT_ATTR_STR(mem-stores,  mem_st_spr, "event=0xcd,umask=0x2");
5169 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux, "event=0x03,umask=0x82");
5170 
5171 static struct attribute *spr_events_attrs[] = {
5172     EVENT_PTR(mem_ld_hsw),
5173     EVENT_PTR(mem_st_spr),
5174     EVENT_PTR(mem_ld_aux),
5175     NULL,
5176 };
5177 
5178 static struct attribute *spr_td_events_attrs[] = {
5179     EVENT_PTR(slots),
5180     EVENT_PTR(td_retiring),
5181     EVENT_PTR(td_bad_spec),
5182     EVENT_PTR(td_fe_bound),
5183     EVENT_PTR(td_be_bound),
5184     EVENT_PTR(td_heavy_ops),
5185     EVENT_PTR(td_br_mispredict),
5186     EVENT_PTR(td_fetch_lat),
5187     EVENT_PTR(td_mem_bound),
5188     NULL,
5189 };
5190 
5191 static struct attribute *spr_tsx_events_attrs[] = {
5192     EVENT_PTR(tx_start),
5193     EVENT_PTR(tx_abort),
5194     EVENT_PTR(tx_commit),
5195     EVENT_PTR(tx_capacity_read),
5196     EVENT_PTR(tx_capacity_write),
5197     EVENT_PTR(tx_conflict),
5198     EVENT_PTR(cycles_t),
5199     EVENT_PTR(cycles_ct),
5200     NULL,
5201 };
5202 
5203 static ssize_t freeze_on_smi_show(struct device *cdev,
5204                   struct device_attribute *attr,
5205                   char *buf)
5206 {
5207     return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5208 }
5209 
5210 static DEFINE_MUTEX(freeze_on_smi_mutex);
5211 
5212 static ssize_t freeze_on_smi_store(struct device *cdev,
5213                    struct device_attribute *attr,
5214                    const char *buf, size_t count)
5215 {
5216     unsigned long val;
5217     ssize_t ret;
5218 
5219     ret = kstrtoul(buf, 0, &val);
5220     if (ret)
5221         return ret;
5222 
5223     if (val > 1)
5224         return -EINVAL;
5225 
5226     mutex_lock(&freeze_on_smi_mutex);
5227 
5228     if (x86_pmu.attr_freeze_on_smi == val)
5229         goto done;
5230 
5231     x86_pmu.attr_freeze_on_smi = val;
5232 
5233     cpus_read_lock();
5234     on_each_cpu(flip_smm_bit, &val, 1);
5235     cpus_read_unlock();
5236 done:
5237     mutex_unlock(&freeze_on_smi_mutex);
5238 
5239     return count;
5240 }
5241 
5242 static void update_tfa_sched(void *ignored)
5243 {
5244     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5245 
5246     /*
5247      * check if PMC3 is used
5248      * and if so force schedule out for all event types all contexts
5249      */
5250     if (test_bit(3, cpuc->active_mask))
5251         perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5252 }
5253 
5254 static ssize_t show_sysctl_tfa(struct device *cdev,
5255                   struct device_attribute *attr,
5256                   char *buf)
5257 {
5258     return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5259 }
5260 
5261 static ssize_t set_sysctl_tfa(struct device *cdev,
5262                   struct device_attribute *attr,
5263                   const char *buf, size_t count)
5264 {
5265     bool val;
5266     ssize_t ret;
5267 
5268     ret = kstrtobool(buf, &val);
5269     if (ret)
5270         return ret;
5271 
5272     /* no change */
5273     if (val == allow_tsx_force_abort)
5274         return count;
5275 
5276     allow_tsx_force_abort = val;
5277 
5278     cpus_read_lock();
5279     on_each_cpu(update_tfa_sched, NULL, 1);
5280     cpus_read_unlock();
5281 
5282     return count;
5283 }
5284 
5285 
5286 static DEVICE_ATTR_RW(freeze_on_smi);
5287 
5288 static ssize_t branches_show(struct device *cdev,
5289                  struct device_attribute *attr,
5290                  char *buf)
5291 {
5292     return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5293 }
5294 
5295 static DEVICE_ATTR_RO(branches);
5296 
5297 static struct attribute *lbr_attrs[] = {
5298     &dev_attr_branches.attr,
5299     NULL
5300 };
5301 
5302 static char pmu_name_str[30];
5303 
5304 static ssize_t pmu_name_show(struct device *cdev,
5305                  struct device_attribute *attr,
5306                  char *buf)
5307 {
5308     return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5309 }
5310 
5311 static DEVICE_ATTR_RO(pmu_name);
5312 
5313 static struct attribute *intel_pmu_caps_attrs[] = {
5314        &dev_attr_pmu_name.attr,
5315        NULL
5316 };
5317 
5318 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5319            show_sysctl_tfa,
5320            set_sysctl_tfa);
5321 
5322 static struct attribute *intel_pmu_attrs[] = {
5323     &dev_attr_freeze_on_smi.attr,
5324     &dev_attr_allow_tsx_force_abort.attr,
5325     NULL,
5326 };
5327 
5328 static umode_t
5329 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5330 {
5331     return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5332 }
5333 
5334 static umode_t
5335 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5336 {
5337     return x86_pmu.pebs ? attr->mode : 0;
5338 }
5339 
5340 static umode_t
5341 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5342 {
5343     return x86_pmu.lbr_nr ? attr->mode : 0;
5344 }
5345 
5346 static umode_t
5347 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5348 {
5349     return x86_pmu.version >= 2 ? attr->mode : 0;
5350 }
5351 
5352 static umode_t
5353 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5354 {
5355     if (attr == &dev_attr_allow_tsx_force_abort.attr)
5356         return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5357 
5358     return attr->mode;
5359 }
5360 
5361 static struct attribute_group group_events_td  = {
5362     .name = "events",
5363 };
5364 
5365 static struct attribute_group group_events_mem = {
5366     .name       = "events",
5367     .is_visible = pebs_is_visible,
5368 };
5369 
5370 static struct attribute_group group_events_tsx = {
5371     .name       = "events",
5372     .is_visible = tsx_is_visible,
5373 };
5374 
5375 static struct attribute_group group_caps_gen = {
5376     .name  = "caps",
5377     .attrs = intel_pmu_caps_attrs,
5378 };
5379 
5380 static struct attribute_group group_caps_lbr = {
5381     .name       = "caps",
5382     .attrs      = lbr_attrs,
5383     .is_visible = lbr_is_visible,
5384 };
5385 
5386 static struct attribute_group group_format_extra = {
5387     .name       = "format",
5388     .is_visible = exra_is_visible,
5389 };
5390 
5391 static struct attribute_group group_format_extra_skl = {
5392     .name       = "format",
5393     .is_visible = exra_is_visible,
5394 };
5395 
5396 static struct attribute_group group_default = {
5397     .attrs      = intel_pmu_attrs,
5398     .is_visible = default_is_visible,
5399 };
5400 
5401 static const struct attribute_group *attr_update[] = {
5402     &group_events_td,
5403     &group_events_mem,
5404     &group_events_tsx,
5405     &group_caps_gen,
5406     &group_caps_lbr,
5407     &group_format_extra,
5408     &group_format_extra_skl,
5409     &group_default,
5410     NULL,
5411 };
5412 
5413 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5414 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5415 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5416 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5417 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5418 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5419 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5420 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5421 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5422 
5423 static struct attribute *adl_hybrid_events_attrs[] = {
5424     EVENT_PTR(slots_adl),
5425     EVENT_PTR(td_retiring_adl),
5426     EVENT_PTR(td_bad_spec_adl),
5427     EVENT_PTR(td_fe_bound_adl),
5428     EVENT_PTR(td_be_bound_adl),
5429     EVENT_PTR(td_heavy_ops_adl),
5430     EVENT_PTR(td_br_mis_adl),
5431     EVENT_PTR(td_fetch_lat_adl),
5432     EVENT_PTR(td_mem_bound_adl),
5433     NULL,
5434 };
5435 
5436 /* Must be in IDX order */
5437 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5438 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5439 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5440 
5441 static struct attribute *adl_hybrid_mem_attrs[] = {
5442     EVENT_PTR(mem_ld_adl),
5443     EVENT_PTR(mem_st_adl),
5444     EVENT_PTR(mem_ld_aux_adl),
5445     NULL,
5446 };
5447 
5448 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5449 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5450 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5451 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5452 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5453 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5454 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5455 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5456 
5457 static struct attribute *adl_hybrid_tsx_attrs[] = {
5458     EVENT_PTR(tx_start_adl),
5459     EVENT_PTR(tx_abort_adl),
5460     EVENT_PTR(tx_commit_adl),
5461     EVENT_PTR(tx_capacity_read_adl),
5462     EVENT_PTR(tx_capacity_write_adl),
5463     EVENT_PTR(tx_conflict_adl),
5464     EVENT_PTR(cycles_t_adl),
5465     EVENT_PTR(cycles_ct_adl),
5466     NULL,
5467 };
5468 
5469 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5470 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5471 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5472 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5473 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5474 
5475 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5476     FORMAT_HYBRID_PTR(in_tx),
5477     FORMAT_HYBRID_PTR(in_tx_cp),
5478     FORMAT_HYBRID_PTR(offcore_rsp),
5479     FORMAT_HYBRID_PTR(ldlat),
5480     FORMAT_HYBRID_PTR(frontend),
5481     NULL,
5482 };
5483 
5484 static struct attribute *adl_hybrid_extra_attr[] = {
5485     FORMAT_HYBRID_PTR(offcore_rsp),
5486     FORMAT_HYBRID_PTR(ldlat),
5487     FORMAT_HYBRID_PTR(frontend),
5488     NULL,
5489 };
5490 
5491 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5492 {
5493     struct device *dev = kobj_to_dev(kobj);
5494     struct x86_hybrid_pmu *pmu =
5495         container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5496     struct perf_pmu_events_hybrid_attr *pmu_attr =
5497         container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5498 
5499     return pmu->cpu_type & pmu_attr->pmu_type;
5500 }
5501 
5502 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5503                     struct attribute *attr, int i)
5504 {
5505     return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5506 }
5507 
5508 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5509 {
5510     int cpu = cpumask_first(&pmu->supported_cpus);
5511 
5512     return (cpu >= nr_cpu_ids) ? -1 : cpu;
5513 }
5514 
5515 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5516                      struct attribute *attr, int i)
5517 {
5518     struct device *dev = kobj_to_dev(kobj);
5519     struct x86_hybrid_pmu *pmu =
5520          container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5521     int cpu = hybrid_find_supported_cpu(pmu);
5522 
5523     return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5524 }
5525 
5526 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5527                     struct attribute *attr, int i)
5528 {
5529     struct device *dev = kobj_to_dev(kobj);
5530     struct x86_hybrid_pmu *pmu =
5531         container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5532     struct perf_pmu_format_hybrid_attr *pmu_attr =
5533         container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5534     int cpu = hybrid_find_supported_cpu(pmu);
5535 
5536     return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5537 }
5538 
5539 static struct attribute_group hybrid_group_events_td  = {
5540     .name       = "events",
5541     .is_visible = hybrid_events_is_visible,
5542 };
5543 
5544 static struct attribute_group hybrid_group_events_mem = {
5545     .name       = "events",
5546     .is_visible = hybrid_events_is_visible,
5547 };
5548 
5549 static struct attribute_group hybrid_group_events_tsx = {
5550     .name       = "events",
5551     .is_visible = hybrid_tsx_is_visible,
5552 };
5553 
5554 static struct attribute_group hybrid_group_format_extra = {
5555     .name       = "format",
5556     .is_visible = hybrid_format_is_visible,
5557 };
5558 
5559 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5560                       struct device_attribute *attr,
5561                       char *buf)
5562 {
5563     struct x86_hybrid_pmu *pmu =
5564         container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5565 
5566     return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5567 }
5568 
5569 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5570 static struct attribute *intel_hybrid_cpus_attrs[] = {
5571     &dev_attr_cpus.attr,
5572     NULL,
5573 };
5574 
5575 static struct attribute_group hybrid_group_cpus = {
5576     .attrs      = intel_hybrid_cpus_attrs,
5577 };
5578 
5579 static const struct attribute_group *hybrid_attr_update[] = {
5580     &hybrid_group_events_td,
5581     &hybrid_group_events_mem,
5582     &hybrid_group_events_tsx,
5583     &group_caps_gen,
5584     &group_caps_lbr,
5585     &hybrid_group_format_extra,
5586     &group_default,
5587     &hybrid_group_cpus,
5588     NULL,
5589 };
5590 
5591 static struct attribute *empty_attrs;
5592 
5593 static void intel_pmu_check_num_counters(int *num_counters,
5594                      int *num_counters_fixed,
5595                      u64 *intel_ctrl, u64 fixed_mask)
5596 {
5597     if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5598         WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5599              *num_counters, INTEL_PMC_MAX_GENERIC);
5600         *num_counters = INTEL_PMC_MAX_GENERIC;
5601     }
5602     *intel_ctrl = (1ULL << *num_counters) - 1;
5603 
5604     if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5605         WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5606              *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5607         *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5608     }
5609 
5610     *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5611 }
5612 
5613 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5614                           int num_counters,
5615                           int num_counters_fixed,
5616                           u64 intel_ctrl)
5617 {
5618     struct event_constraint *c;
5619 
5620     if (!event_constraints)
5621         return;
5622 
5623     /*
5624      * event on fixed counter2 (REF_CYCLES) only works on this
5625      * counter, so do not extend mask to generic counters
5626      */
5627     for_each_event_constraint(c, event_constraints) {
5628         /*
5629          * Don't extend the topdown slots and metrics
5630          * events to the generic counters.
5631          */
5632         if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5633             /*
5634              * Disable topdown slots and metrics events,
5635              * if slots event is not in CPUID.
5636              */
5637             if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5638                 c->idxmsk64 = 0;
5639             c->weight = hweight64(c->idxmsk64);
5640             continue;
5641         }
5642 
5643         if (c->cmask == FIXED_EVENT_FLAGS) {
5644             /* Disabled fixed counters which are not in CPUID */
5645             c->idxmsk64 &= intel_ctrl;
5646 
5647             /*
5648              * Don't extend the pseudo-encoding to the
5649              * generic counters
5650              */
5651             if (!use_fixed_pseudo_encoding(c->code))
5652                 c->idxmsk64 |= (1ULL << num_counters) - 1;
5653         }
5654         c->idxmsk64 &=
5655             ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5656         c->weight = hweight64(c->idxmsk64);
5657     }
5658 }
5659 
5660 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5661 {
5662     struct extra_reg *er;
5663 
5664     /*
5665      * Access extra MSR may cause #GP under certain circumstances.
5666      * E.g. KVM doesn't support offcore event
5667      * Check all extra_regs here.
5668      */
5669     if (!extra_regs)
5670         return;
5671 
5672     for (er = extra_regs; er->msr; er++) {
5673         er->extra_msr_access = check_msr(er->msr, 0x11UL);
5674         /* Disable LBR select mapping */
5675         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5676             x86_pmu.lbr_sel_map = NULL;
5677     }
5678 }
5679 
5680 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5681 {
5682     struct x86_hybrid_pmu *pmu;
5683     int i;
5684 
5685     for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5686         pmu = &x86_pmu.hybrid_pmu[i];
5687 
5688         intel_pmu_check_num_counters(&pmu->num_counters,
5689                          &pmu->num_counters_fixed,
5690                          &pmu->intel_ctrl,
5691                          fixed_mask);
5692 
5693         if (pmu->intel_cap.perf_metrics) {
5694             pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5695             pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5696         }
5697 
5698         if (pmu->intel_cap.pebs_output_pt_available)
5699             pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5700 
5701         intel_pmu_check_event_constraints(pmu->event_constraints,
5702                           pmu->num_counters,
5703                           pmu->num_counters_fixed,
5704                           pmu->intel_ctrl);
5705 
5706         intel_pmu_check_extra_regs(pmu->extra_regs);
5707     }
5708 }
5709 
5710 __init int intel_pmu_init(void)
5711 {
5712     struct attribute **extra_skl_attr = &empty_attrs;
5713     struct attribute **extra_attr = &empty_attrs;
5714     struct attribute **td_attr    = &empty_attrs;
5715     struct attribute **mem_attr   = &empty_attrs;
5716     struct attribute **tsx_attr   = &empty_attrs;
5717     union cpuid10_edx edx;
5718     union cpuid10_eax eax;
5719     union cpuid10_ebx ebx;
5720     unsigned int fixed_mask;
5721     bool pmem = false;
5722     int version, i;
5723     char *name;
5724     struct x86_hybrid_pmu *pmu;
5725 
5726     if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5727         switch (boot_cpu_data.x86) {
5728         case 0x6:
5729             return p6_pmu_init();
5730         case 0xb:
5731             return knc_pmu_init();
5732         case 0xf:
5733             return p4_pmu_init();
5734         }
5735         return -ENODEV;
5736     }
5737 
5738     /*
5739      * Check whether the Architectural PerfMon supports
5740      * Branch Misses Retired hw_event or not.
5741      */
5742     cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5743     if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5744         return -ENODEV;
5745 
5746     version = eax.split.version_id;
5747     if (version < 2)
5748         x86_pmu = core_pmu;
5749     else
5750         x86_pmu = intel_pmu;
5751 
5752     x86_pmu.version         = version;
5753     x86_pmu.num_counters        = eax.split.num_counters;
5754     x86_pmu.cntval_bits     = eax.split.bit_width;
5755     x86_pmu.cntval_mask     = (1ULL << eax.split.bit_width) - 1;
5756 
5757     x86_pmu.events_maskl        = ebx.full;
5758     x86_pmu.events_mask_len     = eax.split.mask_length;
5759 
5760     x86_pmu.max_pebs_events     = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5761     x86_pmu.pebs_capable        = PEBS_COUNTER_MASK;
5762 
5763     /*
5764      * Quirk: v2 perfmon does not report fixed-purpose events, so
5765      * assume at least 3 events, when not running in a hypervisor:
5766      */
5767     if (version > 1 && version < 5) {
5768         int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5769 
5770         x86_pmu.num_counters_fixed =
5771             max((int)edx.split.num_counters_fixed, assume);
5772 
5773         fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5774     } else if (version >= 5)
5775         x86_pmu.num_counters_fixed = fls(fixed_mask);
5776 
5777     if (boot_cpu_has(X86_FEATURE_PDCM)) {
5778         u64 capabilities;
5779 
5780         rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5781         x86_pmu.intel_cap.capabilities = capabilities;
5782     }
5783 
5784     if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5785         x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5786         x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5787     }
5788 
5789     if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5790         intel_pmu_arch_lbr_init();
5791 
5792     intel_ds_init();
5793 
5794     x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5795 
5796     if (version >= 5) {
5797         x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5798         if (x86_pmu.intel_cap.anythread_deprecated)
5799             pr_cont(" AnyThread deprecated, ");
5800     }
5801 
5802     /*
5803      * Install the hw-cache-events table:
5804      */
5805     switch (boot_cpu_data.x86_model) {
5806     case INTEL_FAM6_CORE_YONAH:
5807         pr_cont("Core events, ");
5808         name = "core";
5809         break;
5810 
5811     case INTEL_FAM6_CORE2_MEROM:
5812         x86_add_quirk(intel_clovertown_quirk);
5813         fallthrough;
5814 
5815     case INTEL_FAM6_CORE2_MEROM_L:
5816     case INTEL_FAM6_CORE2_PENRYN:
5817     case INTEL_FAM6_CORE2_DUNNINGTON:
5818         memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5819                sizeof(hw_cache_event_ids));
5820 
5821         intel_pmu_lbr_init_core();
5822 
5823         x86_pmu.event_constraints = intel_core2_event_constraints;
5824         x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5825         pr_cont("Core2 events, ");
5826         name = "core2";
5827         break;
5828 
5829     case INTEL_FAM6_NEHALEM:
5830     case INTEL_FAM6_NEHALEM_EP:
5831     case INTEL_FAM6_NEHALEM_EX:
5832         memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5833                sizeof(hw_cache_event_ids));
5834         memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5835                sizeof(hw_cache_extra_regs));
5836 
5837         intel_pmu_lbr_init_nhm();
5838 
5839         x86_pmu.event_constraints = intel_nehalem_event_constraints;
5840         x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5841         x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5842         x86_pmu.extra_regs = intel_nehalem_extra_regs;
5843         x86_pmu.limit_period = nhm_limit_period;
5844 
5845         mem_attr = nhm_mem_events_attrs;
5846 
5847         /* UOPS_ISSUED.STALLED_CYCLES */
5848         intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5849             X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5850         /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5851         intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5852             X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5853 
5854         intel_pmu_pebs_data_source_nhm();
5855         x86_add_quirk(intel_nehalem_quirk);
5856         x86_pmu.pebs_no_tlb = 1;
5857         extra_attr = nhm_format_attr;
5858 
5859         pr_cont("Nehalem events, ");
5860         name = "nehalem";
5861         break;
5862 
5863     case INTEL_FAM6_ATOM_BONNELL:
5864     case INTEL_FAM6_ATOM_BONNELL_MID:
5865     case INTEL_FAM6_ATOM_SALTWELL:
5866     case INTEL_FAM6_ATOM_SALTWELL_MID:
5867     case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5868         memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5869                sizeof(hw_cache_event_ids));
5870 
5871         intel_pmu_lbr_init_atom();
5872 
5873         x86_pmu.event_constraints = intel_gen_event_constraints;
5874         x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5875         x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5876         pr_cont("Atom events, ");
5877         name = "bonnell";
5878         break;
5879 
5880     case INTEL_FAM6_ATOM_SILVERMONT:
5881     case INTEL_FAM6_ATOM_SILVERMONT_D:
5882     case INTEL_FAM6_ATOM_SILVERMONT_MID:
5883     case INTEL_FAM6_ATOM_AIRMONT:
5884     case INTEL_FAM6_ATOM_AIRMONT_MID:
5885         memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5886             sizeof(hw_cache_event_ids));
5887         memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5888                sizeof(hw_cache_extra_regs));
5889 
5890         intel_pmu_lbr_init_slm();
5891 
5892         x86_pmu.event_constraints = intel_slm_event_constraints;
5893         x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5894         x86_pmu.extra_regs = intel_slm_extra_regs;
5895         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5896         td_attr = slm_events_attrs;
5897         extra_attr = slm_format_attr;
5898         pr_cont("Silvermont events, ");
5899         name = "silvermont";
5900         break;
5901 
5902     case INTEL_FAM6_ATOM_GOLDMONT:
5903     case INTEL_FAM6_ATOM_GOLDMONT_D:
5904         memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5905                sizeof(hw_cache_event_ids));
5906         memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5907                sizeof(hw_cache_extra_regs));
5908 
5909         intel_pmu_lbr_init_skl();
5910 
5911         x86_pmu.event_constraints = intel_slm_event_constraints;
5912         x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5913         x86_pmu.extra_regs = intel_glm_extra_regs;
5914         /*
5915          * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5916          * for precise cycles.
5917          * :pp is identical to :ppp
5918          */
5919         x86_pmu.pebs_aliases = NULL;
5920         x86_pmu.pebs_prec_dist = true;
5921         x86_pmu.lbr_pt_coexist = true;
5922         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5923         td_attr = glm_events_attrs;
5924         extra_attr = slm_format_attr;
5925         pr_cont("Goldmont events, ");
5926         name = "goldmont";
5927         break;
5928 
5929     case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5930         memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5931                sizeof(hw_cache_event_ids));
5932         memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5933                sizeof(hw_cache_extra_regs));
5934 
5935         intel_pmu_lbr_init_skl();
5936 
5937         x86_pmu.event_constraints = intel_slm_event_constraints;
5938         x86_pmu.extra_regs = intel_glm_extra_regs;
5939         /*
5940          * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5941          * for precise cycles.
5942          */
5943         x86_pmu.pebs_aliases = NULL;
5944         x86_pmu.pebs_prec_dist = true;
5945         x86_pmu.lbr_pt_coexist = true;
5946         x86_pmu.pebs_capable = ~0ULL;
5947         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5948         x86_pmu.flags |= PMU_FL_PEBS_ALL;
5949         x86_pmu.get_event_constraints = glp_get_event_constraints;
5950         td_attr = glm_events_attrs;
5951         /* Goldmont Plus has 4-wide pipeline */
5952         event_attr_td_total_slots_scale_glm.event_str = "4";
5953         extra_attr = slm_format_attr;
5954         pr_cont("Goldmont plus events, ");
5955         name = "goldmont_plus";
5956         break;
5957 
5958     case INTEL_FAM6_ATOM_TREMONT_D:
5959     case INTEL_FAM6_ATOM_TREMONT:
5960     case INTEL_FAM6_ATOM_TREMONT_L:
5961         x86_pmu.late_ack = true;
5962         memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5963                sizeof(hw_cache_event_ids));
5964         memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5965                sizeof(hw_cache_extra_regs));
5966         hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5967 
5968         intel_pmu_lbr_init_skl();
5969 
5970         x86_pmu.event_constraints = intel_slm_event_constraints;
5971         x86_pmu.extra_regs = intel_tnt_extra_regs;
5972         /*
5973          * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5974          * for precise cycles.
5975          */
5976         x86_pmu.pebs_aliases = NULL;
5977         x86_pmu.pebs_prec_dist = true;
5978         x86_pmu.lbr_pt_coexist = true;
5979         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5980         x86_pmu.get_event_constraints = tnt_get_event_constraints;
5981         td_attr = tnt_events_attrs;
5982         extra_attr = slm_format_attr;
5983         pr_cont("Tremont events, ");
5984         name = "Tremont";
5985         break;
5986 
5987     case INTEL_FAM6_ALDERLAKE_N:
5988         x86_pmu.mid_ack = true;
5989         memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5990                sizeof(hw_cache_event_ids));
5991         memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5992                sizeof(hw_cache_extra_regs));
5993         hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5994 
5995         x86_pmu.event_constraints = intel_slm_event_constraints;
5996         x86_pmu.pebs_constraints = intel_grt_pebs_event_constraints;
5997         x86_pmu.extra_regs = intel_grt_extra_regs;
5998 
5999         x86_pmu.pebs_aliases = NULL;
6000         x86_pmu.pebs_prec_dist = true;
6001         x86_pmu.pebs_block = true;
6002         x86_pmu.lbr_pt_coexist = true;
6003         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6004         x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6005 
6006         intel_pmu_pebs_data_source_grt();
6007         x86_pmu.pebs_latency_data = adl_latency_data_small;
6008         x86_pmu.get_event_constraints = tnt_get_event_constraints;
6009         x86_pmu.limit_period = spr_limit_period;
6010         td_attr = tnt_events_attrs;
6011         mem_attr = grt_mem_attrs;
6012         extra_attr = nhm_format_attr;
6013         pr_cont("Gracemont events, ");
6014         name = "gracemont";
6015         break;
6016 
6017     case INTEL_FAM6_WESTMERE:
6018     case INTEL_FAM6_WESTMERE_EP:
6019     case INTEL_FAM6_WESTMERE_EX:
6020         memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6021                sizeof(hw_cache_event_ids));
6022         memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6023                sizeof(hw_cache_extra_regs));
6024 
6025         intel_pmu_lbr_init_nhm();
6026 
6027         x86_pmu.event_constraints = intel_westmere_event_constraints;
6028         x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6029         x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6030         x86_pmu.extra_regs = intel_westmere_extra_regs;
6031         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6032 
6033         mem_attr = nhm_mem_events_attrs;
6034 
6035         /* UOPS_ISSUED.STALLED_CYCLES */
6036         intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6037             X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6038         /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6039         intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6040             X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6041 
6042         intel_pmu_pebs_data_source_nhm();
6043         extra_attr = nhm_format_attr;
6044         pr_cont("Westmere events, ");
6045         name = "westmere";
6046         break;
6047 
6048     case INTEL_FAM6_SANDYBRIDGE:
6049     case INTEL_FAM6_SANDYBRIDGE_X:
6050         x86_add_quirk(intel_sandybridge_quirk);
6051         x86_add_quirk(intel_ht_bug);
6052         memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6053                sizeof(hw_cache_event_ids));
6054         memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6055                sizeof(hw_cache_extra_regs));
6056 
6057         intel_pmu_lbr_init_snb();
6058 
6059         x86_pmu.event_constraints = intel_snb_event_constraints;
6060         x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6061         x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6062         if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6063             x86_pmu.extra_regs = intel_snbep_extra_regs;
6064         else
6065             x86_pmu.extra_regs = intel_snb_extra_regs;
6066 
6067 
6068         /* all extra regs are per-cpu when HT is on */
6069         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6070         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6071 
6072         td_attr  = snb_events_attrs;
6073         mem_attr = snb_mem_events_attrs;
6074 
6075         /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6076         intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6077             X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6078         /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6079         intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6080             X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6081 
6082         extra_attr = nhm_format_attr;
6083 
6084         pr_cont("SandyBridge events, ");
6085         name = "sandybridge";
6086         break;
6087 
6088     case INTEL_FAM6_IVYBRIDGE:
6089     case INTEL_FAM6_IVYBRIDGE_X:
6090         x86_add_quirk(intel_ht_bug);
6091         memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6092                sizeof(hw_cache_event_ids));
6093         /* dTLB-load-misses on IVB is different than SNB */
6094         hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6095 
6096         memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6097                sizeof(hw_cache_extra_regs));
6098 
6099         intel_pmu_lbr_init_snb();
6100 
6101         x86_pmu.event_constraints = intel_ivb_event_constraints;
6102         x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6103         x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6104         x86_pmu.pebs_prec_dist = true;
6105         if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6106             x86_pmu.extra_regs = intel_snbep_extra_regs;
6107         else
6108             x86_pmu.extra_regs = intel_snb_extra_regs;
6109         /* all extra regs are per-cpu when HT is on */
6110         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6111         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6112 
6113         td_attr  = snb_events_attrs;
6114         mem_attr = snb_mem_events_attrs;
6115 
6116         /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6117         intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6118             X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6119 
6120         extra_attr = nhm_format_attr;
6121 
6122         pr_cont("IvyBridge events, ");
6123         name = "ivybridge";
6124         break;
6125 
6126 
6127     case INTEL_FAM6_HASWELL:
6128     case INTEL_FAM6_HASWELL_X:
6129     case INTEL_FAM6_HASWELL_L:
6130     case INTEL_FAM6_HASWELL_G:
6131         x86_add_quirk(intel_ht_bug);
6132         x86_add_quirk(intel_pebs_isolation_quirk);
6133         x86_pmu.late_ack = true;
6134         memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6135         memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6136 
6137         intel_pmu_lbr_init_hsw();
6138 
6139         x86_pmu.event_constraints = intel_hsw_event_constraints;
6140         x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6141         x86_pmu.extra_regs = intel_snbep_extra_regs;
6142         x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6143         x86_pmu.pebs_prec_dist = true;
6144         /* all extra regs are per-cpu when HT is on */
6145         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6146         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6147 
6148         x86_pmu.hw_config = hsw_hw_config;
6149         x86_pmu.get_event_constraints = hsw_get_event_constraints;
6150         x86_pmu.lbr_double_abort = true;
6151         extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6152             hsw_format_attr : nhm_format_attr;
6153         td_attr  = hsw_events_attrs;
6154         mem_attr = hsw_mem_events_attrs;
6155         tsx_attr = hsw_tsx_events_attrs;
6156         pr_cont("Haswell events, ");
6157         name = "haswell";
6158         break;
6159 
6160     case INTEL_FAM6_BROADWELL:
6161     case INTEL_FAM6_BROADWELL_D:
6162     case INTEL_FAM6_BROADWELL_G:
6163     case INTEL_FAM6_BROADWELL_X:
6164         x86_add_quirk(intel_pebs_isolation_quirk);
6165         x86_pmu.late_ack = true;
6166         memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6167         memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6168 
6169         /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6170         hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6171                                      BDW_L3_MISS|HSW_SNOOP_DRAM;
6172         hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6173                                       HSW_SNOOP_DRAM;
6174         hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6175                                          BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6176         hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6177                                           BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6178 
6179         intel_pmu_lbr_init_hsw();
6180 
6181         x86_pmu.event_constraints = intel_bdw_event_constraints;
6182         x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6183         x86_pmu.extra_regs = intel_snbep_extra_regs;
6184         x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6185         x86_pmu.pebs_prec_dist = true;
6186         /* all extra regs are per-cpu when HT is on */
6187         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6188         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6189 
6190         x86_pmu.hw_config = hsw_hw_config;
6191         x86_pmu.get_event_constraints = hsw_get_event_constraints;
6192         x86_pmu.limit_period = bdw_limit_period;
6193         extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6194             hsw_format_attr : nhm_format_attr;
6195         td_attr  = hsw_events_attrs;
6196         mem_attr = hsw_mem_events_attrs;
6197         tsx_attr = hsw_tsx_events_attrs;
6198         pr_cont("Broadwell events, ");
6199         name = "broadwell";
6200         break;
6201 
6202     case INTEL_FAM6_XEON_PHI_KNL:
6203     case INTEL_FAM6_XEON_PHI_KNM:
6204         memcpy(hw_cache_event_ids,
6205                slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6206         memcpy(hw_cache_extra_regs,
6207                knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6208         intel_pmu_lbr_init_knl();
6209 
6210         x86_pmu.event_constraints = intel_slm_event_constraints;
6211         x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6212         x86_pmu.extra_regs = intel_knl_extra_regs;
6213 
6214         /* all extra regs are per-cpu when HT is on */
6215         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6216         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6217         extra_attr = slm_format_attr;
6218         pr_cont("Knights Landing/Mill events, ");
6219         name = "knights-landing";
6220         break;
6221 
6222     case INTEL_FAM6_SKYLAKE_X:
6223         pmem = true;
6224         fallthrough;
6225     case INTEL_FAM6_SKYLAKE_L:
6226     case INTEL_FAM6_SKYLAKE:
6227     case INTEL_FAM6_KABYLAKE_L:
6228     case INTEL_FAM6_KABYLAKE:
6229     case INTEL_FAM6_COMETLAKE_L:
6230     case INTEL_FAM6_COMETLAKE:
6231         x86_add_quirk(intel_pebs_isolation_quirk);
6232         x86_pmu.late_ack = true;
6233         memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6234         memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6235         intel_pmu_lbr_init_skl();
6236 
6237         /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6238         event_attr_td_recovery_bubbles.event_str_noht =
6239             "event=0xd,umask=0x1,cmask=1";
6240         event_attr_td_recovery_bubbles.event_str_ht =
6241             "event=0xd,umask=0x1,cmask=1,any=1";
6242 
6243         x86_pmu.event_constraints = intel_skl_event_constraints;
6244         x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6245         x86_pmu.extra_regs = intel_skl_extra_regs;
6246         x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6247         x86_pmu.pebs_prec_dist = true;
6248         /* all extra regs are per-cpu when HT is on */
6249         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6250         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6251 
6252         x86_pmu.hw_config = hsw_hw_config;
6253         x86_pmu.get_event_constraints = hsw_get_event_constraints;
6254         extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6255             hsw_format_attr : nhm_format_attr;
6256         extra_skl_attr = skl_format_attr;
6257         td_attr  = hsw_events_attrs;
6258         mem_attr = hsw_mem_events_attrs;
6259         tsx_attr = hsw_tsx_events_attrs;
6260         intel_pmu_pebs_data_source_skl(pmem);
6261 
6262         /*
6263          * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6264          * TSX force abort hooks are not required on these systems. Only deploy
6265          * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6266          */
6267         if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6268            !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6269             x86_pmu.flags |= PMU_FL_TFA;
6270             x86_pmu.get_event_constraints = tfa_get_event_constraints;
6271             x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6272             x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6273         }
6274 
6275         pr_cont("Skylake events, ");
6276         name = "skylake";
6277         break;
6278 
6279     case INTEL_FAM6_ICELAKE_X:
6280     case INTEL_FAM6_ICELAKE_D:
6281         x86_pmu.pebs_ept = 1;
6282         pmem = true;
6283         fallthrough;
6284     case INTEL_FAM6_ICELAKE_L:
6285     case INTEL_FAM6_ICELAKE:
6286     case INTEL_FAM6_TIGERLAKE_L:
6287     case INTEL_FAM6_TIGERLAKE:
6288     case INTEL_FAM6_ROCKETLAKE:
6289         x86_pmu.late_ack = true;
6290         memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6291         memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6292         hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6293         intel_pmu_lbr_init_skl();
6294 
6295         x86_pmu.event_constraints = intel_icl_event_constraints;
6296         x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6297         x86_pmu.extra_regs = intel_icl_extra_regs;
6298         x86_pmu.pebs_aliases = NULL;
6299         x86_pmu.pebs_prec_dist = true;
6300         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6301         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6302 
6303         x86_pmu.hw_config = hsw_hw_config;
6304         x86_pmu.get_event_constraints = icl_get_event_constraints;
6305         extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6306             hsw_format_attr : nhm_format_attr;
6307         extra_skl_attr = skl_format_attr;
6308         mem_attr = icl_events_attrs;
6309         td_attr = icl_td_events_attrs;
6310         tsx_attr = icl_tsx_events_attrs;
6311         x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6312         x86_pmu.lbr_pt_coexist = true;
6313         intel_pmu_pebs_data_source_skl(pmem);
6314         x86_pmu.num_topdown_events = 4;
6315         x86_pmu.update_topdown_event = icl_update_topdown_event;
6316         x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6317         pr_cont("Icelake events, ");
6318         name = "icelake";
6319         break;
6320 
6321     case INTEL_FAM6_SAPPHIRERAPIDS_X:
6322         pmem = true;
6323         x86_pmu.late_ack = true;
6324         memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6325         memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6326 
6327         x86_pmu.event_constraints = intel_spr_event_constraints;
6328         x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6329         x86_pmu.extra_regs = intel_spr_extra_regs;
6330         x86_pmu.limit_period = spr_limit_period;
6331         x86_pmu.pebs_aliases = NULL;
6332         x86_pmu.pebs_prec_dist = true;
6333         x86_pmu.pebs_block = true;
6334         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6335         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6336         x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6337         x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6338 
6339         x86_pmu.hw_config = hsw_hw_config;
6340         x86_pmu.get_event_constraints = spr_get_event_constraints;
6341         extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6342             hsw_format_attr : nhm_format_attr;
6343         extra_skl_attr = skl_format_attr;
6344         mem_attr = spr_events_attrs;
6345         td_attr = spr_td_events_attrs;
6346         tsx_attr = spr_tsx_events_attrs;
6347         x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6348         x86_pmu.lbr_pt_coexist = true;
6349         intel_pmu_pebs_data_source_skl(pmem);
6350         x86_pmu.num_topdown_events = 8;
6351         x86_pmu.update_topdown_event = icl_update_topdown_event;
6352         x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6353         pr_cont("Sapphire Rapids events, ");
6354         name = "sapphire_rapids";
6355         break;
6356 
6357     case INTEL_FAM6_ALDERLAKE:
6358     case INTEL_FAM6_ALDERLAKE_L:
6359     case INTEL_FAM6_RAPTORLAKE:
6360     case INTEL_FAM6_RAPTORLAKE_P:
6361         /*
6362          * Alder Lake has 2 types of CPU, core and atom.
6363          *
6364          * Initialize the common PerfMon capabilities here.
6365          */
6366         x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6367                          sizeof(struct x86_hybrid_pmu),
6368                          GFP_KERNEL);
6369         if (!x86_pmu.hybrid_pmu)
6370             return -ENOMEM;
6371         static_branch_enable(&perf_is_hybrid);
6372         x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6373 
6374         x86_pmu.pebs_aliases = NULL;
6375         x86_pmu.pebs_prec_dist = true;
6376         x86_pmu.pebs_block = true;
6377         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6378         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6379         x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6380         x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6381         x86_pmu.lbr_pt_coexist = true;
6382         intel_pmu_pebs_data_source_adl();
6383         x86_pmu.pebs_latency_data = adl_latency_data_small;
6384         x86_pmu.num_topdown_events = 8;
6385         x86_pmu.update_topdown_event = adl_update_topdown_event;
6386         x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6387 
6388         x86_pmu.filter_match = intel_pmu_filter_match;
6389         x86_pmu.get_event_constraints = adl_get_event_constraints;
6390         x86_pmu.hw_config = adl_hw_config;
6391         x86_pmu.limit_period = spr_limit_period;
6392         x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6393         /*
6394          * The rtm_abort_event is used to check whether to enable GPRs
6395          * for the RTM abort event. Atom doesn't have the RTM abort
6396          * event. There is no harmful to set it in the common
6397          * x86_pmu.rtm_abort_event.
6398          */
6399         x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6400 
6401         td_attr = adl_hybrid_events_attrs;
6402         mem_attr = adl_hybrid_mem_attrs;
6403         tsx_attr = adl_hybrid_tsx_attrs;
6404         extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6405             adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6406 
6407         /* Initialize big core specific PerfMon capabilities.*/
6408         pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6409         pmu->name = "cpu_core";
6410         pmu->cpu_type = hybrid_big;
6411         pmu->late_ack = true;
6412         if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6413             pmu->num_counters = x86_pmu.num_counters + 2;
6414             pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6415         } else {
6416             pmu->num_counters = x86_pmu.num_counters;
6417             pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6418         }
6419 
6420         /*
6421          * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6422          * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6423          * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6424          * mistakenly add extra counters for P-cores. Correct the number of
6425          * counters here.
6426          */
6427         if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6428             pmu->num_counters = x86_pmu.num_counters;
6429             pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6430         }
6431 
6432         pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6433         pmu->unconstrained = (struct event_constraint)
6434                     __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6435                                0, pmu->num_counters, 0, 0);
6436         pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6437         pmu->intel_cap.perf_metrics = 1;
6438         pmu->intel_cap.pebs_output_pt_available = 0;
6439 
6440         memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6441         memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6442         pmu->event_constraints = intel_spr_event_constraints;
6443         pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6444         pmu->extra_regs = intel_spr_extra_regs;
6445 
6446         /* Initialize Atom core specific PerfMon capabilities.*/
6447         pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6448         pmu->name = "cpu_atom";
6449         pmu->cpu_type = hybrid_small;
6450         pmu->mid_ack = true;
6451         pmu->num_counters = x86_pmu.num_counters;
6452         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6453         pmu->max_pebs_events = x86_pmu.max_pebs_events;
6454         pmu->unconstrained = (struct event_constraint)
6455                     __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6456                                0, pmu->num_counters, 0, 0);
6457         pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6458         pmu->intel_cap.perf_metrics = 0;
6459         pmu->intel_cap.pebs_output_pt_available = 1;
6460 
6461         memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6462         memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6463         pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6464         pmu->event_constraints = intel_slm_event_constraints;
6465         pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6466         pmu->extra_regs = intel_grt_extra_regs;
6467         pr_cont("Alderlake Hybrid events, ");
6468         name = "alderlake_hybrid";
6469         break;
6470 
6471     default:
6472         switch (x86_pmu.version) {
6473         case 1:
6474             x86_pmu.event_constraints = intel_v1_event_constraints;
6475             pr_cont("generic architected perfmon v1, ");
6476             name = "generic_arch_v1";
6477             break;
6478         case 2:
6479         case 3:
6480         case 4:
6481             /*
6482              * default constraints for v2 and up
6483              */
6484             x86_pmu.event_constraints = intel_gen_event_constraints;
6485             pr_cont("generic architected perfmon, ");
6486             name = "generic_arch_v2+";
6487             break;
6488         default:
6489             /*
6490              * The default constraints for v5 and up can support up to
6491              * 16 fixed counters. For the fixed counters 4 and later,
6492              * the pseudo-encoding is applied.
6493              * The constraints may be cut according to the CPUID enumeration
6494              * by inserting the EVENT_CONSTRAINT_END.
6495              */
6496             if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6497                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6498             intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6499             x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6500             pr_cont("generic architected perfmon, ");
6501             name = "generic_arch_v5+";
6502             break;
6503         }
6504     }
6505 
6506     snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6507 
6508     if (!is_hybrid()) {
6509         group_events_td.attrs  = td_attr;
6510         group_events_mem.attrs = mem_attr;
6511         group_events_tsx.attrs = tsx_attr;
6512         group_format_extra.attrs = extra_attr;
6513         group_format_extra_skl.attrs = extra_skl_attr;
6514 
6515         x86_pmu.attr_update = attr_update;
6516     } else {
6517         hybrid_group_events_td.attrs  = td_attr;
6518         hybrid_group_events_mem.attrs = mem_attr;
6519         hybrid_group_events_tsx.attrs = tsx_attr;
6520         hybrid_group_format_extra.attrs = extra_attr;
6521 
6522         x86_pmu.attr_update = hybrid_attr_update;
6523     }
6524 
6525     intel_pmu_check_num_counters(&x86_pmu.num_counters,
6526                      &x86_pmu.num_counters_fixed,
6527                      &x86_pmu.intel_ctrl,
6528                      (u64)fixed_mask);
6529 
6530     /* AnyThread may be deprecated on arch perfmon v5 or later */
6531     if (x86_pmu.intel_cap.anythread_deprecated)
6532         x86_pmu.format_attrs = intel_arch_formats_attr;
6533 
6534     intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6535                       x86_pmu.num_counters,
6536                       x86_pmu.num_counters_fixed,
6537                       x86_pmu.intel_ctrl);
6538     /*
6539      * Access LBR MSR may cause #GP under certain circumstances.
6540      * Check all LBR MSR here.
6541      * Disable LBR access if any LBR MSRs can not be accessed.
6542      */
6543     if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6544         x86_pmu.lbr_nr = 0;
6545     for (i = 0; i < x86_pmu.lbr_nr; i++) {
6546         if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6547               check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6548             x86_pmu.lbr_nr = 0;
6549     }
6550 
6551     if (x86_pmu.lbr_nr) {
6552         intel_pmu_lbr_init();
6553 
6554         pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6555 
6556         /* only support branch_stack snapshot for perfmon >= v2 */
6557         if (x86_pmu.disable_all == intel_pmu_disable_all) {
6558             if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6559                 static_call_update(perf_snapshot_branch_stack,
6560                            intel_pmu_snapshot_arch_branch_stack);
6561             } else {
6562                 static_call_update(perf_snapshot_branch_stack,
6563                            intel_pmu_snapshot_branch_stack);
6564             }
6565         }
6566     }
6567 
6568     intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6569 
6570     /* Support full width counters using alternative MSR range */
6571     if (x86_pmu.intel_cap.full_width_write) {
6572         x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6573         x86_pmu.perfctr = MSR_IA32_PMC0;
6574         pr_cont("full-width counters, ");
6575     }
6576 
6577     if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6578         x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6579 
6580     if (is_hybrid())
6581         intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6582 
6583     intel_aux_output_init();
6584 
6585     return 0;
6586 }
6587 
6588 /*
6589  * HT bug: phase 2 init
6590  * Called once we have valid topology information to check
6591  * whether or not HT is enabled
6592  * If HT is off, then we disable the workaround
6593  */
6594 static __init int fixup_ht_bug(void)
6595 {
6596     int c;
6597     /*
6598      * problem not present on this CPU model, nothing to do
6599      */
6600     if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6601         return 0;
6602 
6603     if (topology_max_smt_threads() > 1) {
6604         pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6605         return 0;
6606     }
6607 
6608     cpus_read_lock();
6609 
6610     hardlockup_detector_perf_stop();
6611 
6612     x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6613 
6614     x86_pmu.start_scheduling = NULL;
6615     x86_pmu.commit_scheduling = NULL;
6616     x86_pmu.stop_scheduling = NULL;
6617 
6618     hardlockup_detector_perf_restart();
6619 
6620     for_each_online_cpu(c)
6621         free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6622 
6623     cpus_read_unlock();
6624     pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6625     return 0;
6626 }
6627 subsys_initcall(fixup_ht_bug)