Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Performance events x86 architecture code
0003  *
0004  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
0005  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
0006  *  Copyright (C) 2009 Jaswinder Singh Rajput
0007  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
0008  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
0009  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
0010  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
0011  *
0012  *  For licencing details see kernel-base/COPYING
0013  */
0014 
0015 #include <linux/perf_event.h>
0016 #include <linux/capability.h>
0017 #include <linux/notifier.h>
0018 #include <linux/hardirq.h>
0019 #include <linux/kprobes.h>
0020 #include <linux/export.h>
0021 #include <linux/init.h>
0022 #include <linux/kdebug.h>
0023 #include <linux/sched/mm.h>
0024 #include <linux/sched/clock.h>
0025 #include <linux/uaccess.h>
0026 #include <linux/slab.h>
0027 #include <linux/cpu.h>
0028 #include <linux/bitops.h>
0029 #include <linux/device.h>
0030 #include <linux/nospec.h>
0031 #include <linux/static_call.h>
0032 
0033 #include <asm/apic.h>
0034 #include <asm/stacktrace.h>
0035 #include <asm/nmi.h>
0036 #include <asm/smp.h>
0037 #include <asm/alternative.h>
0038 #include <asm/mmu_context.h>
0039 #include <asm/tlbflush.h>
0040 #include <asm/timer.h>
0041 #include <asm/desc.h>
0042 #include <asm/ldt.h>
0043 #include <asm/unwind.h>
0044 
0045 #include "perf_event.h"
0046 
0047 struct x86_pmu x86_pmu __read_mostly;
0048 static struct pmu pmu;
0049 
0050 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
0051     .enabled = 1,
0052     .pmu = &pmu,
0053 };
0054 
0055 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
0056 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
0057 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
0058 
0059 /*
0060  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
0061  * from just a typename, as opposed to an actual function.
0062  */
0063 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
0064 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
0065 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
0066 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
0067 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
0068 
0069 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
0070 
0071 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
0072 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
0073 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
0074 
0075 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
0076 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
0077 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
0078 
0079 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
0080 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
0081 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
0082 
0083 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
0084 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
0085 
0086 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
0087 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
0088 
0089 /*
0090  * This one is magic, it will get called even when PMU init fails (because
0091  * there is no PMU), in which case it should simply return NULL.
0092  */
0093 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
0094 
0095 u64 __read_mostly hw_cache_event_ids
0096                 [PERF_COUNT_HW_CACHE_MAX]
0097                 [PERF_COUNT_HW_CACHE_OP_MAX]
0098                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
0099 u64 __read_mostly hw_cache_extra_regs
0100                 [PERF_COUNT_HW_CACHE_MAX]
0101                 [PERF_COUNT_HW_CACHE_OP_MAX]
0102                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
0103 
0104 /*
0105  * Propagate event elapsed time into the generic event.
0106  * Can only be executed on the CPU where the event is active.
0107  * Returns the delta events processed.
0108  */
0109 u64 x86_perf_event_update(struct perf_event *event)
0110 {
0111     struct hw_perf_event *hwc = &event->hw;
0112     int shift = 64 - x86_pmu.cntval_bits;
0113     u64 prev_raw_count, new_raw_count;
0114     u64 delta;
0115 
0116     if (unlikely(!hwc->event_base))
0117         return 0;
0118 
0119     if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
0120         return x86_pmu.update_topdown_event(event);
0121 
0122     /*
0123      * Careful: an NMI might modify the previous event value.
0124      *
0125      * Our tactic to handle this is to first atomically read and
0126      * exchange a new raw count - then add that new-prev delta
0127      * count to the generic event atomically:
0128      */
0129 again:
0130     prev_raw_count = local64_read(&hwc->prev_count);
0131     rdpmcl(hwc->event_base_rdpmc, new_raw_count);
0132 
0133     if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
0134                     new_raw_count) != prev_raw_count)
0135         goto again;
0136 
0137     /*
0138      * Now we have the new raw value and have updated the prev
0139      * timestamp already. We can now calculate the elapsed delta
0140      * (event-)time and add that to the generic event.
0141      *
0142      * Careful, not all hw sign-extends above the physical width
0143      * of the count.
0144      */
0145     delta = (new_raw_count << shift) - (prev_raw_count << shift);
0146     delta >>= shift;
0147 
0148     local64_add(delta, &event->count);
0149     local64_sub(delta, &hwc->period_left);
0150 
0151     return new_raw_count;
0152 }
0153 
0154 /*
0155  * Find and validate any extra registers to set up.
0156  */
0157 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
0158 {
0159     struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
0160     struct hw_perf_event_extra *reg;
0161     struct extra_reg *er;
0162 
0163     reg = &event->hw.extra_reg;
0164 
0165     if (!extra_regs)
0166         return 0;
0167 
0168     for (er = extra_regs; er->msr; er++) {
0169         if (er->event != (config & er->config_mask))
0170             continue;
0171         if (event->attr.config1 & ~er->valid_mask)
0172             return -EINVAL;
0173         /* Check if the extra msrs can be safely accessed*/
0174         if (!er->extra_msr_access)
0175             return -ENXIO;
0176 
0177         reg->idx = er->idx;
0178         reg->config = event->attr.config1;
0179         reg->reg = er->msr;
0180         break;
0181     }
0182     return 0;
0183 }
0184 
0185 static atomic_t active_events;
0186 static atomic_t pmc_refcount;
0187 static DEFINE_MUTEX(pmc_reserve_mutex);
0188 
0189 #ifdef CONFIG_X86_LOCAL_APIC
0190 
0191 static inline int get_possible_num_counters(void)
0192 {
0193     int i, num_counters = x86_pmu.num_counters;
0194 
0195     if (!is_hybrid())
0196         return num_counters;
0197 
0198     for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
0199         num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
0200 
0201     return num_counters;
0202 }
0203 
0204 static bool reserve_pmc_hardware(void)
0205 {
0206     int i, num_counters = get_possible_num_counters();
0207 
0208     for (i = 0; i < num_counters; i++) {
0209         if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
0210             goto perfctr_fail;
0211     }
0212 
0213     for (i = 0; i < num_counters; i++) {
0214         if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
0215             goto eventsel_fail;
0216     }
0217 
0218     return true;
0219 
0220 eventsel_fail:
0221     for (i--; i >= 0; i--)
0222         release_evntsel_nmi(x86_pmu_config_addr(i));
0223 
0224     i = num_counters;
0225 
0226 perfctr_fail:
0227     for (i--; i >= 0; i--)
0228         release_perfctr_nmi(x86_pmu_event_addr(i));
0229 
0230     return false;
0231 }
0232 
0233 static void release_pmc_hardware(void)
0234 {
0235     int i, num_counters = get_possible_num_counters();
0236 
0237     for (i = 0; i < num_counters; i++) {
0238         release_perfctr_nmi(x86_pmu_event_addr(i));
0239         release_evntsel_nmi(x86_pmu_config_addr(i));
0240     }
0241 }
0242 
0243 #else
0244 
0245 static bool reserve_pmc_hardware(void) { return true; }
0246 static void release_pmc_hardware(void) {}
0247 
0248 #endif
0249 
0250 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
0251 {
0252     u64 val, val_fail = -1, val_new= ~0;
0253     int i, reg, reg_fail = -1, ret = 0;
0254     int bios_fail = 0;
0255     int reg_safe = -1;
0256 
0257     /*
0258      * Check to see if the BIOS enabled any of the counters, if so
0259      * complain and bail.
0260      */
0261     for (i = 0; i < num_counters; i++) {
0262         reg = x86_pmu_config_addr(i);
0263         ret = rdmsrl_safe(reg, &val);
0264         if (ret)
0265             goto msr_fail;
0266         if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
0267             bios_fail = 1;
0268             val_fail = val;
0269             reg_fail = reg;
0270         } else {
0271             reg_safe = i;
0272         }
0273     }
0274 
0275     if (num_counters_fixed) {
0276         reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
0277         ret = rdmsrl_safe(reg, &val);
0278         if (ret)
0279             goto msr_fail;
0280         for (i = 0; i < num_counters_fixed; i++) {
0281             if (fixed_counter_disabled(i, pmu))
0282                 continue;
0283             if (val & (0x03ULL << i*4)) {
0284                 bios_fail = 1;
0285                 val_fail = val;
0286                 reg_fail = reg;
0287             }
0288         }
0289     }
0290 
0291     /*
0292      * If all the counters are enabled, the below test will always
0293      * fail.  The tools will also become useless in this scenario.
0294      * Just fail and disable the hardware counters.
0295      */
0296 
0297     if (reg_safe == -1) {
0298         reg = reg_safe;
0299         goto msr_fail;
0300     }
0301 
0302     /*
0303      * Read the current value, change it and read it back to see if it
0304      * matches, this is needed to detect certain hardware emulators
0305      * (qemu/kvm) that don't trap on the MSR access and always return 0s.
0306      */
0307     reg = x86_pmu_event_addr(reg_safe);
0308     if (rdmsrl_safe(reg, &val))
0309         goto msr_fail;
0310     val ^= 0xffffUL;
0311     ret = wrmsrl_safe(reg, val);
0312     ret |= rdmsrl_safe(reg, &val_new);
0313     if (ret || val != val_new)
0314         goto msr_fail;
0315 
0316     /*
0317      * We still allow the PMU driver to operate:
0318      */
0319     if (bios_fail) {
0320         pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
0321         pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
0322                   reg_fail, val_fail);
0323     }
0324 
0325     return true;
0326 
0327 msr_fail:
0328     if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
0329         pr_cont("PMU not available due to virtualization, using software events only.\n");
0330     } else {
0331         pr_cont("Broken PMU hardware detected, using software events only.\n");
0332         pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
0333                reg, val_new);
0334     }
0335 
0336     return false;
0337 }
0338 
0339 static void hw_perf_event_destroy(struct perf_event *event)
0340 {
0341     x86_release_hardware();
0342     atomic_dec(&active_events);
0343 }
0344 
0345 void hw_perf_lbr_event_destroy(struct perf_event *event)
0346 {
0347     hw_perf_event_destroy(event);
0348 
0349     /* undo the lbr/bts event accounting */
0350     x86_del_exclusive(x86_lbr_exclusive_lbr);
0351 }
0352 
0353 static inline int x86_pmu_initialized(void)
0354 {
0355     return x86_pmu.handle_irq != NULL;
0356 }
0357 
0358 static inline int
0359 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
0360 {
0361     struct perf_event_attr *attr = &event->attr;
0362     unsigned int cache_type, cache_op, cache_result;
0363     u64 config, val;
0364 
0365     config = attr->config;
0366 
0367     cache_type = (config >> 0) & 0xff;
0368     if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
0369         return -EINVAL;
0370     cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
0371 
0372     cache_op = (config >>  8) & 0xff;
0373     if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
0374         return -EINVAL;
0375     cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
0376 
0377     cache_result = (config >> 16) & 0xff;
0378     if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
0379         return -EINVAL;
0380     cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
0381 
0382     val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
0383     if (val == 0)
0384         return -ENOENT;
0385 
0386     if (val == -1)
0387         return -EINVAL;
0388 
0389     hwc->config |= val;
0390     attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
0391     return x86_pmu_extra_regs(val, event);
0392 }
0393 
0394 int x86_reserve_hardware(void)
0395 {
0396     int err = 0;
0397 
0398     if (!atomic_inc_not_zero(&pmc_refcount)) {
0399         mutex_lock(&pmc_reserve_mutex);
0400         if (atomic_read(&pmc_refcount) == 0) {
0401             if (!reserve_pmc_hardware()) {
0402                 err = -EBUSY;
0403             } else {
0404                 reserve_ds_buffers();
0405                 reserve_lbr_buffers();
0406             }
0407         }
0408         if (!err)
0409             atomic_inc(&pmc_refcount);
0410         mutex_unlock(&pmc_reserve_mutex);
0411     }
0412 
0413     return err;
0414 }
0415 
0416 void x86_release_hardware(void)
0417 {
0418     if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
0419         release_pmc_hardware();
0420         release_ds_buffers();
0421         release_lbr_buffers();
0422         mutex_unlock(&pmc_reserve_mutex);
0423     }
0424 }
0425 
0426 /*
0427  * Check if we can create event of a certain type (that no conflicting events
0428  * are present).
0429  */
0430 int x86_add_exclusive(unsigned int what)
0431 {
0432     int i;
0433 
0434     /*
0435      * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
0436      * LBR and BTS are still mutually exclusive.
0437      */
0438     if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
0439         goto out;
0440 
0441     if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
0442         mutex_lock(&pmc_reserve_mutex);
0443         for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
0444             if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
0445                 goto fail_unlock;
0446         }
0447         atomic_inc(&x86_pmu.lbr_exclusive[what]);
0448         mutex_unlock(&pmc_reserve_mutex);
0449     }
0450 
0451 out:
0452     atomic_inc(&active_events);
0453     return 0;
0454 
0455 fail_unlock:
0456     mutex_unlock(&pmc_reserve_mutex);
0457     return -EBUSY;
0458 }
0459 
0460 void x86_del_exclusive(unsigned int what)
0461 {
0462     atomic_dec(&active_events);
0463 
0464     /*
0465      * See the comment in x86_add_exclusive().
0466      */
0467     if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
0468         return;
0469 
0470     atomic_dec(&x86_pmu.lbr_exclusive[what]);
0471 }
0472 
0473 int x86_setup_perfctr(struct perf_event *event)
0474 {
0475     struct perf_event_attr *attr = &event->attr;
0476     struct hw_perf_event *hwc = &event->hw;
0477     u64 config;
0478 
0479     if (!is_sampling_event(event)) {
0480         hwc->sample_period = x86_pmu.max_period;
0481         hwc->last_period = hwc->sample_period;
0482         local64_set(&hwc->period_left, hwc->sample_period);
0483     }
0484 
0485     if (attr->type == event->pmu->type)
0486         return x86_pmu_extra_regs(event->attr.config, event);
0487 
0488     if (attr->type == PERF_TYPE_HW_CACHE)
0489         return set_ext_hw_attr(hwc, event);
0490 
0491     if (attr->config >= x86_pmu.max_events)
0492         return -EINVAL;
0493 
0494     attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
0495 
0496     /*
0497      * The generic map:
0498      */
0499     config = x86_pmu.event_map(attr->config);
0500 
0501     if (config == 0)
0502         return -ENOENT;
0503 
0504     if (config == -1LL)
0505         return -EINVAL;
0506 
0507     hwc->config |= config;
0508 
0509     return 0;
0510 }
0511 
0512 /*
0513  * check that branch_sample_type is compatible with
0514  * settings needed for precise_ip > 1 which implies
0515  * using the LBR to capture ALL taken branches at the
0516  * priv levels of the measurement
0517  */
0518 static inline int precise_br_compat(struct perf_event *event)
0519 {
0520     u64 m = event->attr.branch_sample_type;
0521     u64 b = 0;
0522 
0523     /* must capture all branches */
0524     if (!(m & PERF_SAMPLE_BRANCH_ANY))
0525         return 0;
0526 
0527     m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
0528 
0529     if (!event->attr.exclude_user)
0530         b |= PERF_SAMPLE_BRANCH_USER;
0531 
0532     if (!event->attr.exclude_kernel)
0533         b |= PERF_SAMPLE_BRANCH_KERNEL;
0534 
0535     /*
0536      * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
0537      */
0538 
0539     return m == b;
0540 }
0541 
0542 int x86_pmu_max_precise(void)
0543 {
0544     int precise = 0;
0545 
0546     /* Support for constant skid */
0547     if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
0548         precise++;
0549 
0550         /* Support for IP fixup */
0551         if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
0552             precise++;
0553 
0554         if (x86_pmu.pebs_prec_dist)
0555             precise++;
0556     }
0557     return precise;
0558 }
0559 
0560 int x86_pmu_hw_config(struct perf_event *event)
0561 {
0562     if (event->attr.precise_ip) {
0563         int precise = x86_pmu_max_precise();
0564 
0565         if (event->attr.precise_ip > precise)
0566             return -EOPNOTSUPP;
0567 
0568         /* There's no sense in having PEBS for non sampling events: */
0569         if (!is_sampling_event(event))
0570             return -EINVAL;
0571     }
0572     /*
0573      * check that PEBS LBR correction does not conflict with
0574      * whatever the user is asking with attr->branch_sample_type
0575      */
0576     if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
0577         u64 *br_type = &event->attr.branch_sample_type;
0578 
0579         if (has_branch_stack(event)) {
0580             if (!precise_br_compat(event))
0581                 return -EOPNOTSUPP;
0582 
0583             /* branch_sample_type is compatible */
0584 
0585         } else {
0586             /*
0587              * user did not specify  branch_sample_type
0588              *
0589              * For PEBS fixups, we capture all
0590              * the branches at the priv level of the
0591              * event.
0592              */
0593             *br_type = PERF_SAMPLE_BRANCH_ANY;
0594 
0595             if (!event->attr.exclude_user)
0596                 *br_type |= PERF_SAMPLE_BRANCH_USER;
0597 
0598             if (!event->attr.exclude_kernel)
0599                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
0600         }
0601     }
0602 
0603     if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
0604         event->attach_state |= PERF_ATTACH_TASK_DATA;
0605 
0606     /*
0607      * Generate PMC IRQs:
0608      * (keep 'enabled' bit clear for now)
0609      */
0610     event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
0611 
0612     /*
0613      * Count user and OS events unless requested not to
0614      */
0615     if (!event->attr.exclude_user)
0616         event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
0617     if (!event->attr.exclude_kernel)
0618         event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
0619 
0620     if (event->attr.type == event->pmu->type)
0621         event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
0622 
0623     if (event->attr.sample_period && x86_pmu.limit_period) {
0624         if (x86_pmu.limit_period(event, event->attr.sample_period) >
0625                 event->attr.sample_period)
0626             return -EINVAL;
0627     }
0628 
0629     /* sample_regs_user never support XMM registers */
0630     if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
0631         return -EINVAL;
0632     /*
0633      * Besides the general purpose registers, XMM registers may
0634      * be collected in PEBS on some platforms, e.g. Icelake
0635      */
0636     if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
0637         if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
0638             return -EINVAL;
0639 
0640         if (!event->attr.precise_ip)
0641             return -EINVAL;
0642     }
0643 
0644     return x86_setup_perfctr(event);
0645 }
0646 
0647 /*
0648  * Setup the hardware configuration for a given attr_type
0649  */
0650 static int __x86_pmu_event_init(struct perf_event *event)
0651 {
0652     int err;
0653 
0654     if (!x86_pmu_initialized())
0655         return -ENODEV;
0656 
0657     err = x86_reserve_hardware();
0658     if (err)
0659         return err;
0660 
0661     atomic_inc(&active_events);
0662     event->destroy = hw_perf_event_destroy;
0663 
0664     event->hw.idx = -1;
0665     event->hw.last_cpu = -1;
0666     event->hw.last_tag = ~0ULL;
0667 
0668     /* mark unused */
0669     event->hw.extra_reg.idx = EXTRA_REG_NONE;
0670     event->hw.branch_reg.idx = EXTRA_REG_NONE;
0671 
0672     return x86_pmu.hw_config(event);
0673 }
0674 
0675 void x86_pmu_disable_all(void)
0676 {
0677     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
0678     int idx;
0679 
0680     for (idx = 0; idx < x86_pmu.num_counters; idx++) {
0681         struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
0682         u64 val;
0683 
0684         if (!test_bit(idx, cpuc->active_mask))
0685             continue;
0686         rdmsrl(x86_pmu_config_addr(idx), val);
0687         if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
0688             continue;
0689         val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
0690         wrmsrl(x86_pmu_config_addr(idx), val);
0691         if (is_counter_pair(hwc))
0692             wrmsrl(x86_pmu_config_addr(idx + 1), 0);
0693     }
0694 }
0695 
0696 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
0697 {
0698     return static_call(x86_pmu_guest_get_msrs)(nr, data);
0699 }
0700 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
0701 
0702 /*
0703  * There may be PMI landing after enabled=0. The PMI hitting could be before or
0704  * after disable_all.
0705  *
0706  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
0707  * It will not be re-enabled in the NMI handler again, because enabled=0. After
0708  * handling the NMI, disable_all will be called, which will not change the
0709  * state either. If PMI hits after disable_all, the PMU is already disabled
0710  * before entering NMI handler. The NMI handler will not change the state
0711  * either.
0712  *
0713  * So either situation is harmless.
0714  */
0715 static void x86_pmu_disable(struct pmu *pmu)
0716 {
0717     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
0718 
0719     if (!x86_pmu_initialized())
0720         return;
0721 
0722     if (!cpuc->enabled)
0723         return;
0724 
0725     cpuc->n_added = 0;
0726     cpuc->enabled = 0;
0727     barrier();
0728 
0729     static_call(x86_pmu_disable_all)();
0730 }
0731 
0732 void x86_pmu_enable_all(int added)
0733 {
0734     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
0735     int idx;
0736 
0737     for (idx = 0; idx < x86_pmu.num_counters; idx++) {
0738         struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
0739 
0740         if (!test_bit(idx, cpuc->active_mask))
0741             continue;
0742 
0743         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
0744     }
0745 }
0746 
0747 static inline int is_x86_event(struct perf_event *event)
0748 {
0749     int i;
0750 
0751     if (!is_hybrid())
0752         return event->pmu == &pmu;
0753 
0754     for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
0755         if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
0756             return true;
0757     }
0758 
0759     return false;
0760 }
0761 
0762 struct pmu *x86_get_pmu(unsigned int cpu)
0763 {
0764     struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
0765 
0766     /*
0767      * All CPUs of the hybrid type have been offline.
0768      * The x86_get_pmu() should not be invoked.
0769      */
0770     if (WARN_ON_ONCE(!cpuc->pmu))
0771         return &pmu;
0772 
0773     return cpuc->pmu;
0774 }
0775 /*
0776  * Event scheduler state:
0777  *
0778  * Assign events iterating over all events and counters, beginning
0779  * with events with least weights first. Keep the current iterator
0780  * state in struct sched_state.
0781  */
0782 struct sched_state {
0783     int weight;
0784     int event;      /* event index */
0785     int counter;    /* counter index */
0786     int unassigned; /* number of events to be assigned left */
0787     int nr_gp;      /* number of GP counters used */
0788     u64 used;
0789 };
0790 
0791 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
0792 #define SCHED_STATES_MAX    2
0793 
0794 struct perf_sched {
0795     int         max_weight;
0796     int         max_events;
0797     int         max_gp;
0798     int         saved_states;
0799     struct event_constraint **constraints;
0800     struct sched_state  state;
0801     struct sched_state  saved[SCHED_STATES_MAX];
0802 };
0803 
0804 /*
0805  * Initialize iterator that runs through all events and counters.
0806  */
0807 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
0808                 int num, int wmin, int wmax, int gpmax)
0809 {
0810     int idx;
0811 
0812     memset(sched, 0, sizeof(*sched));
0813     sched->max_events   = num;
0814     sched->max_weight   = wmax;
0815     sched->max_gp       = gpmax;
0816     sched->constraints  = constraints;
0817 
0818     for (idx = 0; idx < num; idx++) {
0819         if (constraints[idx]->weight == wmin)
0820             break;
0821     }
0822 
0823     sched->state.event  = idx;      /* start with min weight */
0824     sched->state.weight = wmin;
0825     sched->state.unassigned = num;
0826 }
0827 
0828 static void perf_sched_save_state(struct perf_sched *sched)
0829 {
0830     if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
0831         return;
0832 
0833     sched->saved[sched->saved_states] = sched->state;
0834     sched->saved_states++;
0835 }
0836 
0837 static bool perf_sched_restore_state(struct perf_sched *sched)
0838 {
0839     if (!sched->saved_states)
0840         return false;
0841 
0842     sched->saved_states--;
0843     sched->state = sched->saved[sched->saved_states];
0844 
0845     /* this assignment didn't work out */
0846     /* XXX broken vs EVENT_PAIR */
0847     sched->state.used &= ~BIT_ULL(sched->state.counter);
0848 
0849     /* try the next one */
0850     sched->state.counter++;
0851 
0852     return true;
0853 }
0854 
0855 /*
0856  * Select a counter for the current event to schedule. Return true on
0857  * success.
0858  */
0859 static bool __perf_sched_find_counter(struct perf_sched *sched)
0860 {
0861     struct event_constraint *c;
0862     int idx;
0863 
0864     if (!sched->state.unassigned)
0865         return false;
0866 
0867     if (sched->state.event >= sched->max_events)
0868         return false;
0869 
0870     c = sched->constraints[sched->state.event];
0871     /* Prefer fixed purpose counters */
0872     if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
0873         idx = INTEL_PMC_IDX_FIXED;
0874         for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
0875             u64 mask = BIT_ULL(idx);
0876 
0877             if (sched->state.used & mask)
0878                 continue;
0879 
0880             sched->state.used |= mask;
0881             goto done;
0882         }
0883     }
0884 
0885     /* Grab the first unused counter starting with idx */
0886     idx = sched->state.counter;
0887     for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
0888         u64 mask = BIT_ULL(idx);
0889 
0890         if (c->flags & PERF_X86_EVENT_PAIR)
0891             mask |= mask << 1;
0892 
0893         if (sched->state.used & mask)
0894             continue;
0895 
0896         if (sched->state.nr_gp++ >= sched->max_gp)
0897             return false;
0898 
0899         sched->state.used |= mask;
0900         goto done;
0901     }
0902 
0903     return false;
0904 
0905 done:
0906     sched->state.counter = idx;
0907 
0908     if (c->overlap)
0909         perf_sched_save_state(sched);
0910 
0911     return true;
0912 }
0913 
0914 static bool perf_sched_find_counter(struct perf_sched *sched)
0915 {
0916     while (!__perf_sched_find_counter(sched)) {
0917         if (!perf_sched_restore_state(sched))
0918             return false;
0919     }
0920 
0921     return true;
0922 }
0923 
0924 /*
0925  * Go through all unassigned events and find the next one to schedule.
0926  * Take events with the least weight first. Return true on success.
0927  */
0928 static bool perf_sched_next_event(struct perf_sched *sched)
0929 {
0930     struct event_constraint *c;
0931 
0932     if (!sched->state.unassigned || !--sched->state.unassigned)
0933         return false;
0934 
0935     do {
0936         /* next event */
0937         sched->state.event++;
0938         if (sched->state.event >= sched->max_events) {
0939             /* next weight */
0940             sched->state.event = 0;
0941             sched->state.weight++;
0942             if (sched->state.weight > sched->max_weight)
0943                 return false;
0944         }
0945         c = sched->constraints[sched->state.event];
0946     } while (c->weight != sched->state.weight);
0947 
0948     sched->state.counter = 0;   /* start with first counter */
0949 
0950     return true;
0951 }
0952 
0953 /*
0954  * Assign a counter for each event.
0955  */
0956 int perf_assign_events(struct event_constraint **constraints, int n,
0957             int wmin, int wmax, int gpmax, int *assign)
0958 {
0959     struct perf_sched sched;
0960 
0961     perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
0962 
0963     do {
0964         if (!perf_sched_find_counter(&sched))
0965             break;  /* failed */
0966         if (assign)
0967             assign[sched.state.event] = sched.state.counter;
0968     } while (perf_sched_next_event(&sched));
0969 
0970     return sched.state.unassigned;
0971 }
0972 EXPORT_SYMBOL_GPL(perf_assign_events);
0973 
0974 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
0975 {
0976     int num_counters = hybrid(cpuc->pmu, num_counters);
0977     struct event_constraint *c;
0978     struct perf_event *e;
0979     int n0, i, wmin, wmax, unsched = 0;
0980     struct hw_perf_event *hwc;
0981     u64 used_mask = 0;
0982 
0983     /*
0984      * Compute the number of events already present; see x86_pmu_add(),
0985      * validate_group() and x86_pmu_commit_txn(). For the former two
0986      * cpuc->n_events hasn't been updated yet, while for the latter
0987      * cpuc->n_txn contains the number of events added in the current
0988      * transaction.
0989      */
0990     n0 = cpuc->n_events;
0991     if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
0992         n0 -= cpuc->n_txn;
0993 
0994     static_call_cond(x86_pmu_start_scheduling)(cpuc);
0995 
0996     for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
0997         c = cpuc->event_constraint[i];
0998 
0999         /*
1000          * Previously scheduled events should have a cached constraint,
1001          * while new events should not have one.
1002          */
1003         WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1004 
1005         /*
1006          * Request constraints for new events; or for those events that
1007          * have a dynamic constraint -- for those the constraint can
1008          * change due to external factors (sibling state, allow_tfa).
1009          */
1010         if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1011             c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1012             cpuc->event_constraint[i] = c;
1013         }
1014 
1015         wmin = min(wmin, c->weight);
1016         wmax = max(wmax, c->weight);
1017     }
1018 
1019     /*
1020      * fastpath, try to reuse previous register
1021      */
1022     for (i = 0; i < n; i++) {
1023         u64 mask;
1024 
1025         hwc = &cpuc->event_list[i]->hw;
1026         c = cpuc->event_constraint[i];
1027 
1028         /* never assigned */
1029         if (hwc->idx == -1)
1030             break;
1031 
1032         /* constraint still honored */
1033         if (!test_bit(hwc->idx, c->idxmsk))
1034             break;
1035 
1036         mask = BIT_ULL(hwc->idx);
1037         if (is_counter_pair(hwc))
1038             mask |= mask << 1;
1039 
1040         /* not already used */
1041         if (used_mask & mask)
1042             break;
1043 
1044         used_mask |= mask;
1045 
1046         if (assign)
1047             assign[i] = hwc->idx;
1048     }
1049 
1050     /* slow path */
1051     if (i != n) {
1052         int gpmax = num_counters;
1053 
1054         /*
1055          * Do not allow scheduling of more than half the available
1056          * generic counters.
1057          *
1058          * This helps avoid counter starvation of sibling thread by
1059          * ensuring at most half the counters cannot be in exclusive
1060          * mode. There is no designated counters for the limits. Any
1061          * N/2 counters can be used. This helps with events with
1062          * specific counter constraints.
1063          */
1064         if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1065             READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1066             gpmax /= 2;
1067 
1068         /*
1069          * Reduce the amount of available counters to allow fitting
1070          * the extra Merge events needed by large increment events.
1071          */
1072         if (x86_pmu.flags & PMU_FL_PAIR) {
1073             gpmax = num_counters - cpuc->n_pair;
1074             WARN_ON(gpmax <= 0);
1075         }
1076 
1077         unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1078                          wmax, gpmax, assign);
1079     }
1080 
1081     /*
1082      * In case of success (unsched = 0), mark events as committed,
1083      * so we do not put_constraint() in case new events are added
1084      * and fail to be scheduled
1085      *
1086      * We invoke the lower level commit callback to lock the resource
1087      *
1088      * We do not need to do all of this in case we are called to
1089      * validate an event group (assign == NULL)
1090      */
1091     if (!unsched && assign) {
1092         for (i = 0; i < n; i++)
1093             static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1094     } else {
1095         for (i = n0; i < n; i++) {
1096             e = cpuc->event_list[i];
1097 
1098             /*
1099              * release events that failed scheduling
1100              */
1101             static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1102 
1103             cpuc->event_constraint[i] = NULL;
1104         }
1105     }
1106 
1107     static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1108 
1109     return unsched ? -EINVAL : 0;
1110 }
1111 
1112 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1113                    struct perf_event *event)
1114 {
1115     if (is_metric_event(event)) {
1116         if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1117             return -EINVAL;
1118         cpuc->n_metric++;
1119         cpuc->n_txn_metric++;
1120     }
1121 
1122     return 0;
1123 }
1124 
1125 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1126                 struct perf_event *event)
1127 {
1128     if (is_metric_event(event))
1129         cpuc->n_metric--;
1130 }
1131 
1132 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1133              int max_count, int n)
1134 {
1135     union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1136 
1137     if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1138         return -EINVAL;
1139 
1140     if (n >= max_count + cpuc->n_metric)
1141         return -EINVAL;
1142 
1143     cpuc->event_list[n] = event;
1144     if (is_counter_pair(&event->hw)) {
1145         cpuc->n_pair++;
1146         cpuc->n_txn_pair++;
1147     }
1148 
1149     return 0;
1150 }
1151 
1152 /*
1153  * dogrp: true if must collect siblings events (group)
1154  * returns total number of events and error code
1155  */
1156 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1157 {
1158     int num_counters = hybrid(cpuc->pmu, num_counters);
1159     int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1160     struct perf_event *event;
1161     int n, max_count;
1162 
1163     max_count = num_counters + num_counters_fixed;
1164 
1165     /* current number of events already accepted */
1166     n = cpuc->n_events;
1167     if (!cpuc->n_events)
1168         cpuc->pebs_output = 0;
1169 
1170     if (!cpuc->is_fake && leader->attr.precise_ip) {
1171         /*
1172          * For PEBS->PT, if !aux_event, the group leader (PT) went
1173          * away, the group was broken down and this singleton event
1174          * can't schedule any more.
1175          */
1176         if (is_pebs_pt(leader) && !leader->aux_event)
1177             return -EINVAL;
1178 
1179         /*
1180          * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1181          */
1182         if (cpuc->pebs_output &&
1183             cpuc->pebs_output != is_pebs_pt(leader) + 1)
1184             return -EINVAL;
1185 
1186         cpuc->pebs_output = is_pebs_pt(leader) + 1;
1187     }
1188 
1189     if (is_x86_event(leader)) {
1190         if (collect_event(cpuc, leader, max_count, n))
1191             return -EINVAL;
1192         n++;
1193     }
1194 
1195     if (!dogrp)
1196         return n;
1197 
1198     for_each_sibling_event(event, leader) {
1199         if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1200             continue;
1201 
1202         if (collect_event(cpuc, event, max_count, n))
1203             return -EINVAL;
1204 
1205         n++;
1206     }
1207     return n;
1208 }
1209 
1210 static inline void x86_assign_hw_event(struct perf_event *event,
1211                 struct cpu_hw_events *cpuc, int i)
1212 {
1213     struct hw_perf_event *hwc = &event->hw;
1214     int idx;
1215 
1216     idx = hwc->idx = cpuc->assign[i];
1217     hwc->last_cpu = smp_processor_id();
1218     hwc->last_tag = ++cpuc->tags[i];
1219 
1220     static_call_cond(x86_pmu_assign)(event, idx);
1221 
1222     switch (hwc->idx) {
1223     case INTEL_PMC_IDX_FIXED_BTS:
1224     case INTEL_PMC_IDX_FIXED_VLBR:
1225         hwc->config_base = 0;
1226         hwc->event_base = 0;
1227         break;
1228 
1229     case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1230         /* All the metric events are mapped onto the fixed counter 3. */
1231         idx = INTEL_PMC_IDX_FIXED_SLOTS;
1232         fallthrough;
1233     case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1234         hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1235         hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1236                 (idx - INTEL_PMC_IDX_FIXED);
1237         hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1238                     INTEL_PMC_FIXED_RDPMC_BASE;
1239         break;
1240 
1241     default:
1242         hwc->config_base = x86_pmu_config_addr(hwc->idx);
1243         hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1244         hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1245         break;
1246     }
1247 }
1248 
1249 /**
1250  * x86_perf_rdpmc_index - Return PMC counter used for event
1251  * @event: the perf_event to which the PMC counter was assigned
1252  *
1253  * The counter assigned to this performance event may change if interrupts
1254  * are enabled. This counter should thus never be used while interrupts are
1255  * enabled. Before this function is used to obtain the assigned counter the
1256  * event should be checked for validity using, for example,
1257  * perf_event_read_local(), within the same interrupt disabled section in
1258  * which this counter is planned to be used.
1259  *
1260  * Return: The index of the performance monitoring counter assigned to
1261  * @perf_event.
1262  */
1263 int x86_perf_rdpmc_index(struct perf_event *event)
1264 {
1265     lockdep_assert_irqs_disabled();
1266 
1267     return event->hw.event_base_rdpmc;
1268 }
1269 
1270 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1271                     struct cpu_hw_events *cpuc,
1272                     int i)
1273 {
1274     return hwc->idx == cpuc->assign[i] &&
1275         hwc->last_cpu == smp_processor_id() &&
1276         hwc->last_tag == cpuc->tags[i];
1277 }
1278 
1279 static void x86_pmu_start(struct perf_event *event, int flags);
1280 
1281 static void x86_pmu_enable(struct pmu *pmu)
1282 {
1283     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1284     struct perf_event *event;
1285     struct hw_perf_event *hwc;
1286     int i, added = cpuc->n_added;
1287 
1288     if (!x86_pmu_initialized())
1289         return;
1290 
1291     if (cpuc->enabled)
1292         return;
1293 
1294     if (cpuc->n_added) {
1295         int n_running = cpuc->n_events - cpuc->n_added;
1296         /*
1297          * apply assignment obtained either from
1298          * hw_perf_group_sched_in() or x86_pmu_enable()
1299          *
1300          * step1: save events moving to new counters
1301          */
1302         for (i = 0; i < n_running; i++) {
1303             event = cpuc->event_list[i];
1304             hwc = &event->hw;
1305 
1306             /*
1307              * we can avoid reprogramming counter if:
1308              * - assigned same counter as last time
1309              * - running on same CPU as last time
1310              * - no other event has used the counter since
1311              */
1312             if (hwc->idx == -1 ||
1313                 match_prev_assignment(hwc, cpuc, i))
1314                 continue;
1315 
1316             /*
1317              * Ensure we don't accidentally enable a stopped
1318              * counter simply because we rescheduled.
1319              */
1320             if (hwc->state & PERF_HES_STOPPED)
1321                 hwc->state |= PERF_HES_ARCH;
1322 
1323             x86_pmu_stop(event, PERF_EF_UPDATE);
1324         }
1325 
1326         /*
1327          * step2: reprogram moved events into new counters
1328          */
1329         for (i = 0; i < cpuc->n_events; i++) {
1330             event = cpuc->event_list[i];
1331             hwc = &event->hw;
1332 
1333             if (!match_prev_assignment(hwc, cpuc, i))
1334                 x86_assign_hw_event(event, cpuc, i);
1335             else if (i < n_running)
1336                 continue;
1337 
1338             if (hwc->state & PERF_HES_ARCH)
1339                 continue;
1340 
1341             /*
1342              * if cpuc->enabled = 0, then no wrmsr as
1343              * per x86_pmu_enable_event()
1344              */
1345             x86_pmu_start(event, PERF_EF_RELOAD);
1346         }
1347         cpuc->n_added = 0;
1348         perf_events_lapic_init();
1349     }
1350 
1351     cpuc->enabled = 1;
1352     barrier();
1353 
1354     static_call(x86_pmu_enable_all)(added);
1355 }
1356 
1357 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1358 
1359 /*
1360  * Set the next IRQ period, based on the hwc->period_left value.
1361  * To be called with the event disabled in hw:
1362  */
1363 int x86_perf_event_set_period(struct perf_event *event)
1364 {
1365     struct hw_perf_event *hwc = &event->hw;
1366     s64 left = local64_read(&hwc->period_left);
1367     s64 period = hwc->sample_period;
1368     int ret = 0, idx = hwc->idx;
1369 
1370     if (unlikely(!hwc->event_base))
1371         return 0;
1372 
1373     if (unlikely(is_topdown_count(event)) &&
1374         x86_pmu.set_topdown_event_period)
1375         return x86_pmu.set_topdown_event_period(event);
1376 
1377     /*
1378      * If we are way outside a reasonable range then just skip forward:
1379      */
1380     if (unlikely(left <= -period)) {
1381         left = period;
1382         local64_set(&hwc->period_left, left);
1383         hwc->last_period = period;
1384         ret = 1;
1385     }
1386 
1387     if (unlikely(left <= 0)) {
1388         left += period;
1389         local64_set(&hwc->period_left, left);
1390         hwc->last_period = period;
1391         ret = 1;
1392     }
1393     /*
1394      * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1395      */
1396     if (unlikely(left < 2))
1397         left = 2;
1398 
1399     if (left > x86_pmu.max_period)
1400         left = x86_pmu.max_period;
1401 
1402     if (x86_pmu.limit_period)
1403         left = x86_pmu.limit_period(event, left);
1404 
1405     per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1406 
1407     /*
1408      * The hw event starts counting from this event offset,
1409      * mark it to be able to extra future deltas:
1410      */
1411     local64_set(&hwc->prev_count, (u64)-left);
1412 
1413     wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1414 
1415     /*
1416      * Sign extend the Merge event counter's upper 16 bits since
1417      * we currently declare a 48-bit counter width
1418      */
1419     if (is_counter_pair(hwc))
1420         wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1421 
1422     /*
1423      * Due to erratum on certan cpu we need
1424      * a second write to be sure the register
1425      * is updated properly
1426      */
1427     if (x86_pmu.perfctr_second_write) {
1428         wrmsrl(hwc->event_base,
1429             (u64)(-left) & x86_pmu.cntval_mask);
1430     }
1431 
1432     perf_event_update_userpage(event);
1433 
1434     return ret;
1435 }
1436 
1437 void x86_pmu_enable_event(struct perf_event *event)
1438 {
1439     if (__this_cpu_read(cpu_hw_events.enabled))
1440         __x86_pmu_enable_event(&event->hw,
1441                        ARCH_PERFMON_EVENTSEL_ENABLE);
1442 }
1443 
1444 /*
1445  * Add a single event to the PMU.
1446  *
1447  * The event is added to the group of enabled events
1448  * but only if it can be scheduled with existing events.
1449  */
1450 static int x86_pmu_add(struct perf_event *event, int flags)
1451 {
1452     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1453     struct hw_perf_event *hwc;
1454     int assign[X86_PMC_IDX_MAX];
1455     int n, n0, ret;
1456 
1457     hwc = &event->hw;
1458 
1459     n0 = cpuc->n_events;
1460     ret = n = collect_events(cpuc, event, false);
1461     if (ret < 0)
1462         goto out;
1463 
1464     hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1465     if (!(flags & PERF_EF_START))
1466         hwc->state |= PERF_HES_ARCH;
1467 
1468     /*
1469      * If group events scheduling transaction was started,
1470      * skip the schedulability test here, it will be performed
1471      * at commit time (->commit_txn) as a whole.
1472      *
1473      * If commit fails, we'll call ->del() on all events
1474      * for which ->add() was called.
1475      */
1476     if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1477         goto done_collect;
1478 
1479     ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1480     if (ret)
1481         goto out;
1482     /*
1483      * copy new assignment, now we know it is possible
1484      * will be used by hw_perf_enable()
1485      */
1486     memcpy(cpuc->assign, assign, n*sizeof(int));
1487 
1488 done_collect:
1489     /*
1490      * Commit the collect_events() state. See x86_pmu_del() and
1491      * x86_pmu_*_txn().
1492      */
1493     cpuc->n_events = n;
1494     cpuc->n_added += n - n0;
1495     cpuc->n_txn += n - n0;
1496 
1497     /*
1498      * This is before x86_pmu_enable() will call x86_pmu_start(),
1499      * so we enable LBRs before an event needs them etc..
1500      */
1501     static_call_cond(x86_pmu_add)(event);
1502 
1503     ret = 0;
1504 out:
1505     return ret;
1506 }
1507 
1508 static void x86_pmu_start(struct perf_event *event, int flags)
1509 {
1510     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1511     int idx = event->hw.idx;
1512 
1513     if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1514         return;
1515 
1516     if (WARN_ON_ONCE(idx == -1))
1517         return;
1518 
1519     if (flags & PERF_EF_RELOAD) {
1520         WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1521         x86_perf_event_set_period(event);
1522     }
1523 
1524     event->hw.state = 0;
1525 
1526     cpuc->events[idx] = event;
1527     __set_bit(idx, cpuc->active_mask);
1528     static_call(x86_pmu_enable)(event);
1529     perf_event_update_userpage(event);
1530 }
1531 
1532 void perf_event_print_debug(void)
1533 {
1534     u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1535     u64 pebs, debugctl;
1536     int cpu = smp_processor_id();
1537     struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1538     int num_counters = hybrid(cpuc->pmu, num_counters);
1539     int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1540     struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1541     unsigned long flags;
1542     int idx;
1543 
1544     if (!num_counters)
1545         return;
1546 
1547     local_irq_save(flags);
1548 
1549     if (x86_pmu.version >= 2) {
1550         rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1551         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1552         rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1553         rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1554 
1555         pr_info("\n");
1556         pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1557         pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1558         pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1559         pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1560         if (pebs_constraints) {
1561             rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1562             pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1563         }
1564         if (x86_pmu.lbr_nr) {
1565             rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1566             pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1567         }
1568     }
1569     pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1570 
1571     for (idx = 0; idx < num_counters; idx++) {
1572         rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1573         rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1574 
1575         prev_left = per_cpu(pmc_prev_left[idx], cpu);
1576 
1577         pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1578             cpu, idx, pmc_ctrl);
1579         pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1580             cpu, idx, pmc_count);
1581         pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1582             cpu, idx, prev_left);
1583     }
1584     for (idx = 0; idx < num_counters_fixed; idx++) {
1585         if (fixed_counter_disabled(idx, cpuc->pmu))
1586             continue;
1587         rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1588 
1589         pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1590             cpu, idx, pmc_count);
1591     }
1592     local_irq_restore(flags);
1593 }
1594 
1595 void x86_pmu_stop(struct perf_event *event, int flags)
1596 {
1597     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1598     struct hw_perf_event *hwc = &event->hw;
1599 
1600     if (test_bit(hwc->idx, cpuc->active_mask)) {
1601         static_call(x86_pmu_disable)(event);
1602         __clear_bit(hwc->idx, cpuc->active_mask);
1603         cpuc->events[hwc->idx] = NULL;
1604         WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1605         hwc->state |= PERF_HES_STOPPED;
1606     }
1607 
1608     if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1609         /*
1610          * Drain the remaining delta count out of a event
1611          * that we are disabling:
1612          */
1613         x86_perf_event_update(event);
1614         hwc->state |= PERF_HES_UPTODATE;
1615     }
1616 }
1617 
1618 static void x86_pmu_del(struct perf_event *event, int flags)
1619 {
1620     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1621     union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1622     int i;
1623 
1624     /*
1625      * If we're called during a txn, we only need to undo x86_pmu.add.
1626      * The events never got scheduled and ->cancel_txn will truncate
1627      * the event_list.
1628      *
1629      * XXX assumes any ->del() called during a TXN will only be on
1630      * an event added during that same TXN.
1631      */
1632     if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1633         goto do_del;
1634 
1635     __set_bit(event->hw.idx, cpuc->dirty);
1636 
1637     /*
1638      * Not a TXN, therefore cleanup properly.
1639      */
1640     x86_pmu_stop(event, PERF_EF_UPDATE);
1641 
1642     for (i = 0; i < cpuc->n_events; i++) {
1643         if (event == cpuc->event_list[i])
1644             break;
1645     }
1646 
1647     if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1648         return;
1649 
1650     /* If we have a newly added event; make sure to decrease n_added. */
1651     if (i >= cpuc->n_events - cpuc->n_added)
1652         --cpuc->n_added;
1653 
1654     static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1655 
1656     /* Delete the array entry. */
1657     while (++i < cpuc->n_events) {
1658         cpuc->event_list[i-1] = cpuc->event_list[i];
1659         cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1660     }
1661     cpuc->event_constraint[i-1] = NULL;
1662     --cpuc->n_events;
1663     if (intel_cap.perf_metrics)
1664         del_nr_metric_event(cpuc, event);
1665 
1666     perf_event_update_userpage(event);
1667 
1668 do_del:
1669 
1670     /*
1671      * This is after x86_pmu_stop(); so we disable LBRs after any
1672      * event can need them etc..
1673      */
1674     static_call_cond(x86_pmu_del)(event);
1675 }
1676 
1677 int x86_pmu_handle_irq(struct pt_regs *regs)
1678 {
1679     struct perf_sample_data data;
1680     struct cpu_hw_events *cpuc;
1681     struct perf_event *event;
1682     int idx, handled = 0;
1683     u64 val;
1684 
1685     cpuc = this_cpu_ptr(&cpu_hw_events);
1686 
1687     /*
1688      * Some chipsets need to unmask the LVTPC in a particular spot
1689      * inside the nmi handler.  As a result, the unmasking was pushed
1690      * into all the nmi handlers.
1691      *
1692      * This generic handler doesn't seem to have any issues where the
1693      * unmasking occurs so it was left at the top.
1694      */
1695     apic_write(APIC_LVTPC, APIC_DM_NMI);
1696 
1697     for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1698         if (!test_bit(idx, cpuc->active_mask))
1699             continue;
1700 
1701         event = cpuc->events[idx];
1702 
1703         val = x86_perf_event_update(event);
1704         if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1705             continue;
1706 
1707         /*
1708          * event overflow
1709          */
1710         handled++;
1711 
1712         if (!x86_perf_event_set_period(event))
1713             continue;
1714 
1715         perf_sample_data_init(&data, 0, event->hw.last_period);
1716 
1717         if (has_branch_stack(event))
1718             data.br_stack = &cpuc->lbr_stack;
1719 
1720         if (perf_event_overflow(event, &data, regs))
1721             x86_pmu_stop(event, 0);
1722     }
1723 
1724     if (handled)
1725         inc_irq_stat(apic_perf_irqs);
1726 
1727     return handled;
1728 }
1729 
1730 void perf_events_lapic_init(void)
1731 {
1732     if (!x86_pmu.apic || !x86_pmu_initialized())
1733         return;
1734 
1735     /*
1736      * Always use NMI for PMU
1737      */
1738     apic_write(APIC_LVTPC, APIC_DM_NMI);
1739 }
1740 
1741 static int
1742 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1743 {
1744     u64 start_clock;
1745     u64 finish_clock;
1746     int ret;
1747 
1748     /*
1749      * All PMUs/events that share this PMI handler should make sure to
1750      * increment active_events for their events.
1751      */
1752     if (!atomic_read(&active_events))
1753         return NMI_DONE;
1754 
1755     start_clock = sched_clock();
1756     ret = static_call(x86_pmu_handle_irq)(regs);
1757     finish_clock = sched_clock();
1758 
1759     perf_sample_event_took(finish_clock - start_clock);
1760 
1761     return ret;
1762 }
1763 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1764 
1765 struct event_constraint emptyconstraint;
1766 struct event_constraint unconstrained;
1767 
1768 static int x86_pmu_prepare_cpu(unsigned int cpu)
1769 {
1770     struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1771     int i;
1772 
1773     for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1774         cpuc->kfree_on_online[i] = NULL;
1775     if (x86_pmu.cpu_prepare)
1776         return x86_pmu.cpu_prepare(cpu);
1777     return 0;
1778 }
1779 
1780 static int x86_pmu_dead_cpu(unsigned int cpu)
1781 {
1782     if (x86_pmu.cpu_dead)
1783         x86_pmu.cpu_dead(cpu);
1784     return 0;
1785 }
1786 
1787 static int x86_pmu_online_cpu(unsigned int cpu)
1788 {
1789     struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1790     int i;
1791 
1792     for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1793         kfree(cpuc->kfree_on_online[i]);
1794         cpuc->kfree_on_online[i] = NULL;
1795     }
1796     return 0;
1797 }
1798 
1799 static int x86_pmu_starting_cpu(unsigned int cpu)
1800 {
1801     if (x86_pmu.cpu_starting)
1802         x86_pmu.cpu_starting(cpu);
1803     return 0;
1804 }
1805 
1806 static int x86_pmu_dying_cpu(unsigned int cpu)
1807 {
1808     if (x86_pmu.cpu_dying)
1809         x86_pmu.cpu_dying(cpu);
1810     return 0;
1811 }
1812 
1813 static void __init pmu_check_apic(void)
1814 {
1815     if (boot_cpu_has(X86_FEATURE_APIC))
1816         return;
1817 
1818     x86_pmu.apic = 0;
1819     pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1820     pr_info("no hardware sampling interrupt available.\n");
1821 
1822     /*
1823      * If we have a PMU initialized but no APIC
1824      * interrupts, we cannot sample hardware
1825      * events (user-space has to fall back and
1826      * sample via a hrtimer based software event):
1827      */
1828     pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1829 
1830 }
1831 
1832 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1833     .name = "format",
1834     .attrs = NULL,
1835 };
1836 
1837 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1838 {
1839     struct perf_pmu_events_attr *pmu_attr =
1840         container_of(attr, struct perf_pmu_events_attr, attr);
1841     u64 config = 0;
1842 
1843     if (pmu_attr->id < x86_pmu.max_events)
1844         config = x86_pmu.event_map(pmu_attr->id);
1845 
1846     /* string trumps id */
1847     if (pmu_attr->event_str)
1848         return sprintf(page, "%s\n", pmu_attr->event_str);
1849 
1850     return x86_pmu.events_sysfs_show(page, config);
1851 }
1852 EXPORT_SYMBOL_GPL(events_sysfs_show);
1853 
1854 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1855               char *page)
1856 {
1857     struct perf_pmu_events_ht_attr *pmu_attr =
1858         container_of(attr, struct perf_pmu_events_ht_attr, attr);
1859 
1860     /*
1861      * Report conditional events depending on Hyper-Threading.
1862      *
1863      * This is overly conservative as usually the HT special
1864      * handling is not needed if the other CPU thread is idle.
1865      *
1866      * Note this does not (and cannot) handle the case when thread
1867      * siblings are invisible, for example with virtualization
1868      * if they are owned by some other guest.  The user tool
1869      * has to re-read when a thread sibling gets onlined later.
1870      */
1871     return sprintf(page, "%s",
1872             topology_max_smt_threads() > 1 ?
1873             pmu_attr->event_str_ht :
1874             pmu_attr->event_str_noht);
1875 }
1876 
1877 ssize_t events_hybrid_sysfs_show(struct device *dev,
1878                  struct device_attribute *attr,
1879                  char *page)
1880 {
1881     struct perf_pmu_events_hybrid_attr *pmu_attr =
1882         container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1883     struct x86_hybrid_pmu *pmu;
1884     const char *str, *next_str;
1885     int i;
1886 
1887     if (hweight64(pmu_attr->pmu_type) == 1)
1888         return sprintf(page, "%s", pmu_attr->event_str);
1889 
1890     /*
1891      * Hybrid PMUs may support the same event name, but with different
1892      * event encoding, e.g., the mem-loads event on an Atom PMU has
1893      * different event encoding from a Core PMU.
1894      *
1895      * The event_str includes all event encodings. Each event encoding
1896      * is divided by ";". The order of the event encodings must follow
1897      * the order of the hybrid PMU index.
1898      */
1899     pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1900 
1901     str = pmu_attr->event_str;
1902     for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1903         if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1904             continue;
1905         if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1906             next_str = strchr(str, ';');
1907             if (next_str)
1908                 return snprintf(page, next_str - str + 1, "%s", str);
1909             else
1910                 return sprintf(page, "%s", str);
1911         }
1912         str = strchr(str, ';');
1913         str++;
1914     }
1915 
1916     return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1919 
1920 EVENT_ATTR(cpu-cycles,          CPU_CYCLES      );
1921 EVENT_ATTR(instructions,        INSTRUCTIONS        );
1922 EVENT_ATTR(cache-references,        CACHE_REFERENCES    );
1923 EVENT_ATTR(cache-misses,        CACHE_MISSES        );
1924 EVENT_ATTR(branch-instructions,     BRANCH_INSTRUCTIONS );
1925 EVENT_ATTR(branch-misses,       BRANCH_MISSES       );
1926 EVENT_ATTR(bus-cycles,          BUS_CYCLES      );
1927 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1928 EVENT_ATTR(stalled-cycles-backend,  STALLED_CYCLES_BACKEND  );
1929 EVENT_ATTR(ref-cycles,          REF_CPU_CYCLES      );
1930 
1931 static struct attribute *empty_attrs;
1932 
1933 static struct attribute *events_attr[] = {
1934     EVENT_PTR(CPU_CYCLES),
1935     EVENT_PTR(INSTRUCTIONS),
1936     EVENT_PTR(CACHE_REFERENCES),
1937     EVENT_PTR(CACHE_MISSES),
1938     EVENT_PTR(BRANCH_INSTRUCTIONS),
1939     EVENT_PTR(BRANCH_MISSES),
1940     EVENT_PTR(BUS_CYCLES),
1941     EVENT_PTR(STALLED_CYCLES_FRONTEND),
1942     EVENT_PTR(STALLED_CYCLES_BACKEND),
1943     EVENT_PTR(REF_CPU_CYCLES),
1944     NULL,
1945 };
1946 
1947 /*
1948  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1949  * out of events_attr attributes.
1950  */
1951 static umode_t
1952 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1953 {
1954     struct perf_pmu_events_attr *pmu_attr;
1955 
1956     if (idx >= x86_pmu.max_events)
1957         return 0;
1958 
1959     pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1960     /* str trumps id */
1961     return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1962 }
1963 
1964 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1965     .name = "events",
1966     .attrs = events_attr,
1967     .is_visible = is_visible,
1968 };
1969 
1970 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1971 {
1972     u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1973     u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1974     bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1975     bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1976     bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1977     bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1978     ssize_t ret;
1979 
1980     /*
1981     * We have whole page size to spend and just little data
1982     * to write, so we can safely use sprintf.
1983     */
1984     ret = sprintf(page, "event=0x%02llx", event);
1985 
1986     if (umask)
1987         ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1988 
1989     if (edge)
1990         ret += sprintf(page + ret, ",edge");
1991 
1992     if (pc)
1993         ret += sprintf(page + ret, ",pc");
1994 
1995     if (any)
1996         ret += sprintf(page + ret, ",any");
1997 
1998     if (inv)
1999         ret += sprintf(page + ret, ",inv");
2000 
2001     if (cmask)
2002         ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
2003 
2004     ret += sprintf(page + ret, "\n");
2005 
2006     return ret;
2007 }
2008 
2009 static struct attribute_group x86_pmu_attr_group;
2010 static struct attribute_group x86_pmu_caps_group;
2011 
2012 static void x86_pmu_static_call_update(void)
2013 {
2014     static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2015     static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2016     static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2017     static_call_update(x86_pmu_enable, x86_pmu.enable);
2018     static_call_update(x86_pmu_disable, x86_pmu.disable);
2019 
2020     static_call_update(x86_pmu_assign, x86_pmu.assign);
2021 
2022     static_call_update(x86_pmu_add, x86_pmu.add);
2023     static_call_update(x86_pmu_del, x86_pmu.del);
2024     static_call_update(x86_pmu_read, x86_pmu.read);
2025 
2026     static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2027     static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2028     static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2029 
2030     static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2031     static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2032     static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2033 
2034     static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2035     static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2036 
2037     static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2038     static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2039 
2040     static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2041 }
2042 
2043 static void _x86_pmu_read(struct perf_event *event)
2044 {
2045     x86_perf_event_update(event);
2046 }
2047 
2048 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2049               u64 intel_ctrl)
2050 {
2051     pr_info("... version:                %d\n",     x86_pmu.version);
2052     pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2053     pr_info("... generic registers:      %d\n",     num_counters);
2054     pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2055     pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2056     pr_info("... fixed-purpose events:   %lu\n",
2057             hweight64((((1ULL << num_counters_fixed) - 1)
2058                     << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2059     pr_info("... event mask:             %016Lx\n", intel_ctrl);
2060 }
2061 
2062 /*
2063  * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2064  * of the first registered PMU is unconditionally assigned to
2065  * each possible cpuctx->ctx.pmu.
2066  * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2067  */
2068 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2069 {
2070     struct perf_cpu_context *cpuctx;
2071 
2072     if (!pmu->pmu_cpu_context)
2073         return;
2074 
2075     cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2076     cpuctx->ctx.pmu = pmu;
2077 }
2078 
2079 static int __init init_hw_perf_events(void)
2080 {
2081     struct x86_pmu_quirk *quirk;
2082     int err;
2083 
2084     pr_info("Performance Events: ");
2085 
2086     switch (boot_cpu_data.x86_vendor) {
2087     case X86_VENDOR_INTEL:
2088         err = intel_pmu_init();
2089         break;
2090     case X86_VENDOR_AMD:
2091         err = amd_pmu_init();
2092         break;
2093     case X86_VENDOR_HYGON:
2094         err = amd_pmu_init();
2095         x86_pmu.name = "HYGON";
2096         break;
2097     case X86_VENDOR_ZHAOXIN:
2098     case X86_VENDOR_CENTAUR:
2099         err = zhaoxin_pmu_init();
2100         break;
2101     default:
2102         err = -ENOTSUPP;
2103     }
2104     if (err != 0) {
2105         pr_cont("no PMU driver, software events only.\n");
2106         err = 0;
2107         goto out_bad_pmu;
2108     }
2109 
2110     pmu_check_apic();
2111 
2112     /* sanity check that the hardware exists or is emulated */
2113     if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2114         goto out_bad_pmu;
2115 
2116     pr_cont("%s PMU driver.\n", x86_pmu.name);
2117 
2118     x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2119 
2120     for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2121         quirk->func();
2122 
2123     if (!x86_pmu.intel_ctrl)
2124         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2125 
2126     perf_events_lapic_init();
2127     register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2128 
2129     unconstrained = (struct event_constraint)
2130         __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2131                    0, x86_pmu.num_counters, 0, 0);
2132 
2133     x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2134 
2135     if (!x86_pmu.events_sysfs_show)
2136         x86_pmu_events_group.attrs = &empty_attrs;
2137 
2138     pmu.attr_update = x86_pmu.attr_update;
2139 
2140     if (!is_hybrid()) {
2141         x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2142                      x86_pmu.num_counters_fixed,
2143                      x86_pmu.intel_ctrl);
2144     }
2145 
2146     if (!x86_pmu.read)
2147         x86_pmu.read = _x86_pmu_read;
2148 
2149     if (!x86_pmu.guest_get_msrs)
2150         x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2151 
2152     x86_pmu_static_call_update();
2153 
2154     /*
2155      * Install callbacks. Core will call them for each online
2156      * cpu.
2157      */
2158     err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2159                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2160     if (err)
2161         return err;
2162 
2163     err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2164                 "perf/x86:starting", x86_pmu_starting_cpu,
2165                 x86_pmu_dying_cpu);
2166     if (err)
2167         goto out;
2168 
2169     err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2170                 x86_pmu_online_cpu, NULL);
2171     if (err)
2172         goto out1;
2173 
2174     if (!is_hybrid()) {
2175         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2176         if (err)
2177             goto out2;
2178     } else {
2179         u8 cpu_type = get_this_hybrid_cpu_type();
2180         struct x86_hybrid_pmu *hybrid_pmu;
2181         int i, j;
2182 
2183         if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2184             cpu_type = x86_pmu.get_hybrid_cpu_type();
2185 
2186         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2187             hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2188 
2189             hybrid_pmu->pmu = pmu;
2190             hybrid_pmu->pmu.type = -1;
2191             hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2192             hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2193             hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2194 
2195             err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2196                         (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2197             if (err)
2198                 break;
2199 
2200             if (cpu_type == hybrid_pmu->cpu_type)
2201                 x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2202         }
2203 
2204         if (i < x86_pmu.num_hybrid_pmus) {
2205             for (j = 0; j < i; j++)
2206                 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2207             pr_warn("Failed to register hybrid PMUs\n");
2208             kfree(x86_pmu.hybrid_pmu);
2209             x86_pmu.hybrid_pmu = NULL;
2210             x86_pmu.num_hybrid_pmus = 0;
2211             goto out2;
2212         }
2213     }
2214 
2215     return 0;
2216 
2217 out2:
2218     cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2219 out1:
2220     cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2221 out:
2222     cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2223 out_bad_pmu:
2224     memset(&x86_pmu, 0, sizeof(x86_pmu));
2225     return err;
2226 }
2227 early_initcall(init_hw_perf_events);
2228 
2229 static void x86_pmu_read(struct perf_event *event)
2230 {
2231     static_call(x86_pmu_read)(event);
2232 }
2233 
2234 /*
2235  * Start group events scheduling transaction
2236  * Set the flag to make pmu::enable() not perform the
2237  * schedulability test, it will be performed at commit time
2238  *
2239  * We only support PERF_PMU_TXN_ADD transactions. Save the
2240  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2241  * transactions.
2242  */
2243 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2244 {
2245     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2246 
2247     WARN_ON_ONCE(cpuc->txn_flags);      /* txn already in flight */
2248 
2249     cpuc->txn_flags = txn_flags;
2250     if (txn_flags & ~PERF_PMU_TXN_ADD)
2251         return;
2252 
2253     perf_pmu_disable(pmu);
2254     __this_cpu_write(cpu_hw_events.n_txn, 0);
2255     __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2256     __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2257 }
2258 
2259 /*
2260  * Stop group events scheduling transaction
2261  * Clear the flag and pmu::enable() will perform the
2262  * schedulability test.
2263  */
2264 static void x86_pmu_cancel_txn(struct pmu *pmu)
2265 {
2266     unsigned int txn_flags;
2267     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2268 
2269     WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2270 
2271     txn_flags = cpuc->txn_flags;
2272     cpuc->txn_flags = 0;
2273     if (txn_flags & ~PERF_PMU_TXN_ADD)
2274         return;
2275 
2276     /*
2277      * Truncate collected array by the number of events added in this
2278      * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2279      */
2280     __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2281     __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2282     __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2283     __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2284     perf_pmu_enable(pmu);
2285 }
2286 
2287 /*
2288  * Commit group events scheduling transaction
2289  * Perform the group schedulability test as a whole
2290  * Return 0 if success
2291  *
2292  * Does not cancel the transaction on failure; expects the caller to do this.
2293  */
2294 static int x86_pmu_commit_txn(struct pmu *pmu)
2295 {
2296     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2297     int assign[X86_PMC_IDX_MAX];
2298     int n, ret;
2299 
2300     WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2301 
2302     if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2303         cpuc->txn_flags = 0;
2304         return 0;
2305     }
2306 
2307     n = cpuc->n_events;
2308 
2309     if (!x86_pmu_initialized())
2310         return -EAGAIN;
2311 
2312     ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2313     if (ret)
2314         return ret;
2315 
2316     /*
2317      * copy new assignment, now we know it is possible
2318      * will be used by hw_perf_enable()
2319      */
2320     memcpy(cpuc->assign, assign, n*sizeof(int));
2321 
2322     cpuc->txn_flags = 0;
2323     perf_pmu_enable(pmu);
2324     return 0;
2325 }
2326 /*
2327  * a fake_cpuc is used to validate event groups. Due to
2328  * the extra reg logic, we need to also allocate a fake
2329  * per_core and per_cpu structure. Otherwise, group events
2330  * using extra reg may conflict without the kernel being
2331  * able to catch this when the last event gets added to
2332  * the group.
2333  */
2334 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2335 {
2336     intel_cpuc_finish(cpuc);
2337     kfree(cpuc);
2338 }
2339 
2340 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2341 {
2342     struct cpu_hw_events *cpuc;
2343     int cpu;
2344 
2345     cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2346     if (!cpuc)
2347         return ERR_PTR(-ENOMEM);
2348     cpuc->is_fake = 1;
2349 
2350     if (is_hybrid()) {
2351         struct x86_hybrid_pmu *h_pmu;
2352 
2353         h_pmu = hybrid_pmu(event_pmu);
2354         if (cpumask_empty(&h_pmu->supported_cpus))
2355             goto error;
2356         cpu = cpumask_first(&h_pmu->supported_cpus);
2357     } else
2358         cpu = raw_smp_processor_id();
2359     cpuc->pmu = event_pmu;
2360 
2361     if (intel_cpuc_prepare(cpuc, cpu))
2362         goto error;
2363 
2364     return cpuc;
2365 error:
2366     free_fake_cpuc(cpuc);
2367     return ERR_PTR(-ENOMEM);
2368 }
2369 
2370 /*
2371  * validate that we can schedule this event
2372  */
2373 static int validate_event(struct perf_event *event)
2374 {
2375     struct cpu_hw_events *fake_cpuc;
2376     struct event_constraint *c;
2377     int ret = 0;
2378 
2379     fake_cpuc = allocate_fake_cpuc(event->pmu);
2380     if (IS_ERR(fake_cpuc))
2381         return PTR_ERR(fake_cpuc);
2382 
2383     c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2384 
2385     if (!c || !c->weight)
2386         ret = -EINVAL;
2387 
2388     if (x86_pmu.put_event_constraints)
2389         x86_pmu.put_event_constraints(fake_cpuc, event);
2390 
2391     free_fake_cpuc(fake_cpuc);
2392 
2393     return ret;
2394 }
2395 
2396 /*
2397  * validate a single event group
2398  *
2399  * validation include:
2400  *  - check events are compatible which each other
2401  *  - events do not compete for the same counter
2402  *  - number of events <= number of counters
2403  *
2404  * validation ensures the group can be loaded onto the
2405  * PMU if it was the only group available.
2406  */
2407 static int validate_group(struct perf_event *event)
2408 {
2409     struct perf_event *leader = event->group_leader;
2410     struct cpu_hw_events *fake_cpuc;
2411     int ret = -EINVAL, n;
2412 
2413     /*
2414      * Reject events from different hybrid PMUs.
2415      */
2416     if (is_hybrid()) {
2417         struct perf_event *sibling;
2418         struct pmu *pmu = NULL;
2419 
2420         if (is_x86_event(leader))
2421             pmu = leader->pmu;
2422 
2423         for_each_sibling_event(sibling, leader) {
2424             if (!is_x86_event(sibling))
2425                 continue;
2426             if (!pmu)
2427                 pmu = sibling->pmu;
2428             else if (pmu != sibling->pmu)
2429                 return ret;
2430         }
2431     }
2432 
2433     fake_cpuc = allocate_fake_cpuc(event->pmu);
2434     if (IS_ERR(fake_cpuc))
2435         return PTR_ERR(fake_cpuc);
2436     /*
2437      * the event is not yet connected with its
2438      * siblings therefore we must first collect
2439      * existing siblings, then add the new event
2440      * before we can simulate the scheduling
2441      */
2442     n = collect_events(fake_cpuc, leader, true);
2443     if (n < 0)
2444         goto out;
2445 
2446     fake_cpuc->n_events = n;
2447     n = collect_events(fake_cpuc, event, false);
2448     if (n < 0)
2449         goto out;
2450 
2451     fake_cpuc->n_events = 0;
2452     ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2453 
2454 out:
2455     free_fake_cpuc(fake_cpuc);
2456     return ret;
2457 }
2458 
2459 static int x86_pmu_event_init(struct perf_event *event)
2460 {
2461     struct x86_hybrid_pmu *pmu = NULL;
2462     int err;
2463 
2464     if ((event->attr.type != event->pmu->type) &&
2465         (event->attr.type != PERF_TYPE_HARDWARE) &&
2466         (event->attr.type != PERF_TYPE_HW_CACHE))
2467         return -ENOENT;
2468 
2469     if (is_hybrid() && (event->cpu != -1)) {
2470         pmu = hybrid_pmu(event->pmu);
2471         if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2472             return -ENOENT;
2473     }
2474 
2475     err = __x86_pmu_event_init(event);
2476     if (!err) {
2477         if (event->group_leader != event)
2478             err = validate_group(event);
2479         else
2480             err = validate_event(event);
2481     }
2482     if (err) {
2483         if (event->destroy)
2484             event->destroy(event);
2485         event->destroy = NULL;
2486     }
2487 
2488     if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2489         !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2490         event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2491 
2492     return err;
2493 }
2494 
2495 void perf_clear_dirty_counters(void)
2496 {
2497     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2498     int i;
2499 
2500      /* Don't need to clear the assigned counter. */
2501     for (i = 0; i < cpuc->n_events; i++)
2502         __clear_bit(cpuc->assign[i], cpuc->dirty);
2503 
2504     if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2505         return;
2506 
2507     for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2508         if (i >= INTEL_PMC_IDX_FIXED) {
2509             /* Metrics and fake events don't have corresponding HW counters. */
2510             if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2511                 continue;
2512 
2513             wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2514         } else {
2515             wrmsrl(x86_pmu_event_addr(i), 0);
2516         }
2517     }
2518 
2519     bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2520 }
2521 
2522 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2523 {
2524     if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2525         return;
2526 
2527     /*
2528      * This function relies on not being called concurrently in two
2529      * tasks in the same mm.  Otherwise one task could observe
2530      * perf_rdpmc_allowed > 1 and return all the way back to
2531      * userspace with CR4.PCE clear while another task is still
2532      * doing on_each_cpu_mask() to propagate CR4.PCE.
2533      *
2534      * For now, this can't happen because all callers hold mmap_lock
2535      * for write.  If this changes, we'll need a different solution.
2536      */
2537     mmap_assert_write_locked(mm);
2538 
2539     if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2540         on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2541 }
2542 
2543 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2544 {
2545     if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2546         return;
2547 
2548     if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2549         on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2550 }
2551 
2552 static int x86_pmu_event_idx(struct perf_event *event)
2553 {
2554     struct hw_perf_event *hwc = &event->hw;
2555 
2556     if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2557         return 0;
2558 
2559     if (is_metric_idx(hwc->idx))
2560         return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2561     else
2562         return hwc->event_base_rdpmc + 1;
2563 }
2564 
2565 static ssize_t get_attr_rdpmc(struct device *cdev,
2566                   struct device_attribute *attr,
2567                   char *buf)
2568 {
2569     return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2570 }
2571 
2572 static ssize_t set_attr_rdpmc(struct device *cdev,
2573                   struct device_attribute *attr,
2574                   const char *buf, size_t count)
2575 {
2576     unsigned long val;
2577     ssize_t ret;
2578 
2579     ret = kstrtoul(buf, 0, &val);
2580     if (ret)
2581         return ret;
2582 
2583     if (val > 2)
2584         return -EINVAL;
2585 
2586     if (x86_pmu.attr_rdpmc_broken)
2587         return -ENOTSUPP;
2588 
2589     if (val != x86_pmu.attr_rdpmc) {
2590         /*
2591          * Changing into or out of never available or always available,
2592          * aka perf-event-bypassing mode. This path is extremely slow,
2593          * but only root can trigger it, so it's okay.
2594          */
2595         if (val == 0)
2596             static_branch_inc(&rdpmc_never_available_key);
2597         else if (x86_pmu.attr_rdpmc == 0)
2598             static_branch_dec(&rdpmc_never_available_key);
2599 
2600         if (val == 2)
2601             static_branch_inc(&rdpmc_always_available_key);
2602         else if (x86_pmu.attr_rdpmc == 2)
2603             static_branch_dec(&rdpmc_always_available_key);
2604 
2605         on_each_cpu(cr4_update_pce, NULL, 1);
2606         x86_pmu.attr_rdpmc = val;
2607     }
2608 
2609     return count;
2610 }
2611 
2612 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2613 
2614 static struct attribute *x86_pmu_attrs[] = {
2615     &dev_attr_rdpmc.attr,
2616     NULL,
2617 };
2618 
2619 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2620     .attrs = x86_pmu_attrs,
2621 };
2622 
2623 static ssize_t max_precise_show(struct device *cdev,
2624                   struct device_attribute *attr,
2625                   char *buf)
2626 {
2627     return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2628 }
2629 
2630 static DEVICE_ATTR_RO(max_precise);
2631 
2632 static struct attribute *x86_pmu_caps_attrs[] = {
2633     &dev_attr_max_precise.attr,
2634     NULL
2635 };
2636 
2637 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2638     .name = "caps",
2639     .attrs = x86_pmu_caps_attrs,
2640 };
2641 
2642 static const struct attribute_group *x86_pmu_attr_groups[] = {
2643     &x86_pmu_attr_group,
2644     &x86_pmu_format_group,
2645     &x86_pmu_events_group,
2646     &x86_pmu_caps_group,
2647     NULL,
2648 };
2649 
2650 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2651 {
2652     static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2653 }
2654 
2655 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2656                   struct perf_event_context *next)
2657 {
2658     static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2659 }
2660 
2661 void perf_check_microcode(void)
2662 {
2663     if (x86_pmu.check_microcode)
2664         x86_pmu.check_microcode();
2665 }
2666 
2667 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2668 {
2669     if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2670         return -EINVAL;
2671 
2672     if (value && x86_pmu.limit_period) {
2673         if (x86_pmu.limit_period(event, value) > value)
2674             return -EINVAL;
2675     }
2676 
2677     return 0;
2678 }
2679 
2680 static int x86_pmu_aux_output_match(struct perf_event *event)
2681 {
2682     if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2683         return 0;
2684 
2685     if (x86_pmu.aux_output_match)
2686         return x86_pmu.aux_output_match(event);
2687 
2688     return 0;
2689 }
2690 
2691 static int x86_pmu_filter_match(struct perf_event *event)
2692 {
2693     if (x86_pmu.filter_match)
2694         return x86_pmu.filter_match(event);
2695 
2696     return 1;
2697 }
2698 
2699 static struct pmu pmu = {
2700     .pmu_enable     = x86_pmu_enable,
2701     .pmu_disable        = x86_pmu_disable,
2702 
2703     .attr_groups        = x86_pmu_attr_groups,
2704 
2705     .event_init     = x86_pmu_event_init,
2706 
2707     .event_mapped       = x86_pmu_event_mapped,
2708     .event_unmapped     = x86_pmu_event_unmapped,
2709 
2710     .add            = x86_pmu_add,
2711     .del            = x86_pmu_del,
2712     .start          = x86_pmu_start,
2713     .stop           = x86_pmu_stop,
2714     .read           = x86_pmu_read,
2715 
2716     .start_txn      = x86_pmu_start_txn,
2717     .cancel_txn     = x86_pmu_cancel_txn,
2718     .commit_txn     = x86_pmu_commit_txn,
2719 
2720     .event_idx      = x86_pmu_event_idx,
2721     .sched_task     = x86_pmu_sched_task,
2722     .swap_task_ctx      = x86_pmu_swap_task_ctx,
2723     .check_period       = x86_pmu_check_period,
2724 
2725     .aux_output_match   = x86_pmu_aux_output_match,
2726 
2727     .filter_match       = x86_pmu_filter_match,
2728 };
2729 
2730 void arch_perf_update_userpage(struct perf_event *event,
2731                    struct perf_event_mmap_page *userpg, u64 now)
2732 {
2733     struct cyc2ns_data data;
2734     u64 offset;
2735 
2736     userpg->cap_user_time = 0;
2737     userpg->cap_user_time_zero = 0;
2738     userpg->cap_user_rdpmc =
2739         !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2740     userpg->pmc_width = x86_pmu.cntval_bits;
2741 
2742     if (!using_native_sched_clock() || !sched_clock_stable())
2743         return;
2744 
2745     cyc2ns_read_begin(&data);
2746 
2747     offset = data.cyc2ns_offset + __sched_clock_offset;
2748 
2749     /*
2750      * Internal timekeeping for enabled/running/stopped times
2751      * is always in the local_clock domain.
2752      */
2753     userpg->cap_user_time = 1;
2754     userpg->time_mult = data.cyc2ns_mul;
2755     userpg->time_shift = data.cyc2ns_shift;
2756     userpg->time_offset = offset - now;
2757 
2758     /*
2759      * cap_user_time_zero doesn't make sense when we're using a different
2760      * time base for the records.
2761      */
2762     if (!event->attr.use_clockid) {
2763         userpg->cap_user_time_zero = 1;
2764         userpg->time_zero = offset;
2765     }
2766 
2767     cyc2ns_read_end();
2768 }
2769 
2770 /*
2771  * Determine whether the regs were taken from an irq/exception handler rather
2772  * than from perf_arch_fetch_caller_regs().
2773  */
2774 static bool perf_hw_regs(struct pt_regs *regs)
2775 {
2776     return regs->flags & X86_EFLAGS_FIXED;
2777 }
2778 
2779 void
2780 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2781 {
2782     struct unwind_state state;
2783     unsigned long addr;
2784 
2785     if (perf_guest_state()) {
2786         /* TODO: We don't support guest os callchain now */
2787         return;
2788     }
2789 
2790     if (perf_callchain_store(entry, regs->ip))
2791         return;
2792 
2793     if (perf_hw_regs(regs))
2794         unwind_start(&state, current, regs, NULL);
2795     else
2796         unwind_start(&state, current, NULL, (void *)regs->sp);
2797 
2798     for (; !unwind_done(&state); unwind_next_frame(&state)) {
2799         addr = unwind_get_return_address(&state);
2800         if (!addr || perf_callchain_store(entry, addr))
2801             return;
2802     }
2803 }
2804 
2805 static inline int
2806 valid_user_frame(const void __user *fp, unsigned long size)
2807 {
2808     return __access_ok(fp, size);
2809 }
2810 
2811 static unsigned long get_segment_base(unsigned int segment)
2812 {
2813     struct desc_struct *desc;
2814     unsigned int idx = segment >> 3;
2815 
2816     if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2817 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2818         struct ldt_struct *ldt;
2819 
2820         /* IRQs are off, so this synchronizes with smp_store_release */
2821         ldt = READ_ONCE(current->active_mm->context.ldt);
2822         if (!ldt || idx >= ldt->nr_entries)
2823             return 0;
2824 
2825         desc = &ldt->entries[idx];
2826 #else
2827         return 0;
2828 #endif
2829     } else {
2830         if (idx >= GDT_ENTRIES)
2831             return 0;
2832 
2833         desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2834     }
2835 
2836     return get_desc_base(desc);
2837 }
2838 
2839 #ifdef CONFIG_IA32_EMULATION
2840 
2841 #include <linux/compat.h>
2842 
2843 static inline int
2844 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2845 {
2846     /* 32-bit process in 64-bit kernel. */
2847     unsigned long ss_base, cs_base;
2848     struct stack_frame_ia32 frame;
2849     const struct stack_frame_ia32 __user *fp;
2850 
2851     if (user_64bit_mode(regs))
2852         return 0;
2853 
2854     cs_base = get_segment_base(regs->cs);
2855     ss_base = get_segment_base(regs->ss);
2856 
2857     fp = compat_ptr(ss_base + regs->bp);
2858     pagefault_disable();
2859     while (entry->nr < entry->max_stack) {
2860         if (!valid_user_frame(fp, sizeof(frame)))
2861             break;
2862 
2863         if (__get_user(frame.next_frame, &fp->next_frame))
2864             break;
2865         if (__get_user(frame.return_address, &fp->return_address))
2866             break;
2867 
2868         perf_callchain_store(entry, cs_base + frame.return_address);
2869         fp = compat_ptr(ss_base + frame.next_frame);
2870     }
2871     pagefault_enable();
2872     return 1;
2873 }
2874 #else
2875 static inline int
2876 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2877 {
2878     return 0;
2879 }
2880 #endif
2881 
2882 void
2883 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2884 {
2885     struct stack_frame frame;
2886     const struct stack_frame __user *fp;
2887 
2888     if (perf_guest_state()) {
2889         /* TODO: We don't support guest os callchain now */
2890         return;
2891     }
2892 
2893     /*
2894      * We don't know what to do with VM86 stacks.. ignore them for now.
2895      */
2896     if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2897         return;
2898 
2899     fp = (void __user *)regs->bp;
2900 
2901     perf_callchain_store(entry, regs->ip);
2902 
2903     if (!nmi_uaccess_okay())
2904         return;
2905 
2906     if (perf_callchain_user32(regs, entry))
2907         return;
2908 
2909     pagefault_disable();
2910     while (entry->nr < entry->max_stack) {
2911         if (!valid_user_frame(fp, sizeof(frame)))
2912             break;
2913 
2914         if (__get_user(frame.next_frame, &fp->next_frame))
2915             break;
2916         if (__get_user(frame.return_address, &fp->return_address))
2917             break;
2918 
2919         perf_callchain_store(entry, frame.return_address);
2920         fp = (void __user *)frame.next_frame;
2921     }
2922     pagefault_enable();
2923 }
2924 
2925 /*
2926  * Deal with code segment offsets for the various execution modes:
2927  *
2928  *   VM86 - the good olde 16 bit days, where the linear address is
2929  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2930  *
2931  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2932  *          to figure out what the 32bit base address is.
2933  *
2934  *    X32 - has TIF_X32 set, but is running in x86_64
2935  *
2936  * X86_64 - CS,DS,SS,ES are all zero based.
2937  */
2938 static unsigned long code_segment_base(struct pt_regs *regs)
2939 {
2940     /*
2941      * For IA32 we look at the GDT/LDT segment base to convert the
2942      * effective IP to a linear address.
2943      */
2944 
2945 #ifdef CONFIG_X86_32
2946     /*
2947      * If we are in VM86 mode, add the segment offset to convert to a
2948      * linear address.
2949      */
2950     if (regs->flags & X86_VM_MASK)
2951         return 0x10 * regs->cs;
2952 
2953     if (user_mode(regs) && regs->cs != __USER_CS)
2954         return get_segment_base(regs->cs);
2955 #else
2956     if (user_mode(regs) && !user_64bit_mode(regs) &&
2957         regs->cs != __USER32_CS)
2958         return get_segment_base(regs->cs);
2959 #endif
2960     return 0;
2961 }
2962 
2963 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2964 {
2965     if (perf_guest_state())
2966         return perf_guest_get_ip();
2967 
2968     return regs->ip + code_segment_base(regs);
2969 }
2970 
2971 unsigned long perf_misc_flags(struct pt_regs *regs)
2972 {
2973     unsigned int guest_state = perf_guest_state();
2974     int misc = 0;
2975 
2976     if (guest_state) {
2977         if (guest_state & PERF_GUEST_USER)
2978             misc |= PERF_RECORD_MISC_GUEST_USER;
2979         else
2980             misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2981     } else {
2982         if (user_mode(regs))
2983             misc |= PERF_RECORD_MISC_USER;
2984         else
2985             misc |= PERF_RECORD_MISC_KERNEL;
2986     }
2987 
2988     if (regs->flags & PERF_EFLAGS_EXACT)
2989         misc |= PERF_RECORD_MISC_EXACT_IP;
2990 
2991     return misc;
2992 }
2993 
2994 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2995 {
2996     if (!x86_pmu_initialized()) {
2997         memset(cap, 0, sizeof(*cap));
2998         return;
2999     }
3000 
3001     cap->version        = x86_pmu.version;
3002     /*
3003      * KVM doesn't support the hybrid PMU yet.
3004      * Return the common value in global x86_pmu,
3005      * which available for all cores.
3006      */
3007     cap->num_counters_gp    = x86_pmu.num_counters;
3008     cap->num_counters_fixed = x86_pmu.num_counters_fixed;
3009     cap->bit_width_gp   = x86_pmu.cntval_bits;
3010     cap->bit_width_fixed    = x86_pmu.cntval_bits;
3011     cap->events_mask    = (unsigned int)x86_pmu.events_maskl;
3012     cap->events_mask_len    = x86_pmu.events_mask_len;
3013     cap->pebs_ept       = x86_pmu.pebs_ept;
3014 }
3015 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3016 
3017 u64 perf_get_hw_event_config(int hw_event)
3018 {
3019     int max = x86_pmu.max_events;
3020 
3021     if (hw_event < max)
3022         return x86_pmu.event_map(array_index_nospec(hw_event, max));
3023 
3024     return 0;
3025 }
3026 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);