Back to home page

OSCL-LXR

 
 

    


0001 ########################################################################
0002 # Implement fast SHA-512 with AVX2 instructions. (x86_64)
0003 #
0004 # Copyright (C) 2013 Intel Corporation.
0005 #
0006 # Authors:
0007 #     James Guilford <james.guilford@intel.com>
0008 #     Kirk Yap <kirk.s.yap@intel.com>
0009 #     David Cote <david.m.cote@intel.com>
0010 #     Tim Chen <tim.c.chen@linux.intel.com>
0011 #
0012 # This software is available to you under a choice of one of two
0013 # licenses.  You may choose to be licensed under the terms of the GNU
0014 # General Public License (GPL) Version 2, available from the file
0015 # COPYING in the main directory of this source tree, or the
0016 # OpenIB.org BSD license below:
0017 #
0018 #     Redistribution and use in source and binary forms, with or
0019 #     without modification, are permitted provided that the following
0020 #     conditions are met:
0021 #
0022 #      - Redistributions of source code must retain the above
0023 #        copyright notice, this list of conditions and the following
0024 #        disclaimer.
0025 #
0026 #      - Redistributions in binary form must reproduce the above
0027 #        copyright notice, this list of conditions and the following
0028 #        disclaimer in the documentation and/or other materials
0029 #        provided with the distribution.
0030 #
0031 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
0032 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
0033 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
0034 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
0035 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
0036 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
0037 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
0038 # SOFTWARE.
0039 #
0040 ########################################################################
0041 #
0042 # This code is described in an Intel White-Paper:
0043 # "Fast SHA-512 Implementations on Intel Architecture Processors"
0044 #
0045 # To find it, surf to http://www.intel.com/p/en_US/embedded
0046 # and search for that title.
0047 #
0048 ########################################################################
0049 # This code schedules 1 blocks at a time, with 4 lanes per block
0050 ########################################################################
0051 
0052 #include <linux/linkage.h>
0053 
0054 .text
0055 
0056 # Virtual Registers
0057 Y_0 = %ymm4
0058 Y_1 = %ymm5
0059 Y_2 = %ymm6
0060 Y_3 = %ymm7
0061 
0062 YTMP0 = %ymm0
0063 YTMP1 = %ymm1
0064 YTMP2 = %ymm2
0065 YTMP3 = %ymm3
0066 YTMP4 = %ymm8
0067 XFER  = YTMP0
0068 
0069 BYTE_FLIP_MASK  = %ymm9
0070 
0071 # 1st arg is %rdi, which is saved to the stack and accessed later via %r12
0072 CTX1        = %rdi
0073 CTX2        = %r12
0074 # 2nd arg
0075 INP         = %rsi
0076 # 3rd arg
0077 NUM_BLKS    = %rdx
0078 
0079 c           = %rcx
0080 d           = %r8
0081 e           = %rdx
0082 y3          = %rsi
0083 
0084 TBL   = %rdi # clobbers CTX1
0085 
0086 a     = %rax
0087 b     = %rbx
0088 
0089 f     = %r9
0090 g     = %r10
0091 h     = %r11
0092 old_h = %r11
0093 
0094 T1    = %r12 # clobbers CTX2
0095 y0    = %r13
0096 y1    = %r14
0097 y2    = %r15
0098 
0099 # Local variables (stack frame)
0100 XFER_SIZE = 4*8
0101 SRND_SIZE = 1*8
0102 INP_SIZE = 1*8
0103 INPEND_SIZE = 1*8
0104 CTX_SIZE = 1*8
0105 
0106 frame_XFER = 0
0107 frame_SRND = frame_XFER + XFER_SIZE
0108 frame_INP = frame_SRND + SRND_SIZE
0109 frame_INPEND = frame_INP + INP_SIZE
0110 frame_CTX = frame_INPEND + INPEND_SIZE
0111 frame_size = frame_CTX + CTX_SIZE
0112 
0113 ## assume buffers not aligned
0114 #define VMOVDQ vmovdqu
0115 
0116 # addm [mem], reg
0117 # Add reg to mem using reg-mem add and store
0118 .macro addm p1 p2
0119     add \p1, \p2
0120     mov \p2, \p1
0121 .endm
0122 
0123 
0124 # COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mask
0125 # Load ymm with mem and byte swap each dword
0126 .macro COPY_YMM_AND_BSWAP p1 p2 p3
0127     VMOVDQ \p2, \p1
0128     vpshufb \p3, \p1, \p1
0129 .endm
0130 # rotate_Ys
0131 # Rotate values of symbols Y0...Y3
0132 .macro rotate_Ys
0133     Y_ = Y_0
0134     Y_0 = Y_1
0135     Y_1 = Y_2
0136     Y_2 = Y_3
0137     Y_3 = Y_
0138 .endm
0139 
0140 # RotateState
0141 .macro RotateState
0142     # Rotate symbols a..h right
0143     old_h  = h
0144     TMP_   = h
0145     h      = g
0146     g      = f
0147     f      = e
0148     e      = d
0149     d      = c
0150     c      = b
0151     b      = a
0152     a      = TMP_
0153 .endm
0154 
0155 # macro MY_VPALIGNR YDST, YSRC1, YSRC2, RVAL
0156 # YDST = {YSRC1, YSRC2} >> RVAL*8
0157 .macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL
0158     vperm2f128      $0x3, \YSRC2, \YSRC1, \YDST     # YDST = {YS1_LO, YS2_HI}
0159     vpalignr        $\RVAL, \YSRC2, \YDST, \YDST    # YDST = {YDS1, YS2} >> RVAL*8
0160 .endm
0161 
0162 .macro FOUR_ROUNDS_AND_SCHED
0163 ################################### RND N + 0 #########################################
0164 
0165     # Extract w[t-7]
0166     MY_VPALIGNR YTMP0, Y_3, Y_2, 8      # YTMP0 = W[-7]
0167     # Calculate w[t-16] + w[t-7]
0168     vpaddq      Y_0, YTMP0, YTMP0       # YTMP0 = W[-7] + W[-16]
0169     # Extract w[t-15]
0170     MY_VPALIGNR YTMP1, Y_1, Y_0, 8      # YTMP1 = W[-15]
0171 
0172     # Calculate sigma0
0173 
0174     # Calculate w[t-15] ror 1
0175     vpsrlq      $1, YTMP1, YTMP2
0176     vpsllq      $(64-1), YTMP1, YTMP3
0177     vpor        YTMP2, YTMP3, YTMP3     # YTMP3 = W[-15] ror 1
0178     # Calculate w[t-15] shr 7
0179     vpsrlq      $7, YTMP1, YTMP4        # YTMP4 = W[-15] >> 7
0180 
0181     mov a, y3       # y3 = a                                # MAJA
0182     rorx    $41, e, y0  # y0 = e >> 41              # S1A
0183     rorx    $18, e, y1  # y1 = e >> 18              # S1B
0184     add frame_XFER(%rsp),h      # h = k + w + h         # --
0185     or  c, y3       # y3 = a|c                              # MAJA
0186     mov f, y2       # y2 = f                                # CH
0187     rorx    $34, a, T1  # T1 = a >> 34              # S0B
0188 
0189     xor y1, y0      # y0 = (e>>41) ^ (e>>18)        # S1
0190     xor g, y2       # y2 = f^g                              # CH
0191     rorx    $14, e, y1  # y1 = (e >> 14)            # S1
0192 
0193     and e, y2       # y2 = (f^g)&e                          # CH
0194     xor y1, y0      # y0 = (e>>41) ^ (e>>18) ^ (e>>14)  # S1
0195     rorx    $39, a, y1  # y1 = a >> 39              # S0A
0196     add h, d        # d = k + w + h + d                     # --
0197 
0198     and b, y3       # y3 = (a|c)&b                          # MAJA
0199     xor T1, y1      # y1 = (a>>39) ^ (a>>34)        # S0
0200     rorx    $28, a, T1  # T1 = (a >> 28)            # S0
0201 
0202     xor g, y2       # y2 = CH = ((f^g)&e)^g                 # CH
0203     xor T1, y1      # y1 = (a>>39) ^ (a>>34) ^ (a>>28)  # S0
0204     mov a, T1       # T1 = a                                # MAJB
0205     and c, T1       # T1 = a&c                              # MAJB
0206 
0207     add y0, y2      # y2 = S1 + CH                          # --
0208     or  T1, y3      # y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
0209     add y1, h       # h = k + w + h + S0                    # --
0210 
0211     add y2, d       # d = k + w + h + d + S1 + CH = d + t1  # --
0212 
0213     add y2, h       # h = k + w + h + S0 + S1 + CH = t1 + S0# --
0214     add y3, h       # h = t1 + S0 + MAJ                     # --
0215 
0216     RotateState
0217 
0218 ################################### RND N + 1 #########################################
0219 
0220     # Calculate w[t-15] ror 8
0221     vpsrlq      $8, YTMP1, YTMP2
0222     vpsllq      $(64-8), YTMP1, YTMP1
0223     vpor        YTMP2, YTMP1, YTMP1     # YTMP1 = W[-15] ror 8
0224     # XOR the three components
0225     vpxor       YTMP4, YTMP3, YTMP3     # YTMP3 = W[-15] ror 1 ^ W[-15] >> 7
0226     vpxor       YTMP1, YTMP3, YTMP1     # YTMP1 = s0
0227 
0228 
0229     # Add three components, w[t-16], w[t-7] and sigma0
0230     vpaddq      YTMP1, YTMP0, YTMP0     # YTMP0 = W[-16] + W[-7] + s0
0231     # Move to appropriate lanes for calculating w[16] and w[17]
0232     vperm2f128  $0x0, YTMP0, YTMP0, Y_0     # Y_0 = W[-16] + W[-7] + s0 {BABA}
0233     # Move to appropriate lanes for calculating w[18] and w[19]
0234     vpand       MASK_YMM_LO(%rip), YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 {DC00}
0235 
0236     # Calculate w[16] and w[17] in both 128 bit lanes
0237 
0238     # Calculate sigma1 for w[16] and w[17] on both 128 bit lanes
0239     vperm2f128  $0x11, Y_3, Y_3, YTMP2      # YTMP2 = W[-2] {BABA}
0240     vpsrlq      $6, YTMP2, YTMP4        # YTMP4 = W[-2] >> 6 {BABA}
0241 
0242 
0243     mov a, y3       # y3 = a                                # MAJA
0244     rorx    $41, e, y0  # y0 = e >> 41              # S1A
0245     rorx    $18, e, y1  # y1 = e >> 18              # S1B
0246     add 1*8+frame_XFER(%rsp), h     # h = k + w + h         # --
0247     or  c, y3       # y3 = a|c                              # MAJA
0248 
0249 
0250     mov f, y2       # y2 = f                                # CH
0251     rorx    $34, a, T1  # T1 = a >> 34              # S0B
0252     xor y1, y0      # y0 = (e>>41) ^ (e>>18)        # S1
0253     xor g, y2       # y2 = f^g                              # CH
0254 
0255 
0256     rorx    $14, e, y1  # y1 = (e >> 14)            # S1
0257     xor y1, y0      # y0 = (e>>41) ^ (e>>18) ^ (e>>14)  # S1
0258     rorx    $39, a, y1  # y1 = a >> 39              # S0A
0259     and e, y2       # y2 = (f^g)&e                          # CH
0260     add h, d        # d = k + w + h + d                     # --
0261 
0262     and b, y3       # y3 = (a|c)&b                          # MAJA
0263     xor T1, y1      # y1 = (a>>39) ^ (a>>34)        # S0
0264 
0265     rorx    $28, a, T1  # T1 = (a >> 28)            # S0
0266     xor g, y2       # y2 = CH = ((f^g)&e)^g                 # CH
0267 
0268     xor T1, y1      # y1 = (a>>39) ^ (a>>34) ^ (a>>28)  # S0
0269     mov a, T1       # T1 = a                                # MAJB
0270     and c, T1       # T1 = a&c                              # MAJB
0271     add y0, y2      # y2 = S1 + CH                          # --
0272 
0273     or  T1, y3      # y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
0274     add y1, h       # h = k + w + h + S0                    # --
0275 
0276     add y2, d       # d = k + w + h + d + S1 + CH = d + t1  # --
0277     add y2, h       # h = k + w + h + S0 + S1 + CH = t1 + S0# --
0278     add y3, h       # h = t1 + S0 + MAJ                     # --
0279 
0280     RotateState
0281 
0282 
0283 ################################### RND N + 2 #########################################
0284 
0285     vpsrlq      $19, YTMP2, YTMP3       # YTMP3 = W[-2] >> 19 {BABA}
0286     vpsllq      $(64-19), YTMP2, YTMP1      # YTMP1 = W[-2] << 19 {BABA}
0287     vpor        YTMP1, YTMP3, YTMP3     # YTMP3 = W[-2] ror 19 {BABA}
0288     vpxor       YTMP3, YTMP4, YTMP4     # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {BABA}
0289     vpsrlq      $61, YTMP2, YTMP3       # YTMP3 = W[-2] >> 61 {BABA}
0290     vpsllq      $(64-61), YTMP2, YTMP1      # YTMP1 = W[-2] << 61 {BABA}
0291     vpor        YTMP1, YTMP3, YTMP3     # YTMP3 = W[-2] ror 61 {BABA}
0292     vpxor       YTMP3, YTMP4, YTMP4     # YTMP4 = s1 = (W[-2] ror 19) ^
0293                             #  (W[-2] ror 61) ^ (W[-2] >> 6) {BABA}
0294 
0295     # Add sigma1 to the other compunents to get w[16] and w[17]
0296     vpaddq      YTMP4, Y_0, Y_0         # Y_0 = {W[1], W[0], W[1], W[0]}
0297 
0298     # Calculate sigma1 for w[18] and w[19] for upper 128 bit lane
0299     vpsrlq      $6, Y_0, YTMP4          # YTMP4 = W[-2] >> 6 {DC--}
0300 
0301     mov a, y3       # y3 = a                                # MAJA
0302     rorx    $41, e, y0  # y0 = e >> 41              # S1A
0303     add 2*8+frame_XFER(%rsp), h     # h = k + w + h         # --
0304 
0305     rorx    $18, e, y1  # y1 = e >> 18              # S1B
0306     or  c, y3       # y3 = a|c                              # MAJA
0307     mov f, y2       # y2 = f                                # CH
0308     xor g, y2       # y2 = f^g                              # CH
0309 
0310     rorx    $34, a, T1  # T1 = a >> 34              # S0B
0311     xor y1, y0      # y0 = (e>>41) ^ (e>>18)        # S1
0312     and e, y2       # y2 = (f^g)&e                          # CH
0313 
0314     rorx    $14, e, y1  # y1 = (e >> 14)            # S1
0315     add h, d        # d = k + w + h + d                     # --
0316     and b, y3       # y3 = (a|c)&b                          # MAJA
0317 
0318     xor y1, y0      # y0 = (e>>41) ^ (e>>18) ^ (e>>14)  # S1
0319     rorx    $39, a, y1  # y1 = a >> 39              # S0A
0320     xor g, y2       # y2 = CH = ((f^g)&e)^g                 # CH
0321 
0322     xor T1, y1      # y1 = (a>>39) ^ (a>>34)        # S0
0323     rorx    $28, a, T1  # T1 = (a >> 28)            # S0
0324 
0325     xor T1, y1      # y1 = (a>>39) ^ (a>>34) ^ (a>>28)  # S0
0326     mov a, T1       # T1 = a                                # MAJB
0327     and c, T1       # T1 = a&c                              # MAJB
0328     add y0, y2      # y2 = S1 + CH                          # --
0329 
0330     or  T1, y3      # y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
0331     add y1, h       # h = k + w + h + S0                    # --
0332     add y2, d       # d = k + w + h + d + S1 + CH = d + t1  # --
0333     add y2, h       # h = k + w + h + S0 + S1 + CH = t1 + S0# --
0334 
0335     add y3, h       # h = t1 + S0 + MAJ                     # --
0336 
0337     RotateState
0338 
0339 ################################### RND N + 3 #########################################
0340 
0341     vpsrlq      $19, Y_0, YTMP3         # YTMP3 = W[-2] >> 19 {DC--}
0342     vpsllq      $(64-19), Y_0, YTMP1        # YTMP1 = W[-2] << 19 {DC--}
0343     vpor        YTMP1, YTMP3, YTMP3     # YTMP3 = W[-2] ror 19 {DC--}
0344     vpxor       YTMP3, YTMP4, YTMP4     # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {DC--}
0345     vpsrlq      $61, Y_0, YTMP3         # YTMP3 = W[-2] >> 61 {DC--}
0346     vpsllq      $(64-61), Y_0, YTMP1        # YTMP1 = W[-2] << 61 {DC--}
0347     vpor        YTMP1, YTMP3, YTMP3     # YTMP3 = W[-2] ror 61 {DC--}
0348     vpxor       YTMP3, YTMP4, YTMP4     # YTMP4 = s1 = (W[-2] ror 19) ^
0349                             #  (W[-2] ror 61) ^ (W[-2] >> 6) {DC--}
0350 
0351     # Add the sigma0 + w[t-7] + w[t-16] for w[18] and w[19]
0352     # to newly calculated sigma1 to get w[18] and w[19]
0353     vpaddq      YTMP4, YTMP0, YTMP2     # YTMP2 = {W[3], W[2], --, --}
0354 
0355     # Form w[19, w[18], w17], w[16]
0356     vpblendd        $0xF0, YTMP2, Y_0, Y_0      # Y_0 = {W[3], W[2], W[1], W[0]}
0357 
0358     mov a, y3       # y3 = a                                # MAJA
0359     rorx    $41, e, y0  # y0 = e >> 41              # S1A
0360     rorx    $18, e, y1  # y1 = e >> 18              # S1B
0361     add 3*8+frame_XFER(%rsp), h     # h = k + w + h         # --
0362     or  c, y3       # y3 = a|c                              # MAJA
0363 
0364 
0365     mov f, y2       # y2 = f                                # CH
0366     rorx    $34, a, T1  # T1 = a >> 34              # S0B
0367     xor y1, y0      # y0 = (e>>41) ^ (e>>18)        # S1
0368     xor g, y2       # y2 = f^g                              # CH
0369 
0370 
0371     rorx    $14, e, y1  # y1 = (e >> 14)            # S1
0372     and e, y2       # y2 = (f^g)&e                          # CH
0373     add h, d        # d = k + w + h + d                     # --
0374     and b, y3       # y3 = (a|c)&b                          # MAJA
0375 
0376     xor y1, y0      # y0 = (e>>41) ^ (e>>18) ^ (e>>14)  # S1
0377     xor g, y2       # y2 = CH = ((f^g)&e)^g                 # CH
0378 
0379     rorx    $39, a, y1  # y1 = a >> 39              # S0A
0380     add y0, y2      # y2 = S1 + CH                          # --
0381 
0382     xor T1, y1      # y1 = (a>>39) ^ (a>>34)        # S0
0383     add y2, d       # d = k + w + h + d + S1 + CH = d + t1  # --
0384 
0385     rorx    $28, a, T1  # T1 = (a >> 28)            # S0
0386 
0387     xor T1, y1      # y1 = (a>>39) ^ (a>>34) ^ (a>>28)  # S0
0388     mov a, T1       # T1 = a                                # MAJB
0389     and c, T1       # T1 = a&c                              # MAJB
0390     or  T1, y3      # y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
0391 
0392     add y1, h       # h = k + w + h + S0                    # --
0393     add y2, h       # h = k + w + h + S0 + S1 + CH = t1 + S0# --
0394     add y3, h       # h = t1 + S0 + MAJ                     # --
0395 
0396     RotateState
0397 
0398     rotate_Ys
0399 .endm
0400 
0401 .macro DO_4ROUNDS
0402 
0403 ################################### RND N + 0 #########################################
0404 
0405     mov f, y2       # y2 = f                                # CH
0406     rorx    $41, e, y0  # y0 = e >> 41              # S1A
0407     rorx    $18, e, y1  # y1 = e >> 18              # S1B
0408     xor g, y2       # y2 = f^g                              # CH
0409 
0410     xor y1, y0      # y0 = (e>>41) ^ (e>>18)        # S1
0411     rorx    $14, e, y1  # y1 = (e >> 14)            # S1
0412     and e, y2       # y2 = (f^g)&e                          # CH
0413 
0414     xor y1, y0      # y0 = (e>>41) ^ (e>>18) ^ (e>>14)  # S1
0415     rorx    $34, a, T1  # T1 = a >> 34              # S0B
0416     xor g, y2       # y2 = CH = ((f^g)&e)^g                 # CH
0417     rorx    $39, a, y1  # y1 = a >> 39              # S0A
0418     mov a, y3       # y3 = a                                # MAJA
0419 
0420     xor T1, y1      # y1 = (a>>39) ^ (a>>34)        # S0
0421     rorx    $28, a, T1  # T1 = (a >> 28)            # S0
0422     add frame_XFER(%rsp), h     # h = k + w + h         # --
0423     or  c, y3       # y3 = a|c                              # MAJA
0424 
0425     xor T1, y1      # y1 = (a>>39) ^ (a>>34) ^ (a>>28)  # S0
0426     mov a, T1       # T1 = a                                # MAJB
0427     and b, y3       # y3 = (a|c)&b                          # MAJA
0428     and c, T1       # T1 = a&c                              # MAJB
0429     add y0, y2      # y2 = S1 + CH                          # --
0430 
0431     add h, d        # d = k + w + h + d                     # --
0432     or  T1, y3      # y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
0433     add y1, h       # h = k + w + h + S0                    # --
0434 
0435     add y2, d       # d = k + w + h + d + S1 + CH = d + t1  # --
0436 
0437     RotateState
0438 
0439 ################################### RND N + 1 #########################################
0440 
0441     add y2, old_h   # h = k + w + h + S0 + S1 + CH = t1 + S0# --
0442     mov f, y2       # y2 = f                                # CH
0443     rorx    $41, e, y0  # y0 = e >> 41              # S1A
0444     rorx    $18, e, y1  # y1 = e >> 18              # S1B
0445     xor g, y2       # y2 = f^g                              # CH
0446 
0447     xor y1, y0      # y0 = (e>>41) ^ (e>>18)        # S1
0448     rorx    $14, e, y1  # y1 = (e >> 14)            # S1
0449     and e, y2       # y2 = (f^g)&e                          # CH
0450     add y3, old_h   # h = t1 + S0 + MAJ                     # --
0451 
0452     xor y1, y0      # y0 = (e>>41) ^ (e>>18) ^ (e>>14)  # S1
0453     rorx    $34, a, T1  # T1 = a >> 34              # S0B
0454     xor g, y2       # y2 = CH = ((f^g)&e)^g                 # CH
0455     rorx    $39, a, y1  # y1 = a >> 39              # S0A
0456     mov a, y3       # y3 = a                                # MAJA
0457 
0458     xor T1, y1      # y1 = (a>>39) ^ (a>>34)        # S0
0459     rorx    $28, a, T1  # T1 = (a >> 28)            # S0
0460     add 8*1+frame_XFER(%rsp), h     # h = k + w + h         # --
0461     or  c, y3       # y3 = a|c                              # MAJA
0462 
0463     xor T1, y1      # y1 = (a>>39) ^ (a>>34) ^ (a>>28)  # S0
0464     mov a, T1       # T1 = a                                # MAJB
0465     and b, y3       # y3 = (a|c)&b                          # MAJA
0466     and c, T1       # T1 = a&c                              # MAJB
0467     add y0, y2      # y2 = S1 + CH                          # --
0468 
0469     add h, d        # d = k + w + h + d                     # --
0470     or  T1, y3      # y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
0471     add y1, h       # h = k + w + h + S0                    # --
0472 
0473     add y2, d       # d = k + w + h + d + S1 + CH = d + t1  # --
0474 
0475     RotateState
0476 
0477 ################################### RND N + 2 #########################################
0478 
0479     add y2, old_h   # h = k + w + h + S0 + S1 + CH = t1 + S0# --
0480     mov f, y2       # y2 = f                                # CH
0481     rorx    $41, e, y0  # y0 = e >> 41              # S1A
0482     rorx    $18, e, y1  # y1 = e >> 18              # S1B
0483     xor g, y2       # y2 = f^g                              # CH
0484 
0485     xor y1, y0      # y0 = (e>>41) ^ (e>>18)        # S1
0486     rorx    $14, e, y1  # y1 = (e >> 14)            # S1
0487     and e, y2       # y2 = (f^g)&e                          # CH
0488     add y3, old_h   # h = t1 + S0 + MAJ                     # --
0489 
0490     xor y1, y0      # y0 = (e>>41) ^ (e>>18) ^ (e>>14)  # S1
0491     rorx    $34, a, T1  # T1 = a >> 34              # S0B
0492     xor g, y2       # y2 = CH = ((f^g)&e)^g                 # CH
0493     rorx    $39, a, y1  # y1 = a >> 39              # S0A
0494     mov a, y3       # y3 = a                                # MAJA
0495 
0496     xor T1, y1      # y1 = (a>>39) ^ (a>>34)        # S0
0497     rorx    $28, a, T1  # T1 = (a >> 28)            # S0
0498     add 8*2+frame_XFER(%rsp), h     # h = k + w + h         # --
0499     or  c, y3       # y3 = a|c                              # MAJA
0500 
0501     xor T1, y1      # y1 = (a>>39) ^ (a>>34) ^ (a>>28)  # S0
0502     mov a, T1       # T1 = a                                # MAJB
0503     and b, y3       # y3 = (a|c)&b                          # MAJA
0504     and c, T1       # T1 = a&c                              # MAJB
0505     add y0, y2      # y2 = S1 + CH                          # --
0506 
0507     add h, d        # d = k + w + h + d                     # --
0508     or  T1, y3      # y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
0509     add y1, h       # h = k + w + h + S0                    # --
0510 
0511     add y2, d       # d = k + w + h + d + S1 + CH = d + t1  # --
0512 
0513     RotateState
0514 
0515 ################################### RND N + 3 #########################################
0516 
0517     add y2, old_h   # h = k + w + h + S0 + S1 + CH = t1 + S0# --
0518     mov f, y2       # y2 = f                                # CH
0519     rorx    $41, e, y0  # y0 = e >> 41              # S1A
0520     rorx    $18, e, y1  # y1 = e >> 18              # S1B
0521     xor g, y2       # y2 = f^g                              # CH
0522 
0523     xor y1, y0      # y0 = (e>>41) ^ (e>>18)        # S1
0524     rorx    $14, e, y1  # y1 = (e >> 14)            # S1
0525     and e, y2       # y2 = (f^g)&e                          # CH
0526     add y3, old_h   # h = t1 + S0 + MAJ                     # --
0527 
0528     xor y1, y0      # y0 = (e>>41) ^ (e>>18) ^ (e>>14)  # S1
0529     rorx    $34, a, T1  # T1 = a >> 34              # S0B
0530     xor g, y2       # y2 = CH = ((f^g)&e)^g                 # CH
0531     rorx    $39, a, y1  # y1 = a >> 39              # S0A
0532     mov a, y3       # y3 = a                                # MAJA
0533 
0534     xor T1, y1      # y1 = (a>>39) ^ (a>>34)        # S0
0535     rorx    $28, a, T1  # T1 = (a >> 28)            # S0
0536     add 8*3+frame_XFER(%rsp), h     # h = k + w + h         # --
0537     or  c, y3       # y3 = a|c                              # MAJA
0538 
0539     xor T1, y1      # y1 = (a>>39) ^ (a>>34) ^ (a>>28)  # S0
0540     mov a, T1       # T1 = a                                # MAJB
0541     and b, y3       # y3 = (a|c)&b                          # MAJA
0542     and c, T1       # T1 = a&c                              # MAJB
0543     add y0, y2      # y2 = S1 + CH                          # --
0544 
0545 
0546     add h, d        # d = k + w + h + d                     # --
0547     or  T1, y3      # y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
0548     add y1, h       # h = k + w + h + S0                    # --
0549 
0550     add y2, d       # d = k + w + h + d + S1 + CH = d + t1  # --
0551 
0552     add y2, h       # h = k + w + h + S0 + S1 + CH = t1 + S0# --
0553 
0554     add y3, h       # h = t1 + S0 + MAJ                     # --
0555 
0556     RotateState
0557 
0558 .endm
0559 
0560 ########################################################################
0561 # void sha512_transform_rorx(sha512_state *state, const u8 *data, int blocks)
0562 # Purpose: Updates the SHA512 digest stored at "state" with the message
0563 # stored in "data".
0564 # The size of the message pointed to by "data" must be an integer multiple
0565 # of SHA512 message blocks.
0566 # "blocks" is the message length in SHA512 blocks
0567 ########################################################################
0568 SYM_FUNC_START(sha512_transform_rorx)
0569     # Save GPRs
0570     push    %rbx
0571     push    %r12
0572     push    %r13
0573     push    %r14
0574     push    %r15
0575 
0576     # Allocate Stack Space
0577     push    %rbp
0578     mov %rsp, %rbp
0579     sub $frame_size, %rsp
0580     and $~(0x20 - 1), %rsp
0581 
0582     shl $7, NUM_BLKS    # convert to bytes
0583     jz  done_hash
0584     add INP, NUM_BLKS   # pointer to end of data
0585     mov NUM_BLKS, frame_INPEND(%rsp)
0586 
0587     ## load initial digest
0588     mov 8*0(CTX1), a
0589     mov 8*1(CTX1), b
0590     mov 8*2(CTX1), c
0591     mov 8*3(CTX1), d
0592     mov 8*4(CTX1), e
0593     mov 8*5(CTX1), f
0594     mov 8*6(CTX1), g
0595     mov 8*7(CTX1), h
0596 
0597     # save %rdi (CTX) before it gets clobbered
0598     mov %rdi, frame_CTX(%rsp)
0599 
0600     vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
0601 
0602 loop0:
0603     lea K512(%rip), TBL
0604 
0605     ## byte swap first 16 dwords
0606     COPY_YMM_AND_BSWAP  Y_0, (INP), BYTE_FLIP_MASK
0607     COPY_YMM_AND_BSWAP  Y_1, 1*32(INP), BYTE_FLIP_MASK
0608     COPY_YMM_AND_BSWAP  Y_2, 2*32(INP), BYTE_FLIP_MASK
0609     COPY_YMM_AND_BSWAP  Y_3, 3*32(INP), BYTE_FLIP_MASK
0610 
0611     mov INP, frame_INP(%rsp)
0612 
0613     ## schedule 64 input dwords, by doing 12 rounds of 4 each
0614     movq    $4, frame_SRND(%rsp)
0615 
0616 .align 16
0617 loop1:
0618     vpaddq  (TBL), Y_0, XFER
0619     vmovdqa XFER, frame_XFER(%rsp)
0620     FOUR_ROUNDS_AND_SCHED
0621 
0622     vpaddq  1*32(TBL), Y_0, XFER
0623     vmovdqa XFER, frame_XFER(%rsp)
0624     FOUR_ROUNDS_AND_SCHED
0625 
0626     vpaddq  2*32(TBL), Y_0, XFER
0627     vmovdqa XFER, frame_XFER(%rsp)
0628     FOUR_ROUNDS_AND_SCHED
0629 
0630     vpaddq  3*32(TBL), Y_0, XFER
0631     vmovdqa XFER, frame_XFER(%rsp)
0632     add $(4*32), TBL
0633     FOUR_ROUNDS_AND_SCHED
0634 
0635     subq    $1, frame_SRND(%rsp)
0636     jne loop1
0637 
0638     movq    $2, frame_SRND(%rsp)
0639 loop2:
0640     vpaddq  (TBL), Y_0, XFER
0641     vmovdqa XFER, frame_XFER(%rsp)
0642     DO_4ROUNDS
0643     vpaddq  1*32(TBL), Y_1, XFER
0644     vmovdqa XFER, frame_XFER(%rsp)
0645     add $(2*32), TBL
0646     DO_4ROUNDS
0647 
0648     vmovdqa Y_2, Y_0
0649     vmovdqa Y_3, Y_1
0650 
0651     subq    $1, frame_SRND(%rsp)
0652     jne loop2
0653 
0654     mov frame_CTX(%rsp), CTX2
0655     addm    8*0(CTX2), a
0656     addm    8*1(CTX2), b
0657     addm    8*2(CTX2), c
0658     addm    8*3(CTX2), d
0659     addm    8*4(CTX2), e
0660     addm    8*5(CTX2), f
0661     addm    8*6(CTX2), g
0662     addm    8*7(CTX2), h
0663 
0664     mov frame_INP(%rsp), INP
0665     add $128, INP
0666     cmp frame_INPEND(%rsp), INP
0667     jne loop0
0668 
0669 done_hash:
0670 
0671     # Restore Stack Pointer
0672     mov %rbp, %rsp
0673     pop %rbp
0674 
0675     # Restore GPRs
0676     pop %r15
0677     pop %r14
0678     pop %r13
0679     pop %r12
0680     pop %rbx
0681 
0682     RET
0683 SYM_FUNC_END(sha512_transform_rorx)
0684 
0685 ########################################################################
0686 ### Binary Data
0687 
0688 
0689 # Mergeable 640-byte rodata section. This allows linker to merge the table
0690 # with other, exactly the same 640-byte fragment of another rodata section
0691 # (if such section exists).
0692 .section    .rodata.cst640.K512, "aM", @progbits, 640
0693 .align 64
0694 # K[t] used in SHA512 hashing
0695 K512:
0696     .quad   0x428a2f98d728ae22,0x7137449123ef65cd
0697     .quad   0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
0698     .quad   0x3956c25bf348b538,0x59f111f1b605d019
0699     .quad   0x923f82a4af194f9b,0xab1c5ed5da6d8118
0700     .quad   0xd807aa98a3030242,0x12835b0145706fbe
0701     .quad   0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
0702     .quad   0x72be5d74f27b896f,0x80deb1fe3b1696b1
0703     .quad   0x9bdc06a725c71235,0xc19bf174cf692694
0704     .quad   0xe49b69c19ef14ad2,0xefbe4786384f25e3
0705     .quad   0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
0706     .quad   0x2de92c6f592b0275,0x4a7484aa6ea6e483
0707     .quad   0x5cb0a9dcbd41fbd4,0x76f988da831153b5
0708     .quad   0x983e5152ee66dfab,0xa831c66d2db43210
0709     .quad   0xb00327c898fb213f,0xbf597fc7beef0ee4
0710     .quad   0xc6e00bf33da88fc2,0xd5a79147930aa725
0711     .quad   0x06ca6351e003826f,0x142929670a0e6e70
0712     .quad   0x27b70a8546d22ffc,0x2e1b21385c26c926
0713     .quad   0x4d2c6dfc5ac42aed,0x53380d139d95b3df
0714     .quad   0x650a73548baf63de,0x766a0abb3c77b2a8
0715     .quad   0x81c2c92e47edaee6,0x92722c851482353b
0716     .quad   0xa2bfe8a14cf10364,0xa81a664bbc423001
0717     .quad   0xc24b8b70d0f89791,0xc76c51a30654be30
0718     .quad   0xd192e819d6ef5218,0xd69906245565a910
0719     .quad   0xf40e35855771202a,0x106aa07032bbd1b8
0720     .quad   0x19a4c116b8d2d0c8,0x1e376c085141ab53
0721     .quad   0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
0722     .quad   0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
0723     .quad   0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
0724     .quad   0x748f82ee5defb2fc,0x78a5636f43172f60
0725     .quad   0x84c87814a1f0ab72,0x8cc702081a6439ec
0726     .quad   0x90befffa23631e28,0xa4506cebde82bde9
0727     .quad   0xbef9a3f7b2c67915,0xc67178f2e372532b
0728     .quad   0xca273eceea26619c,0xd186b8c721c0c207
0729     .quad   0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
0730     .quad   0x06f067aa72176fba,0x0a637dc5a2c898a6
0731     .quad   0x113f9804bef90dae,0x1b710b35131c471b
0732     .quad   0x28db77f523047d84,0x32caab7b40c72493
0733     .quad   0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
0734     .quad   0x4cc5d4becb3e42b6,0x597f299cfc657e2a
0735     .quad   0x5fcb6fab3ad6faec,0x6c44198c4a475817
0736 
0737 .section    .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32
0738 .align 32
0739 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
0740 PSHUFFLE_BYTE_FLIP_MASK:
0741     .octa 0x08090a0b0c0d0e0f0001020304050607
0742     .octa 0x18191a1b1c1d1e1f1011121314151617
0743 
0744 .section    .rodata.cst32.MASK_YMM_LO, "aM", @progbits, 32
0745 .align 32
0746 MASK_YMM_LO:
0747     .octa 0x00000000000000000000000000000000
0748     .octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF