Back to home page

OSCL-LXR

 
 

    


0001 ########################################################################
0002 # Implement fast SHA-512 with AVX instructions. (x86_64)
0003 #
0004 # Copyright (C) 2013 Intel Corporation.
0005 #
0006 # Authors:
0007 #     James Guilford <james.guilford@intel.com>
0008 #     Kirk Yap <kirk.s.yap@intel.com>
0009 #     David Cote <david.m.cote@intel.com>
0010 #     Tim Chen <tim.c.chen@linux.intel.com>
0011 #
0012 # This software is available to you under a choice of one of two
0013 # licenses.  You may choose to be licensed under the terms of the GNU
0014 # General Public License (GPL) Version 2, available from the file
0015 # COPYING in the main directory of this source tree, or the
0016 # OpenIB.org BSD license below:
0017 #
0018 #     Redistribution and use in source and binary forms, with or
0019 #     without modification, are permitted provided that the following
0020 #     conditions are met:
0021 #
0022 #      - Redistributions of source code must retain the above
0023 #        copyright notice, this list of conditions and the following
0024 #        disclaimer.
0025 #
0026 #      - Redistributions in binary form must reproduce the above
0027 #        copyright notice, this list of conditions and the following
0028 #        disclaimer in the documentation and/or other materials
0029 #        provided with the distribution.
0030 #
0031 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
0032 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
0033 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
0034 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
0035 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
0036 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
0037 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
0038 # SOFTWARE.
0039 #
0040 ########################################################################
0041 #
0042 # This code is described in an Intel White-Paper:
0043 # "Fast SHA-512 Implementations on Intel Architecture Processors"
0044 #
0045 # To find it, surf to http://www.intel.com/p/en_US/embedded
0046 # and search for that title.
0047 #
0048 ########################################################################
0049 
0050 #include <linux/linkage.h>
0051 
0052 .text
0053 
0054 # Virtual Registers
0055 # ARG1
0056 digest  = %rdi
0057 # ARG2
0058 msg = %rsi
0059 # ARG3
0060 msglen  = %rdx
0061 T1  = %rcx
0062 T2  = %r8
0063 a_64    = %r9
0064 b_64    = %r10
0065 c_64    = %r11
0066 d_64    = %r12
0067 e_64    = %r13
0068 f_64    = %r14
0069 g_64    = %r15
0070 h_64    = %rbx
0071 tmp0    = %rax
0072 
0073 # Local variables (stack frame)
0074 
0075 # Message Schedule
0076 W_SIZE = 80*8
0077 # W[t] + K[t] | W[t+1] + K[t+1]
0078 WK_SIZE = 2*8
0079 
0080 frame_W = 0
0081 frame_WK = frame_W + W_SIZE
0082 frame_size = frame_WK + WK_SIZE
0083 
0084 # Useful QWORD "arrays" for simpler memory references
0085 # MSG, DIGEST, K_t, W_t are arrays
0086 # WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
0087 
0088 # Input message (arg1)
0089 #define MSG(i)    8*i(msg)
0090 
0091 # Output Digest (arg2)
0092 #define DIGEST(i) 8*i(digest)
0093 
0094 # SHA Constants (static mem)
0095 #define K_t(i)    8*i+K512(%rip)
0096 
0097 # Message Schedule (stack frame)
0098 #define W_t(i)    8*i+frame_W(%rsp)
0099 
0100 # W[t]+K[t] (stack frame)
0101 #define WK_2(i)   8*((i%2))+frame_WK(%rsp)
0102 
0103 .macro RotateState
0104     # Rotate symbols a..h right
0105     TMP   = h_64
0106     h_64  = g_64
0107     g_64  = f_64
0108     f_64  = e_64
0109     e_64  = d_64
0110     d_64  = c_64
0111     c_64  = b_64
0112     b_64  = a_64
0113     a_64  = TMP
0114 .endm
0115 
0116 .macro RORQ p1 p2
0117     # shld is faster than ror on Sandybridge
0118     shld    $(64-\p2), \p1, \p1
0119 .endm
0120 
0121 .macro SHA512_Round rnd
0122     # Compute Round %%t
0123     mov     f_64, T1          # T1 = f
0124     mov     e_64, tmp0        # tmp = e
0125     xor     g_64, T1          # T1 = f ^ g
0126     RORQ    tmp0, 23   # 41    # tmp = e ror 23
0127     and     e_64, T1          # T1 = (f ^ g) & e
0128     xor     e_64, tmp0        # tmp = (e ror 23) ^ e
0129     xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
0130     idx = \rnd
0131     add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
0132     RORQ    tmp0, 4   # 18    # tmp = ((e ror 23) ^ e) ror 4
0133     xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
0134     mov     a_64, T2          # T2 = a
0135     add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
0136     RORQ    tmp0, 14  # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
0137     add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
0138     mov     a_64, tmp0        # tmp = a
0139     xor     c_64, T2          # T2 = a ^ c
0140     and     c_64, tmp0        # tmp = a & c
0141     and     b_64, T2          # T2 = (a ^ c) & b
0142     xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
0143     mov     a_64, tmp0        # tmp = a
0144     RORQ    tmp0, 5  # 39     # tmp = a ror 5
0145     xor     a_64, tmp0        # tmp = (a ror 5) ^ a
0146     add     T1, d_64          # e(next_state) = d + T1
0147     RORQ    tmp0, 6  # 34     # tmp = ((a ror 5) ^ a) ror 6
0148     xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
0149     lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
0150     RORQ    tmp0, 28  # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
0151     add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
0152     RotateState
0153 .endm
0154 
0155 .macro SHA512_2Sched_2Round_avx rnd
0156     # Compute rounds t-2 and t-1
0157     # Compute message schedule QWORDS t and t+1
0158 
0159     #   Two rounds are computed based on the values for K[t-2]+W[t-2] and
0160     # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
0161     # scheduler.
0162     #   The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
0163     # They are then added to their respective SHA512 constants at
0164     # [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
0165     #   For brievity, the comments following vectored instructions only refer to
0166     # the first of a pair of QWORDS.
0167     # Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
0168     #   The computation of the message schedule and the rounds are tightly
0169     # stitched to take advantage of instruction-level parallelism.
0170 
0171     idx = \rnd - 2
0172     vmovdqa W_t(idx), %xmm4     # XMM4 = W[t-2]
0173     idx = \rnd - 15
0174     vmovdqu W_t(idx), %xmm5     # XMM5 = W[t-15]
0175     mov f_64, T1
0176     vpsrlq  $61, %xmm4, %xmm0   # XMM0 = W[t-2]>>61
0177     mov e_64, tmp0
0178     vpsrlq  $1, %xmm5, %xmm6    # XMM6 = W[t-15]>>1
0179     xor g_64, T1
0180     RORQ    tmp0, 23 # 41
0181     vpsrlq  $19, %xmm4, %xmm1   # XMM1 = W[t-2]>>19
0182     and e_64, T1
0183     xor e_64, tmp0
0184     vpxor   %xmm1, %xmm0, %xmm0 # XMM0 = W[t-2]>>61 ^ W[t-2]>>19
0185     xor g_64, T1
0186     idx = \rnd
0187     add WK_2(idx), T1#
0188     vpsrlq  $8, %xmm5, %xmm7    # XMM7 = W[t-15]>>8
0189     RORQ    tmp0, 4 # 18
0190     vpsrlq  $6, %xmm4, %xmm2    # XMM2 = W[t-2]>>6
0191     xor e_64, tmp0
0192     mov a_64, T2
0193     add h_64, T1
0194     vpxor   %xmm7, %xmm6, %xmm6 # XMM6 = W[t-15]>>1 ^ W[t-15]>>8
0195     RORQ    tmp0, 14 # 14
0196     add tmp0, T1
0197     vpsrlq  $7, %xmm5, %xmm8    # XMM8 = W[t-15]>>7
0198     mov a_64, tmp0
0199     xor c_64, T2
0200     vpsllq  $(64-61), %xmm4, %xmm3  # XMM3 = W[t-2]<<3
0201     and c_64, tmp0
0202     and b_64, T2
0203     vpxor   %xmm3, %xmm2, %xmm2 # XMM2 = W[t-2]>>6 ^ W[t-2]<<3
0204     xor tmp0, T2
0205     mov a_64, tmp0
0206     vpsllq  $(64-1), %xmm5, %xmm9   # XMM9 = W[t-15]<<63
0207     RORQ    tmp0, 5 # 39
0208     vpxor   %xmm9, %xmm8, %xmm8 # XMM8 = W[t-15]>>7 ^ W[t-15]<<63
0209     xor a_64, tmp0
0210     add T1, d_64
0211     RORQ    tmp0, 6 # 34
0212     xor a_64, tmp0
0213     vpxor   %xmm8, %xmm6, %xmm6 # XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
0214                     #  W[t-15]>>7 ^ W[t-15]<<63
0215     lea (T1, T2), h_64
0216     RORQ    tmp0, 28 # 28
0217     vpsllq  $(64-19), %xmm4, %xmm4  # XMM4 = W[t-2]<<25
0218     add tmp0, h_64
0219     RotateState
0220     vpxor   %xmm4, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
0221                     #        W[t-2]<<25
0222     mov f_64, T1
0223     vpxor   %xmm2, %xmm0, %xmm0     # XMM0 = s1(W[t-2])
0224     mov e_64, tmp0
0225     xor g_64, T1
0226     idx = \rnd - 16
0227     vpaddq  W_t(idx), %xmm0, %xmm0  # XMM0 = s1(W[t-2]) + W[t-16]
0228     idx = \rnd - 7
0229     vmovdqu W_t(idx), %xmm1     # XMM1 = W[t-7]
0230     RORQ    tmp0, 23 # 41
0231     and e_64, T1
0232     xor e_64, tmp0
0233     xor g_64, T1
0234     vpsllq  $(64-8), %xmm5, %xmm5   # XMM5 = W[t-15]<<56
0235     idx = \rnd + 1
0236     add WK_2(idx), T1
0237     vpxor   %xmm5, %xmm6, %xmm6     # XMM6 = s0(W[t-15])
0238     RORQ    tmp0, 4 # 18
0239     vpaddq  %xmm6, %xmm0, %xmm0     # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
0240     xor e_64, tmp0
0241     vpaddq  %xmm1, %xmm0, %xmm0     # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
0242                     #               s0(W[t-15]) + W[t-16]
0243     mov a_64, T2
0244     add h_64, T1
0245     RORQ    tmp0, 14 # 14
0246     add tmp0, T1
0247     idx = \rnd
0248     vmovdqa %xmm0, W_t(idx)     # Store W[t]
0249     vpaddq  K_t(idx), %xmm0, %xmm0  # Compute W[t]+K[t]
0250     vmovdqa %xmm0, WK_2(idx)    # Store W[t]+K[t] for next rounds
0251     mov a_64, tmp0
0252     xor c_64, T2
0253     and c_64, tmp0
0254     and b_64, T2
0255     xor tmp0, T2
0256     mov a_64, tmp0
0257     RORQ    tmp0, 5 # 39
0258     xor a_64, tmp0
0259     add T1, d_64
0260     RORQ    tmp0, 6 # 34
0261     xor a_64, tmp0
0262     lea (T1, T2), h_64
0263     RORQ    tmp0, 28 # 28
0264     add tmp0, h_64
0265     RotateState
0266 .endm
0267 
0268 ########################################################################
0269 # void sha512_transform_avx(sha512_state *state, const u8 *data, int blocks)
0270 # Purpose: Updates the SHA512 digest stored at "state" with the message
0271 # stored in "data".
0272 # The size of the message pointed to by "data" must be an integer multiple
0273 # of SHA512 message blocks.
0274 # "blocks" is the message length in SHA512 blocks
0275 ########################################################################
0276 SYM_FUNC_START(sha512_transform_avx)
0277     test msglen, msglen
0278     je nowork
0279 
0280     # Save GPRs
0281     push    %rbx
0282     push    %r12
0283     push    %r13
0284     push    %r14
0285     push    %r15
0286 
0287     # Allocate Stack Space
0288     push    %rbp
0289     mov %rsp, %rbp
0290     sub     $frame_size, %rsp
0291     and $~(0x20 - 1), %rsp
0292 
0293 updateblock:
0294 
0295     # Load state variables
0296     mov     DIGEST(0), a_64
0297     mov     DIGEST(1), b_64
0298     mov     DIGEST(2), c_64
0299     mov     DIGEST(3), d_64
0300     mov     DIGEST(4), e_64
0301     mov     DIGEST(5), f_64
0302     mov     DIGEST(6), g_64
0303     mov     DIGEST(7), h_64
0304 
0305     t = 0
0306     .rept 80/2 + 1
0307     # (80 rounds) / (2 rounds/iteration) + (1 iteration)
0308     # +1 iteration because the scheduler leads hashing by 1 iteration
0309         .if t < 2
0310             # BSWAP 2 QWORDS
0311             vmovdqa  XMM_QWORD_BSWAP(%rip), %xmm1
0312             vmovdqu  MSG(t), %xmm0
0313             vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
0314             vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
0315             vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
0316             vmovdqa  %xmm0, WK_2(t) # Store into WK for rounds
0317         .elseif t < 16
0318             # BSWAP 2 QWORDS# Compute 2 Rounds
0319             vmovdqu  MSG(t), %xmm0
0320             vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
0321             SHA512_Round t-2    # Round t-2
0322             vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
0323             vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
0324             SHA512_Round t-1    # Round t-1
0325             vmovdqa  %xmm0, WK_2(t)# Store W[t]+K[t] into WK
0326         .elseif t < 79
0327             # Schedule 2 QWORDS# Compute 2 Rounds
0328             SHA512_2Sched_2Round_avx t
0329         .else
0330             # Compute 2 Rounds
0331             SHA512_Round t-2
0332             SHA512_Round t-1
0333         .endif
0334         t = t+2
0335     .endr
0336 
0337     # Update digest
0338     add     a_64, DIGEST(0)
0339     add     b_64, DIGEST(1)
0340     add     c_64, DIGEST(2)
0341     add     d_64, DIGEST(3)
0342     add     e_64, DIGEST(4)
0343     add     f_64, DIGEST(5)
0344     add     g_64, DIGEST(6)
0345     add     h_64, DIGEST(7)
0346 
0347     # Advance to next message block
0348     add     $16*8, msg
0349     dec     msglen
0350     jnz     updateblock
0351 
0352     # Restore Stack Pointer
0353     mov %rbp, %rsp
0354     pop %rbp
0355 
0356     # Restore GPRs
0357     pop %r15
0358     pop %r14
0359     pop %r13
0360     pop %r12
0361     pop %rbx
0362 
0363 nowork:
0364     RET
0365 SYM_FUNC_END(sha512_transform_avx)
0366 
0367 ########################################################################
0368 ### Binary Data
0369 
0370 .section    .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
0371 .align 16
0372 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
0373 XMM_QWORD_BSWAP:
0374     .octa 0x08090a0b0c0d0e0f0001020304050607
0375 
0376 # Mergeable 640-byte rodata section. This allows linker to merge the table
0377 # with other, exactly the same 640-byte fragment of another rodata section
0378 # (if such section exists).
0379 .section    .rodata.cst640.K512, "aM", @progbits, 640
0380 .align 64
0381 # K[t] used in SHA512 hashing
0382 K512:
0383     .quad 0x428a2f98d728ae22,0x7137449123ef65cd
0384     .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
0385     .quad 0x3956c25bf348b538,0x59f111f1b605d019
0386     .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
0387     .quad 0xd807aa98a3030242,0x12835b0145706fbe
0388     .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
0389     .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
0390     .quad 0x9bdc06a725c71235,0xc19bf174cf692694
0391     .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
0392     .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
0393     .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
0394     .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
0395     .quad 0x983e5152ee66dfab,0xa831c66d2db43210
0396     .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
0397     .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
0398     .quad 0x06ca6351e003826f,0x142929670a0e6e70
0399     .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
0400     .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
0401     .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
0402     .quad 0x81c2c92e47edaee6,0x92722c851482353b
0403     .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
0404     .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
0405     .quad 0xd192e819d6ef5218,0xd69906245565a910
0406     .quad 0xf40e35855771202a,0x106aa07032bbd1b8
0407     .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
0408     .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
0409     .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
0410     .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
0411     .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
0412     .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
0413     .quad 0x90befffa23631e28,0xa4506cebde82bde9
0414     .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
0415     .quad 0xca273eceea26619c,0xd186b8c721c0c207
0416     .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
0417     .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
0418     .quad 0x113f9804bef90dae,0x1b710b35131c471b
0419     .quad 0x28db77f523047d84,0x32caab7b40c72493
0420     .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
0421     .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
0422     .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817