0001 ########################################################################
0002 # Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
0003 #
0004 # Copyright (c) 2013, Intel Corporation
0005 #
0006 # Authors:
0007 # Erdinc Ozturk <erdinc.ozturk@intel.com>
0008 # Vinodh Gopal <vinodh.gopal@intel.com>
0009 # James Guilford <james.guilford@intel.com>
0010 # Tim Chen <tim.c.chen@linux.intel.com>
0011 #
0012 # This software is available to you under a choice of one of two
0013 # licenses. You may choose to be licensed under the terms of the GNU
0014 # General Public License (GPL) Version 2, available from the file
0015 # COPYING in the main directory of this source tree, or the
0016 # OpenIB.org BSD license below:
0017 #
0018 # Redistribution and use in source and binary forms, with or without
0019 # modification, are permitted provided that the following conditions are
0020 # met:
0021 #
0022 # * Redistributions of source code must retain the above copyright
0023 # notice, this list of conditions and the following disclaimer.
0024 #
0025 # * Redistributions in binary form must reproduce the above copyright
0026 # notice, this list of conditions and the following disclaimer in the
0027 # documentation and/or other materials provided with the
0028 # distribution.
0029 #
0030 # * Neither the name of the Intel Corporation nor the names of its
0031 # contributors may be used to endorse or promote products derived from
0032 # this software without specific prior written permission.
0033 #
0034 #
0035 # THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
0036 # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
0037 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
0038 # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
0039 # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
0040 # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
0041 # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
0042 # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
0043 # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
0044 # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
0045 # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0046 #
0047 # Reference paper titled "Fast CRC Computation for Generic
0048 # Polynomials Using PCLMULQDQ Instruction"
0049 # URL: http://www.intel.com/content/dam/www/public/us/en/documents
0050 # /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
0051 #
0052
0053 #include <linux/linkage.h>
0054
0055 .text
0056
0057 #define init_crc %edi
0058 #define buf %rsi
0059 #define len %rdx
0060
0061 #define FOLD_CONSTS %xmm10
0062 #define BSWAP_MASK %xmm11
0063
0064 # Fold reg1, reg2 into the next 32 data bytes, storing the result back into
0065 # reg1, reg2.
0066 .macro fold_32_bytes offset, reg1, reg2
0067 movdqu \offset(buf), %xmm9
0068 movdqu \offset+16(buf), %xmm12
0069 pshufb BSWAP_MASK, %xmm9
0070 pshufb BSWAP_MASK, %xmm12
0071 movdqa \reg1, %xmm8
0072 movdqa \reg2, %xmm13
0073 pclmulqdq $0x00, FOLD_CONSTS, \reg1
0074 pclmulqdq $0x11, FOLD_CONSTS, %xmm8
0075 pclmulqdq $0x00, FOLD_CONSTS, \reg2
0076 pclmulqdq $0x11, FOLD_CONSTS, %xmm13
0077 pxor %xmm9 , \reg1
0078 xorps %xmm8 , \reg1
0079 pxor %xmm12, \reg2
0080 xorps %xmm13, \reg2
0081 .endm
0082
0083 # Fold src_reg into dst_reg.
0084 .macro fold_16_bytes src_reg, dst_reg
0085 movdqa \src_reg, %xmm8
0086 pclmulqdq $0x11, FOLD_CONSTS, \src_reg
0087 pclmulqdq $0x00, FOLD_CONSTS, %xmm8
0088 pxor %xmm8, \dst_reg
0089 xorps \src_reg, \dst_reg
0090 .endm
0091
0092 #
0093 # u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len);
0094 #
0095 # Assumes len >= 16.
0096 #
0097 .align 16
0098 SYM_FUNC_START(crc_t10dif_pcl)
0099
0100 movdqa .Lbswap_mask(%rip), BSWAP_MASK
0101
0102 # For sizes less than 256 bytes, we can't fold 128 bytes at a time.
0103 cmp $256, len
0104 jl .Lless_than_256_bytes
0105
0106 # Load the first 128 data bytes. Byte swapping is necessary to make the
0107 # bit order match the polynomial coefficient order.
0108 movdqu 16*0(buf), %xmm0
0109 movdqu 16*1(buf), %xmm1
0110 movdqu 16*2(buf), %xmm2
0111 movdqu 16*3(buf), %xmm3
0112 movdqu 16*4(buf), %xmm4
0113 movdqu 16*5(buf), %xmm5
0114 movdqu 16*6(buf), %xmm6
0115 movdqu 16*7(buf), %xmm7
0116 add $128, buf
0117 pshufb BSWAP_MASK, %xmm0
0118 pshufb BSWAP_MASK, %xmm1
0119 pshufb BSWAP_MASK, %xmm2
0120 pshufb BSWAP_MASK, %xmm3
0121 pshufb BSWAP_MASK, %xmm4
0122 pshufb BSWAP_MASK, %xmm5
0123 pshufb BSWAP_MASK, %xmm6
0124 pshufb BSWAP_MASK, %xmm7
0125
0126 # XOR the first 16 data *bits* with the initial CRC value.
0127 pxor %xmm8, %xmm8
0128 pinsrw $7, init_crc, %xmm8
0129 pxor %xmm8, %xmm0
0130
0131 movdqa .Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS
0132
0133 # Subtract 128 for the 128 data bytes just consumed. Subtract another
0134 # 128 to simplify the termination condition of the following loop.
0135 sub $256, len
0136
0137 # While >= 128 data bytes remain (not counting xmm0-7), fold the 128
0138 # bytes xmm0-7 into them, storing the result back into xmm0-7.
0139 .Lfold_128_bytes_loop:
0140 fold_32_bytes 0, %xmm0, %xmm1
0141 fold_32_bytes 32, %xmm2, %xmm3
0142 fold_32_bytes 64, %xmm4, %xmm5
0143 fold_32_bytes 96, %xmm6, %xmm7
0144 add $128, buf
0145 sub $128, len
0146 jge .Lfold_128_bytes_loop
0147
0148 # Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7.
0149
0150 # Fold across 64 bytes.
0151 movdqa .Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS
0152 fold_16_bytes %xmm0, %xmm4
0153 fold_16_bytes %xmm1, %xmm5
0154 fold_16_bytes %xmm2, %xmm6
0155 fold_16_bytes %xmm3, %xmm7
0156 # Fold across 32 bytes.
0157 movdqa .Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS
0158 fold_16_bytes %xmm4, %xmm6
0159 fold_16_bytes %xmm5, %xmm7
0160 # Fold across 16 bytes.
0161 movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
0162 fold_16_bytes %xmm6, %xmm7
0163
0164 # Add 128 to get the correct number of data bytes remaining in 0...127
0165 # (not counting xmm7), following the previous extra subtraction by 128.
0166 # Then subtract 16 to simplify the termination condition of the
0167 # following loop.
0168 add $128-16, len
0169
0170 # While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes
0171 # xmm7 into them, storing the result back into xmm7.
0172 jl .Lfold_16_bytes_loop_done
0173 .Lfold_16_bytes_loop:
0174 movdqa %xmm7, %xmm8
0175 pclmulqdq $0x11, FOLD_CONSTS, %xmm7
0176 pclmulqdq $0x00, FOLD_CONSTS, %xmm8
0177 pxor %xmm8, %xmm7
0178 movdqu (buf), %xmm0
0179 pshufb BSWAP_MASK, %xmm0
0180 pxor %xmm0 , %xmm7
0181 add $16, buf
0182 sub $16, len
0183 jge .Lfold_16_bytes_loop
0184
0185 .Lfold_16_bytes_loop_done:
0186 # Add 16 to get the correct number of data bytes remaining in 0...15
0187 # (not counting xmm7), following the previous extra subtraction by 16.
0188 add $16, len
0189 je .Lreduce_final_16_bytes
0190
0191 .Lhandle_partial_segment:
0192 # Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16
0193 # bytes are in xmm7 and the rest are the remaining data in 'buf'. To do
0194 # this without needing a fold constant for each possible 'len', redivide
0195 # the bytes into a first chunk of 'len' bytes and a second chunk of 16
0196 # bytes, then fold the first chunk into the second.
0197
0198 movdqa %xmm7, %xmm2
0199
0200 # xmm1 = last 16 original data bytes
0201 movdqu -16(buf, len), %xmm1
0202 pshufb BSWAP_MASK, %xmm1
0203
0204 # xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes.
0205 lea .Lbyteshift_table+16(%rip), %rax
0206 sub len, %rax
0207 movdqu (%rax), %xmm0
0208 pshufb %xmm0, %xmm2
0209
0210 # xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes.
0211 pxor .Lmask1(%rip), %xmm0
0212 pshufb %xmm0, %xmm7
0213
0214 # xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes),
0215 # then '16-len' bytes from xmm2 (high-order bytes).
0216 pblendvb %xmm2, %xmm1 #xmm0 is implicit
0217
0218 # Fold the first chunk into the second chunk, storing the result in xmm7.
0219 movdqa %xmm7, %xmm8
0220 pclmulqdq $0x11, FOLD_CONSTS, %xmm7
0221 pclmulqdq $0x00, FOLD_CONSTS, %xmm8
0222 pxor %xmm8, %xmm7
0223 pxor %xmm1, %xmm7
0224
0225 .Lreduce_final_16_bytes:
0226 # Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC
0227
0228 # Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
0229 movdqa .Lfinal_fold_consts(%rip), FOLD_CONSTS
0230
0231 # Fold the high 64 bits into the low 64 bits, while also multiplying by
0232 # x^64. This produces a 128-bit value congruent to x^64 * M(x) and
0233 # whose low 48 bits are 0.
0234 movdqa %xmm7, %xmm0
0235 pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x))
0236 pslldq $8, %xmm0
0237 pxor %xmm0, %xmm7 # + low bits * x^64
0238
0239 # Fold the high 32 bits into the low 96 bits. This produces a 96-bit
0240 # value congruent to x^64 * M(x) and whose low 48 bits are 0.
0241 movdqa %xmm7, %xmm0
0242 pand .Lmask2(%rip), %xmm0 # zero high 32 bits
0243 psrldq $12, %xmm7 # extract high 32 bits
0244 pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x))
0245 pxor %xmm0, %xmm7 # + low bits
0246
0247 # Load G(x) and floor(x^48 / G(x)).
0248 movdqa .Lbarrett_reduction_consts(%rip), FOLD_CONSTS
0249
0250 # Use Barrett reduction to compute the final CRC value.
0251 movdqa %xmm7, %xmm0
0252 pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x))
0253 psrlq $32, %xmm7 # /= x^32
0254 pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # *= G(x)
0255 psrlq $48, %xmm0
0256 pxor %xmm7, %xmm0 # + low 16 nonzero bits
0257 # Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0.
0258
0259 pextrw $0, %xmm0, %eax
0260 RET
0261
0262 .align 16
0263 .Lless_than_256_bytes:
0264 # Checksumming a buffer of length 16...255 bytes
0265
0266 # Load the first 16 data bytes.
0267 movdqu (buf), %xmm7
0268 pshufb BSWAP_MASK, %xmm7
0269 add $16, buf
0270
0271 # XOR the first 16 data *bits* with the initial CRC value.
0272 pxor %xmm0, %xmm0
0273 pinsrw $7, init_crc, %xmm0
0274 pxor %xmm0, %xmm7
0275
0276 movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
0277 cmp $16, len
0278 je .Lreduce_final_16_bytes # len == 16
0279 sub $32, len
0280 jge .Lfold_16_bytes_loop # 32 <= len <= 255
0281 add $16, len
0282 jmp .Lhandle_partial_segment # 17 <= len <= 31
0283 SYM_FUNC_END(crc_t10dif_pcl)
0284
0285 .section .rodata, "a", @progbits
0286 .align 16
0287
0288 # Fold constants precomputed from the polynomial 0x18bb7
0289 # G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
0290 .Lfold_across_128_bytes_consts:
0291 .quad 0x0000000000006123 # x^(8*128) mod G(x)
0292 .quad 0x0000000000002295 # x^(8*128+64) mod G(x)
0293 .Lfold_across_64_bytes_consts:
0294 .quad 0x0000000000001069 # x^(4*128) mod G(x)
0295 .quad 0x000000000000dd31 # x^(4*128+64) mod G(x)
0296 .Lfold_across_32_bytes_consts:
0297 .quad 0x000000000000857d # x^(2*128) mod G(x)
0298 .quad 0x0000000000007acc # x^(2*128+64) mod G(x)
0299 .Lfold_across_16_bytes_consts:
0300 .quad 0x000000000000a010 # x^(1*128) mod G(x)
0301 .quad 0x0000000000001faa # x^(1*128+64) mod G(x)
0302 .Lfinal_fold_consts:
0303 .quad 0x1368000000000000 # x^48 * (x^48 mod G(x))
0304 .quad 0x2d56000000000000 # x^48 * (x^80 mod G(x))
0305 .Lbarrett_reduction_consts:
0306 .quad 0x0000000000018bb7 # G(x)
0307 .quad 0x00000001f65a57f8 # floor(x^48 / G(x))
0308
0309 .section .rodata.cst16.mask1, "aM", @progbits, 16
0310 .align 16
0311 .Lmask1:
0312 .octa 0x80808080808080808080808080808080
0313
0314 .section .rodata.cst16.mask2, "aM", @progbits, 16
0315 .align 16
0316 .Lmask2:
0317 .octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
0318
0319 .section .rodata.cst16.bswap_mask, "aM", @progbits, 16
0320 .align 16
0321 .Lbswap_mask:
0322 .octa 0x000102030405060708090A0B0C0D0E0F
0323
0324 .section .rodata.cst32.byteshift_table, "aM", @progbits, 32
0325 .align 16
0326 # For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len]
0327 # is the index vector to shift left by 'len' bytes, and is also {0x80, ...,
0328 # 0x80} XOR the index vector to shift right by '16 - len' bytes.
0329 .Lbyteshift_table:
0330 .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
0331 .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
0332 .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
0333 .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0