0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/stddef.h>
0010 #include <linux/err.h>
0011 #include <linux/hardirq.h>
0012 #include <linux/mm.h>
0013 #include <linux/module.h>
0014 #include <linux/personality.h>
0015 #include <linux/proc_fs.h>
0016 #include <linux/ptrace.h>
0017 #include <linux/random.h>
0018 #include <linux/slab.h>
0019 #include <linux/sched.h>
0020 #include <linux/sched/debug.h>
0021 #include <linux/sched/task.h>
0022 #include <linux/sched/task_stack.h>
0023 #include <linux/seq_file.h>
0024 #include <linux/tick.h>
0025 #include <linux/threads.h>
0026 #include <linux/resume_user_mode.h>
0027 #include <asm/current.h>
0028 #include <asm/mmu_context.h>
0029 #include <linux/uaccess.h>
0030 #include <as-layout.h>
0031 #include <kern_util.h>
0032 #include <os.h>
0033 #include <skas.h>
0034 #include <registers.h>
0035 #include <linux/time-internal.h>
0036
0037
0038
0039
0040
0041
0042 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
0043
0044 static inline int external_pid(void)
0045 {
0046
0047 return userspace_pid[0];
0048 }
0049
0050 int pid_to_processor_id(int pid)
0051 {
0052 int i;
0053
0054 for (i = 0; i < ncpus; i++) {
0055 if (cpu_tasks[i].pid == pid)
0056 return i;
0057 }
0058 return -1;
0059 }
0060
0061 void free_stack(unsigned long stack, int order)
0062 {
0063 free_pages(stack, order);
0064 }
0065
0066 unsigned long alloc_stack(int order, int atomic)
0067 {
0068 unsigned long page;
0069 gfp_t flags = GFP_KERNEL;
0070
0071 if (atomic)
0072 flags = GFP_ATOMIC;
0073 page = __get_free_pages(flags, order);
0074
0075 return page;
0076 }
0077
0078 static inline void set_current(struct task_struct *task)
0079 {
0080 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
0081 { external_pid(), task });
0082 }
0083
0084 extern void arch_switch_to(struct task_struct *to);
0085
0086 void *__switch_to(struct task_struct *from, struct task_struct *to)
0087 {
0088 to->thread.prev_sched = from;
0089 set_current(to);
0090
0091 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
0092 arch_switch_to(current);
0093
0094 return current->thread.prev_sched;
0095 }
0096
0097 void interrupt_end(void)
0098 {
0099 struct pt_regs *regs = ¤t->thread.regs;
0100
0101 if (need_resched())
0102 schedule();
0103 if (test_thread_flag(TIF_SIGPENDING) ||
0104 test_thread_flag(TIF_NOTIFY_SIGNAL))
0105 do_signal(regs);
0106 if (test_thread_flag(TIF_NOTIFY_RESUME))
0107 resume_user_mode_work(regs);
0108 }
0109
0110 int get_current_pid(void)
0111 {
0112 return task_pid_nr(current);
0113 }
0114
0115
0116
0117
0118
0119 void new_thread_handler(void)
0120 {
0121 int (*fn)(void *), n;
0122 void *arg;
0123
0124 if (current->thread.prev_sched != NULL)
0125 schedule_tail(current->thread.prev_sched);
0126 current->thread.prev_sched = NULL;
0127
0128 fn = current->thread.request.u.thread.proc;
0129 arg = current->thread.request.u.thread.arg;
0130
0131
0132
0133
0134 n = fn(arg);
0135 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs);
0136 }
0137
0138
0139 void fork_handler(void)
0140 {
0141 force_flush_all();
0142
0143 schedule_tail(current->thread.prev_sched);
0144
0145
0146
0147
0148
0149
0150 arch_switch_to(current);
0151
0152 current->thread.prev_sched = NULL;
0153
0154 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs);
0155 }
0156
0157 int copy_thread(struct task_struct * p, const struct kernel_clone_args *args)
0158 {
0159 unsigned long clone_flags = args->flags;
0160 unsigned long sp = args->stack;
0161 unsigned long tls = args->tls;
0162 void (*handler)(void);
0163 int ret = 0;
0164
0165 p->thread = (struct thread_struct) INIT_THREAD;
0166
0167 if (!args->fn) {
0168 memcpy(&p->thread.regs.regs, current_pt_regs(),
0169 sizeof(p->thread.regs.regs));
0170 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
0171 if (sp != 0)
0172 REGS_SP(p->thread.regs.regs.gp) = sp;
0173
0174 handler = fork_handler;
0175
0176 arch_copy_thread(¤t->thread.arch, &p->thread.arch);
0177 } else {
0178 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
0179 p->thread.request.u.thread.proc = args->fn;
0180 p->thread.request.u.thread.arg = args->fn_arg;
0181 handler = new_thread_handler;
0182 }
0183
0184 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
0185
0186 if (!args->fn) {
0187 clear_flushed_tls(p);
0188
0189
0190
0191
0192 if (clone_flags & CLONE_SETTLS)
0193 ret = arch_set_tls(p, tls);
0194 }
0195
0196 return ret;
0197 }
0198
0199 void initial_thread_cb(void (*proc)(void *), void *arg)
0200 {
0201 int save_kmalloc_ok = kmalloc_ok;
0202
0203 kmalloc_ok = 0;
0204 initial_thread_cb_skas(proc, arg);
0205 kmalloc_ok = save_kmalloc_ok;
0206 }
0207
0208 void um_idle_sleep(void)
0209 {
0210 if (time_travel_mode != TT_MODE_OFF)
0211 time_travel_sleep();
0212 else
0213 os_idle_sleep();
0214 }
0215
0216 void arch_cpu_idle(void)
0217 {
0218 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
0219 um_idle_sleep();
0220 raw_local_irq_enable();
0221 }
0222
0223 int __cant_sleep(void) {
0224 return in_atomic() || irqs_disabled() || in_interrupt();
0225
0226 }
0227
0228 int user_context(unsigned long sp)
0229 {
0230 unsigned long stack;
0231
0232 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
0233 return stack != (unsigned long) current_thread_info();
0234 }
0235
0236 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
0237
0238 void do_uml_exitcalls(void)
0239 {
0240 exitcall_t *call;
0241
0242 call = &__uml_exitcall_end;
0243 while (--call >= &__uml_exitcall_begin)
0244 (*call)();
0245 }
0246
0247 char *uml_strdup(const char *string)
0248 {
0249 return kstrdup(string, GFP_KERNEL);
0250 }
0251 EXPORT_SYMBOL(uml_strdup);
0252
0253 int copy_to_user_proc(void __user *to, void *from, int size)
0254 {
0255 return copy_to_user(to, from, size);
0256 }
0257
0258 int copy_from_user_proc(void *to, void __user *from, int size)
0259 {
0260 return copy_from_user(to, from, size);
0261 }
0262
0263 int clear_user_proc(void __user *buf, int size)
0264 {
0265 return clear_user(buf, size);
0266 }
0267
0268 static atomic_t using_sysemu = ATOMIC_INIT(0);
0269 int sysemu_supported;
0270
0271 void set_using_sysemu(int value)
0272 {
0273 if (value > sysemu_supported)
0274 return;
0275 atomic_set(&using_sysemu, value);
0276 }
0277
0278 int get_using_sysemu(void)
0279 {
0280 return atomic_read(&using_sysemu);
0281 }
0282
0283 static int sysemu_proc_show(struct seq_file *m, void *v)
0284 {
0285 seq_printf(m, "%d\n", get_using_sysemu());
0286 return 0;
0287 }
0288
0289 static int sysemu_proc_open(struct inode *inode, struct file *file)
0290 {
0291 return single_open(file, sysemu_proc_show, NULL);
0292 }
0293
0294 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
0295 size_t count, loff_t *pos)
0296 {
0297 char tmp[2];
0298
0299 if (copy_from_user(tmp, buf, 1))
0300 return -EFAULT;
0301
0302 if (tmp[0] >= '0' && tmp[0] <= '2')
0303 set_using_sysemu(tmp[0] - '0');
0304
0305 return count;
0306 }
0307
0308 static const struct proc_ops sysemu_proc_ops = {
0309 .proc_open = sysemu_proc_open,
0310 .proc_read = seq_read,
0311 .proc_lseek = seq_lseek,
0312 .proc_release = single_release,
0313 .proc_write = sysemu_proc_write,
0314 };
0315
0316 int __init make_proc_sysemu(void)
0317 {
0318 struct proc_dir_entry *ent;
0319 if (!sysemu_supported)
0320 return 0;
0321
0322 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
0323
0324 if (ent == NULL)
0325 {
0326 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
0327 return 0;
0328 }
0329
0330 return 0;
0331 }
0332
0333 late_initcall(make_proc_sysemu);
0334
0335 int singlestepping(void * t)
0336 {
0337 struct task_struct *task = t ? t : current;
0338
0339 if (!test_thread_flag(TIF_SINGLESTEP))
0340 return 0;
0341
0342 if (task->thread.singlestep_syscall)
0343 return 1;
0344
0345 return 2;
0346 }
0347
0348
0349
0350
0351
0352
0353
0354
0355 #ifndef arch_align_stack
0356 unsigned long arch_align_stack(unsigned long sp)
0357 {
0358 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
0359 sp -= get_random_int() % 8192;
0360 return sp & ~0xf;
0361 }
0362 #endif
0363
0364 unsigned long __get_wchan(struct task_struct *p)
0365 {
0366 unsigned long stack_page, sp, ip;
0367 bool seen_sched = 0;
0368
0369 stack_page = (unsigned long) task_stack_page(p);
0370
0371 if (stack_page == 0)
0372 return 0;
0373
0374 sp = p->thread.switch_buf->JB_SP;
0375
0376
0377
0378
0379 if (sp < stack_page)
0380 return 0;
0381
0382 while (sp < stack_page + THREAD_SIZE) {
0383 ip = *((unsigned long *) sp);
0384 if (in_sched_functions(ip))
0385
0386 seen_sched = 1;
0387 else if (kernel_text_address(ip) && seen_sched)
0388 return ip;
0389
0390 sp += sizeof(unsigned long);
0391 }
0392
0393 return 0;
0394 }
0395
0396 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
0397 {
0398 int cpu = current_thread_info()->cpu;
0399
0400 return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
0401 }
0402