0001
0002
0003
0004
0005
0006
0007
0008 #ifndef __UM_PGTABLE_H
0009 #define __UM_PGTABLE_H
0010
0011 #include <asm/fixmap.h>
0012
0013 #define _PAGE_PRESENT 0x001
0014 #define _PAGE_NEWPAGE 0x002
0015 #define _PAGE_NEWPROT 0x004
0016 #define _PAGE_RW 0x020
0017 #define _PAGE_USER 0x040
0018 #define _PAGE_ACCESSED 0x080
0019 #define _PAGE_DIRTY 0x100
0020
0021 #define _PAGE_PROTNONE 0x010
0022
0023
0024 #ifdef CONFIG_3_LEVEL_PGTABLES
0025 #include <asm/pgtable-3level.h>
0026 #else
0027 #include <asm/pgtable-2level.h>
0028 #endif
0029
0030 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
0031
0032
0033 extern unsigned long *empty_zero_page;
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043 extern unsigned long end_iomem;
0044
0045 #define VMALLOC_OFFSET (__va_space)
0046 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
0047 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
0048 #define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
0049 #define MODULES_VADDR VMALLOC_START
0050 #define MODULES_END VMALLOC_END
0051 #define MODULES_LEN (MODULES_VADDR - MODULES_END)
0052
0053 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
0054 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
0055 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
0056 #define __PAGE_KERNEL_EXEC \
0057 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
0058 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
0059 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
0060 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
0061 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
0062 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
0063 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
0077
0078 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
0079
0080 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
0081 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
0082
0083 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
0084 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
0085
0086 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
0087 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
0088
0089 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
0090 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
0091
0092 #define p4d_newpage(x) (p4d_val(x) & _PAGE_NEWPAGE)
0093 #define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
0094
0095 #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
0096 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
0097
0098 #define pte_page(x) pfn_to_page(pte_pfn(x))
0099
0100 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
0101
0102
0103
0104
0105
0106
0107
0108 static inline int pte_none(pte_t pte)
0109 {
0110 return pte_is_zero(pte);
0111 }
0112
0113
0114
0115
0116
0117 static inline int pte_read(pte_t pte)
0118 {
0119 return((pte_get_bits(pte, _PAGE_USER)) &&
0120 !(pte_get_bits(pte, _PAGE_PROTNONE)));
0121 }
0122
0123 static inline int pte_exec(pte_t pte){
0124 return((pte_get_bits(pte, _PAGE_USER)) &&
0125 !(pte_get_bits(pte, _PAGE_PROTNONE)));
0126 }
0127
0128 static inline int pte_write(pte_t pte)
0129 {
0130 return((pte_get_bits(pte, _PAGE_RW)) &&
0131 !(pte_get_bits(pte, _PAGE_PROTNONE)));
0132 }
0133
0134 static inline int pte_dirty(pte_t pte)
0135 {
0136 return pte_get_bits(pte, _PAGE_DIRTY);
0137 }
0138
0139 static inline int pte_young(pte_t pte)
0140 {
0141 return pte_get_bits(pte, _PAGE_ACCESSED);
0142 }
0143
0144 static inline int pte_newpage(pte_t pte)
0145 {
0146 return pte_get_bits(pte, _PAGE_NEWPAGE);
0147 }
0148
0149 static inline int pte_newprot(pte_t pte)
0150 {
0151 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
0152 }
0153
0154
0155
0156
0157
0158
0159
0160 static inline pte_t pte_mknewprot(pte_t pte)
0161 {
0162 pte_set_bits(pte, _PAGE_NEWPROT);
0163 return(pte);
0164 }
0165
0166 static inline pte_t pte_mkclean(pte_t pte)
0167 {
0168 pte_clear_bits(pte, _PAGE_DIRTY);
0169 return(pte);
0170 }
0171
0172 static inline pte_t pte_mkold(pte_t pte)
0173 {
0174 pte_clear_bits(pte, _PAGE_ACCESSED);
0175 return(pte);
0176 }
0177
0178 static inline pte_t pte_wrprotect(pte_t pte)
0179 {
0180 if (likely(pte_get_bits(pte, _PAGE_RW)))
0181 pte_clear_bits(pte, _PAGE_RW);
0182 else
0183 return pte;
0184 return(pte_mknewprot(pte));
0185 }
0186
0187 static inline pte_t pte_mkread(pte_t pte)
0188 {
0189 if (unlikely(pte_get_bits(pte, _PAGE_USER)))
0190 return pte;
0191 pte_set_bits(pte, _PAGE_USER);
0192 return(pte_mknewprot(pte));
0193 }
0194
0195 static inline pte_t pte_mkdirty(pte_t pte)
0196 {
0197 pte_set_bits(pte, _PAGE_DIRTY);
0198 return(pte);
0199 }
0200
0201 static inline pte_t pte_mkyoung(pte_t pte)
0202 {
0203 pte_set_bits(pte, _PAGE_ACCESSED);
0204 return(pte);
0205 }
0206
0207 static inline pte_t pte_mkwrite(pte_t pte)
0208 {
0209 if (unlikely(pte_get_bits(pte, _PAGE_RW)))
0210 return pte;
0211 pte_set_bits(pte, _PAGE_RW);
0212 return(pte_mknewprot(pte));
0213 }
0214
0215 static inline pte_t pte_mkuptodate(pte_t pte)
0216 {
0217 pte_clear_bits(pte, _PAGE_NEWPAGE);
0218 if(pte_present(pte))
0219 pte_clear_bits(pte, _PAGE_NEWPROT);
0220 return(pte);
0221 }
0222
0223 static inline pte_t pte_mknewpage(pte_t pte)
0224 {
0225 pte_set_bits(pte, _PAGE_NEWPAGE);
0226 return(pte);
0227 }
0228
0229 static inline void set_pte(pte_t *pteptr, pte_t pteval)
0230 {
0231 pte_copy(*pteptr, pteval);
0232
0233
0234
0235
0236
0237
0238 *pteptr = pte_mknewpage(*pteptr);
0239 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
0240 }
0241
0242 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
0243 pte_t *pteptr, pte_t pteval)
0244 {
0245 set_pte(pteptr, pteval);
0246 }
0247
0248 #define __HAVE_ARCH_PTE_SAME
0249 static inline int pte_same(pte_t pte_a, pte_t pte_b)
0250 {
0251 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
0252 }
0253
0254
0255
0256
0257
0258
0259 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
0260 #define __virt_to_page(virt) phys_to_page(__pa(virt))
0261 #define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
0262 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
0263
0264 #define mk_pte(page, pgprot) \
0265 ({ pte_t pte; \
0266 \
0267 pte_set_val(pte, page_to_phys(page), (pgprot)); \
0268 if (pte_present(pte)) \
0269 pte_mknewprot(pte_mknewpage(pte)); \
0270 pte;})
0271
0272 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
0273 {
0274 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
0275 return pte;
0276 }
0277
0278
0279
0280
0281
0282
0283
0284 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
0285
0286 struct mm_struct;
0287 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
0288
0289 #define update_mmu_cache(vma,address,ptep) do {} while (0)
0290
0291
0292 #define __swp_type(x) (((x).val >> 5) & 0x1f)
0293 #define __swp_offset(x) ((x).val >> 11)
0294
0295 #define __swp_entry(type, offset) \
0296 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
0297 #define __pte_to_swp_entry(pte) \
0298 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
0299 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
0300
0301 #define kern_addr_valid(addr) (1)
0302
0303
0304 #define kpte_clear_flush(ptep, vaddr) \
0305 do { \
0306 pte_clear(&init_mm, (vaddr), (ptep)); \
0307 __flush_tlb_one((vaddr)); \
0308 } while (0)
0309
0310 #endif