0001
0002 #include <linux/moduleloader.h>
0003 #include <linux/workqueue.h>
0004 #include <linux/netdevice.h>
0005 #include <linux/filter.h>
0006 #include <linux/bpf.h>
0007 #include <linux/cache.h>
0008 #include <linux/if_vlan.h>
0009
0010 #include <asm/cacheflush.h>
0011 #include <asm/ptrace.h>
0012
0013 #include "bpf_jit_64.h"
0014
0015 static inline bool is_simm13(unsigned int value)
0016 {
0017 return value + 0x1000 < 0x2000;
0018 }
0019
0020 static inline bool is_simm10(unsigned int value)
0021 {
0022 return value + 0x200 < 0x400;
0023 }
0024
0025 static inline bool is_simm5(unsigned int value)
0026 {
0027 return value + 0x10 < 0x20;
0028 }
0029
0030 static inline bool is_sethi(unsigned int value)
0031 {
0032 return (value & ~0x3fffff) == 0;
0033 }
0034
0035 static void bpf_flush_icache(void *start_, void *end_)
0036 {
0037
0038 if (tlb_type == spitfire) {
0039 unsigned long start = (unsigned long) start_;
0040 unsigned long end = (unsigned long) end_;
0041
0042 start &= ~7UL;
0043 end = (end + 7UL) & ~7UL;
0044 while (start < end) {
0045 flushi(start);
0046 start += 32;
0047 }
0048 }
0049 }
0050
0051 #define S13(X) ((X) & 0x1fff)
0052 #define S5(X) ((X) & 0x1f)
0053 #define IMMED 0x00002000
0054 #define RD(X) ((X) << 25)
0055 #define RS1(X) ((X) << 14)
0056 #define RS2(X) ((X))
0057 #define OP(X) ((X) << 30)
0058 #define OP2(X) ((X) << 22)
0059 #define OP3(X) ((X) << 19)
0060 #define COND(X) (((X) & 0xf) << 25)
0061 #define CBCOND(X) (((X) & 0x1f) << 25)
0062 #define F1(X) OP(X)
0063 #define F2(X, Y) (OP(X) | OP2(Y))
0064 #define F3(X, Y) (OP(X) | OP3(Y))
0065 #define ASI(X) (((X) & 0xff) << 5)
0066
0067 #define CONDN COND(0x0)
0068 #define CONDE COND(0x1)
0069 #define CONDLE COND(0x2)
0070 #define CONDL COND(0x3)
0071 #define CONDLEU COND(0x4)
0072 #define CONDCS COND(0x5)
0073 #define CONDNEG COND(0x6)
0074 #define CONDVC COND(0x7)
0075 #define CONDA COND(0x8)
0076 #define CONDNE COND(0x9)
0077 #define CONDG COND(0xa)
0078 #define CONDGE COND(0xb)
0079 #define CONDGU COND(0xc)
0080 #define CONDCC COND(0xd)
0081 #define CONDPOS COND(0xe)
0082 #define CONDVS COND(0xf)
0083
0084 #define CONDGEU CONDCC
0085 #define CONDLU CONDCS
0086
0087 #define WDISP22(X) (((X) >> 2) & 0x3fffff)
0088 #define WDISP19(X) (((X) >> 2) & 0x7ffff)
0089
0090
0091 static u32 WDISP10(u32 off)
0092 {
0093 u32 ret = ((off >> 2) & 0xff) << 5;
0094
0095 ret |= ((off >> (2 + 8)) & 0x03) << 19;
0096
0097 return ret;
0098 }
0099
0100 #define CBCONDE CBCOND(0x09)
0101 #define CBCONDLE CBCOND(0x0a)
0102 #define CBCONDL CBCOND(0x0b)
0103 #define CBCONDLEU CBCOND(0x0c)
0104 #define CBCONDCS CBCOND(0x0d)
0105 #define CBCONDN CBCOND(0x0e)
0106 #define CBCONDVS CBCOND(0x0f)
0107 #define CBCONDNE CBCOND(0x19)
0108 #define CBCONDG CBCOND(0x1a)
0109 #define CBCONDGE CBCOND(0x1b)
0110 #define CBCONDGU CBCOND(0x1c)
0111 #define CBCONDCC CBCOND(0x1d)
0112 #define CBCONDPOS CBCOND(0x1e)
0113 #define CBCONDVC CBCOND(0x1f)
0114
0115 #define CBCONDGEU CBCONDCC
0116 #define CBCONDLU CBCONDCS
0117
0118 #define ANNUL (1 << 29)
0119 #define XCC (1 << 21)
0120
0121 #define BRANCH (F2(0, 1) | XCC)
0122 #define CBCOND_OP (F2(0, 3) | XCC)
0123
0124 #define BA (BRANCH | CONDA)
0125 #define BG (BRANCH | CONDG)
0126 #define BL (BRANCH | CONDL)
0127 #define BLE (BRANCH | CONDLE)
0128 #define BGU (BRANCH | CONDGU)
0129 #define BLEU (BRANCH | CONDLEU)
0130 #define BGE (BRANCH | CONDGE)
0131 #define BGEU (BRANCH | CONDGEU)
0132 #define BLU (BRANCH | CONDLU)
0133 #define BE (BRANCH | CONDE)
0134 #define BNE (BRANCH | CONDNE)
0135
0136 #define SETHI(K, REG) \
0137 (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
0138 #define OR_LO(K, REG) \
0139 (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
0140
0141 #define ADD F3(2, 0x00)
0142 #define AND F3(2, 0x01)
0143 #define ANDCC F3(2, 0x11)
0144 #define OR F3(2, 0x02)
0145 #define XOR F3(2, 0x03)
0146 #define SUB F3(2, 0x04)
0147 #define SUBCC F3(2, 0x14)
0148 #define MUL F3(2, 0x0a)
0149 #define MULX F3(2, 0x09)
0150 #define UDIVX F3(2, 0x0d)
0151 #define DIV F3(2, 0x0e)
0152 #define SLL F3(2, 0x25)
0153 #define SLLX (F3(2, 0x25)|(1<<12))
0154 #define SRA F3(2, 0x27)
0155 #define SRAX (F3(2, 0x27)|(1<<12))
0156 #define SRL F3(2, 0x26)
0157 #define SRLX (F3(2, 0x26)|(1<<12))
0158 #define JMPL F3(2, 0x38)
0159 #define SAVE F3(2, 0x3c)
0160 #define RESTORE F3(2, 0x3d)
0161 #define CALL F1(1)
0162 #define BR F2(0, 0x01)
0163 #define RD_Y F3(2, 0x28)
0164 #define WR_Y F3(2, 0x30)
0165
0166 #define LD32 F3(3, 0x00)
0167 #define LD8 F3(3, 0x01)
0168 #define LD16 F3(3, 0x02)
0169 #define LD64 F3(3, 0x0b)
0170 #define LD64A F3(3, 0x1b)
0171 #define ST8 F3(3, 0x05)
0172 #define ST16 F3(3, 0x06)
0173 #define ST32 F3(3, 0x04)
0174 #define ST64 F3(3, 0x0e)
0175
0176 #define CAS F3(3, 0x3c)
0177 #define CASX F3(3, 0x3e)
0178
0179 #define LDPTR LD64
0180 #define BASE_STACKFRAME 176
0181
0182 #define LD32I (LD32 | IMMED)
0183 #define LD8I (LD8 | IMMED)
0184 #define LD16I (LD16 | IMMED)
0185 #define LD64I (LD64 | IMMED)
0186 #define LDPTRI (LDPTR | IMMED)
0187 #define ST32I (ST32 | IMMED)
0188
0189 struct jit_ctx {
0190 struct bpf_prog *prog;
0191 unsigned int *offset;
0192 int idx;
0193 int epilogue_offset;
0194 bool tmp_1_used;
0195 bool tmp_2_used;
0196 bool tmp_3_used;
0197 bool saw_frame_pointer;
0198 bool saw_call;
0199 bool saw_tail_call;
0200 u32 *image;
0201 };
0202
0203 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
0204 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
0205 #define TMP_REG_3 (MAX_BPF_JIT_REG + 2)
0206
0207
0208 static const int bpf2sparc[] = {
0209
0210 [BPF_REG_0] = O5,
0211
0212
0213 [BPF_REG_1] = O0,
0214 [BPF_REG_2] = O1,
0215 [BPF_REG_3] = O2,
0216 [BPF_REG_4] = O3,
0217 [BPF_REG_5] = O4,
0218
0219
0220 [BPF_REG_6] = L0,
0221 [BPF_REG_7] = L1,
0222 [BPF_REG_8] = L2,
0223 [BPF_REG_9] = L3,
0224
0225
0226 [BPF_REG_FP] = L6,
0227
0228 [BPF_REG_AX] = G7,
0229
0230
0231 [TMP_REG_1] = G1,
0232 [TMP_REG_2] = G2,
0233 [TMP_REG_3] = G3,
0234 };
0235
0236 static void emit(const u32 insn, struct jit_ctx *ctx)
0237 {
0238 if (ctx->image != NULL)
0239 ctx->image[ctx->idx] = insn;
0240
0241 ctx->idx++;
0242 }
0243
0244 static void emit_call(u32 *func, struct jit_ctx *ctx)
0245 {
0246 if (ctx->image != NULL) {
0247 void *here = &ctx->image[ctx->idx];
0248 unsigned int off;
0249
0250 off = (void *)func - here;
0251 ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
0252 }
0253 ctx->idx++;
0254 }
0255
0256 static void emit_nop(struct jit_ctx *ctx)
0257 {
0258 emit(SETHI(0, G0), ctx);
0259 }
0260
0261 static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
0262 {
0263 emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
0264 }
0265
0266
0267 static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
0268 {
0269 emit(SETHI(K, reg), ctx);
0270 emit(OR_LO(K, reg), ctx);
0271 }
0272
0273
0274 static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
0275 {
0276 if (K >= 0) {
0277 emit(SETHI(K, reg), ctx);
0278 emit(OR_LO(K, reg), ctx);
0279 } else {
0280 u32 hbits = ~(u32) K;
0281 u32 lbits = -0x400 | (u32) K;
0282
0283 emit(SETHI(hbits, reg), ctx);
0284 emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
0285 }
0286 }
0287
0288 static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
0289 {
0290 emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
0291 }
0292
0293 static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
0294 {
0295 emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
0296 }
0297
0298 static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
0299 struct jit_ctx *ctx)
0300 {
0301 bool small_immed = is_simm13(imm);
0302 unsigned int insn = opcode;
0303
0304 insn |= RS1(dst) | RD(dst);
0305 if (small_immed) {
0306 emit(insn | IMMED | S13(imm), ctx);
0307 } else {
0308 unsigned int tmp = bpf2sparc[TMP_REG_1];
0309
0310 ctx->tmp_1_used = true;
0311
0312 emit_set_const_sext(imm, tmp, ctx);
0313 emit(insn | RS2(tmp), ctx);
0314 }
0315 }
0316
0317 static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
0318 unsigned int dst, struct jit_ctx *ctx)
0319 {
0320 bool small_immed = is_simm13(imm);
0321 unsigned int insn = opcode;
0322
0323 insn |= RS1(src) | RD(dst);
0324 if (small_immed) {
0325 emit(insn | IMMED | S13(imm), ctx);
0326 } else {
0327 unsigned int tmp = bpf2sparc[TMP_REG_1];
0328
0329 ctx->tmp_1_used = true;
0330
0331 emit_set_const_sext(imm, tmp, ctx);
0332 emit(insn | RS2(tmp), ctx);
0333 }
0334 }
0335
0336 static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
0337 {
0338 if (K >= 0 && is_simm13(K)) {
0339
0340 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
0341 } else {
0342 emit_set_const(K, dest, ctx);
0343 }
0344 }
0345
0346 static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
0347 {
0348 if (is_simm13(K)) {
0349
0350 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
0351 } else {
0352 emit_set_const(K, dest, ctx);
0353 }
0354 }
0355
0356 static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
0357 {
0358 if (is_simm13(K)) {
0359
0360 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
0361 } else {
0362 emit_set_const_sext(K, dest, ctx);
0363 }
0364 }
0365
0366 static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
0367 int *hbsp, int *lbsp, int *abbasp)
0368 {
0369 int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
0370 int i;
0371
0372 lowest_bit_set = highest_bit_set = -1;
0373 i = 0;
0374 do {
0375 if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
0376 lowest_bit_set = i;
0377 if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
0378 highest_bit_set = (64 - i - 1);
0379 } while (++i < 32 && (highest_bit_set == -1 ||
0380 lowest_bit_set == -1));
0381 if (i == 32) {
0382 i = 0;
0383 do {
0384 if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
0385 lowest_bit_set = i + 32;
0386 if (highest_bit_set == -1 &&
0387 ((low_bits >> (32 - i - 1)) & 1))
0388 highest_bit_set = 32 - i - 1;
0389 } while (++i < 32 && (highest_bit_set == -1 ||
0390 lowest_bit_set == -1));
0391 }
0392
0393 all_bits_between_are_set = 1;
0394 for (i = lowest_bit_set; i <= highest_bit_set; i++) {
0395 if (i < 32) {
0396 if ((low_bits & (1 << i)) != 0)
0397 continue;
0398 } else {
0399 if ((high_bits & (1 << (i - 32))) != 0)
0400 continue;
0401 }
0402 all_bits_between_are_set = 0;
0403 break;
0404 }
0405 *hbsp = highest_bit_set;
0406 *lbsp = lowest_bit_set;
0407 *abbasp = all_bits_between_are_set;
0408 }
0409
0410 static unsigned long create_simple_focus_bits(unsigned long high_bits,
0411 unsigned long low_bits,
0412 int lowest_bit_set, int shift)
0413 {
0414 long hi, lo;
0415
0416 if (lowest_bit_set < 32) {
0417 lo = (low_bits >> lowest_bit_set) << shift;
0418 hi = ((high_bits << (32 - lowest_bit_set)) << shift);
0419 } else {
0420 lo = 0;
0421 hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
0422 }
0423 return hi | lo;
0424 }
0425
0426 static bool const64_is_2insns(unsigned long high_bits,
0427 unsigned long low_bits)
0428 {
0429 int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
0430
0431 if (high_bits == 0 || high_bits == 0xffffffff)
0432 return true;
0433
0434 analyze_64bit_constant(high_bits, low_bits,
0435 &highest_bit_set, &lowest_bit_set,
0436 &all_bits_between_are_set);
0437
0438 if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
0439 all_bits_between_are_set != 0)
0440 return true;
0441
0442 if (highest_bit_set - lowest_bit_set < 21)
0443 return true;
0444
0445 return false;
0446 }
0447
0448 static void sparc_emit_set_const64_quick2(unsigned long high_bits,
0449 unsigned long low_imm,
0450 unsigned int dest,
0451 int shift_count, struct jit_ctx *ctx)
0452 {
0453 emit_loadimm32(high_bits, dest, ctx);
0454
0455
0456 emit_alu_K(SLLX, dest, shift_count, ctx);
0457
0458
0459
0460
0461 if (low_imm != 0)
0462 emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
0463 }
0464
0465 static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
0466 {
0467 int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
0468 unsigned int tmp = bpf2sparc[TMP_REG_1];
0469 u32 low_bits = (K & 0xffffffff);
0470 u32 high_bits = (K >> 32);
0471
0472
0473
0474
0475 if (high_bits == 0xffffffff && (low_bits & 0x80000000))
0476 return emit_loadimm_sext(K, dest, ctx);
0477 if (high_bits == 0x00000000)
0478 return emit_loadimm32(K, dest, ctx);
0479
0480 analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
0481 &lowest_bit_set, &all_bits_between_are_set);
0482
0483
0484
0485
0486
0487
0488
0489
0490 if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
0491 all_bits_between_are_set != 0) ||
0492 ((highest_bit_set - lowest_bit_set) < 12)) {
0493 int shift = lowest_bit_set;
0494 long the_const = -1;
0495
0496 if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
0497 all_bits_between_are_set == 0) {
0498 the_const =
0499 create_simple_focus_bits(high_bits, low_bits,
0500 lowest_bit_set, 0);
0501 } else if (lowest_bit_set == 0)
0502 shift = -(63 - highest_bit_set);
0503
0504 emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
0505 if (shift > 0)
0506 emit_alu_K(SLLX, dest, shift, ctx);
0507 else if (shift < 0)
0508 emit_alu_K(SRLX, dest, -shift, ctx);
0509
0510 return;
0511 }
0512
0513
0514
0515
0516
0517
0518
0519 if ((highest_bit_set - lowest_bit_set) < 21) {
0520 unsigned long focus_bits =
0521 create_simple_focus_bits(high_bits, low_bits,
0522 lowest_bit_set, 10);
0523
0524 emit(SETHI(focus_bits, dest), ctx);
0525
0526
0527
0528
0529 if (lowest_bit_set < 10)
0530 emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
0531 else if (lowest_bit_set > 10)
0532 emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
0533 return;
0534 }
0535
0536
0537 if (low_bits == 0) {
0538 emit_loadimm32(high_bits, dest, ctx);
0539 emit_alu_K(SLLX, dest, 32, ctx);
0540 return;
0541 }
0542
0543
0544
0545
0546 if (const64_is_2insns((~high_bits) & 0xffffffff,
0547 (~low_bits) & 0xfffffc00)) {
0548
0549
0550
0551 unsigned long trailing_bits = low_bits & 0x3ff;
0552
0553 if ((((~high_bits) & 0xffffffff) == 0 &&
0554 ((~low_bits) & 0x80000000) == 0) ||
0555 (((~high_bits) & 0xffffffff) == 0xffffffff &&
0556 ((~low_bits) & 0x80000000) != 0)) {
0557 unsigned long fast_int = (~low_bits & 0xffffffff);
0558
0559 if ((is_sethi(fast_int) &&
0560 (~high_bits & 0xffffffff) == 0)) {
0561 emit(SETHI(fast_int, dest), ctx);
0562 } else if (is_simm13(fast_int)) {
0563 emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
0564 } else {
0565 emit_loadimm64(fast_int, dest, ctx);
0566 }
0567 } else {
0568 u64 n = ((~low_bits) & 0xfffffc00) |
0569 (((unsigned long)((~high_bits) & 0xffffffff))<<32);
0570 emit_loadimm64(n, dest, ctx);
0571 }
0572
0573 low_bits = -0x400 | trailing_bits;
0574
0575 emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
0576 return;
0577 }
0578
0579
0580
0581
0582
0583 if ((highest_bit_set - lowest_bit_set) < 32) {
0584 unsigned long focus_bits =
0585 create_simple_focus_bits(high_bits, low_bits,
0586 lowest_bit_set, 0);
0587
0588
0589
0590
0591 sparc_emit_set_const64_quick2(focus_bits, 0, dest,
0592 lowest_bit_set, ctx);
0593 return;
0594 }
0595
0596
0597
0598
0599
0600
0601 if (is_simm13(low_bits) && ((int)low_bits > 0)) {
0602 sparc_emit_set_const64_quick2(high_bits, low_bits,
0603 dest, 32, ctx);
0604 return;
0605 }
0606
0607
0608 ctx->tmp_1_used = true;
0609
0610 emit_loadimm32(high_bits, tmp, ctx);
0611 emit_loadimm32(low_bits, dest, ctx);
0612 emit_alu_K(SLLX, tmp, 32, ctx);
0613 emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
0614 }
0615
0616 static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
0617 struct jit_ctx *ctx)
0618 {
0619 unsigned int off = to_idx - from_idx;
0620
0621 if (br_opc & XCC)
0622 emit(br_opc | WDISP19(off << 2), ctx);
0623 else
0624 emit(br_opc | WDISP22(off << 2), ctx);
0625 }
0626
0627 static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
0628 const u8 dst, const u8 src, struct jit_ctx *ctx)
0629 {
0630 unsigned int off = to_idx - from_idx;
0631
0632 emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
0633 }
0634
0635 static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
0636 const u8 dst, s32 imm, struct jit_ctx *ctx)
0637 {
0638 unsigned int off = to_idx - from_idx;
0639
0640 emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
0641 }
0642
0643 #define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX)
0644 #define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
0645
0646 #define emit_cmp(R1, R2, CTX) \
0647 emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
0648
0649 #define emit_cmpi(R1, IMM, CTX) \
0650 emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
0651
0652 #define emit_btst(R1, R2, CTX) \
0653 emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
0654
0655 #define emit_btsti(R1, IMM, CTX) \
0656 emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
0657
0658 static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
0659 const s32 imm, bool is_imm, int branch_dst,
0660 struct jit_ctx *ctx)
0661 {
0662 bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
0663 const u8 tmp = bpf2sparc[TMP_REG_1];
0664
0665 branch_dst = ctx->offset[branch_dst];
0666
0667 if (!is_simm10(branch_dst - ctx->idx) ||
0668 BPF_OP(code) == BPF_JSET)
0669 use_cbcond = false;
0670
0671 if (is_imm) {
0672 bool fits = true;
0673
0674 if (use_cbcond) {
0675 if (!is_simm5(imm))
0676 fits = false;
0677 } else if (!is_simm13(imm)) {
0678 fits = false;
0679 }
0680 if (!fits) {
0681 ctx->tmp_1_used = true;
0682 emit_loadimm_sext(imm, tmp, ctx);
0683 src = tmp;
0684 is_imm = false;
0685 }
0686 }
0687
0688 if (!use_cbcond) {
0689 u32 br_opcode;
0690
0691 if (BPF_OP(code) == BPF_JSET) {
0692 if (is_imm)
0693 emit_btsti(dst, imm, ctx);
0694 else
0695 emit_btst(dst, src, ctx);
0696 } else {
0697 if (is_imm)
0698 emit_cmpi(dst, imm, ctx);
0699 else
0700 emit_cmp(dst, src, ctx);
0701 }
0702 switch (BPF_OP(code)) {
0703 case BPF_JEQ:
0704 br_opcode = BE;
0705 break;
0706 case BPF_JGT:
0707 br_opcode = BGU;
0708 break;
0709 case BPF_JLT:
0710 br_opcode = BLU;
0711 break;
0712 case BPF_JGE:
0713 br_opcode = BGEU;
0714 break;
0715 case BPF_JLE:
0716 br_opcode = BLEU;
0717 break;
0718 case BPF_JSET:
0719 case BPF_JNE:
0720 br_opcode = BNE;
0721 break;
0722 case BPF_JSGT:
0723 br_opcode = BG;
0724 break;
0725 case BPF_JSLT:
0726 br_opcode = BL;
0727 break;
0728 case BPF_JSGE:
0729 br_opcode = BGE;
0730 break;
0731 case BPF_JSLE:
0732 br_opcode = BLE;
0733 break;
0734 default:
0735
0736
0737
0738 return -EFAULT;
0739 }
0740 emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
0741 emit_nop(ctx);
0742 } else {
0743 u32 cbcond_opcode;
0744
0745 switch (BPF_OP(code)) {
0746 case BPF_JEQ:
0747 cbcond_opcode = CBCONDE;
0748 break;
0749 case BPF_JGT:
0750 cbcond_opcode = CBCONDGU;
0751 break;
0752 case BPF_JLT:
0753 cbcond_opcode = CBCONDLU;
0754 break;
0755 case BPF_JGE:
0756 cbcond_opcode = CBCONDGEU;
0757 break;
0758 case BPF_JLE:
0759 cbcond_opcode = CBCONDLEU;
0760 break;
0761 case BPF_JNE:
0762 cbcond_opcode = CBCONDNE;
0763 break;
0764 case BPF_JSGT:
0765 cbcond_opcode = CBCONDG;
0766 break;
0767 case BPF_JSLT:
0768 cbcond_opcode = CBCONDL;
0769 break;
0770 case BPF_JSGE:
0771 cbcond_opcode = CBCONDGE;
0772 break;
0773 case BPF_JSLE:
0774 cbcond_opcode = CBCONDLE;
0775 break;
0776 default:
0777
0778
0779
0780 return -EFAULT;
0781 }
0782 cbcond_opcode |= CBCOND_OP;
0783 if (is_imm)
0784 emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
0785 dst, imm, ctx);
0786 else
0787 emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
0788 dst, src, ctx);
0789 }
0790 return 0;
0791 }
0792
0793
0794 #define BPF_TAILCALL_PROLOGUE_SKIP 32
0795 #define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128)
0796
0797 static void build_prologue(struct jit_ctx *ctx)
0798 {
0799 s32 stack_needed = BASE_STACKFRAME;
0800
0801 if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
0802 struct bpf_prog *prog = ctx->prog;
0803 u32 stack_depth;
0804
0805 stack_depth = prog->aux->stack_depth;
0806 stack_needed += round_up(stack_depth, 16);
0807 }
0808
0809 if (ctx->saw_tail_call)
0810 stack_needed += 8;
0811
0812
0813 emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
0814
0815
0816 if (ctx->saw_tail_call) {
0817 u32 off = BPF_TAILCALL_CNT_SP_OFF;
0818
0819 emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
0820 } else {
0821 emit_nop(ctx);
0822 }
0823 if (ctx->saw_frame_pointer) {
0824 const u8 vfp = bpf2sparc[BPF_REG_FP];
0825
0826 emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
0827 } else {
0828 emit_nop(ctx);
0829 }
0830
0831 emit_reg_move(I0, O0, ctx);
0832 emit_reg_move(I1, O1, ctx);
0833 emit_reg_move(I2, O2, ctx);
0834 emit_reg_move(I3, O3, ctx);
0835 emit_reg_move(I4, O4, ctx);
0836
0837 }
0838
0839 static void build_epilogue(struct jit_ctx *ctx)
0840 {
0841 ctx->epilogue_offset = ctx->idx;
0842
0843
0844 emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
0845
0846
0847 emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
0848 }
0849
0850 static void emit_tail_call(struct jit_ctx *ctx)
0851 {
0852 const u8 bpf_array = bpf2sparc[BPF_REG_2];
0853 const u8 bpf_index = bpf2sparc[BPF_REG_3];
0854 const u8 tmp = bpf2sparc[TMP_REG_1];
0855 u32 off;
0856
0857 ctx->saw_tail_call = true;
0858
0859 off = offsetof(struct bpf_array, map.max_entries);
0860 emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
0861 emit_cmp(bpf_index, tmp, ctx);
0862 #define OFFSET1 17
0863 emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
0864 emit_nop(ctx);
0865
0866 off = BPF_TAILCALL_CNT_SP_OFF;
0867 emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
0868 emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
0869 #define OFFSET2 13
0870 emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET2, ctx);
0871 emit_nop(ctx);
0872
0873 emit_alu_K(ADD, tmp, 1, ctx);
0874 off = BPF_TAILCALL_CNT_SP_OFF;
0875 emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
0876
0877 emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
0878 emit_alu(ADD, bpf_array, tmp, ctx);
0879 off = offsetof(struct bpf_array, ptrs);
0880 emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
0881
0882 emit_cmpi(tmp, 0, ctx);
0883 #define OFFSET3 5
0884 emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
0885 emit_nop(ctx);
0886
0887 off = offsetof(struct bpf_prog, bpf_func);
0888 emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
0889
0890 off = BPF_TAILCALL_PROLOGUE_SKIP;
0891 emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
0892 emit_nop(ctx);
0893 }
0894
0895 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
0896 {
0897 const u8 code = insn->code;
0898 const u8 dst = bpf2sparc[insn->dst_reg];
0899 const u8 src = bpf2sparc[insn->src_reg];
0900 const int i = insn - ctx->prog->insnsi;
0901 const s16 off = insn->off;
0902 const s32 imm = insn->imm;
0903
0904 if (insn->src_reg == BPF_REG_FP)
0905 ctx->saw_frame_pointer = true;
0906
0907 switch (code) {
0908
0909 case BPF_ALU | BPF_MOV | BPF_X:
0910 emit_alu3_K(SRL, src, 0, dst, ctx);
0911 if (insn_is_zext(&insn[1]))
0912 return 1;
0913 break;
0914 case BPF_ALU64 | BPF_MOV | BPF_X:
0915 emit_reg_move(src, dst, ctx);
0916 break;
0917
0918 case BPF_ALU | BPF_ADD | BPF_X:
0919 case BPF_ALU64 | BPF_ADD | BPF_X:
0920 emit_alu(ADD, src, dst, ctx);
0921 goto do_alu32_trunc;
0922 case BPF_ALU | BPF_SUB | BPF_X:
0923 case BPF_ALU64 | BPF_SUB | BPF_X:
0924 emit_alu(SUB, src, dst, ctx);
0925 goto do_alu32_trunc;
0926 case BPF_ALU | BPF_AND | BPF_X:
0927 case BPF_ALU64 | BPF_AND | BPF_X:
0928 emit_alu(AND, src, dst, ctx);
0929 goto do_alu32_trunc;
0930 case BPF_ALU | BPF_OR | BPF_X:
0931 case BPF_ALU64 | BPF_OR | BPF_X:
0932 emit_alu(OR, src, dst, ctx);
0933 goto do_alu32_trunc;
0934 case BPF_ALU | BPF_XOR | BPF_X:
0935 case BPF_ALU64 | BPF_XOR | BPF_X:
0936 emit_alu(XOR, src, dst, ctx);
0937 goto do_alu32_trunc;
0938 case BPF_ALU | BPF_MUL | BPF_X:
0939 emit_alu(MUL, src, dst, ctx);
0940 goto do_alu32_trunc;
0941 case BPF_ALU64 | BPF_MUL | BPF_X:
0942 emit_alu(MULX, src, dst, ctx);
0943 break;
0944 case BPF_ALU | BPF_DIV | BPF_X:
0945 emit_write_y(G0, ctx);
0946 emit_alu(DIV, src, dst, ctx);
0947 if (insn_is_zext(&insn[1]))
0948 return 1;
0949 break;
0950 case BPF_ALU64 | BPF_DIV | BPF_X:
0951 emit_alu(UDIVX, src, dst, ctx);
0952 break;
0953 case BPF_ALU | BPF_MOD | BPF_X: {
0954 const u8 tmp = bpf2sparc[TMP_REG_1];
0955
0956 ctx->tmp_1_used = true;
0957
0958 emit_write_y(G0, ctx);
0959 emit_alu3(DIV, dst, src, tmp, ctx);
0960 emit_alu3(MULX, tmp, src, tmp, ctx);
0961 emit_alu3(SUB, dst, tmp, dst, ctx);
0962 goto do_alu32_trunc;
0963 }
0964 case BPF_ALU64 | BPF_MOD | BPF_X: {
0965 const u8 tmp = bpf2sparc[TMP_REG_1];
0966
0967 ctx->tmp_1_used = true;
0968
0969 emit_alu3(UDIVX, dst, src, tmp, ctx);
0970 emit_alu3(MULX, tmp, src, tmp, ctx);
0971 emit_alu3(SUB, dst, tmp, dst, ctx);
0972 break;
0973 }
0974 case BPF_ALU | BPF_LSH | BPF_X:
0975 emit_alu(SLL, src, dst, ctx);
0976 goto do_alu32_trunc;
0977 case BPF_ALU64 | BPF_LSH | BPF_X:
0978 emit_alu(SLLX, src, dst, ctx);
0979 break;
0980 case BPF_ALU | BPF_RSH | BPF_X:
0981 emit_alu(SRL, src, dst, ctx);
0982 if (insn_is_zext(&insn[1]))
0983 return 1;
0984 break;
0985 case BPF_ALU64 | BPF_RSH | BPF_X:
0986 emit_alu(SRLX, src, dst, ctx);
0987 break;
0988 case BPF_ALU | BPF_ARSH | BPF_X:
0989 emit_alu(SRA, src, dst, ctx);
0990 goto do_alu32_trunc;
0991 case BPF_ALU64 | BPF_ARSH | BPF_X:
0992 emit_alu(SRAX, src, dst, ctx);
0993 break;
0994
0995
0996 case BPF_ALU | BPF_NEG:
0997 case BPF_ALU64 | BPF_NEG:
0998 emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
0999 goto do_alu32_trunc;
1000
1001 case BPF_ALU | BPF_END | BPF_FROM_BE:
1002 switch (imm) {
1003 case 16:
1004 emit_alu_K(SLL, dst, 16, ctx);
1005 emit_alu_K(SRL, dst, 16, ctx);
1006 if (insn_is_zext(&insn[1]))
1007 return 1;
1008 break;
1009 case 32:
1010 if (!ctx->prog->aux->verifier_zext)
1011 emit_alu_K(SRL, dst, 0, ctx);
1012 break;
1013 case 64:
1014
1015 break;
1016
1017 }
1018 break;
1019
1020
1021 case BPF_ALU | BPF_END | BPF_FROM_LE: {
1022 const u8 tmp = bpf2sparc[TMP_REG_1];
1023 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1024
1025 ctx->tmp_1_used = true;
1026 switch (imm) {
1027 case 16:
1028 emit_alu3_K(AND, dst, 0xff, tmp, ctx);
1029 emit_alu3_K(SRL, dst, 8, dst, ctx);
1030 emit_alu3_K(AND, dst, 0xff, dst, ctx);
1031 emit_alu3_K(SLL, tmp, 8, tmp, ctx);
1032 emit_alu(OR, tmp, dst, ctx);
1033 if (insn_is_zext(&insn[1]))
1034 return 1;
1035 break;
1036
1037 case 32:
1038 ctx->tmp_2_used = true;
1039 emit_alu3_K(SRL, dst, 24, tmp, ctx);
1040 emit_alu3_K(SRL, dst, 16, tmp2, ctx);
1041 emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);
1042 emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);
1043 emit_alu(OR, tmp2, tmp, ctx);
1044 emit_alu3_K(SRL, dst, 8, tmp2, ctx);
1045 emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);
1046 emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);
1047 emit_alu(OR, tmp2, tmp, ctx);
1048 emit_alu3_K(AND, dst, 0xff, dst, ctx);
1049 emit_alu3_K(SLL, dst, 24, dst, ctx);
1050 emit_alu(OR, tmp, dst, ctx);
1051 if (insn_is_zext(&insn[1]))
1052 return 1;
1053 break;
1054
1055 case 64:
1056 emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
1057 emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1058 emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1059 break;
1060 }
1061 break;
1062 }
1063
1064 case BPF_ALU | BPF_MOV | BPF_K:
1065 emit_loadimm32(imm, dst, ctx);
1066 if (insn_is_zext(&insn[1]))
1067 return 1;
1068 break;
1069 case BPF_ALU64 | BPF_MOV | BPF_K:
1070 emit_loadimm_sext(imm, dst, ctx);
1071 break;
1072
1073 case BPF_ALU | BPF_ADD | BPF_K:
1074 case BPF_ALU64 | BPF_ADD | BPF_K:
1075 emit_alu_K(ADD, dst, imm, ctx);
1076 goto do_alu32_trunc;
1077 case BPF_ALU | BPF_SUB | BPF_K:
1078 case BPF_ALU64 | BPF_SUB | BPF_K:
1079 emit_alu_K(SUB, dst, imm, ctx);
1080 goto do_alu32_trunc;
1081 case BPF_ALU | BPF_AND | BPF_K:
1082 case BPF_ALU64 | BPF_AND | BPF_K:
1083 emit_alu_K(AND, dst, imm, ctx);
1084 goto do_alu32_trunc;
1085 case BPF_ALU | BPF_OR | BPF_K:
1086 case BPF_ALU64 | BPF_OR | BPF_K:
1087 emit_alu_K(OR, dst, imm, ctx);
1088 goto do_alu32_trunc;
1089 case BPF_ALU | BPF_XOR | BPF_K:
1090 case BPF_ALU64 | BPF_XOR | BPF_K:
1091 emit_alu_K(XOR, dst, imm, ctx);
1092 goto do_alu32_trunc;
1093 case BPF_ALU | BPF_MUL | BPF_K:
1094 emit_alu_K(MUL, dst, imm, ctx);
1095 goto do_alu32_trunc;
1096 case BPF_ALU64 | BPF_MUL | BPF_K:
1097 emit_alu_K(MULX, dst, imm, ctx);
1098 break;
1099 case BPF_ALU | BPF_DIV | BPF_K:
1100 if (imm == 0)
1101 return -EINVAL;
1102
1103 emit_write_y(G0, ctx);
1104 emit_alu_K(DIV, dst, imm, ctx);
1105 goto do_alu32_trunc;
1106 case BPF_ALU64 | BPF_DIV | BPF_K:
1107 if (imm == 0)
1108 return -EINVAL;
1109
1110 emit_alu_K(UDIVX, dst, imm, ctx);
1111 break;
1112 case BPF_ALU64 | BPF_MOD | BPF_K:
1113 case BPF_ALU | BPF_MOD | BPF_K: {
1114 const u8 tmp = bpf2sparc[TMP_REG_2];
1115 unsigned int div;
1116
1117 if (imm == 0)
1118 return -EINVAL;
1119
1120 div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
1121
1122 ctx->tmp_2_used = true;
1123
1124 if (BPF_CLASS(code) != BPF_ALU64)
1125 emit_write_y(G0, ctx);
1126 if (is_simm13(imm)) {
1127 emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
1128 emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
1129 emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1130 } else {
1131 const u8 tmp1 = bpf2sparc[TMP_REG_1];
1132
1133 ctx->tmp_1_used = true;
1134
1135 emit_set_const_sext(imm, tmp1, ctx);
1136 emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
1137 emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
1138 emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1139 }
1140 goto do_alu32_trunc;
1141 }
1142 case BPF_ALU | BPF_LSH | BPF_K:
1143 emit_alu_K(SLL, dst, imm, ctx);
1144 goto do_alu32_trunc;
1145 case BPF_ALU64 | BPF_LSH | BPF_K:
1146 emit_alu_K(SLLX, dst, imm, ctx);
1147 break;
1148 case BPF_ALU | BPF_RSH | BPF_K:
1149 emit_alu_K(SRL, dst, imm, ctx);
1150 if (insn_is_zext(&insn[1]))
1151 return 1;
1152 break;
1153 case BPF_ALU64 | BPF_RSH | BPF_K:
1154 emit_alu_K(SRLX, dst, imm, ctx);
1155 break;
1156 case BPF_ALU | BPF_ARSH | BPF_K:
1157 emit_alu_K(SRA, dst, imm, ctx);
1158 goto do_alu32_trunc;
1159 case BPF_ALU64 | BPF_ARSH | BPF_K:
1160 emit_alu_K(SRAX, dst, imm, ctx);
1161 break;
1162
1163 do_alu32_trunc:
1164 if (BPF_CLASS(code) == BPF_ALU &&
1165 !ctx->prog->aux->verifier_zext)
1166 emit_alu_K(SRL, dst, 0, ctx);
1167 break;
1168
1169
1170 case BPF_JMP | BPF_JA:
1171 emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
1172 emit_nop(ctx);
1173 break;
1174
1175 case BPF_JMP | BPF_JEQ | BPF_X:
1176 case BPF_JMP | BPF_JGT | BPF_X:
1177 case BPF_JMP | BPF_JLT | BPF_X:
1178 case BPF_JMP | BPF_JGE | BPF_X:
1179 case BPF_JMP | BPF_JLE | BPF_X:
1180 case BPF_JMP | BPF_JNE | BPF_X:
1181 case BPF_JMP | BPF_JSGT | BPF_X:
1182 case BPF_JMP | BPF_JSLT | BPF_X:
1183 case BPF_JMP | BPF_JSGE | BPF_X:
1184 case BPF_JMP | BPF_JSLE | BPF_X:
1185 case BPF_JMP | BPF_JSET | BPF_X: {
1186 int err;
1187
1188 err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
1189 if (err)
1190 return err;
1191 break;
1192 }
1193
1194 case BPF_JMP | BPF_JEQ | BPF_K:
1195 case BPF_JMP | BPF_JGT | BPF_K:
1196 case BPF_JMP | BPF_JLT | BPF_K:
1197 case BPF_JMP | BPF_JGE | BPF_K:
1198 case BPF_JMP | BPF_JLE | BPF_K:
1199 case BPF_JMP | BPF_JNE | BPF_K:
1200 case BPF_JMP | BPF_JSGT | BPF_K:
1201 case BPF_JMP | BPF_JSLT | BPF_K:
1202 case BPF_JMP | BPF_JSGE | BPF_K:
1203 case BPF_JMP | BPF_JSLE | BPF_K:
1204 case BPF_JMP | BPF_JSET | BPF_K: {
1205 int err;
1206
1207 err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
1208 if (err)
1209 return err;
1210 break;
1211 }
1212
1213
1214 case BPF_JMP | BPF_CALL:
1215 {
1216 u8 *func = ((u8 *)__bpf_call_base) + imm;
1217
1218 ctx->saw_call = true;
1219
1220 emit_call((u32 *)func, ctx);
1221 emit_nop(ctx);
1222
1223 emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1224 break;
1225 }
1226
1227
1228 case BPF_JMP | BPF_TAIL_CALL:
1229 emit_tail_call(ctx);
1230 break;
1231
1232
1233 case BPF_JMP | BPF_EXIT:
1234
1235
1236 if (i == ctx->prog->len - 1)
1237 break;
1238 emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
1239 emit_nop(ctx);
1240 break;
1241
1242
1243 case BPF_LD | BPF_IMM | BPF_DW:
1244 {
1245 const struct bpf_insn insn1 = insn[1];
1246 u64 imm64;
1247
1248 imm64 = (u64)insn1.imm << 32 | (u32)imm;
1249 emit_loadimm64(imm64, dst, ctx);
1250
1251 return 1;
1252 }
1253
1254
1255 case BPF_LDX | BPF_MEM | BPF_W:
1256 case BPF_LDX | BPF_MEM | BPF_H:
1257 case BPF_LDX | BPF_MEM | BPF_B:
1258 case BPF_LDX | BPF_MEM | BPF_DW: {
1259 const u8 tmp = bpf2sparc[TMP_REG_1];
1260 u32 opcode = 0, rs2;
1261
1262 ctx->tmp_1_used = true;
1263 switch (BPF_SIZE(code)) {
1264 case BPF_W:
1265 opcode = LD32;
1266 break;
1267 case BPF_H:
1268 opcode = LD16;
1269 break;
1270 case BPF_B:
1271 opcode = LD8;
1272 break;
1273 case BPF_DW:
1274 opcode = LD64;
1275 break;
1276 }
1277
1278 if (is_simm13(off)) {
1279 opcode |= IMMED;
1280 rs2 = S13(off);
1281 } else {
1282 emit_loadimm(off, tmp, ctx);
1283 rs2 = RS2(tmp);
1284 }
1285 emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
1286 if (opcode != LD64 && insn_is_zext(&insn[1]))
1287 return 1;
1288 break;
1289 }
1290
1291 case BPF_ST | BPF_NOSPEC:
1292 break;
1293
1294 case BPF_ST | BPF_MEM | BPF_W:
1295 case BPF_ST | BPF_MEM | BPF_H:
1296 case BPF_ST | BPF_MEM | BPF_B:
1297 case BPF_ST | BPF_MEM | BPF_DW: {
1298 const u8 tmp = bpf2sparc[TMP_REG_1];
1299 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1300 u32 opcode = 0, rs2;
1301
1302 if (insn->dst_reg == BPF_REG_FP)
1303 ctx->saw_frame_pointer = true;
1304
1305 ctx->tmp_2_used = true;
1306 emit_loadimm(imm, tmp2, ctx);
1307
1308 switch (BPF_SIZE(code)) {
1309 case BPF_W:
1310 opcode = ST32;
1311 break;
1312 case BPF_H:
1313 opcode = ST16;
1314 break;
1315 case BPF_B:
1316 opcode = ST8;
1317 break;
1318 case BPF_DW:
1319 opcode = ST64;
1320 break;
1321 }
1322
1323 if (is_simm13(off)) {
1324 opcode |= IMMED;
1325 rs2 = S13(off);
1326 } else {
1327 ctx->tmp_1_used = true;
1328 emit_loadimm(off, tmp, ctx);
1329 rs2 = RS2(tmp);
1330 }
1331 emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
1332 break;
1333 }
1334
1335
1336 case BPF_STX | BPF_MEM | BPF_W:
1337 case BPF_STX | BPF_MEM | BPF_H:
1338 case BPF_STX | BPF_MEM | BPF_B:
1339 case BPF_STX | BPF_MEM | BPF_DW: {
1340 const u8 tmp = bpf2sparc[TMP_REG_1];
1341 u32 opcode = 0, rs2;
1342
1343 if (insn->dst_reg == BPF_REG_FP)
1344 ctx->saw_frame_pointer = true;
1345
1346 switch (BPF_SIZE(code)) {
1347 case BPF_W:
1348 opcode = ST32;
1349 break;
1350 case BPF_H:
1351 opcode = ST16;
1352 break;
1353 case BPF_B:
1354 opcode = ST8;
1355 break;
1356 case BPF_DW:
1357 opcode = ST64;
1358 break;
1359 }
1360 if (is_simm13(off)) {
1361 opcode |= IMMED;
1362 rs2 = S13(off);
1363 } else {
1364 ctx->tmp_1_used = true;
1365 emit_loadimm(off, tmp, ctx);
1366 rs2 = RS2(tmp);
1367 }
1368 emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
1369 break;
1370 }
1371
1372 case BPF_STX | BPF_ATOMIC | BPF_W: {
1373 const u8 tmp = bpf2sparc[TMP_REG_1];
1374 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1375 const u8 tmp3 = bpf2sparc[TMP_REG_3];
1376
1377 if (insn->imm != BPF_ADD) {
1378 pr_err_once("unknown atomic op %02x\n", insn->imm);
1379 return -EINVAL;
1380 }
1381
1382
1383
1384 if (insn->dst_reg == BPF_REG_FP)
1385 ctx->saw_frame_pointer = true;
1386
1387 ctx->tmp_1_used = true;
1388 ctx->tmp_2_used = true;
1389 ctx->tmp_3_used = true;
1390 emit_loadimm(off, tmp, ctx);
1391 emit_alu3(ADD, dst, tmp, tmp, ctx);
1392
1393 emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1394 emit_alu3(ADD, tmp2, src, tmp3, ctx);
1395 emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1396 emit_cmp(tmp2, tmp3, ctx);
1397 emit_branch(BNE, 4, 0, ctx);
1398 emit_nop(ctx);
1399 break;
1400 }
1401
1402 case BPF_STX | BPF_ATOMIC | BPF_DW: {
1403 const u8 tmp = bpf2sparc[TMP_REG_1];
1404 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1405 const u8 tmp3 = bpf2sparc[TMP_REG_3];
1406
1407 if (insn->imm != BPF_ADD) {
1408 pr_err_once("unknown atomic op %02x\n", insn->imm);
1409 return -EINVAL;
1410 }
1411
1412 if (insn->dst_reg == BPF_REG_FP)
1413 ctx->saw_frame_pointer = true;
1414
1415 ctx->tmp_1_used = true;
1416 ctx->tmp_2_used = true;
1417 ctx->tmp_3_used = true;
1418 emit_loadimm(off, tmp, ctx);
1419 emit_alu3(ADD, dst, tmp, tmp, ctx);
1420
1421 emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1422 emit_alu3(ADD, tmp2, src, tmp3, ctx);
1423 emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1424 emit_cmp(tmp2, tmp3, ctx);
1425 emit_branch(BNE, 4, 0, ctx);
1426 emit_nop(ctx);
1427 break;
1428 }
1429
1430 default:
1431 pr_err_once("unknown opcode %02x\n", code);
1432 return -EINVAL;
1433 }
1434
1435 return 0;
1436 }
1437
1438 static int build_body(struct jit_ctx *ctx)
1439 {
1440 const struct bpf_prog *prog = ctx->prog;
1441 int i;
1442
1443 for (i = 0; i < prog->len; i++) {
1444 const struct bpf_insn *insn = &prog->insnsi[i];
1445 int ret;
1446
1447 ret = build_insn(insn, ctx);
1448
1449 if (ret > 0) {
1450 i++;
1451 ctx->offset[i] = ctx->idx;
1452 continue;
1453 }
1454 ctx->offset[i] = ctx->idx;
1455 if (ret)
1456 return ret;
1457 }
1458 return 0;
1459 }
1460
1461 static void jit_fill_hole(void *area, unsigned int size)
1462 {
1463 u32 *ptr;
1464
1465 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
1466 *ptr++ = 0x91d02005;
1467 }
1468
1469 bool bpf_jit_needs_zext(void)
1470 {
1471 return true;
1472 }
1473
1474 struct sparc64_jit_data {
1475 struct bpf_binary_header *header;
1476 u8 *image;
1477 struct jit_ctx ctx;
1478 };
1479
1480 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1481 {
1482 struct bpf_prog *tmp, *orig_prog = prog;
1483 struct sparc64_jit_data *jit_data;
1484 struct bpf_binary_header *header;
1485 u32 prev_image_size, image_size;
1486 bool tmp_blinded = false;
1487 bool extra_pass = false;
1488 struct jit_ctx ctx;
1489 u8 *image_ptr;
1490 int pass, i;
1491
1492 if (!prog->jit_requested)
1493 return orig_prog;
1494
1495 tmp = bpf_jit_blind_constants(prog);
1496
1497
1498
1499 if (IS_ERR(tmp))
1500 return orig_prog;
1501 if (tmp != prog) {
1502 tmp_blinded = true;
1503 prog = tmp;
1504 }
1505
1506 jit_data = prog->aux->jit_data;
1507 if (!jit_data) {
1508 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1509 if (!jit_data) {
1510 prog = orig_prog;
1511 goto out;
1512 }
1513 prog->aux->jit_data = jit_data;
1514 }
1515 if (jit_data->ctx.offset) {
1516 ctx = jit_data->ctx;
1517 image_ptr = jit_data->image;
1518 header = jit_data->header;
1519 extra_pass = true;
1520 image_size = sizeof(u32) * ctx.idx;
1521 prev_image_size = image_size;
1522 pass = 1;
1523 goto skip_init_ctx;
1524 }
1525
1526 memset(&ctx, 0, sizeof(ctx));
1527 ctx.prog = prog;
1528
1529 ctx.offset = kmalloc_array(prog->len, sizeof(unsigned int), GFP_KERNEL);
1530 if (ctx.offset == NULL) {
1531 prog = orig_prog;
1532 goto out_off;
1533 }
1534
1535
1536
1537
1538 for (i = 0; i < prog->len; i++)
1539 ctx.offset[i] = i * (12 * 4);
1540
1541 prev_image_size = ~0U;
1542 for (pass = 1; pass < 40; pass++) {
1543 ctx.idx = 0;
1544
1545 build_prologue(&ctx);
1546 if (build_body(&ctx)) {
1547 prog = orig_prog;
1548 goto out_off;
1549 }
1550 build_epilogue(&ctx);
1551
1552 if (bpf_jit_enable > 1)
1553 pr_info("Pass %d: size = %u, seen = [%c%c%c%c%c%c]\n", pass,
1554 ctx.idx * 4,
1555 ctx.tmp_1_used ? '1' : ' ',
1556 ctx.tmp_2_used ? '2' : ' ',
1557 ctx.tmp_3_used ? '3' : ' ',
1558 ctx.saw_frame_pointer ? 'F' : ' ',
1559 ctx.saw_call ? 'C' : ' ',
1560 ctx.saw_tail_call ? 'T' : ' ');
1561
1562 if (ctx.idx * 4 == prev_image_size)
1563 break;
1564 prev_image_size = ctx.idx * 4;
1565 cond_resched();
1566 }
1567
1568
1569 image_size = sizeof(u32) * ctx.idx;
1570 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1571 sizeof(u32), jit_fill_hole);
1572 if (header == NULL) {
1573 prog = orig_prog;
1574 goto out_off;
1575 }
1576
1577 ctx.image = (u32 *)image_ptr;
1578 skip_init_ctx:
1579 ctx.idx = 0;
1580
1581 build_prologue(&ctx);
1582
1583 if (build_body(&ctx)) {
1584 bpf_jit_binary_free(header);
1585 prog = orig_prog;
1586 goto out_off;
1587 }
1588
1589 build_epilogue(&ctx);
1590
1591 if (ctx.idx * 4 != prev_image_size) {
1592 pr_err("bpf_jit: Failed to converge, prev_size=%u size=%d\n",
1593 prev_image_size, ctx.idx * 4);
1594 bpf_jit_binary_free(header);
1595 prog = orig_prog;
1596 goto out_off;
1597 }
1598
1599 if (bpf_jit_enable > 1)
1600 bpf_jit_dump(prog->len, image_size, pass, ctx.image);
1601
1602 bpf_flush_icache(header, (u8 *)header + header->size);
1603
1604 if (!prog->is_func || extra_pass) {
1605 bpf_jit_binary_lock_ro(header);
1606 } else {
1607 jit_data->ctx = ctx;
1608 jit_data->image = image_ptr;
1609 jit_data->header = header;
1610 }
1611
1612 prog->bpf_func = (void *)ctx.image;
1613 prog->jited = 1;
1614 prog->jited_len = image_size;
1615
1616 if (!prog->is_func || extra_pass) {
1617 bpf_prog_fill_jited_linfo(prog, ctx.offset);
1618 out_off:
1619 kfree(ctx.offset);
1620 kfree(jit_data);
1621 prog->aux->jit_data = NULL;
1622 }
1623 out:
1624 if (tmp_blinded)
1625 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1626 tmp : orig_prog);
1627 return prog;
1628 }