0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #include <linux/jiffies.h>
0012 #include <linux/kernel.h>
0013 #include <linux/sched.h>
0014 #include <linux/mm.h>
0015 #include <linux/extable.h>
0016 #include <asm/asi.h>
0017 #include <asm/ptrace.h>
0018 #include <asm/pstate.h>
0019 #include <asm/processor.h>
0020 #include <linux/uaccess.h>
0021 #include <linux/smp.h>
0022 #include <linux/bitops.h>
0023 #include <linux/perf_event.h>
0024 #include <linux/ratelimit.h>
0025 #include <linux/context_tracking.h>
0026 #include <asm/fpumacro.h>
0027 #include <asm/cacheflush.h>
0028 #include <asm/setup.h>
0029
0030 #include "entry.h"
0031 #include "kernel.h"
0032
0033 enum direction {
0034 load,
0035 store,
0036 both,
0037 fpld,
0038 fpst,
0039 invalid,
0040 };
0041
0042 static inline enum direction decode_direction(unsigned int insn)
0043 {
0044 unsigned long tmp = (insn >> 21) & 1;
0045
0046 if (!tmp)
0047 return load;
0048 else {
0049 switch ((insn>>19)&0xf) {
0050 case 15:
0051 return both;
0052 default:
0053 return store;
0054 }
0055 }
0056 }
0057
0058
0059 static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
0060 {
0061 unsigned int tmp;
0062
0063 tmp = ((insn >> 19) & 0xf);
0064 if (tmp == 11 || tmp == 14)
0065 return 8;
0066 tmp &= 3;
0067 if (!tmp)
0068 return 4;
0069 else if (tmp == 3)
0070 return 16;
0071 else if (tmp == 2)
0072 return 2;
0073 else {
0074 printk("Impossible unaligned trap. insn=%08x\n", insn);
0075 die_if_kernel("Byte sized unaligned access?!?!", regs);
0076
0077
0078
0079
0080
0081
0082
0083 return 0;
0084 }
0085 }
0086
0087 static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
0088 {
0089 if (insn & 0x800000) {
0090 if (insn & 0x2000)
0091 return (unsigned char)(regs->tstate >> 24);
0092 else
0093 return (unsigned char)(insn >> 5);
0094 } else
0095 return ASI_P;
0096 }
0097
0098
0099 static inline int decode_signedness(unsigned int insn)
0100 {
0101 return (insn & 0x400000);
0102 }
0103
0104 static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
0105 unsigned int rd, int from_kernel)
0106 {
0107 if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
0108 if (from_kernel != 0)
0109 __asm__ __volatile__("flushw");
0110 else
0111 flushw_user();
0112 }
0113 }
0114
0115 static inline long sign_extend_imm13(long imm)
0116 {
0117 return imm << 51 >> 51;
0118 }
0119
0120 static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
0121 {
0122 unsigned long value, fp;
0123
0124 if (reg < 16)
0125 return (!reg ? 0 : regs->u_regs[reg]);
0126
0127 fp = regs->u_regs[UREG_FP];
0128
0129 if (regs->tstate & TSTATE_PRIV) {
0130 struct reg_window *win;
0131 win = (struct reg_window *)(fp + STACK_BIAS);
0132 value = win->locals[reg - 16];
0133 } else if (!test_thread_64bit_stack(fp)) {
0134 struct reg_window32 __user *win32;
0135 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
0136 get_user(value, &win32->locals[reg - 16]);
0137 } else {
0138 struct reg_window __user *win;
0139 win = (struct reg_window __user *)(fp + STACK_BIAS);
0140 get_user(value, &win->locals[reg - 16]);
0141 }
0142 return value;
0143 }
0144
0145 static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
0146 {
0147 unsigned long fp;
0148
0149 if (reg < 16)
0150 return ®s->u_regs[reg];
0151
0152 fp = regs->u_regs[UREG_FP];
0153
0154 if (regs->tstate & TSTATE_PRIV) {
0155 struct reg_window *win;
0156 win = (struct reg_window *)(fp + STACK_BIAS);
0157 return &win->locals[reg - 16];
0158 } else if (!test_thread_64bit_stack(fp)) {
0159 struct reg_window32 *win32;
0160 win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
0161 return (unsigned long *)&win32->locals[reg - 16];
0162 } else {
0163 struct reg_window *win;
0164 win = (struct reg_window *)(fp + STACK_BIAS);
0165 return &win->locals[reg - 16];
0166 }
0167 }
0168
0169 unsigned long compute_effective_address(struct pt_regs *regs,
0170 unsigned int insn, unsigned int rd)
0171 {
0172 int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
0173 unsigned int rs1 = (insn >> 14) & 0x1f;
0174 unsigned int rs2 = insn & 0x1f;
0175 unsigned long addr;
0176
0177 if (insn & 0x2000) {
0178 maybe_flush_windows(rs1, 0, rd, from_kernel);
0179 addr = (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
0180 } else {
0181 maybe_flush_windows(rs1, rs2, rd, from_kernel);
0182 addr = (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
0183 }
0184
0185 if (!from_kernel && test_thread_flag(TIF_32BIT))
0186 addr &= 0xffffffff;
0187
0188 return addr;
0189 }
0190
0191
0192 static void __used unaligned_panic(char *str, struct pt_regs *regs)
0193 {
0194 die_if_kernel(str, regs);
0195 }
0196
0197 extern int do_int_load(unsigned long *dest_reg, int size,
0198 unsigned long *saddr, int is_signed, int asi);
0199
0200 extern int __do_int_store(unsigned long *dst_addr, int size,
0201 unsigned long src_val, int asi);
0202
0203 static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
0204 struct pt_regs *regs, int asi, int orig_asi)
0205 {
0206 unsigned long zero = 0;
0207 unsigned long *src_val_p = &zero;
0208 unsigned long src_val;
0209
0210 if (size == 16) {
0211 size = 8;
0212 zero = (((long)(reg_num ?
0213 (unsigned int)fetch_reg(reg_num, regs) : 0)) << 32) |
0214 (unsigned int)fetch_reg(reg_num + 1, regs);
0215 } else if (reg_num) {
0216 src_val_p = fetch_reg_addr(reg_num, regs);
0217 }
0218 src_val = *src_val_p;
0219 if (unlikely(asi != orig_asi)) {
0220 switch (size) {
0221 case 2:
0222 src_val = swab16(src_val);
0223 break;
0224 case 4:
0225 src_val = swab32(src_val);
0226 break;
0227 case 8:
0228 src_val = swab64(src_val);
0229 break;
0230 case 16:
0231 default:
0232 BUG();
0233 break;
0234 }
0235 }
0236 return __do_int_store(dst_addr, size, src_val, asi);
0237 }
0238
0239 static inline void advance(struct pt_regs *regs)
0240 {
0241 regs->tpc = regs->tnpc;
0242 regs->tnpc += 4;
0243 if (test_thread_flag(TIF_32BIT)) {
0244 regs->tpc &= 0xffffffff;
0245 regs->tnpc &= 0xffffffff;
0246 }
0247 }
0248
0249 static inline int floating_point_load_or_store_p(unsigned int insn)
0250 {
0251 return (insn >> 24) & 1;
0252 }
0253
0254 static inline int ok_for_kernel(unsigned int insn)
0255 {
0256 return !floating_point_load_or_store_p(insn);
0257 }
0258
0259 static void kernel_mna_trap_fault(int fixup_tstate_asi)
0260 {
0261 struct pt_regs *regs = current_thread_info()->kern_una_regs;
0262 unsigned int insn = current_thread_info()->kern_una_insn;
0263 const struct exception_table_entry *entry;
0264
0265 entry = search_exception_tables(regs->tpc);
0266 if (!entry) {
0267 unsigned long address;
0268
0269 address = compute_effective_address(regs, insn,
0270 ((insn >> 25) & 0x1f));
0271 if (address < PAGE_SIZE) {
0272 printk(KERN_ALERT "Unable to handle kernel NULL "
0273 "pointer dereference in mna handler");
0274 } else
0275 printk(KERN_ALERT "Unable to handle kernel paging "
0276 "request in mna handler");
0277 printk(KERN_ALERT " at virtual address %016lx\n",address);
0278 printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
0279 (current->mm ? CTX_HWBITS(current->mm->context) :
0280 CTX_HWBITS(current->active_mm->context)));
0281 printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
0282 (current->mm ? (unsigned long) current->mm->pgd :
0283 (unsigned long) current->active_mm->pgd));
0284 die_if_kernel("Oops", regs);
0285
0286 }
0287 regs->tpc = entry->fixup;
0288 regs->tnpc = regs->tpc + 4;
0289
0290 if (fixup_tstate_asi) {
0291 regs->tstate &= ~TSTATE_ASI;
0292 regs->tstate |= (ASI_AIUS << 24UL);
0293 }
0294 }
0295
0296 static void log_unaligned(struct pt_regs *regs)
0297 {
0298 static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
0299
0300 if (__ratelimit(&ratelimit)) {
0301 printk("Kernel unaligned access at TPC[%lx] %pS\n",
0302 regs->tpc, (void *) regs->tpc);
0303 }
0304 }
0305
0306 asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
0307 {
0308 enum direction dir = decode_direction(insn);
0309 int size = decode_access_size(regs, insn);
0310 int orig_asi, asi;
0311
0312 current_thread_info()->kern_una_regs = regs;
0313 current_thread_info()->kern_una_insn = insn;
0314
0315 orig_asi = asi = decode_asi(insn, regs);
0316
0317
0318
0319
0320 if (asi == ASI_AIUS) {
0321 kernel_mna_trap_fault(0);
0322 return;
0323 }
0324
0325 log_unaligned(regs);
0326
0327 if (!ok_for_kernel(insn) || dir == both) {
0328 printk("Unsupported unaligned load/store trap for kernel "
0329 "at <%016lx>.\n", regs->tpc);
0330 unaligned_panic("Kernel does fpu/atomic "
0331 "unaligned load/store.", regs);
0332
0333 kernel_mna_trap_fault(0);
0334 } else {
0335 unsigned long addr, *reg_addr;
0336 int err;
0337
0338 addr = compute_effective_address(regs, insn,
0339 ((insn >> 25) & 0x1f));
0340 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
0341 switch (asi) {
0342 case ASI_NL:
0343 case ASI_AIUPL:
0344 case ASI_AIUSL:
0345 case ASI_PL:
0346 case ASI_SL:
0347 case ASI_PNFL:
0348 case ASI_SNFL:
0349 asi &= ~0x08;
0350 break;
0351 }
0352 switch (dir) {
0353 case load:
0354 reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
0355 err = do_int_load(reg_addr, size,
0356 (unsigned long *) addr,
0357 decode_signedness(insn), asi);
0358 if (likely(!err) && unlikely(asi != orig_asi)) {
0359 unsigned long val_in = *reg_addr;
0360 switch (size) {
0361 case 2:
0362 val_in = swab16(val_in);
0363 break;
0364 case 4:
0365 val_in = swab32(val_in);
0366 break;
0367 case 8:
0368 val_in = swab64(val_in);
0369 break;
0370 case 16:
0371 default:
0372 BUG();
0373 break;
0374 }
0375 *reg_addr = val_in;
0376 }
0377 break;
0378
0379 case store:
0380 err = do_int_store(((insn>>25)&0x1f), size,
0381 (unsigned long *) addr, regs,
0382 asi, orig_asi);
0383 break;
0384
0385 default:
0386 panic("Impossible kernel unaligned trap.");
0387
0388 }
0389 if (unlikely(err))
0390 kernel_mna_trap_fault(1);
0391 else
0392 advance(regs);
0393 }
0394 }
0395
0396 int handle_popc(u32 insn, struct pt_regs *regs)
0397 {
0398 int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
0399 int ret, rd = ((insn >> 25) & 0x1f);
0400 u64 value;
0401
0402 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
0403 if (insn & 0x2000) {
0404 maybe_flush_windows(0, 0, rd, from_kernel);
0405 value = sign_extend_imm13(insn);
0406 } else {
0407 maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
0408 value = fetch_reg(insn & 0x1f, regs);
0409 }
0410 ret = hweight64(value);
0411 if (rd < 16) {
0412 if (rd)
0413 regs->u_regs[rd] = ret;
0414 } else {
0415 unsigned long fp = regs->u_regs[UREG_FP];
0416
0417 if (!test_thread_64bit_stack(fp)) {
0418 struct reg_window32 __user *win32;
0419 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
0420 put_user(ret, &win32->locals[rd - 16]);
0421 } else {
0422 struct reg_window __user *win;
0423 win = (struct reg_window __user *)(fp + STACK_BIAS);
0424 put_user(ret, &win->locals[rd - 16]);
0425 }
0426 }
0427 advance(regs);
0428 return 1;
0429 }
0430
0431 extern void do_fpother(struct pt_regs *regs);
0432 extern void do_privact(struct pt_regs *regs);
0433 extern void sun4v_data_access_exception(struct pt_regs *regs,
0434 unsigned long addr,
0435 unsigned long type_ctx);
0436
0437 int handle_ldf_stq(u32 insn, struct pt_regs *regs)
0438 {
0439 unsigned long addr = compute_effective_address(regs, insn, 0);
0440 int freg;
0441 struct fpustate *f = FPUSTATE;
0442 int asi = decode_asi(insn, regs);
0443 int flag;
0444
0445 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
0446
0447 save_and_clear_fpu();
0448 current_thread_info()->xfsr[0] &= ~0x1c000;
0449 if (insn & 0x200000) {
0450
0451 u64 first = 0, second = 0;
0452
0453 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
0454 flag = (freg < 32) ? FPRS_DL : FPRS_DU;
0455 if (freg & 3) {
0456 current_thread_info()->xfsr[0] |= (6 << 14) ;
0457 do_fpother(regs);
0458 return 0;
0459 }
0460 if (current_thread_info()->fpsaved[0] & flag) {
0461 first = *(u64 *)&f->regs[freg];
0462 second = *(u64 *)&f->regs[freg+2];
0463 }
0464 if (asi < 0x80) {
0465 do_privact(regs);
0466 return 1;
0467 }
0468 switch (asi) {
0469 case ASI_P:
0470 case ASI_S: break;
0471 case ASI_PL:
0472 case ASI_SL:
0473 {
0474
0475 u64 tmp = __swab64p(&first);
0476
0477 first = __swab64p(&second);
0478 second = tmp;
0479 break;
0480 }
0481 default:
0482 if (tlb_type == hypervisor)
0483 sun4v_data_access_exception(regs, addr, 0);
0484 else
0485 spitfire_data_access_exception(regs, 0, addr);
0486 return 1;
0487 }
0488 if (put_user (first >> 32, (u32 __user *)addr) ||
0489 __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
0490 __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
0491 __put_user ((u32)second, (u32 __user *)(addr + 12))) {
0492 if (tlb_type == hypervisor)
0493 sun4v_data_access_exception(regs, addr, 0);
0494 else
0495 spitfire_data_access_exception(regs, 0, addr);
0496 return 1;
0497 }
0498 } else {
0499
0500 u32 data[4] __attribute__ ((aligned(8)));
0501 int size, i;
0502 int err;
0503
0504 if (asi < 0x80) {
0505 do_privact(regs);
0506 return 1;
0507 } else if (asi > ASI_SNFL) {
0508 if (tlb_type == hypervisor)
0509 sun4v_data_access_exception(regs, addr, 0);
0510 else
0511 spitfire_data_access_exception(regs, 0, addr);
0512 return 1;
0513 }
0514 switch (insn & 0x180000) {
0515 case 0x000000: size = 1; break;
0516 case 0x100000: size = 4; break;
0517 default: size = 2; break;
0518 }
0519 if (size == 1)
0520 freg = (insn >> 25) & 0x1f;
0521 else
0522 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
0523 flag = (freg < 32) ? FPRS_DL : FPRS_DU;
0524
0525 for (i = 0; i < size; i++)
0526 data[i] = 0;
0527
0528 err = get_user (data[0], (u32 __user *) addr);
0529 if (!err) {
0530 for (i = 1; i < size; i++)
0531 err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
0532 }
0533 if (err && !(asi & 0x2 )) {
0534 if (tlb_type == hypervisor)
0535 sun4v_data_access_exception(regs, addr, 0);
0536 else
0537 spitfire_data_access_exception(regs, 0, addr);
0538 return 1;
0539 }
0540 if (asi & 0x8) {
0541 u64 tmp;
0542
0543 switch (size) {
0544 case 1: data[0] = le32_to_cpup(data + 0); break;
0545 default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
0546 break;
0547 case 4: tmp = le64_to_cpup((u64 *)(data + 0));
0548 *(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
0549 *(u64 *)(data + 2) = tmp;
0550 break;
0551 }
0552 }
0553 if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
0554 current_thread_info()->fpsaved[0] = FPRS_FEF;
0555 current_thread_info()->gsr[0] = 0;
0556 }
0557 if (!(current_thread_info()->fpsaved[0] & flag)) {
0558 if (freg < 32)
0559 memset(f->regs, 0, 32*sizeof(u32));
0560 else
0561 memset(f->regs+32, 0, 32*sizeof(u32));
0562 }
0563 memcpy(f->regs + freg, data, size * 4);
0564 current_thread_info()->fpsaved[0] |= flag;
0565 }
0566 advance(regs);
0567 return 1;
0568 }
0569
0570 void handle_ld_nf(u32 insn, struct pt_regs *regs)
0571 {
0572 int rd = ((insn >> 25) & 0x1f);
0573 int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
0574 unsigned long *reg;
0575
0576 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
0577
0578 maybe_flush_windows(0, 0, rd, from_kernel);
0579 reg = fetch_reg_addr(rd, regs);
0580 if (from_kernel || rd < 16) {
0581 reg[0] = 0;
0582 if ((insn & 0x780000) == 0x180000)
0583 reg[1] = 0;
0584 } else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
0585 put_user(0, (int __user *) reg);
0586 if ((insn & 0x780000) == 0x180000)
0587 put_user(0, ((int __user *) reg) + 1);
0588 } else {
0589 put_user(0, (unsigned long __user *) reg);
0590 if ((insn & 0x780000) == 0x180000)
0591 put_user(0, (unsigned long __user *) reg + 1);
0592 }
0593 advance(regs);
0594 }
0595
0596 void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
0597 {
0598 enum ctx_state prev_state = exception_enter();
0599 unsigned long pc = regs->tpc;
0600 unsigned long tstate = regs->tstate;
0601 u32 insn;
0602 u64 value;
0603 u8 freg;
0604 int flag;
0605 struct fpustate *f = FPUSTATE;
0606
0607 if (tstate & TSTATE_PRIV)
0608 die_if_kernel("lddfmna from kernel", regs);
0609 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
0610 if (test_thread_flag(TIF_32BIT))
0611 pc = (u32)pc;
0612 if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
0613 int asi = decode_asi(insn, regs);
0614 u32 first, second;
0615 int err;
0616
0617 if ((asi > ASI_SNFL) ||
0618 (asi < ASI_P))
0619 goto daex;
0620 first = second = 0;
0621 err = get_user(first, (u32 __user *)sfar);
0622 if (!err)
0623 err = get_user(second, (u32 __user *)(sfar + 4));
0624 if (err) {
0625 if (!(asi & 0x2))
0626 goto daex;
0627 first = second = 0;
0628 }
0629 save_and_clear_fpu();
0630 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
0631 value = (((u64)first) << 32) | second;
0632 if (asi & 0x8)
0633 value = __swab64p(&value);
0634 flag = (freg < 32) ? FPRS_DL : FPRS_DU;
0635 if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
0636 current_thread_info()->fpsaved[0] = FPRS_FEF;
0637 current_thread_info()->gsr[0] = 0;
0638 }
0639 if (!(current_thread_info()->fpsaved[0] & flag)) {
0640 if (freg < 32)
0641 memset(f->regs, 0, 32*sizeof(u32));
0642 else
0643 memset(f->regs+32, 0, 32*sizeof(u32));
0644 }
0645 *(u64 *)(f->regs + freg) = value;
0646 current_thread_info()->fpsaved[0] |= flag;
0647 } else {
0648 daex:
0649 if (tlb_type == hypervisor)
0650 sun4v_data_access_exception(regs, sfar, sfsr);
0651 else
0652 spitfire_data_access_exception(regs, sfsr, sfar);
0653 goto out;
0654 }
0655 advance(regs);
0656 out:
0657 exception_exit(prev_state);
0658 }
0659
0660 void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
0661 {
0662 enum ctx_state prev_state = exception_enter();
0663 unsigned long pc = regs->tpc;
0664 unsigned long tstate = regs->tstate;
0665 u32 insn;
0666 u64 value;
0667 u8 freg;
0668 int flag;
0669 struct fpustate *f = FPUSTATE;
0670
0671 if (tstate & TSTATE_PRIV)
0672 die_if_kernel("stdfmna from kernel", regs);
0673 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
0674 if (test_thread_flag(TIF_32BIT))
0675 pc = (u32)pc;
0676 if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
0677 int asi = decode_asi(insn, regs);
0678 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
0679 value = 0;
0680 flag = (freg < 32) ? FPRS_DL : FPRS_DU;
0681 if ((asi > ASI_SNFL) ||
0682 (asi < ASI_P))
0683 goto daex;
0684 save_and_clear_fpu();
0685 if (current_thread_info()->fpsaved[0] & flag)
0686 value = *(u64 *)&f->regs[freg];
0687 switch (asi) {
0688 case ASI_P:
0689 case ASI_S: break;
0690 case ASI_PL:
0691 case ASI_SL:
0692 value = __swab64p(&value); break;
0693 default: goto daex;
0694 }
0695 if (put_user (value >> 32, (u32 __user *) sfar) ||
0696 __put_user ((u32)value, (u32 __user *)(sfar + 4)))
0697 goto daex;
0698 } else {
0699 daex:
0700 if (tlb_type == hypervisor)
0701 sun4v_data_access_exception(regs, sfar, sfsr);
0702 else
0703 spitfire_data_access_exception(regs, sfsr, sfar);
0704 goto out;
0705 }
0706 advance(regs);
0707 out:
0708 exception_exit(prev_state);
0709 }