Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright IBM Corp. 2012
0004  *
0005  * Author(s):
0006  *   Jan Glauber <jang@linux.vnet.ibm.com>
0007  *
0008  * The System z PCI code is a rewrite from a prototype by
0009  * the following people (Kudoz!):
0010  *   Alexander Schmidt
0011  *   Christoph Raisch
0012  *   Hannes Hering
0013  *   Hoang-Nam Nguyen
0014  *   Jan-Bernd Themann
0015  *   Stefan Roscher
0016  *   Thomas Klein
0017  */
0018 
0019 #define KMSG_COMPONENT "zpci"
0020 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
0021 
0022 #include <linux/kernel.h>
0023 #include <linux/slab.h>
0024 #include <linux/err.h>
0025 #include <linux/export.h>
0026 #include <linux/delay.h>
0027 #include <linux/seq_file.h>
0028 #include <linux/jump_label.h>
0029 #include <linux/pci.h>
0030 #include <linux/printk.h>
0031 
0032 #include <asm/isc.h>
0033 #include <asm/airq.h>
0034 #include <asm/facility.h>
0035 #include <asm/pci_insn.h>
0036 #include <asm/pci_clp.h>
0037 #include <asm/pci_dma.h>
0038 
0039 #include "pci_bus.h"
0040 #include "pci_iov.h"
0041 
0042 /* list of all detected zpci devices */
0043 static LIST_HEAD(zpci_list);
0044 static DEFINE_SPINLOCK(zpci_list_lock);
0045 
0046 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
0047 static DEFINE_SPINLOCK(zpci_domain_lock);
0048 
0049 #define ZPCI_IOMAP_ENTRIES                      \
0050     min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2),   \
0051         ZPCI_IOMAP_MAX_ENTRIES)
0052 
0053 unsigned int s390_pci_no_rid;
0054 
0055 static DEFINE_SPINLOCK(zpci_iomap_lock);
0056 static unsigned long *zpci_iomap_bitmap;
0057 struct zpci_iomap_entry *zpci_iomap_start;
0058 EXPORT_SYMBOL_GPL(zpci_iomap_start);
0059 
0060 DEFINE_STATIC_KEY_FALSE(have_mio);
0061 
0062 static struct kmem_cache *zdev_fmb_cache;
0063 
0064 /* AEN structures that must be preserved over KVM module re-insertion */
0065 union zpci_sic_iib *zpci_aipb;
0066 EXPORT_SYMBOL_GPL(zpci_aipb);
0067 struct airq_iv *zpci_aif_sbv;
0068 EXPORT_SYMBOL_GPL(zpci_aif_sbv);
0069 
0070 struct zpci_dev *get_zdev_by_fid(u32 fid)
0071 {
0072     struct zpci_dev *tmp, *zdev = NULL;
0073 
0074     spin_lock(&zpci_list_lock);
0075     list_for_each_entry(tmp, &zpci_list, entry) {
0076         if (tmp->fid == fid) {
0077             zdev = tmp;
0078             zpci_zdev_get(zdev);
0079             break;
0080         }
0081     }
0082     spin_unlock(&zpci_list_lock);
0083     return zdev;
0084 }
0085 
0086 void zpci_remove_reserved_devices(void)
0087 {
0088     struct zpci_dev *tmp, *zdev;
0089     enum zpci_state state;
0090     LIST_HEAD(remove);
0091 
0092     spin_lock(&zpci_list_lock);
0093     list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
0094         if (zdev->state == ZPCI_FN_STATE_STANDBY &&
0095             !clp_get_state(zdev->fid, &state) &&
0096             state == ZPCI_FN_STATE_RESERVED)
0097             list_move_tail(&zdev->entry, &remove);
0098     }
0099     spin_unlock(&zpci_list_lock);
0100 
0101     list_for_each_entry_safe(zdev, tmp, &remove, entry)
0102         zpci_device_reserved(zdev);
0103 }
0104 
0105 int pci_domain_nr(struct pci_bus *bus)
0106 {
0107     return ((struct zpci_bus *) bus->sysdata)->domain_nr;
0108 }
0109 EXPORT_SYMBOL_GPL(pci_domain_nr);
0110 
0111 int pci_proc_domain(struct pci_bus *bus)
0112 {
0113     return pci_domain_nr(bus);
0114 }
0115 EXPORT_SYMBOL_GPL(pci_proc_domain);
0116 
0117 /* Modify PCI: Register I/O address translation parameters */
0118 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
0119                u64 base, u64 limit, u64 iota)
0120 {
0121     u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
0122     struct zpci_fib fib = {0};
0123     u8 cc, status;
0124 
0125     WARN_ON_ONCE(iota & 0x3fff);
0126     fib.pba = base;
0127     fib.pal = limit;
0128     fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
0129     fib.gd = zdev->gisa;
0130     cc = zpci_mod_fc(req, &fib, &status);
0131     if (cc)
0132         zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
0133     return cc;
0134 }
0135 EXPORT_SYMBOL_GPL(zpci_register_ioat);
0136 
0137 /* Modify PCI: Unregister I/O address translation parameters */
0138 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
0139 {
0140     u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
0141     struct zpci_fib fib = {0};
0142     u8 cc, status;
0143 
0144     fib.gd = zdev->gisa;
0145 
0146     cc = zpci_mod_fc(req, &fib, &status);
0147     if (cc)
0148         zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
0149     return cc;
0150 }
0151 
0152 /* Modify PCI: Set PCI function measurement parameters */
0153 int zpci_fmb_enable_device(struct zpci_dev *zdev)
0154 {
0155     u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
0156     struct zpci_fib fib = {0};
0157     u8 cc, status;
0158 
0159     if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
0160         return -EINVAL;
0161 
0162     zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
0163     if (!zdev->fmb)
0164         return -ENOMEM;
0165     WARN_ON((u64) zdev->fmb & 0xf);
0166 
0167     /* reset software counters */
0168     atomic64_set(&zdev->allocated_pages, 0);
0169     atomic64_set(&zdev->mapped_pages, 0);
0170     atomic64_set(&zdev->unmapped_pages, 0);
0171 
0172     fib.fmb_addr = virt_to_phys(zdev->fmb);
0173     fib.gd = zdev->gisa;
0174     cc = zpci_mod_fc(req, &fib, &status);
0175     if (cc) {
0176         kmem_cache_free(zdev_fmb_cache, zdev->fmb);
0177         zdev->fmb = NULL;
0178     }
0179     return cc ? -EIO : 0;
0180 }
0181 
0182 /* Modify PCI: Disable PCI function measurement */
0183 int zpci_fmb_disable_device(struct zpci_dev *zdev)
0184 {
0185     u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
0186     struct zpci_fib fib = {0};
0187     u8 cc, status;
0188 
0189     if (!zdev->fmb)
0190         return -EINVAL;
0191 
0192     fib.gd = zdev->gisa;
0193 
0194     /* Function measurement is disabled if fmb address is zero */
0195     cc = zpci_mod_fc(req, &fib, &status);
0196     if (cc == 3) /* Function already gone. */
0197         cc = 0;
0198 
0199     if (!cc) {
0200         kmem_cache_free(zdev_fmb_cache, zdev->fmb);
0201         zdev->fmb = NULL;
0202     }
0203     return cc ? -EIO : 0;
0204 }
0205 
0206 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
0207 {
0208     u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
0209     u64 data;
0210     int rc;
0211 
0212     rc = __zpci_load(&data, req, offset);
0213     if (!rc) {
0214         data = le64_to_cpu((__force __le64) data);
0215         data >>= (8 - len) * 8;
0216         *val = (u32) data;
0217     } else
0218         *val = 0xffffffff;
0219     return rc;
0220 }
0221 
0222 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
0223 {
0224     u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
0225     u64 data = val;
0226     int rc;
0227 
0228     data <<= (8 - len) * 8;
0229     data = (__force u64) cpu_to_le64(data);
0230     rc = __zpci_store(data, req, offset);
0231     return rc;
0232 }
0233 
0234 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
0235                        resource_size_t size,
0236                        resource_size_t align)
0237 {
0238     return 0;
0239 }
0240 
0241 /* combine single writes by using store-block insn */
0242 void __iowrite64_copy(void __iomem *to, const void *from, size_t count)
0243 {
0244        zpci_memcpy_toio(to, from, count);
0245 }
0246 
0247 static void __iomem *__ioremap(phys_addr_t addr, size_t size, pgprot_t prot)
0248 {
0249     unsigned long offset, vaddr;
0250     struct vm_struct *area;
0251     phys_addr_t last_addr;
0252 
0253     last_addr = addr + size - 1;
0254     if (!size || last_addr < addr)
0255         return NULL;
0256 
0257     if (!static_branch_unlikely(&have_mio))
0258         return (void __iomem *) addr;
0259 
0260     offset = addr & ~PAGE_MASK;
0261     addr &= PAGE_MASK;
0262     size = PAGE_ALIGN(size + offset);
0263     area = get_vm_area(size, VM_IOREMAP);
0264     if (!area)
0265         return NULL;
0266 
0267     vaddr = (unsigned long) area->addr;
0268     if (ioremap_page_range(vaddr, vaddr + size, addr, prot)) {
0269         free_vm_area(area);
0270         return NULL;
0271     }
0272     return (void __iomem *) ((unsigned long) area->addr + offset);
0273 }
0274 
0275 void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot)
0276 {
0277     return __ioremap(addr, size, __pgprot(prot));
0278 }
0279 EXPORT_SYMBOL(ioremap_prot);
0280 
0281 void __iomem *ioremap(phys_addr_t addr, size_t size)
0282 {
0283     return __ioremap(addr, size, PAGE_KERNEL);
0284 }
0285 EXPORT_SYMBOL(ioremap);
0286 
0287 void __iomem *ioremap_wc(phys_addr_t addr, size_t size)
0288 {
0289     return __ioremap(addr, size, pgprot_writecombine(PAGE_KERNEL));
0290 }
0291 EXPORT_SYMBOL(ioremap_wc);
0292 
0293 void __iomem *ioremap_wt(phys_addr_t addr, size_t size)
0294 {
0295     return __ioremap(addr, size, pgprot_writethrough(PAGE_KERNEL));
0296 }
0297 EXPORT_SYMBOL(ioremap_wt);
0298 
0299 void iounmap(volatile void __iomem *addr)
0300 {
0301     if (static_branch_likely(&have_mio))
0302         vunmap((__force void *) ((unsigned long) addr & PAGE_MASK));
0303 }
0304 EXPORT_SYMBOL(iounmap);
0305 
0306 /* Create a virtual mapping cookie for a PCI BAR */
0307 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
0308                     unsigned long offset, unsigned long max)
0309 {
0310     struct zpci_dev *zdev = to_zpci(pdev);
0311     int idx;
0312 
0313     idx = zdev->bars[bar].map_idx;
0314     spin_lock(&zpci_iomap_lock);
0315     /* Detect overrun */
0316     WARN_ON(!++zpci_iomap_start[idx].count);
0317     zpci_iomap_start[idx].fh = zdev->fh;
0318     zpci_iomap_start[idx].bar = bar;
0319     spin_unlock(&zpci_iomap_lock);
0320 
0321     return (void __iomem *) ZPCI_ADDR(idx) + offset;
0322 }
0323 
0324 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
0325                      unsigned long offset,
0326                      unsigned long max)
0327 {
0328     unsigned long barsize = pci_resource_len(pdev, bar);
0329     struct zpci_dev *zdev = to_zpci(pdev);
0330     void __iomem *iova;
0331 
0332     iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
0333     return iova ? iova + offset : iova;
0334 }
0335 
0336 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
0337                   unsigned long offset, unsigned long max)
0338 {
0339     if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
0340         return NULL;
0341 
0342     if (static_branch_likely(&have_mio))
0343         return pci_iomap_range_mio(pdev, bar, offset, max);
0344     else
0345         return pci_iomap_range_fh(pdev, bar, offset, max);
0346 }
0347 EXPORT_SYMBOL(pci_iomap_range);
0348 
0349 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
0350 {
0351     return pci_iomap_range(dev, bar, 0, maxlen);
0352 }
0353 EXPORT_SYMBOL(pci_iomap);
0354 
0355 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
0356                         unsigned long offset, unsigned long max)
0357 {
0358     unsigned long barsize = pci_resource_len(pdev, bar);
0359     struct zpci_dev *zdev = to_zpci(pdev);
0360     void __iomem *iova;
0361 
0362     iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
0363     return iova ? iova + offset : iova;
0364 }
0365 
0366 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
0367                  unsigned long offset, unsigned long max)
0368 {
0369     if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
0370         return NULL;
0371 
0372     if (static_branch_likely(&have_mio))
0373         return pci_iomap_wc_range_mio(pdev, bar, offset, max);
0374     else
0375         return pci_iomap_range_fh(pdev, bar, offset, max);
0376 }
0377 EXPORT_SYMBOL(pci_iomap_wc_range);
0378 
0379 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
0380 {
0381     return pci_iomap_wc_range(dev, bar, 0, maxlen);
0382 }
0383 EXPORT_SYMBOL(pci_iomap_wc);
0384 
0385 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
0386 {
0387     unsigned int idx = ZPCI_IDX(addr);
0388 
0389     spin_lock(&zpci_iomap_lock);
0390     /* Detect underrun */
0391     WARN_ON(!zpci_iomap_start[idx].count);
0392     if (!--zpci_iomap_start[idx].count) {
0393         zpci_iomap_start[idx].fh = 0;
0394         zpci_iomap_start[idx].bar = 0;
0395     }
0396     spin_unlock(&zpci_iomap_lock);
0397 }
0398 
0399 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
0400 {
0401     iounmap(addr);
0402 }
0403 
0404 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
0405 {
0406     if (static_branch_likely(&have_mio))
0407         pci_iounmap_mio(pdev, addr);
0408     else
0409         pci_iounmap_fh(pdev, addr);
0410 }
0411 EXPORT_SYMBOL(pci_iounmap);
0412 
0413 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
0414             int size, u32 *val)
0415 {
0416     struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
0417 
0418     return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
0419 }
0420 
0421 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
0422              int size, u32 val)
0423 {
0424     struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
0425 
0426     return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
0427 }
0428 
0429 static struct pci_ops pci_root_ops = {
0430     .read = pci_read,
0431     .write = pci_write,
0432 };
0433 
0434 static void zpci_map_resources(struct pci_dev *pdev)
0435 {
0436     struct zpci_dev *zdev = to_zpci(pdev);
0437     resource_size_t len;
0438     int i;
0439 
0440     for (i = 0; i < PCI_STD_NUM_BARS; i++) {
0441         len = pci_resource_len(pdev, i);
0442         if (!len)
0443             continue;
0444 
0445         if (zpci_use_mio(zdev))
0446             pdev->resource[i].start =
0447                 (resource_size_t __force) zdev->bars[i].mio_wt;
0448         else
0449             pdev->resource[i].start = (resource_size_t __force)
0450                 pci_iomap_range_fh(pdev, i, 0, 0);
0451         pdev->resource[i].end = pdev->resource[i].start + len - 1;
0452     }
0453 
0454     zpci_iov_map_resources(pdev);
0455 }
0456 
0457 static void zpci_unmap_resources(struct pci_dev *pdev)
0458 {
0459     struct zpci_dev *zdev = to_zpci(pdev);
0460     resource_size_t len;
0461     int i;
0462 
0463     if (zpci_use_mio(zdev))
0464         return;
0465 
0466     for (i = 0; i < PCI_STD_NUM_BARS; i++) {
0467         len = pci_resource_len(pdev, i);
0468         if (!len)
0469             continue;
0470         pci_iounmap_fh(pdev, (void __iomem __force *)
0471                    pdev->resource[i].start);
0472     }
0473 }
0474 
0475 static int zpci_alloc_iomap(struct zpci_dev *zdev)
0476 {
0477     unsigned long entry;
0478 
0479     spin_lock(&zpci_iomap_lock);
0480     entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
0481     if (entry == ZPCI_IOMAP_ENTRIES) {
0482         spin_unlock(&zpci_iomap_lock);
0483         return -ENOSPC;
0484     }
0485     set_bit(entry, zpci_iomap_bitmap);
0486     spin_unlock(&zpci_iomap_lock);
0487     return entry;
0488 }
0489 
0490 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
0491 {
0492     spin_lock(&zpci_iomap_lock);
0493     memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
0494     clear_bit(entry, zpci_iomap_bitmap);
0495     spin_unlock(&zpci_iomap_lock);
0496 }
0497 
0498 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
0499 {
0500     int bar, idx;
0501 
0502     spin_lock(&zpci_iomap_lock);
0503     for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
0504         if (!zdev->bars[bar].size)
0505             continue;
0506         idx = zdev->bars[bar].map_idx;
0507         if (!zpci_iomap_start[idx].count)
0508             continue;
0509         WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
0510     }
0511     spin_unlock(&zpci_iomap_lock);
0512 }
0513 
0514 void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
0515 {
0516     if (!fh || zdev->fh == fh)
0517         return;
0518 
0519     zdev->fh = fh;
0520     if (zpci_use_mio(zdev))
0521         return;
0522     if (zdev->has_resources && zdev_enabled(zdev))
0523         zpci_do_update_iomap_fh(zdev, fh);
0524 }
0525 
0526 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
0527                     unsigned long size, unsigned long flags)
0528 {
0529     struct resource *r;
0530 
0531     r = kzalloc(sizeof(*r), GFP_KERNEL);
0532     if (!r)
0533         return NULL;
0534 
0535     r->start = start;
0536     r->end = r->start + size - 1;
0537     r->flags = flags;
0538     r->name = zdev->res_name;
0539 
0540     if (request_resource(&iomem_resource, r)) {
0541         kfree(r);
0542         return NULL;
0543     }
0544     return r;
0545 }
0546 
0547 int zpci_setup_bus_resources(struct zpci_dev *zdev,
0548                  struct list_head *resources)
0549 {
0550     unsigned long addr, size, flags;
0551     struct resource *res;
0552     int i, entry;
0553 
0554     snprintf(zdev->res_name, sizeof(zdev->res_name),
0555          "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
0556 
0557     for (i = 0; i < PCI_STD_NUM_BARS; i++) {
0558         if (!zdev->bars[i].size)
0559             continue;
0560         entry = zpci_alloc_iomap(zdev);
0561         if (entry < 0)
0562             return entry;
0563         zdev->bars[i].map_idx = entry;
0564 
0565         /* only MMIO is supported */
0566         flags = IORESOURCE_MEM;
0567         if (zdev->bars[i].val & 8)
0568             flags |= IORESOURCE_PREFETCH;
0569         if (zdev->bars[i].val & 4)
0570             flags |= IORESOURCE_MEM_64;
0571 
0572         if (zpci_use_mio(zdev))
0573             addr = (unsigned long) zdev->bars[i].mio_wt;
0574         else
0575             addr = ZPCI_ADDR(entry);
0576         size = 1UL << zdev->bars[i].size;
0577 
0578         res = __alloc_res(zdev, addr, size, flags);
0579         if (!res) {
0580             zpci_free_iomap(zdev, entry);
0581             return -ENOMEM;
0582         }
0583         zdev->bars[i].res = res;
0584         pci_add_resource(resources, res);
0585     }
0586     zdev->has_resources = 1;
0587 
0588     return 0;
0589 }
0590 
0591 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
0592 {
0593     int i;
0594 
0595     for (i = 0; i < PCI_STD_NUM_BARS; i++) {
0596         if (!zdev->bars[i].size || !zdev->bars[i].res)
0597             continue;
0598 
0599         zpci_free_iomap(zdev, zdev->bars[i].map_idx);
0600         release_resource(zdev->bars[i].res);
0601         kfree(zdev->bars[i].res);
0602     }
0603     zdev->has_resources = 0;
0604 }
0605 
0606 int pcibios_device_add(struct pci_dev *pdev)
0607 {
0608     struct zpci_dev *zdev = to_zpci(pdev);
0609     struct resource *res;
0610     int i;
0611 
0612     /* The pdev has a reference to the zdev via its bus */
0613     zpci_zdev_get(zdev);
0614     if (pdev->is_physfn)
0615         pdev->no_vf_scan = 1;
0616 
0617     pdev->dev.groups = zpci_attr_groups;
0618     pdev->dev.dma_ops = &s390_pci_dma_ops;
0619     zpci_map_resources(pdev);
0620 
0621     for (i = 0; i < PCI_STD_NUM_BARS; i++) {
0622         res = &pdev->resource[i];
0623         if (res->parent || !res->flags)
0624             continue;
0625         pci_claim_resource(pdev, i);
0626     }
0627 
0628     return 0;
0629 }
0630 
0631 void pcibios_release_device(struct pci_dev *pdev)
0632 {
0633     struct zpci_dev *zdev = to_zpci(pdev);
0634 
0635     zpci_unmap_resources(pdev);
0636     zpci_zdev_put(zdev);
0637 }
0638 
0639 int pcibios_enable_device(struct pci_dev *pdev, int mask)
0640 {
0641     struct zpci_dev *zdev = to_zpci(pdev);
0642 
0643     zpci_debug_init_device(zdev, dev_name(&pdev->dev));
0644     zpci_fmb_enable_device(zdev);
0645 
0646     return pci_enable_resources(pdev, mask);
0647 }
0648 
0649 void pcibios_disable_device(struct pci_dev *pdev)
0650 {
0651     struct zpci_dev *zdev = to_zpci(pdev);
0652 
0653     zpci_fmb_disable_device(zdev);
0654     zpci_debug_exit_device(zdev);
0655 }
0656 
0657 static int __zpci_register_domain(int domain)
0658 {
0659     spin_lock(&zpci_domain_lock);
0660     if (test_bit(domain, zpci_domain)) {
0661         spin_unlock(&zpci_domain_lock);
0662         pr_err("Domain %04x is already assigned\n", domain);
0663         return -EEXIST;
0664     }
0665     set_bit(domain, zpci_domain);
0666     spin_unlock(&zpci_domain_lock);
0667     return domain;
0668 }
0669 
0670 static int __zpci_alloc_domain(void)
0671 {
0672     int domain;
0673 
0674     spin_lock(&zpci_domain_lock);
0675     /*
0676      * We can always auto allocate domains below ZPCI_NR_DEVICES.
0677      * There is either a free domain or we have reached the maximum in
0678      * which case we would have bailed earlier.
0679      */
0680     domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
0681     set_bit(domain, zpci_domain);
0682     spin_unlock(&zpci_domain_lock);
0683     return domain;
0684 }
0685 
0686 int zpci_alloc_domain(int domain)
0687 {
0688     if (zpci_unique_uid) {
0689         if (domain)
0690             return __zpci_register_domain(domain);
0691         pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
0692         update_uid_checking(false);
0693     }
0694     return __zpci_alloc_domain();
0695 }
0696 
0697 void zpci_free_domain(int domain)
0698 {
0699     spin_lock(&zpci_domain_lock);
0700     clear_bit(domain, zpci_domain);
0701     spin_unlock(&zpci_domain_lock);
0702 }
0703 
0704 
0705 int zpci_enable_device(struct zpci_dev *zdev)
0706 {
0707     u32 fh = zdev->fh;
0708     int rc = 0;
0709 
0710     if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
0711         rc = -EIO;
0712     else
0713         zpci_update_fh(zdev, fh);
0714     return rc;
0715 }
0716 EXPORT_SYMBOL_GPL(zpci_enable_device);
0717 
0718 int zpci_disable_device(struct zpci_dev *zdev)
0719 {
0720     u32 fh = zdev->fh;
0721     int cc, rc = 0;
0722 
0723     cc = clp_disable_fh(zdev, &fh);
0724     if (!cc) {
0725         zpci_update_fh(zdev, fh);
0726     } else if (cc == CLP_RC_SETPCIFN_ALRDY) {
0727         pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
0728             zdev->fid);
0729         /* Function is already disabled - update handle */
0730         rc = clp_refresh_fh(zdev->fid, &fh);
0731         if (!rc) {
0732             zpci_update_fh(zdev, fh);
0733             rc = -EINVAL;
0734         }
0735     } else {
0736         rc = -EIO;
0737     }
0738     return rc;
0739 }
0740 EXPORT_SYMBOL_GPL(zpci_disable_device);
0741 
0742 /**
0743  * zpci_hot_reset_device - perform a reset of the given zPCI function
0744  * @zdev: the slot which should be reset
0745  *
0746  * Performs a low level reset of the zPCI function. The reset is low level in
0747  * the sense that the zPCI function can be reset without detaching it from the
0748  * common PCI subsystem. The reset may be performed while under control of
0749  * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
0750  * table is reinstated at the end of the reset.
0751  *
0752  * After the reset the functions internal state is reset to an initial state
0753  * equivalent to its state during boot when first probing a driver.
0754  * Consequently after reset the PCI function requires re-initialization via the
0755  * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
0756  * and enabling the function via e.g.pci_enablde_device_flags().The caller
0757  * must guard against concurrent reset attempts.
0758  *
0759  * In most cases this function should not be called directly but through
0760  * pci_reset_function() or pci_reset_bus() which handle the save/restore and
0761  * locking.
0762  *
0763  * Return: 0 on success and an error value otherwise
0764  */
0765 int zpci_hot_reset_device(struct zpci_dev *zdev)
0766 {
0767     int rc;
0768 
0769     zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
0770     if (zdev_enabled(zdev)) {
0771         /* Disables device access, DMAs and IRQs (reset state) */
0772         rc = zpci_disable_device(zdev);
0773         /*
0774          * Due to a z/VM vs LPAR inconsistency in the error state the
0775          * FH may indicate an enabled device but disable says the
0776          * device is already disabled don't treat it as an error here.
0777          */
0778         if (rc == -EINVAL)
0779             rc = 0;
0780         if (rc)
0781             return rc;
0782     }
0783 
0784     rc = zpci_enable_device(zdev);
0785     if (rc)
0786         return rc;
0787 
0788     if (zdev->dma_table)
0789         rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
0790                     virt_to_phys(zdev->dma_table));
0791     else
0792         rc = zpci_dma_init_device(zdev);
0793     if (rc) {
0794         zpci_disable_device(zdev);
0795         return rc;
0796     }
0797 
0798     return 0;
0799 }
0800 
0801 /**
0802  * zpci_create_device() - Create a new zpci_dev and add it to the zbus
0803  * @fid: Function ID of the device to be created
0804  * @fh: Current Function Handle of the device to be created
0805  * @state: Initial state after creation either Standby or Configured
0806  *
0807  * Creates a new zpci device and adds it to its, possibly newly created, zbus
0808  * as well as zpci_list.
0809  *
0810  * Returns: the zdev on success or an error pointer otherwise
0811  */
0812 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
0813 {
0814     struct zpci_dev *zdev;
0815     int rc;
0816 
0817     zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state);
0818     zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
0819     if (!zdev)
0820         return ERR_PTR(-ENOMEM);
0821 
0822     /* FID and Function Handle are the static/dynamic identifiers */
0823     zdev->fid = fid;
0824     zdev->fh = fh;
0825 
0826     /* Query function properties and update zdev */
0827     rc = clp_query_pci_fn(zdev);
0828     if (rc)
0829         goto error;
0830     zdev->state =  state;
0831 
0832     kref_init(&zdev->kref);
0833     mutex_init(&zdev->lock);
0834     mutex_init(&zdev->kzdev_lock);
0835 
0836     rc = zpci_init_iommu(zdev);
0837     if (rc)
0838         goto error;
0839 
0840     rc = zpci_bus_device_register(zdev, &pci_root_ops);
0841     if (rc)
0842         goto error_destroy_iommu;
0843 
0844     spin_lock(&zpci_list_lock);
0845     list_add_tail(&zdev->entry, &zpci_list);
0846     spin_unlock(&zpci_list_lock);
0847 
0848     return zdev;
0849 
0850 error_destroy_iommu:
0851     zpci_destroy_iommu(zdev);
0852 error:
0853     zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc);
0854     kfree(zdev);
0855     return ERR_PTR(rc);
0856 }
0857 
0858 bool zpci_is_device_configured(struct zpci_dev *zdev)
0859 {
0860     enum zpci_state state = zdev->state;
0861 
0862     return state != ZPCI_FN_STATE_RESERVED &&
0863         state != ZPCI_FN_STATE_STANDBY;
0864 }
0865 
0866 /**
0867  * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
0868  * @zdev: The zpci_dev to be configured
0869  * @fh: The general function handle supplied by the platform
0870  *
0871  * Given a device in the configuration state Configured, enables, scans and
0872  * adds it to the common code PCI subsystem if possible. If the PCI device is
0873  * parked because we can not yet create a PCI bus because we have not seen
0874  * function 0, it is ignored but will be scanned once function 0 appears.
0875  * If any failure occurs, the zpci_dev is left disabled.
0876  *
0877  * Return: 0 on success, or an error code otherwise
0878  */
0879 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
0880 {
0881     int rc;
0882 
0883     zpci_update_fh(zdev, fh);
0884     /* the PCI function will be scanned once function 0 appears */
0885     if (!zdev->zbus->bus)
0886         return 0;
0887 
0888     /* For function 0 on a multi-function bus scan whole bus as we might
0889      * have to pick up existing functions waiting for it to allow creating
0890      * the PCI bus
0891      */
0892     if (zdev->devfn == 0 && zdev->zbus->multifunction)
0893         rc = zpci_bus_scan_bus(zdev->zbus);
0894     else
0895         rc = zpci_bus_scan_device(zdev);
0896 
0897     return rc;
0898 }
0899 
0900 /**
0901  * zpci_deconfigure_device() - Deconfigure a zpci_dev
0902  * @zdev: The zpci_dev to configure
0903  *
0904  * Deconfigure a zPCI function that is currently configured and possibly known
0905  * to the common code PCI subsystem.
0906  * If any failure occurs the device is left as is.
0907  *
0908  * Return: 0 on success, or an error code otherwise
0909  */
0910 int zpci_deconfigure_device(struct zpci_dev *zdev)
0911 {
0912     int rc;
0913 
0914     if (zdev->zbus->bus)
0915         zpci_bus_remove_device(zdev, false);
0916 
0917     if (zdev->dma_table) {
0918         rc = zpci_dma_exit_device(zdev);
0919         if (rc)
0920             return rc;
0921     }
0922     if (zdev_enabled(zdev)) {
0923         rc = zpci_disable_device(zdev);
0924         if (rc)
0925             return rc;
0926     }
0927 
0928     rc = sclp_pci_deconfigure(zdev->fid);
0929     zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
0930     if (rc)
0931         return rc;
0932     zdev->state = ZPCI_FN_STATE_STANDBY;
0933 
0934     return 0;
0935 }
0936 
0937 /**
0938  * zpci_device_reserved() - Mark device as resverved
0939  * @zdev: the zpci_dev that was reserved
0940  *
0941  * Handle the case that a given zPCI function was reserved by another system.
0942  * After a call to this function the zpci_dev can not be found via
0943  * get_zdev_by_fid() anymore but may still be accessible via existing
0944  * references though it will not be functional anymore.
0945  */
0946 void zpci_device_reserved(struct zpci_dev *zdev)
0947 {
0948     if (zdev->has_hp_slot)
0949         zpci_exit_slot(zdev);
0950     /*
0951      * Remove device from zpci_list as it is going away. This also
0952      * makes sure we ignore subsequent zPCI events for this device.
0953      */
0954     spin_lock(&zpci_list_lock);
0955     list_del(&zdev->entry);
0956     spin_unlock(&zpci_list_lock);
0957     zdev->state = ZPCI_FN_STATE_RESERVED;
0958     zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
0959     zpci_zdev_put(zdev);
0960 }
0961 
0962 void zpci_release_device(struct kref *kref)
0963 {
0964     struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
0965     int ret;
0966 
0967     if (zdev->zbus->bus)
0968         zpci_bus_remove_device(zdev, false);
0969 
0970     if (zdev->dma_table)
0971         zpci_dma_exit_device(zdev);
0972     if (zdev_enabled(zdev))
0973         zpci_disable_device(zdev);
0974 
0975     switch (zdev->state) {
0976     case ZPCI_FN_STATE_CONFIGURED:
0977         ret = sclp_pci_deconfigure(zdev->fid);
0978         zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret);
0979         fallthrough;
0980     case ZPCI_FN_STATE_STANDBY:
0981         if (zdev->has_hp_slot)
0982             zpci_exit_slot(zdev);
0983         spin_lock(&zpci_list_lock);
0984         list_del(&zdev->entry);
0985         spin_unlock(&zpci_list_lock);
0986         zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
0987         fallthrough;
0988     case ZPCI_FN_STATE_RESERVED:
0989         if (zdev->has_resources)
0990             zpci_cleanup_bus_resources(zdev);
0991         zpci_bus_device_unregister(zdev);
0992         zpci_destroy_iommu(zdev);
0993         fallthrough;
0994     default:
0995         break;
0996     }
0997     zpci_dbg(3, "rem fid:%x\n", zdev->fid);
0998     kfree(zdev);
0999 }
1000 
1001 int zpci_report_error(struct pci_dev *pdev,
1002               struct zpci_report_error_header *report)
1003 {
1004     struct zpci_dev *zdev = to_zpci(pdev);
1005 
1006     return sclp_pci_report(report, zdev->fh, zdev->fid);
1007 }
1008 EXPORT_SYMBOL(zpci_report_error);
1009 
1010 /**
1011  * zpci_clear_error_state() - Clears the zPCI error state of the device
1012  * @zdev: The zdev for which the zPCI error state should be reset
1013  *
1014  * Clear the zPCI error state of the device. If clearing the zPCI error state
1015  * fails the device is left in the error state. In this case it may make sense
1016  * to call zpci_io_perm_failure() on the associated pdev if it exists.
1017  *
1018  * Returns: 0 on success, -EIO otherwise
1019  */
1020 int zpci_clear_error_state(struct zpci_dev *zdev)
1021 {
1022     u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
1023     struct zpci_fib fib = {0};
1024     u8 status;
1025     int cc;
1026 
1027     cc = zpci_mod_fc(req, &fib, &status);
1028     if (cc) {
1029         zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1030         return -EIO;
1031     }
1032 
1033     return 0;
1034 }
1035 
1036 /**
1037  * zpci_reset_load_store_blocked() - Re-enables L/S from error state
1038  * @zdev: The zdev for which to unblock load/store access
1039  *
1040  * Re-enables load/store access for a PCI function in the error state while
1041  * keeping DMA blocked. In this state drivers can poke MMIO space to determine
1042  * if error recovery is possible while catching any rogue DMA access from the
1043  * device.
1044  *
1045  * Returns: 0 on success, -EIO otherwise
1046  */
1047 int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1048 {
1049     u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1050     struct zpci_fib fib = {0};
1051     u8 status;
1052     int cc;
1053 
1054     cc = zpci_mod_fc(req, &fib, &status);
1055     if (cc) {
1056         zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1057         return -EIO;
1058     }
1059 
1060     return 0;
1061 }
1062 
1063 static int zpci_mem_init(void)
1064 {
1065     BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1066              __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1067 
1068     zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1069                        __alignof__(struct zpci_fmb), 0, NULL);
1070     if (!zdev_fmb_cache)
1071         goto error_fmb;
1072 
1073     zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1074                    sizeof(*zpci_iomap_start), GFP_KERNEL);
1075     if (!zpci_iomap_start)
1076         goto error_iomap;
1077 
1078     zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1079                     sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1080     if (!zpci_iomap_bitmap)
1081         goto error_iomap_bitmap;
1082 
1083     if (static_branch_likely(&have_mio))
1084         clp_setup_writeback_mio();
1085 
1086     return 0;
1087 error_iomap_bitmap:
1088     kfree(zpci_iomap_start);
1089 error_iomap:
1090     kmem_cache_destroy(zdev_fmb_cache);
1091 error_fmb:
1092     return -ENOMEM;
1093 }
1094 
1095 static void zpci_mem_exit(void)
1096 {
1097     kfree(zpci_iomap_bitmap);
1098     kfree(zpci_iomap_start);
1099     kmem_cache_destroy(zdev_fmb_cache);
1100 }
1101 
1102 static unsigned int s390_pci_probe __initdata = 1;
1103 unsigned int s390_pci_force_floating __initdata;
1104 static unsigned int s390_pci_initialized;
1105 
1106 char * __init pcibios_setup(char *str)
1107 {
1108     if (!strcmp(str, "off")) {
1109         s390_pci_probe = 0;
1110         return NULL;
1111     }
1112     if (!strcmp(str, "nomio")) {
1113         S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO;
1114         return NULL;
1115     }
1116     if (!strcmp(str, "force_floating")) {
1117         s390_pci_force_floating = 1;
1118         return NULL;
1119     }
1120     if (!strcmp(str, "norid")) {
1121         s390_pci_no_rid = 1;
1122         return NULL;
1123     }
1124     return str;
1125 }
1126 
1127 bool zpci_is_enabled(void)
1128 {
1129     return s390_pci_initialized;
1130 }
1131 
1132 static int __init pci_base_init(void)
1133 {
1134     int rc;
1135 
1136     if (!s390_pci_probe)
1137         return 0;
1138 
1139     if (!test_facility(69) || !test_facility(71)) {
1140         pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1141         return 0;
1142     }
1143 
1144     if (MACHINE_HAS_PCI_MIO) {
1145         static_branch_enable(&have_mio);
1146         ctl_set_bit(2, 5);
1147     }
1148 
1149     rc = zpci_debug_init();
1150     if (rc)
1151         goto out;
1152 
1153     rc = zpci_mem_init();
1154     if (rc)
1155         goto out_mem;
1156 
1157     rc = zpci_irq_init();
1158     if (rc)
1159         goto out_irq;
1160 
1161     rc = zpci_dma_init();
1162     if (rc)
1163         goto out_dma;
1164 
1165     rc = clp_scan_pci_devices();
1166     if (rc)
1167         goto out_find;
1168     zpci_bus_scan_busses();
1169 
1170     s390_pci_initialized = 1;
1171     return 0;
1172 
1173 out_find:
1174     zpci_dma_exit();
1175 out_dma:
1176     zpci_irq_exit();
1177 out_irq:
1178     zpci_mem_exit();
1179 out_mem:
1180     zpci_debug_exit();
1181 out:
1182     return rc;
1183 }
1184 subsys_initcall_sync(pci_base_init);