0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015 #define KMSG_COMPONENT "time"
0016 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
0017
0018 #include <linux/kernel_stat.h>
0019 #include <linux/errno.h>
0020 #include <linux/export.h>
0021 #include <linux/sched.h>
0022 #include <linux/sched/clock.h>
0023 #include <linux/kernel.h>
0024 #include <linux/param.h>
0025 #include <linux/string.h>
0026 #include <linux/mm.h>
0027 #include <linux/interrupt.h>
0028 #include <linux/cpu.h>
0029 #include <linux/stop_machine.h>
0030 #include <linux/time.h>
0031 #include <linux/device.h>
0032 #include <linux/delay.h>
0033 #include <linux/init.h>
0034 #include <linux/smp.h>
0035 #include <linux/types.h>
0036 #include <linux/profile.h>
0037 #include <linux/timex.h>
0038 #include <linux/notifier.h>
0039 #include <linux/timekeeper_internal.h>
0040 #include <linux/clockchips.h>
0041 #include <linux/gfp.h>
0042 #include <linux/kprobes.h>
0043 #include <linux/uaccess.h>
0044 #include <vdso/vsyscall.h>
0045 #include <vdso/clocksource.h>
0046 #include <vdso/helpers.h>
0047 #include <asm/facility.h>
0048 #include <asm/delay.h>
0049 #include <asm/div64.h>
0050 #include <asm/vdso.h>
0051 #include <asm/irq.h>
0052 #include <asm/irq_regs.h>
0053 #include <asm/vtimer.h>
0054 #include <asm/stp.h>
0055 #include <asm/cio.h>
0056 #include "entry.h"
0057
0058 union tod_clock tod_clock_base __section(".data");
0059 EXPORT_SYMBOL_GPL(tod_clock_base);
0060
0061 u64 clock_comparator_max = -1ULL;
0062 EXPORT_SYMBOL_GPL(clock_comparator_max);
0063
0064 static DEFINE_PER_CPU(struct clock_event_device, comparators);
0065
0066 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
0067 EXPORT_SYMBOL(s390_epoch_delta_notifier);
0068
0069 unsigned char ptff_function_mask[16];
0070
0071 static unsigned long lpar_offset;
0072 static unsigned long initial_leap_seconds;
0073 static unsigned long tod_steering_end;
0074 static long tod_steering_delta;
0075
0076
0077
0078
0079 void __init time_early_init(void)
0080 {
0081 struct ptff_qto qto;
0082 struct ptff_qui qui;
0083 int cs;
0084
0085
0086 tod_steering_end = tod_clock_base.tod;
0087 for (cs = 0; cs < CS_BASES; cs++)
0088 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
0089
0090 if (!test_facility(28))
0091 return;
0092
0093 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
0094
0095
0096 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
0097 lpar_offset = qto.tod_epoch_difference;
0098
0099
0100 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
0101 initial_leap_seconds = (unsigned long)
0102 ((long) qui.old_leap * 4096000000L);
0103 }
0104
0105
0106
0107
0108 unsigned long long notrace sched_clock(void)
0109 {
0110 return tod_to_ns(get_tod_clock_monotonic());
0111 }
0112 NOKPROBE_SYMBOL(sched_clock);
0113
0114 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
0115 {
0116 unsigned long rem, sec, nsec;
0117
0118 sec = clk->us;
0119 rem = do_div(sec, 1000000);
0120 nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
0121 xt->tv_sec = sec;
0122 xt->tv_nsec = nsec;
0123 }
0124
0125 void clock_comparator_work(void)
0126 {
0127 struct clock_event_device *cd;
0128
0129 S390_lowcore.clock_comparator = clock_comparator_max;
0130 cd = this_cpu_ptr(&comparators);
0131 cd->event_handler(cd);
0132 }
0133
0134 static int s390_next_event(unsigned long delta,
0135 struct clock_event_device *evt)
0136 {
0137 S390_lowcore.clock_comparator = get_tod_clock() + delta;
0138 set_clock_comparator(S390_lowcore.clock_comparator);
0139 return 0;
0140 }
0141
0142
0143
0144
0145
0146 void init_cpu_timer(void)
0147 {
0148 struct clock_event_device *cd;
0149 int cpu;
0150
0151 S390_lowcore.clock_comparator = clock_comparator_max;
0152 set_clock_comparator(S390_lowcore.clock_comparator);
0153
0154 cpu = smp_processor_id();
0155 cd = &per_cpu(comparators, cpu);
0156 cd->name = "comparator";
0157 cd->features = CLOCK_EVT_FEAT_ONESHOT;
0158 cd->mult = 16777;
0159 cd->shift = 12;
0160 cd->min_delta_ns = 1;
0161 cd->min_delta_ticks = 1;
0162 cd->max_delta_ns = LONG_MAX;
0163 cd->max_delta_ticks = ULONG_MAX;
0164 cd->rating = 400;
0165 cd->cpumask = cpumask_of(cpu);
0166 cd->set_next_event = s390_next_event;
0167
0168 clockevents_register_device(cd);
0169
0170
0171 __ctl_set_bit(0,11);
0172
0173
0174 __ctl_set_bit(0, 4);
0175 }
0176
0177 static void clock_comparator_interrupt(struct ext_code ext_code,
0178 unsigned int param32,
0179 unsigned long param64)
0180 {
0181 inc_irq_stat(IRQEXT_CLK);
0182 if (S390_lowcore.clock_comparator == clock_comparator_max)
0183 set_clock_comparator(S390_lowcore.clock_comparator);
0184 }
0185
0186 static void stp_timing_alert(struct stp_irq_parm *);
0187
0188 static void timing_alert_interrupt(struct ext_code ext_code,
0189 unsigned int param32, unsigned long param64)
0190 {
0191 inc_irq_stat(IRQEXT_TLA);
0192 if (param32 & 0x00038000)
0193 stp_timing_alert((struct stp_irq_parm *) ¶m32);
0194 }
0195
0196 static void stp_reset(void);
0197
0198 void read_persistent_clock64(struct timespec64 *ts)
0199 {
0200 union tod_clock clk;
0201 u64 delta;
0202
0203 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
0204 store_tod_clock_ext(&clk);
0205 clk.eitod -= delta;
0206 ext_to_timespec64(&clk, ts);
0207 }
0208
0209 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
0210 struct timespec64 *boot_offset)
0211 {
0212 struct timespec64 boot_time;
0213 union tod_clock clk;
0214 u64 delta;
0215
0216 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
0217 clk = tod_clock_base;
0218 clk.eitod -= delta;
0219 ext_to_timespec64(&clk, &boot_time);
0220
0221 read_persistent_clock64(wall_time);
0222 *boot_offset = timespec64_sub(*wall_time, boot_time);
0223 }
0224
0225 static u64 read_tod_clock(struct clocksource *cs)
0226 {
0227 unsigned long now, adj;
0228
0229 preempt_disable();
0230 now = get_tod_clock();
0231 adj = tod_steering_end - now;
0232 if (unlikely((s64) adj > 0))
0233
0234
0235
0236
0237
0238
0239 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
0240 preempt_enable();
0241 return now;
0242 }
0243
0244 static struct clocksource clocksource_tod = {
0245 .name = "tod",
0246 .rating = 400,
0247 .read = read_tod_clock,
0248 .mask = CLOCKSOURCE_MASK(64),
0249 .mult = 1000,
0250 .shift = 12,
0251 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
0252 .vdso_clock_mode = VDSO_CLOCKMODE_TOD,
0253 };
0254
0255 struct clocksource * __init clocksource_default_clock(void)
0256 {
0257 return &clocksource_tod;
0258 }
0259
0260
0261
0262
0263
0264 void __init time_init(void)
0265 {
0266
0267 stp_reset();
0268
0269
0270 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
0271 panic("Couldn't request external interrupt 0x1004");
0272
0273
0274 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
0275 panic("Couldn't request external interrupt 0x1406");
0276
0277 if (__clocksource_register(&clocksource_tod) != 0)
0278 panic("Could not register TOD clock source");
0279
0280
0281 init_cpu_timer();
0282
0283
0284 vtime_init();
0285 }
0286
0287 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
0288 static DEFINE_MUTEX(stp_mutex);
0289 static unsigned long clock_sync_flags;
0290
0291 #define CLOCK_SYNC_HAS_STP 0
0292 #define CLOCK_SYNC_STP 1
0293 #define CLOCK_SYNC_STPINFO_VALID 2
0294
0295
0296
0297
0298
0299
0300
0301
0302 int get_phys_clock(unsigned long *clock)
0303 {
0304 atomic_t *sw_ptr;
0305 unsigned int sw0, sw1;
0306
0307 sw_ptr = &get_cpu_var(clock_sync_word);
0308 sw0 = atomic_read(sw_ptr);
0309 *clock = get_tod_clock() - lpar_offset;
0310 sw1 = atomic_read(sw_ptr);
0311 put_cpu_var(clock_sync_word);
0312 if (sw0 == sw1 && (sw0 & 0x80000000U))
0313
0314 return 0;
0315 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
0316 return -EOPNOTSUPP;
0317 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
0318 return -EACCES;
0319 return -EAGAIN;
0320 }
0321 EXPORT_SYMBOL(get_phys_clock);
0322
0323
0324
0325
0326 static void disable_sync_clock(void *dummy)
0327 {
0328 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
0329
0330
0331
0332
0333
0334
0335 atomic_andnot(0x80000000, sw_ptr);
0336 atomic_inc(sw_ptr);
0337 }
0338
0339
0340
0341
0342
0343 static void enable_sync_clock(void)
0344 {
0345 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
0346 atomic_or(0x80000000, sw_ptr);
0347 }
0348
0349
0350
0351
0352 static inline int check_sync_clock(void)
0353 {
0354 atomic_t *sw_ptr;
0355 int rc;
0356
0357 sw_ptr = &get_cpu_var(clock_sync_word);
0358 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
0359 put_cpu_var(clock_sync_word);
0360 return rc;
0361 }
0362
0363
0364
0365
0366
0367 static void clock_sync_global(long delta)
0368 {
0369 unsigned long now, adj;
0370 struct ptff_qto qto;
0371 int cs;
0372
0373
0374 tod_clock_base.eitod += delta;
0375
0376 now = get_tod_clock();
0377 adj = tod_steering_end - now;
0378 if (unlikely((s64) adj >= 0))
0379
0380 tod_steering_delta = (tod_steering_delta < 0) ?
0381 -(adj >> 15) : (adj >> 15);
0382 tod_steering_delta += delta;
0383 if ((abs(tod_steering_delta) >> 48) != 0)
0384 panic("TOD clock sync offset %li is too large to drift\n",
0385 tod_steering_delta);
0386 tod_steering_end = now + (abs(tod_steering_delta) << 15);
0387 for (cs = 0; cs < CS_BASES; cs++) {
0388 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
0389 vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
0390 }
0391
0392
0393 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
0394 lpar_offset = qto.tod_epoch_difference;
0395
0396 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
0397 }
0398
0399
0400
0401
0402
0403 static void clock_sync_local(long delta)
0404 {
0405
0406 if (S390_lowcore.clock_comparator != clock_comparator_max) {
0407 S390_lowcore.clock_comparator += delta;
0408 set_clock_comparator(S390_lowcore.clock_comparator);
0409 }
0410
0411 S390_lowcore.last_update_clock += delta;
0412 }
0413
0414
0415 static struct workqueue_struct *time_sync_wq;
0416
0417 static void __init time_init_wq(void)
0418 {
0419 if (time_sync_wq)
0420 return;
0421 time_sync_wq = create_singlethread_workqueue("timesync");
0422 }
0423
0424 struct clock_sync_data {
0425 atomic_t cpus;
0426 int in_sync;
0427 long clock_delta;
0428 };
0429
0430
0431
0432
0433 static bool stp_online;
0434 static struct stp_sstpi stp_info;
0435 static void *stp_page;
0436
0437 static void stp_work_fn(struct work_struct *work);
0438 static DECLARE_WORK(stp_work, stp_work_fn);
0439 static struct timer_list stp_timer;
0440
0441 static int __init early_parse_stp(char *p)
0442 {
0443 return kstrtobool(p, &stp_online);
0444 }
0445 early_param("stp", early_parse_stp);
0446
0447
0448
0449
0450 static void __init stp_reset(void)
0451 {
0452 int rc;
0453
0454 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
0455 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
0456 if (rc == 0)
0457 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
0458 else if (stp_online) {
0459 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
0460 free_page((unsigned long) stp_page);
0461 stp_page = NULL;
0462 stp_online = false;
0463 }
0464 }
0465
0466 static void stp_timeout(struct timer_list *unused)
0467 {
0468 queue_work(time_sync_wq, &stp_work);
0469 }
0470
0471 static int __init stp_init(void)
0472 {
0473 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
0474 return 0;
0475 timer_setup(&stp_timer, stp_timeout, 0);
0476 time_init_wq();
0477 if (!stp_online)
0478 return 0;
0479 queue_work(time_sync_wq, &stp_work);
0480 return 0;
0481 }
0482
0483 arch_initcall(stp_init);
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493 static void stp_timing_alert(struct stp_irq_parm *intparm)
0494 {
0495 if (intparm->tsc || intparm->lac || intparm->tcpc)
0496 queue_work(time_sync_wq, &stp_work);
0497 }
0498
0499
0500
0501
0502
0503
0504
0505 int stp_sync_check(void)
0506 {
0507 disable_sync_clock(NULL);
0508 return 1;
0509 }
0510
0511
0512
0513
0514
0515
0516
0517 int stp_island_check(void)
0518 {
0519 disable_sync_clock(NULL);
0520 return 1;
0521 }
0522
0523 void stp_queue_work(void)
0524 {
0525 queue_work(time_sync_wq, &stp_work);
0526 }
0527
0528 static int __store_stpinfo(void)
0529 {
0530 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
0531
0532 if (rc)
0533 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
0534 else
0535 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
0536 return rc;
0537 }
0538
0539 static int stpinfo_valid(void)
0540 {
0541 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
0542 }
0543
0544 static int stp_sync_clock(void *data)
0545 {
0546 struct clock_sync_data *sync = data;
0547 long clock_delta, flags;
0548 static int first;
0549 int rc;
0550
0551 enable_sync_clock();
0552 if (xchg(&first, 1) == 0) {
0553
0554 while (atomic_read(&sync->cpus) != 0)
0555 cpu_relax();
0556 rc = 0;
0557 if (stp_info.todoff || stp_info.tmd != 2) {
0558 flags = vdso_update_begin();
0559 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
0560 &clock_delta);
0561 if (rc == 0) {
0562 sync->clock_delta = clock_delta;
0563 clock_sync_global(clock_delta);
0564 rc = __store_stpinfo();
0565 if (rc == 0 && stp_info.tmd != 2)
0566 rc = -EAGAIN;
0567 }
0568 vdso_update_end(flags);
0569 }
0570 sync->in_sync = rc ? -EAGAIN : 1;
0571 xchg(&first, 0);
0572 } else {
0573
0574 atomic_dec(&sync->cpus);
0575
0576 while (READ_ONCE(sync->in_sync) == 0)
0577 __udelay(1);
0578 }
0579 if (sync->in_sync != 1)
0580
0581 disable_sync_clock(NULL);
0582
0583 clock_sync_local(sync->clock_delta);
0584
0585 return 0;
0586 }
0587
0588 static int stp_clear_leap(void)
0589 {
0590 struct __kernel_timex txc;
0591 int ret;
0592
0593 memset(&txc, 0, sizeof(txc));
0594
0595 ret = do_adjtimex(&txc);
0596 if (ret < 0)
0597 return ret;
0598
0599 txc.modes = ADJ_STATUS;
0600 txc.status &= ~(STA_INS|STA_DEL);
0601 return do_adjtimex(&txc);
0602 }
0603
0604 static void stp_check_leap(void)
0605 {
0606 struct stp_stzi stzi;
0607 struct stp_lsoib *lsoib = &stzi.lsoib;
0608 struct __kernel_timex txc;
0609 int64_t timediff;
0610 int leapdiff, ret;
0611
0612 if (!stp_info.lu || !check_sync_clock()) {
0613
0614
0615
0616
0617
0618 if (stp_clear_leap() < 0)
0619 pr_err("failed to clear leap second flags\n");
0620 return;
0621 }
0622
0623 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
0624 pr_err("stzi failed\n");
0625 return;
0626 }
0627
0628 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
0629 leapdiff = lsoib->nlso - lsoib->also;
0630
0631 if (leapdiff != 1 && leapdiff != -1) {
0632 pr_err("Cannot schedule %d leap seconds\n", leapdiff);
0633 return;
0634 }
0635
0636 if (timediff < 0) {
0637 if (stp_clear_leap() < 0)
0638 pr_err("failed to clear leap second flags\n");
0639 } else if (timediff < 7200) {
0640 memset(&txc, 0, sizeof(txc));
0641 ret = do_adjtimex(&txc);
0642 if (ret < 0)
0643 return;
0644
0645 txc.modes = ADJ_STATUS;
0646 if (leapdiff > 0)
0647 txc.status |= STA_INS;
0648 else
0649 txc.status |= STA_DEL;
0650 ret = do_adjtimex(&txc);
0651 if (ret < 0)
0652 pr_err("failed to set leap second flags\n");
0653
0654 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
0655 } else {
0656
0657
0658
0659 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
0660 }
0661 }
0662
0663
0664
0665
0666
0667 static void stp_work_fn(struct work_struct *work)
0668 {
0669 struct clock_sync_data stp_sync;
0670 int rc;
0671
0672
0673 mutex_lock(&stp_mutex);
0674
0675 if (!stp_online) {
0676 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
0677 del_timer_sync(&stp_timer);
0678 goto out_unlock;
0679 }
0680
0681 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
0682 if (rc)
0683 goto out_unlock;
0684
0685 rc = __store_stpinfo();
0686 if (rc || stp_info.c == 0)
0687 goto out_unlock;
0688
0689
0690 if (!check_sync_clock()) {
0691 memset(&stp_sync, 0, sizeof(stp_sync));
0692 cpus_read_lock();
0693 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
0694 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
0695 cpus_read_unlock();
0696 }
0697
0698 if (!check_sync_clock())
0699
0700
0701
0702
0703 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
0704 else if (stp_info.lu)
0705 stp_check_leap();
0706
0707 out_unlock:
0708 mutex_unlock(&stp_mutex);
0709 }
0710
0711
0712
0713
0714 static struct bus_type stp_subsys = {
0715 .name = "stp",
0716 .dev_name = "stp",
0717 };
0718
0719 static ssize_t ctn_id_show(struct device *dev,
0720 struct device_attribute *attr,
0721 char *buf)
0722 {
0723 ssize_t ret = -ENODATA;
0724
0725 mutex_lock(&stp_mutex);
0726 if (stpinfo_valid())
0727 ret = sprintf(buf, "%016lx\n",
0728 *(unsigned long *) stp_info.ctnid);
0729 mutex_unlock(&stp_mutex);
0730 return ret;
0731 }
0732
0733 static DEVICE_ATTR_RO(ctn_id);
0734
0735 static ssize_t ctn_type_show(struct device *dev,
0736 struct device_attribute *attr,
0737 char *buf)
0738 {
0739 ssize_t ret = -ENODATA;
0740
0741 mutex_lock(&stp_mutex);
0742 if (stpinfo_valid())
0743 ret = sprintf(buf, "%i\n", stp_info.ctn);
0744 mutex_unlock(&stp_mutex);
0745 return ret;
0746 }
0747
0748 static DEVICE_ATTR_RO(ctn_type);
0749
0750 static ssize_t dst_offset_show(struct device *dev,
0751 struct device_attribute *attr,
0752 char *buf)
0753 {
0754 ssize_t ret = -ENODATA;
0755
0756 mutex_lock(&stp_mutex);
0757 if (stpinfo_valid() && (stp_info.vbits & 0x2000))
0758 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
0759 mutex_unlock(&stp_mutex);
0760 return ret;
0761 }
0762
0763 static DEVICE_ATTR_RO(dst_offset);
0764
0765 static ssize_t leap_seconds_show(struct device *dev,
0766 struct device_attribute *attr,
0767 char *buf)
0768 {
0769 ssize_t ret = -ENODATA;
0770
0771 mutex_lock(&stp_mutex);
0772 if (stpinfo_valid() && (stp_info.vbits & 0x8000))
0773 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
0774 mutex_unlock(&stp_mutex);
0775 return ret;
0776 }
0777
0778 static DEVICE_ATTR_RO(leap_seconds);
0779
0780 static ssize_t leap_seconds_scheduled_show(struct device *dev,
0781 struct device_attribute *attr,
0782 char *buf)
0783 {
0784 struct stp_stzi stzi;
0785 ssize_t ret;
0786
0787 mutex_lock(&stp_mutex);
0788 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
0789 mutex_unlock(&stp_mutex);
0790 return -ENODATA;
0791 }
0792
0793 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
0794 mutex_unlock(&stp_mutex);
0795 if (ret < 0)
0796 return ret;
0797
0798 if (!stzi.lsoib.p)
0799 return sprintf(buf, "0,0\n");
0800
0801 return sprintf(buf, "%lu,%d\n",
0802 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
0803 stzi.lsoib.nlso - stzi.lsoib.also);
0804 }
0805
0806 static DEVICE_ATTR_RO(leap_seconds_scheduled);
0807
0808 static ssize_t stratum_show(struct device *dev,
0809 struct device_attribute *attr,
0810 char *buf)
0811 {
0812 ssize_t ret = -ENODATA;
0813
0814 mutex_lock(&stp_mutex);
0815 if (stpinfo_valid())
0816 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
0817 mutex_unlock(&stp_mutex);
0818 return ret;
0819 }
0820
0821 static DEVICE_ATTR_RO(stratum);
0822
0823 static ssize_t time_offset_show(struct device *dev,
0824 struct device_attribute *attr,
0825 char *buf)
0826 {
0827 ssize_t ret = -ENODATA;
0828
0829 mutex_lock(&stp_mutex);
0830 if (stpinfo_valid() && (stp_info.vbits & 0x0800))
0831 ret = sprintf(buf, "%i\n", (int) stp_info.tto);
0832 mutex_unlock(&stp_mutex);
0833 return ret;
0834 }
0835
0836 static DEVICE_ATTR_RO(time_offset);
0837
0838 static ssize_t time_zone_offset_show(struct device *dev,
0839 struct device_attribute *attr,
0840 char *buf)
0841 {
0842 ssize_t ret = -ENODATA;
0843
0844 mutex_lock(&stp_mutex);
0845 if (stpinfo_valid() && (stp_info.vbits & 0x4000))
0846 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
0847 mutex_unlock(&stp_mutex);
0848 return ret;
0849 }
0850
0851 static DEVICE_ATTR_RO(time_zone_offset);
0852
0853 static ssize_t timing_mode_show(struct device *dev,
0854 struct device_attribute *attr,
0855 char *buf)
0856 {
0857 ssize_t ret = -ENODATA;
0858
0859 mutex_lock(&stp_mutex);
0860 if (stpinfo_valid())
0861 ret = sprintf(buf, "%i\n", stp_info.tmd);
0862 mutex_unlock(&stp_mutex);
0863 return ret;
0864 }
0865
0866 static DEVICE_ATTR_RO(timing_mode);
0867
0868 static ssize_t timing_state_show(struct device *dev,
0869 struct device_attribute *attr,
0870 char *buf)
0871 {
0872 ssize_t ret = -ENODATA;
0873
0874 mutex_lock(&stp_mutex);
0875 if (stpinfo_valid())
0876 ret = sprintf(buf, "%i\n", stp_info.tst);
0877 mutex_unlock(&stp_mutex);
0878 return ret;
0879 }
0880
0881 static DEVICE_ATTR_RO(timing_state);
0882
0883 static ssize_t online_show(struct device *dev,
0884 struct device_attribute *attr,
0885 char *buf)
0886 {
0887 return sprintf(buf, "%i\n", stp_online);
0888 }
0889
0890 static ssize_t online_store(struct device *dev,
0891 struct device_attribute *attr,
0892 const char *buf, size_t count)
0893 {
0894 unsigned int value;
0895
0896 value = simple_strtoul(buf, NULL, 0);
0897 if (value != 0 && value != 1)
0898 return -EINVAL;
0899 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
0900 return -EOPNOTSUPP;
0901 mutex_lock(&stp_mutex);
0902 stp_online = value;
0903 if (stp_online)
0904 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
0905 else
0906 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
0907 queue_work(time_sync_wq, &stp_work);
0908 mutex_unlock(&stp_mutex);
0909 return count;
0910 }
0911
0912
0913
0914
0915
0916 static DEVICE_ATTR_RW(online);
0917
0918 static struct attribute *stp_dev_attrs[] = {
0919 &dev_attr_ctn_id.attr,
0920 &dev_attr_ctn_type.attr,
0921 &dev_attr_dst_offset.attr,
0922 &dev_attr_leap_seconds.attr,
0923 &dev_attr_online.attr,
0924 &dev_attr_leap_seconds_scheduled.attr,
0925 &dev_attr_stratum.attr,
0926 &dev_attr_time_offset.attr,
0927 &dev_attr_time_zone_offset.attr,
0928 &dev_attr_timing_mode.attr,
0929 &dev_attr_timing_state.attr,
0930 NULL
0931 };
0932 ATTRIBUTE_GROUPS(stp_dev);
0933
0934 static int __init stp_init_sysfs(void)
0935 {
0936 return subsys_system_register(&stp_subsys, stp_dev_groups);
0937 }
0938
0939 device_initcall(stp_init_sysfs);