0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #include "asm/ptrace.h"
0011 #include <linux/kernel.h>
0012 #include <linux/sched.h>
0013 #include <linux/sched/task_stack.h>
0014 #include <linux/mm.h>
0015 #include <linux/smp.h>
0016 #include <linux/errno.h>
0017 #include <linux/ptrace.h>
0018 #include <linux/user.h>
0019 #include <linux/security.h>
0020 #include <linux/audit.h>
0021 #include <linux/signal.h>
0022 #include <linux/elf.h>
0023 #include <linux/regset.h>
0024 #include <linux/seccomp.h>
0025 #include <linux/compat.h>
0026 #include <trace/syscall.h>
0027 #include <asm/page.h>
0028 #include <linux/uaccess.h>
0029 #include <asm/unistd.h>
0030 #include <asm/switch_to.h>
0031 #include <asm/runtime_instr.h>
0032 #include <asm/facility.h>
0033
0034 #include "entry.h"
0035
0036 #ifdef CONFIG_COMPAT
0037 #include "compat_ptrace.h"
0038 #endif
0039
0040 void update_cr_regs(struct task_struct *task)
0041 {
0042 struct pt_regs *regs = task_pt_regs(task);
0043 struct thread_struct *thread = &task->thread;
0044 struct per_regs old, new;
0045 union ctlreg0 cr0_old, cr0_new;
0046 union ctlreg2 cr2_old, cr2_new;
0047 int cr0_changed, cr2_changed;
0048
0049 __ctl_store(cr0_old.val, 0, 0);
0050 __ctl_store(cr2_old.val, 2, 2);
0051 cr0_new = cr0_old;
0052 cr2_new = cr2_old;
0053
0054 if (MACHINE_HAS_TE) {
0055
0056 cr0_new.tcx = 1;
0057 if (task->thread.per_flags & PER_FLAG_NO_TE)
0058 cr0_new.tcx = 0;
0059
0060 cr2_new.tdc = 0;
0061 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
0062 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
0063 cr2_new.tdc = 1;
0064 else
0065 cr2_new.tdc = 2;
0066 }
0067 }
0068
0069 if (MACHINE_HAS_GS) {
0070 cr2_new.gse = 0;
0071 if (task->thread.gs_cb)
0072 cr2_new.gse = 1;
0073 }
0074
0075 cr0_changed = cr0_new.val != cr0_old.val;
0076 cr2_changed = cr2_new.val != cr2_old.val;
0077 if (cr0_changed)
0078 __ctl_load(cr0_new.val, 0, 0);
0079 if (cr2_changed)
0080 __ctl_load(cr2_new.val, 2, 2);
0081
0082 new.control = thread->per_user.control;
0083 new.start = thread->per_user.start;
0084 new.end = thread->per_user.end;
0085
0086
0087 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
0088 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
0089 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
0090 new.control |= PER_EVENT_BRANCH;
0091 else
0092 new.control |= PER_EVENT_IFETCH;
0093 new.control |= PER_CONTROL_SUSPENSION;
0094 new.control |= PER_EVENT_TRANSACTION_END;
0095 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
0096 new.control |= PER_EVENT_IFETCH;
0097 new.start = 0;
0098 new.end = -1UL;
0099 }
0100
0101
0102 if (!(new.control & PER_EVENT_MASK)) {
0103 regs->psw.mask &= ~PSW_MASK_PER;
0104 return;
0105 }
0106 regs->psw.mask |= PSW_MASK_PER;
0107 __ctl_store(old, 9, 11);
0108 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
0109 __ctl_load(new, 9, 11);
0110 }
0111
0112 void user_enable_single_step(struct task_struct *task)
0113 {
0114 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
0115 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
0116 }
0117
0118 void user_disable_single_step(struct task_struct *task)
0119 {
0120 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
0121 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
0122 }
0123
0124 void user_enable_block_step(struct task_struct *task)
0125 {
0126 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
0127 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
0128 }
0129
0130
0131
0132
0133
0134
0135 void ptrace_disable(struct task_struct *task)
0136 {
0137 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
0138 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
0139 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
0140 clear_tsk_thread_flag(task, TIF_PER_TRAP);
0141 task->thread.per_flags = 0;
0142 }
0143
0144 #define __ADDR_MASK 7
0145
0146 static inline unsigned long __peek_user_per(struct task_struct *child,
0147 addr_t addr)
0148 {
0149 if (addr == offsetof(struct per_struct_kernel, cr9))
0150
0151 return test_thread_flag(TIF_SINGLE_STEP) ?
0152 PER_EVENT_IFETCH : child->thread.per_user.control;
0153 else if (addr == offsetof(struct per_struct_kernel, cr10))
0154
0155 return test_thread_flag(TIF_SINGLE_STEP) ?
0156 0 : child->thread.per_user.start;
0157 else if (addr == offsetof(struct per_struct_kernel, cr11))
0158
0159 return test_thread_flag(TIF_SINGLE_STEP) ?
0160 -1UL : child->thread.per_user.end;
0161 else if (addr == offsetof(struct per_struct_kernel, bits))
0162
0163 return test_thread_flag(TIF_SINGLE_STEP) ?
0164 (1UL << (BITS_PER_LONG - 1)) : 0;
0165 else if (addr == offsetof(struct per_struct_kernel, starting_addr))
0166
0167 return child->thread.per_user.start;
0168 else if (addr == offsetof(struct per_struct_kernel, ending_addr))
0169
0170 return child->thread.per_user.end;
0171 else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
0172
0173 return (unsigned long)
0174 child->thread.per_event.cause << (BITS_PER_LONG - 16);
0175 else if (addr == offsetof(struct per_struct_kernel, address))
0176
0177 return child->thread.per_event.address;
0178 else if (addr == offsetof(struct per_struct_kernel, access_id))
0179
0180 return (unsigned long)
0181 child->thread.per_event.paid << (BITS_PER_LONG - 8);
0182 return 0;
0183 }
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
0195 {
0196 addr_t offset, tmp;
0197
0198 if (addr < offsetof(struct user, regs.acrs)) {
0199
0200
0201
0202 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
0203 if (addr == offsetof(struct user, regs.psw.mask)) {
0204
0205 tmp &= PSW_MASK_USER | PSW_MASK_RI;
0206 tmp |= PSW_USER_BITS;
0207 }
0208
0209 } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
0210
0211
0212
0213 offset = addr - offsetof(struct user, regs.acrs);
0214
0215
0216
0217
0218
0219 if (addr == offsetof(struct user, regs.acrs[15]))
0220 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
0221 else
0222 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
0223
0224 } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
0225
0226
0227
0228 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
0229
0230 } else if (addr < offsetof(struct user, regs.fp_regs)) {
0231
0232
0233
0234
0235 tmp = 0;
0236
0237 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
0238
0239
0240
0241 tmp = child->thread.fpu.fpc;
0242 tmp <<= BITS_PER_LONG - 32;
0243
0244 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
0245
0246
0247
0248
0249 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
0250 if (MACHINE_HAS_VX)
0251 tmp = *(addr_t *)
0252 ((addr_t) child->thread.fpu.vxrs + 2*offset);
0253 else
0254 tmp = *(addr_t *)
0255 ((addr_t) child->thread.fpu.fprs + offset);
0256
0257 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
0258
0259
0260
0261 addr -= offsetof(struct user, regs.per_info);
0262 tmp = __peek_user_per(child, addr);
0263
0264 } else
0265 tmp = 0;
0266
0267 return tmp;
0268 }
0269
0270 static int
0271 peek_user(struct task_struct *child, addr_t addr, addr_t data)
0272 {
0273 addr_t tmp, mask;
0274
0275
0276
0277
0278
0279 mask = __ADDR_MASK;
0280 if (addr >= offsetof(struct user, regs.acrs) &&
0281 addr < offsetof(struct user, regs.orig_gpr2))
0282 mask = 3;
0283 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
0284 return -EIO;
0285
0286 tmp = __peek_user(child, addr);
0287 return put_user(tmp, (addr_t __user *) data);
0288 }
0289
0290 static inline void __poke_user_per(struct task_struct *child,
0291 addr_t addr, addr_t data)
0292 {
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305 if (addr == offsetof(struct per_struct_kernel, cr9))
0306
0307 child->thread.per_user.control =
0308 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
0309 else if (addr == offsetof(struct per_struct_kernel, starting_addr))
0310
0311 child->thread.per_user.start = data;
0312 else if (addr == offsetof(struct per_struct_kernel, ending_addr))
0313
0314 child->thread.per_user.end = data;
0315 }
0316
0317
0318
0319
0320
0321
0322
0323 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
0324 {
0325 addr_t offset;
0326
0327
0328 if (addr < offsetof(struct user, regs.acrs)) {
0329 struct pt_regs *regs = task_pt_regs(child);
0330
0331
0332
0333 if (addr == offsetof(struct user, regs.psw.mask)) {
0334 unsigned long mask = PSW_MASK_USER;
0335
0336 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
0337 if ((data ^ PSW_USER_BITS) & ~mask)
0338
0339 return -EINVAL;
0340 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
0341
0342 return -EINVAL;
0343 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
0344
0345 return -EINVAL;
0346 }
0347
0348 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
0349 addr == offsetof(struct user, regs.gprs[2])) {
0350 struct pt_regs *regs = task_pt_regs(child);
0351
0352 regs->int_code = 0x20000 | (data & 0xffff);
0353 }
0354 *(addr_t *)((addr_t) ®s->psw + addr) = data;
0355 } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
0356
0357
0358
0359 offset = addr - offsetof(struct user, regs.acrs);
0360
0361
0362
0363
0364
0365
0366 if (addr == offsetof(struct user, regs.acrs[15]))
0367 child->thread.acrs[15] = (unsigned int) (data >> 32);
0368 else
0369 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
0370
0371 } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
0372
0373
0374
0375 task_pt_regs(child)->orig_gpr2 = data;
0376
0377 } else if (addr < offsetof(struct user, regs.fp_regs)) {
0378
0379
0380
0381
0382 return 0;
0383
0384 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
0385
0386
0387
0388 if ((unsigned int) data != 0 ||
0389 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
0390 return -EINVAL;
0391 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
0392
0393 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
0394
0395
0396
0397
0398 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
0399 if (MACHINE_HAS_VX)
0400 *(addr_t *)((addr_t)
0401 child->thread.fpu.vxrs + 2*offset) = data;
0402 else
0403 *(addr_t *)((addr_t)
0404 child->thread.fpu.fprs + offset) = data;
0405
0406 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
0407
0408
0409
0410 addr -= offsetof(struct user, regs.per_info);
0411 __poke_user_per(child, addr, data);
0412
0413 }
0414
0415 return 0;
0416 }
0417
0418 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
0419 {
0420 addr_t mask;
0421
0422
0423
0424
0425
0426 mask = __ADDR_MASK;
0427 if (addr >= offsetof(struct user, regs.acrs) &&
0428 addr < offsetof(struct user, regs.orig_gpr2))
0429 mask = 3;
0430 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
0431 return -EIO;
0432
0433 return __poke_user(child, addr, data);
0434 }
0435
0436 long arch_ptrace(struct task_struct *child, long request,
0437 unsigned long addr, unsigned long data)
0438 {
0439 ptrace_area parea;
0440 int copied, ret;
0441
0442 switch (request) {
0443 case PTRACE_PEEKUSR:
0444
0445 return peek_user(child, addr, data);
0446
0447 case PTRACE_POKEUSR:
0448
0449 return poke_user(child, addr, data);
0450
0451 case PTRACE_PEEKUSR_AREA:
0452 case PTRACE_POKEUSR_AREA:
0453 if (copy_from_user(&parea, (void __force __user *) addr,
0454 sizeof(parea)))
0455 return -EFAULT;
0456 addr = parea.kernel_addr;
0457 data = parea.process_addr;
0458 copied = 0;
0459 while (copied < parea.len) {
0460 if (request == PTRACE_PEEKUSR_AREA)
0461 ret = peek_user(child, addr, data);
0462 else {
0463 addr_t utmp;
0464 if (get_user(utmp,
0465 (addr_t __force __user *) data))
0466 return -EFAULT;
0467 ret = poke_user(child, addr, utmp);
0468 }
0469 if (ret)
0470 return ret;
0471 addr += sizeof(unsigned long);
0472 data += sizeof(unsigned long);
0473 copied += sizeof(unsigned long);
0474 }
0475 return 0;
0476 case PTRACE_GET_LAST_BREAK:
0477 put_user(child->thread.last_break,
0478 (unsigned long __user *) data);
0479 return 0;
0480 case PTRACE_ENABLE_TE:
0481 if (!MACHINE_HAS_TE)
0482 return -EIO;
0483 child->thread.per_flags &= ~PER_FLAG_NO_TE;
0484 return 0;
0485 case PTRACE_DISABLE_TE:
0486 if (!MACHINE_HAS_TE)
0487 return -EIO;
0488 child->thread.per_flags |= PER_FLAG_NO_TE;
0489 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
0490 return 0;
0491 case PTRACE_TE_ABORT_RAND:
0492 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
0493 return -EIO;
0494 switch (data) {
0495 case 0UL:
0496 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
0497 break;
0498 case 1UL:
0499 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
0500 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
0501 break;
0502 case 2UL:
0503 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
0504 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
0505 break;
0506 default:
0507 return -EINVAL;
0508 }
0509 return 0;
0510 default:
0511 return ptrace_request(child, request, addr, data);
0512 }
0513 }
0514
0515 #ifdef CONFIG_COMPAT
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533 static inline __u32 __peek_user_per_compat(struct task_struct *child,
0534 addr_t addr)
0535 {
0536 if (addr == offsetof(struct compat_per_struct_kernel, cr9))
0537
0538 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
0539 PER_EVENT_IFETCH : child->thread.per_user.control;
0540 else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
0541
0542 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
0543 0 : child->thread.per_user.start;
0544 else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
0545
0546 return test_thread_flag(TIF_SINGLE_STEP) ?
0547 PSW32_ADDR_INSN : child->thread.per_user.end;
0548 else if (addr == offsetof(struct compat_per_struct_kernel, bits))
0549
0550 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
0551 0x80000000 : 0;
0552 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
0553
0554 return (__u32) child->thread.per_user.start;
0555 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
0556
0557 return (__u32) child->thread.per_user.end;
0558 else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
0559
0560 return (__u32) child->thread.per_event.cause << 16;
0561 else if (addr == offsetof(struct compat_per_struct_kernel, address))
0562
0563 return (__u32) child->thread.per_event.address;
0564 else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
0565
0566 return (__u32) child->thread.per_event.paid << 24;
0567 return 0;
0568 }
0569
0570
0571
0572
0573 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
0574 {
0575 addr_t offset;
0576 __u32 tmp;
0577
0578 if (addr < offsetof(struct compat_user, regs.acrs)) {
0579 struct pt_regs *regs = task_pt_regs(child);
0580
0581
0582
0583 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
0584
0585 tmp = (__u32)(regs->psw.mask >> 32);
0586 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
0587 tmp |= PSW32_USER_BITS;
0588 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
0589
0590 tmp = (__u32) regs->psw.addr |
0591 (__u32)(regs->psw.mask & PSW_MASK_BA);
0592 } else {
0593
0594 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
0595 }
0596 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
0597
0598
0599
0600 offset = addr - offsetof(struct compat_user, regs.acrs);
0601 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
0602
0603 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
0604
0605
0606
0607 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
0608
0609 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
0610
0611
0612
0613
0614 tmp = 0;
0615
0616 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
0617
0618
0619
0620 tmp = child->thread.fpu.fpc;
0621
0622 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
0623
0624
0625
0626
0627 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
0628 if (MACHINE_HAS_VX)
0629 tmp = *(__u32 *)
0630 ((addr_t) child->thread.fpu.vxrs + 2*offset);
0631 else
0632 tmp = *(__u32 *)
0633 ((addr_t) child->thread.fpu.fprs + offset);
0634
0635 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
0636
0637
0638
0639 addr -= offsetof(struct compat_user, regs.per_info);
0640 tmp = __peek_user_per_compat(child, addr);
0641
0642 } else
0643 tmp = 0;
0644
0645 return tmp;
0646 }
0647
0648 static int peek_user_compat(struct task_struct *child,
0649 addr_t addr, addr_t data)
0650 {
0651 __u32 tmp;
0652
0653 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
0654 return -EIO;
0655
0656 tmp = __peek_user_compat(child, addr);
0657 return put_user(tmp, (__u32 __user *) data);
0658 }
0659
0660
0661
0662
0663 static inline void __poke_user_per_compat(struct task_struct *child,
0664 addr_t addr, __u32 data)
0665 {
0666 if (addr == offsetof(struct compat_per_struct_kernel, cr9))
0667
0668 child->thread.per_user.control =
0669 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
0670 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
0671
0672 child->thread.per_user.start = data;
0673 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
0674
0675 child->thread.per_user.end = data;
0676 }
0677
0678
0679
0680
0681 static int __poke_user_compat(struct task_struct *child,
0682 addr_t addr, addr_t data)
0683 {
0684 __u32 tmp = (__u32) data;
0685 addr_t offset;
0686
0687 if (addr < offsetof(struct compat_user, regs.acrs)) {
0688 struct pt_regs *regs = task_pt_regs(child);
0689
0690
0691
0692 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
0693 __u32 mask = PSW32_MASK_USER;
0694
0695 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
0696
0697 if ((tmp ^ PSW32_USER_BITS) & ~mask)
0698
0699 return -EINVAL;
0700 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
0701
0702 return -EINVAL;
0703 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
0704 (regs->psw.mask & PSW_MASK_BA) |
0705 (__u64)(tmp & mask) << 32;
0706 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
0707
0708 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
0709
0710 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
0711 (__u64)(tmp & PSW32_ADDR_AMODE);
0712 } else {
0713 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
0714 addr == offsetof(struct compat_user, regs.gprs[2])) {
0715 struct pt_regs *regs = task_pt_regs(child);
0716
0717 regs->int_code = 0x20000 | (data & 0xffff);
0718 }
0719
0720 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
0721 }
0722 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
0723
0724
0725
0726 offset = addr - offsetof(struct compat_user, regs.acrs);
0727 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
0728
0729 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
0730
0731
0732
0733 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
0734
0735 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
0736
0737
0738
0739
0740 return 0;
0741
0742 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
0743
0744
0745
0746 if (test_fp_ctl(tmp))
0747 return -EINVAL;
0748 child->thread.fpu.fpc = data;
0749
0750 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
0751
0752
0753
0754
0755 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
0756 if (MACHINE_HAS_VX)
0757 *(__u32 *)((addr_t)
0758 child->thread.fpu.vxrs + 2*offset) = tmp;
0759 else
0760 *(__u32 *)((addr_t)
0761 child->thread.fpu.fprs + offset) = tmp;
0762
0763 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
0764
0765
0766
0767 addr -= offsetof(struct compat_user, regs.per_info);
0768 __poke_user_per_compat(child, addr, data);
0769 }
0770
0771 return 0;
0772 }
0773
0774 static int poke_user_compat(struct task_struct *child,
0775 addr_t addr, addr_t data)
0776 {
0777 if (!is_compat_task() || (addr & 3) ||
0778 addr > sizeof(struct compat_user) - 3)
0779 return -EIO;
0780
0781 return __poke_user_compat(child, addr, data);
0782 }
0783
0784 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
0785 compat_ulong_t caddr, compat_ulong_t cdata)
0786 {
0787 unsigned long addr = caddr;
0788 unsigned long data = cdata;
0789 compat_ptrace_area parea;
0790 int copied, ret;
0791
0792 switch (request) {
0793 case PTRACE_PEEKUSR:
0794
0795 return peek_user_compat(child, addr, data);
0796
0797 case PTRACE_POKEUSR:
0798
0799 return poke_user_compat(child, addr, data);
0800
0801 case PTRACE_PEEKUSR_AREA:
0802 case PTRACE_POKEUSR_AREA:
0803 if (copy_from_user(&parea, (void __force __user *) addr,
0804 sizeof(parea)))
0805 return -EFAULT;
0806 addr = parea.kernel_addr;
0807 data = parea.process_addr;
0808 copied = 0;
0809 while (copied < parea.len) {
0810 if (request == PTRACE_PEEKUSR_AREA)
0811 ret = peek_user_compat(child, addr, data);
0812 else {
0813 __u32 utmp;
0814 if (get_user(utmp,
0815 (__u32 __force __user *) data))
0816 return -EFAULT;
0817 ret = poke_user_compat(child, addr, utmp);
0818 }
0819 if (ret)
0820 return ret;
0821 addr += sizeof(unsigned int);
0822 data += sizeof(unsigned int);
0823 copied += sizeof(unsigned int);
0824 }
0825 return 0;
0826 case PTRACE_GET_LAST_BREAK:
0827 put_user(child->thread.last_break,
0828 (unsigned int __user *) data);
0829 return 0;
0830 }
0831 return compat_ptrace_request(child, request, addr, data);
0832 }
0833 #endif
0834
0835
0836
0837
0838
0839 static int s390_regs_get(struct task_struct *target,
0840 const struct user_regset *regset,
0841 struct membuf to)
0842 {
0843 unsigned pos;
0844 if (target == current)
0845 save_access_regs(target->thread.acrs);
0846
0847 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
0848 membuf_store(&to, __peek_user(target, pos));
0849 return 0;
0850 }
0851
0852 static int s390_regs_set(struct task_struct *target,
0853 const struct user_regset *regset,
0854 unsigned int pos, unsigned int count,
0855 const void *kbuf, const void __user *ubuf)
0856 {
0857 int rc = 0;
0858
0859 if (target == current)
0860 save_access_regs(target->thread.acrs);
0861
0862 if (kbuf) {
0863 const unsigned long *k = kbuf;
0864 while (count > 0 && !rc) {
0865 rc = __poke_user(target, pos, *k++);
0866 count -= sizeof(*k);
0867 pos += sizeof(*k);
0868 }
0869 } else {
0870 const unsigned long __user *u = ubuf;
0871 while (count > 0 && !rc) {
0872 unsigned long word;
0873 rc = __get_user(word, u++);
0874 if (rc)
0875 break;
0876 rc = __poke_user(target, pos, word);
0877 count -= sizeof(*u);
0878 pos += sizeof(*u);
0879 }
0880 }
0881
0882 if (rc == 0 && target == current)
0883 restore_access_regs(target->thread.acrs);
0884
0885 return rc;
0886 }
0887
0888 static int s390_fpregs_get(struct task_struct *target,
0889 const struct user_regset *regset,
0890 struct membuf to)
0891 {
0892 _s390_fp_regs fp_regs;
0893
0894 if (target == current)
0895 save_fpu_regs();
0896
0897 fp_regs.fpc = target->thread.fpu.fpc;
0898 fpregs_store(&fp_regs, &target->thread.fpu);
0899
0900 return membuf_write(&to, &fp_regs, sizeof(fp_regs));
0901 }
0902
0903 static int s390_fpregs_set(struct task_struct *target,
0904 const struct user_regset *regset, unsigned int pos,
0905 unsigned int count, const void *kbuf,
0906 const void __user *ubuf)
0907 {
0908 int rc = 0;
0909 freg_t fprs[__NUM_FPRS];
0910
0911 if (target == current)
0912 save_fpu_regs();
0913
0914 if (MACHINE_HAS_VX)
0915 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
0916 else
0917 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
0918
0919
0920 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
0921 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
0922 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
0923 0, offsetof(s390_fp_regs, fprs));
0924 if (rc)
0925 return rc;
0926 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
0927 return -EINVAL;
0928 target->thread.fpu.fpc = ufpc[0];
0929 }
0930
0931 if (rc == 0 && count > 0)
0932 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
0933 fprs, offsetof(s390_fp_regs, fprs), -1);
0934 if (rc)
0935 return rc;
0936
0937 if (MACHINE_HAS_VX)
0938 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
0939 else
0940 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
0941
0942 return rc;
0943 }
0944
0945 static int s390_last_break_get(struct task_struct *target,
0946 const struct user_regset *regset,
0947 struct membuf to)
0948 {
0949 return membuf_store(&to, target->thread.last_break);
0950 }
0951
0952 static int s390_last_break_set(struct task_struct *target,
0953 const struct user_regset *regset,
0954 unsigned int pos, unsigned int count,
0955 const void *kbuf, const void __user *ubuf)
0956 {
0957 return 0;
0958 }
0959
0960 static int s390_tdb_get(struct task_struct *target,
0961 const struct user_regset *regset,
0962 struct membuf to)
0963 {
0964 struct pt_regs *regs = task_pt_regs(target);
0965 size_t size;
0966
0967 if (!(regs->int_code & 0x200))
0968 return -ENODATA;
0969 size = sizeof(target->thread.trap_tdb.data);
0970 return membuf_write(&to, target->thread.trap_tdb.data, size);
0971 }
0972
0973 static int s390_tdb_set(struct task_struct *target,
0974 const struct user_regset *regset,
0975 unsigned int pos, unsigned int count,
0976 const void *kbuf, const void __user *ubuf)
0977 {
0978 return 0;
0979 }
0980
0981 static int s390_vxrs_low_get(struct task_struct *target,
0982 const struct user_regset *regset,
0983 struct membuf to)
0984 {
0985 __u64 vxrs[__NUM_VXRS_LOW];
0986 int i;
0987
0988 if (!MACHINE_HAS_VX)
0989 return -ENODEV;
0990 if (target == current)
0991 save_fpu_regs();
0992 for (i = 0; i < __NUM_VXRS_LOW; i++)
0993 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
0994 return membuf_write(&to, vxrs, sizeof(vxrs));
0995 }
0996
0997 static int s390_vxrs_low_set(struct task_struct *target,
0998 const struct user_regset *regset,
0999 unsigned int pos, unsigned int count,
1000 const void *kbuf, const void __user *ubuf)
1001 {
1002 __u64 vxrs[__NUM_VXRS_LOW];
1003 int i, rc;
1004
1005 if (!MACHINE_HAS_VX)
1006 return -ENODEV;
1007 if (target == current)
1008 save_fpu_regs();
1009
1010 for (i = 0; i < __NUM_VXRS_LOW; i++)
1011 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1012
1013 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1014 if (rc == 0)
1015 for (i = 0; i < __NUM_VXRS_LOW; i++)
1016 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1017
1018 return rc;
1019 }
1020
1021 static int s390_vxrs_high_get(struct task_struct *target,
1022 const struct user_regset *regset,
1023 struct membuf to)
1024 {
1025 if (!MACHINE_HAS_VX)
1026 return -ENODEV;
1027 if (target == current)
1028 save_fpu_regs();
1029 return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1030 __NUM_VXRS_HIGH * sizeof(__vector128));
1031 }
1032
1033 static int s390_vxrs_high_set(struct task_struct *target,
1034 const struct user_regset *regset,
1035 unsigned int pos, unsigned int count,
1036 const void *kbuf, const void __user *ubuf)
1037 {
1038 int rc;
1039
1040 if (!MACHINE_HAS_VX)
1041 return -ENODEV;
1042 if (target == current)
1043 save_fpu_regs();
1044
1045 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1046 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1047 return rc;
1048 }
1049
1050 static int s390_system_call_get(struct task_struct *target,
1051 const struct user_regset *regset,
1052 struct membuf to)
1053 {
1054 return membuf_store(&to, target->thread.system_call);
1055 }
1056
1057 static int s390_system_call_set(struct task_struct *target,
1058 const struct user_regset *regset,
1059 unsigned int pos, unsigned int count,
1060 const void *kbuf, const void __user *ubuf)
1061 {
1062 unsigned int *data = &target->thread.system_call;
1063 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1064 data, 0, sizeof(unsigned int));
1065 }
1066
1067 static int s390_gs_cb_get(struct task_struct *target,
1068 const struct user_regset *regset,
1069 struct membuf to)
1070 {
1071 struct gs_cb *data = target->thread.gs_cb;
1072
1073 if (!MACHINE_HAS_GS)
1074 return -ENODEV;
1075 if (!data)
1076 return -ENODATA;
1077 if (target == current)
1078 save_gs_cb(data);
1079 return membuf_write(&to, data, sizeof(struct gs_cb));
1080 }
1081
1082 static int s390_gs_cb_set(struct task_struct *target,
1083 const struct user_regset *regset,
1084 unsigned int pos, unsigned int count,
1085 const void *kbuf, const void __user *ubuf)
1086 {
1087 struct gs_cb gs_cb = { }, *data = NULL;
1088 int rc;
1089
1090 if (!MACHINE_HAS_GS)
1091 return -ENODEV;
1092 if (!target->thread.gs_cb) {
1093 data = kzalloc(sizeof(*data), GFP_KERNEL);
1094 if (!data)
1095 return -ENOMEM;
1096 }
1097 if (!target->thread.gs_cb)
1098 gs_cb.gsd = 25;
1099 else if (target == current)
1100 save_gs_cb(&gs_cb);
1101 else
1102 gs_cb = *target->thread.gs_cb;
1103 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1104 &gs_cb, 0, sizeof(gs_cb));
1105 if (rc) {
1106 kfree(data);
1107 return -EFAULT;
1108 }
1109 preempt_disable();
1110 if (!target->thread.gs_cb)
1111 target->thread.gs_cb = data;
1112 *target->thread.gs_cb = gs_cb;
1113 if (target == current) {
1114 __ctl_set_bit(2, 4);
1115 restore_gs_cb(target->thread.gs_cb);
1116 }
1117 preempt_enable();
1118 return rc;
1119 }
1120
1121 static int s390_gs_bc_get(struct task_struct *target,
1122 const struct user_regset *regset,
1123 struct membuf to)
1124 {
1125 struct gs_cb *data = target->thread.gs_bc_cb;
1126
1127 if (!MACHINE_HAS_GS)
1128 return -ENODEV;
1129 if (!data)
1130 return -ENODATA;
1131 return membuf_write(&to, data, sizeof(struct gs_cb));
1132 }
1133
1134 static int s390_gs_bc_set(struct task_struct *target,
1135 const struct user_regset *regset,
1136 unsigned int pos, unsigned int count,
1137 const void *kbuf, const void __user *ubuf)
1138 {
1139 struct gs_cb *data = target->thread.gs_bc_cb;
1140
1141 if (!MACHINE_HAS_GS)
1142 return -ENODEV;
1143 if (!data) {
1144 data = kzalloc(sizeof(*data), GFP_KERNEL);
1145 if (!data)
1146 return -ENOMEM;
1147 target->thread.gs_bc_cb = data;
1148 }
1149 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150 data, 0, sizeof(struct gs_cb));
1151 }
1152
1153 static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1154 {
1155 return (cb->rca & 0x1f) == 0 &&
1156 (cb->roa & 0xfff) == 0 &&
1157 (cb->rla & 0xfff) == 0xfff &&
1158 cb->s == 1 &&
1159 cb->k == 1 &&
1160 cb->h == 0 &&
1161 cb->reserved1 == 0 &&
1162 cb->ps == 1 &&
1163 cb->qs == 0 &&
1164 cb->pc == 1 &&
1165 cb->qc == 0 &&
1166 cb->reserved2 == 0 &&
1167 cb->reserved3 == 0 &&
1168 cb->reserved4 == 0 &&
1169 cb->reserved5 == 0 &&
1170 cb->reserved6 == 0 &&
1171 cb->reserved7 == 0 &&
1172 cb->reserved8 == 0 &&
1173 cb->rla >= cb->roa &&
1174 cb->rca >= cb->roa &&
1175 cb->rca <= cb->rla+1 &&
1176 cb->m < 3;
1177 }
1178
1179 static int s390_runtime_instr_get(struct task_struct *target,
1180 const struct user_regset *regset,
1181 struct membuf to)
1182 {
1183 struct runtime_instr_cb *data = target->thread.ri_cb;
1184
1185 if (!test_facility(64))
1186 return -ENODEV;
1187 if (!data)
1188 return -ENODATA;
1189
1190 return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1191 }
1192
1193 static int s390_runtime_instr_set(struct task_struct *target,
1194 const struct user_regset *regset,
1195 unsigned int pos, unsigned int count,
1196 const void *kbuf, const void __user *ubuf)
1197 {
1198 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1199 int rc;
1200
1201 if (!test_facility(64))
1202 return -ENODEV;
1203
1204 if (!target->thread.ri_cb) {
1205 data = kzalloc(sizeof(*data), GFP_KERNEL);
1206 if (!data)
1207 return -ENOMEM;
1208 }
1209
1210 if (target->thread.ri_cb) {
1211 if (target == current)
1212 store_runtime_instr_cb(&ri_cb);
1213 else
1214 ri_cb = *target->thread.ri_cb;
1215 }
1216
1217 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1218 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1219 if (rc) {
1220 kfree(data);
1221 return -EFAULT;
1222 }
1223
1224 if (!is_ri_cb_valid(&ri_cb)) {
1225 kfree(data);
1226 return -EINVAL;
1227 }
1228
1229
1230
1231
1232 ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1233 preempt_disable();
1234 if (!target->thread.ri_cb)
1235 target->thread.ri_cb = data;
1236 *target->thread.ri_cb = ri_cb;
1237 if (target == current)
1238 load_runtime_instr_cb(target->thread.ri_cb);
1239 preempt_enable();
1240
1241 return 0;
1242 }
1243
1244 static const struct user_regset s390_regsets[] = {
1245 {
1246 .core_note_type = NT_PRSTATUS,
1247 .n = sizeof(s390_regs) / sizeof(long),
1248 .size = sizeof(long),
1249 .align = sizeof(long),
1250 .regset_get = s390_regs_get,
1251 .set = s390_regs_set,
1252 },
1253 {
1254 .core_note_type = NT_PRFPREG,
1255 .n = sizeof(s390_fp_regs) / sizeof(long),
1256 .size = sizeof(long),
1257 .align = sizeof(long),
1258 .regset_get = s390_fpregs_get,
1259 .set = s390_fpregs_set,
1260 },
1261 {
1262 .core_note_type = NT_S390_SYSTEM_CALL,
1263 .n = 1,
1264 .size = sizeof(unsigned int),
1265 .align = sizeof(unsigned int),
1266 .regset_get = s390_system_call_get,
1267 .set = s390_system_call_set,
1268 },
1269 {
1270 .core_note_type = NT_S390_LAST_BREAK,
1271 .n = 1,
1272 .size = sizeof(long),
1273 .align = sizeof(long),
1274 .regset_get = s390_last_break_get,
1275 .set = s390_last_break_set,
1276 },
1277 {
1278 .core_note_type = NT_S390_TDB,
1279 .n = 1,
1280 .size = 256,
1281 .align = 1,
1282 .regset_get = s390_tdb_get,
1283 .set = s390_tdb_set,
1284 },
1285 {
1286 .core_note_type = NT_S390_VXRS_LOW,
1287 .n = __NUM_VXRS_LOW,
1288 .size = sizeof(__u64),
1289 .align = sizeof(__u64),
1290 .regset_get = s390_vxrs_low_get,
1291 .set = s390_vxrs_low_set,
1292 },
1293 {
1294 .core_note_type = NT_S390_VXRS_HIGH,
1295 .n = __NUM_VXRS_HIGH,
1296 .size = sizeof(__vector128),
1297 .align = sizeof(__vector128),
1298 .regset_get = s390_vxrs_high_get,
1299 .set = s390_vxrs_high_set,
1300 },
1301 {
1302 .core_note_type = NT_S390_GS_CB,
1303 .n = sizeof(struct gs_cb) / sizeof(__u64),
1304 .size = sizeof(__u64),
1305 .align = sizeof(__u64),
1306 .regset_get = s390_gs_cb_get,
1307 .set = s390_gs_cb_set,
1308 },
1309 {
1310 .core_note_type = NT_S390_GS_BC,
1311 .n = sizeof(struct gs_cb) / sizeof(__u64),
1312 .size = sizeof(__u64),
1313 .align = sizeof(__u64),
1314 .regset_get = s390_gs_bc_get,
1315 .set = s390_gs_bc_set,
1316 },
1317 {
1318 .core_note_type = NT_S390_RI_CB,
1319 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1320 .size = sizeof(__u64),
1321 .align = sizeof(__u64),
1322 .regset_get = s390_runtime_instr_get,
1323 .set = s390_runtime_instr_set,
1324 },
1325 };
1326
1327 static const struct user_regset_view user_s390_view = {
1328 .name = "s390x",
1329 .e_machine = EM_S390,
1330 .regsets = s390_regsets,
1331 .n = ARRAY_SIZE(s390_regsets)
1332 };
1333
1334 #ifdef CONFIG_COMPAT
1335 static int s390_compat_regs_get(struct task_struct *target,
1336 const struct user_regset *regset,
1337 struct membuf to)
1338 {
1339 unsigned n;
1340
1341 if (target == current)
1342 save_access_regs(target->thread.acrs);
1343
1344 for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1345 membuf_store(&to, __peek_user_compat(target, n));
1346 return 0;
1347 }
1348
1349 static int s390_compat_regs_set(struct task_struct *target,
1350 const struct user_regset *regset,
1351 unsigned int pos, unsigned int count,
1352 const void *kbuf, const void __user *ubuf)
1353 {
1354 int rc = 0;
1355
1356 if (target == current)
1357 save_access_regs(target->thread.acrs);
1358
1359 if (kbuf) {
1360 const compat_ulong_t *k = kbuf;
1361 while (count > 0 && !rc) {
1362 rc = __poke_user_compat(target, pos, *k++);
1363 count -= sizeof(*k);
1364 pos += sizeof(*k);
1365 }
1366 } else {
1367 const compat_ulong_t __user *u = ubuf;
1368 while (count > 0 && !rc) {
1369 compat_ulong_t word;
1370 rc = __get_user(word, u++);
1371 if (rc)
1372 break;
1373 rc = __poke_user_compat(target, pos, word);
1374 count -= sizeof(*u);
1375 pos += sizeof(*u);
1376 }
1377 }
1378
1379 if (rc == 0 && target == current)
1380 restore_access_regs(target->thread.acrs);
1381
1382 return rc;
1383 }
1384
1385 static int s390_compat_regs_high_get(struct task_struct *target,
1386 const struct user_regset *regset,
1387 struct membuf to)
1388 {
1389 compat_ulong_t *gprs_high;
1390 int i;
1391
1392 gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1393 for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1394 membuf_store(&to, *gprs_high);
1395 return 0;
1396 }
1397
1398 static int s390_compat_regs_high_set(struct task_struct *target,
1399 const struct user_regset *regset,
1400 unsigned int pos, unsigned int count,
1401 const void *kbuf, const void __user *ubuf)
1402 {
1403 compat_ulong_t *gprs_high;
1404 int rc = 0;
1405
1406 gprs_high = (compat_ulong_t *)
1407 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1408 if (kbuf) {
1409 const compat_ulong_t *k = kbuf;
1410 while (count > 0) {
1411 *gprs_high = *k++;
1412 *gprs_high += 2;
1413 count -= sizeof(*k);
1414 }
1415 } else {
1416 const compat_ulong_t __user *u = ubuf;
1417 while (count > 0 && !rc) {
1418 unsigned long word;
1419 rc = __get_user(word, u++);
1420 if (rc)
1421 break;
1422 *gprs_high = word;
1423 *gprs_high += 2;
1424 count -= sizeof(*u);
1425 }
1426 }
1427
1428 return rc;
1429 }
1430
1431 static int s390_compat_last_break_get(struct task_struct *target,
1432 const struct user_regset *regset,
1433 struct membuf to)
1434 {
1435 compat_ulong_t last_break = target->thread.last_break;
1436
1437 return membuf_store(&to, (unsigned long)last_break);
1438 }
1439
1440 static int s390_compat_last_break_set(struct task_struct *target,
1441 const struct user_regset *regset,
1442 unsigned int pos, unsigned int count,
1443 const void *kbuf, const void __user *ubuf)
1444 {
1445 return 0;
1446 }
1447
1448 static const struct user_regset s390_compat_regsets[] = {
1449 {
1450 .core_note_type = NT_PRSTATUS,
1451 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1452 .size = sizeof(compat_long_t),
1453 .align = sizeof(compat_long_t),
1454 .regset_get = s390_compat_regs_get,
1455 .set = s390_compat_regs_set,
1456 },
1457 {
1458 .core_note_type = NT_PRFPREG,
1459 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1460 .size = sizeof(compat_long_t),
1461 .align = sizeof(compat_long_t),
1462 .regset_get = s390_fpregs_get,
1463 .set = s390_fpregs_set,
1464 },
1465 {
1466 .core_note_type = NT_S390_SYSTEM_CALL,
1467 .n = 1,
1468 .size = sizeof(compat_uint_t),
1469 .align = sizeof(compat_uint_t),
1470 .regset_get = s390_system_call_get,
1471 .set = s390_system_call_set,
1472 },
1473 {
1474 .core_note_type = NT_S390_LAST_BREAK,
1475 .n = 1,
1476 .size = sizeof(long),
1477 .align = sizeof(long),
1478 .regset_get = s390_compat_last_break_get,
1479 .set = s390_compat_last_break_set,
1480 },
1481 {
1482 .core_note_type = NT_S390_TDB,
1483 .n = 1,
1484 .size = 256,
1485 .align = 1,
1486 .regset_get = s390_tdb_get,
1487 .set = s390_tdb_set,
1488 },
1489 {
1490 .core_note_type = NT_S390_VXRS_LOW,
1491 .n = __NUM_VXRS_LOW,
1492 .size = sizeof(__u64),
1493 .align = sizeof(__u64),
1494 .regset_get = s390_vxrs_low_get,
1495 .set = s390_vxrs_low_set,
1496 },
1497 {
1498 .core_note_type = NT_S390_VXRS_HIGH,
1499 .n = __NUM_VXRS_HIGH,
1500 .size = sizeof(__vector128),
1501 .align = sizeof(__vector128),
1502 .regset_get = s390_vxrs_high_get,
1503 .set = s390_vxrs_high_set,
1504 },
1505 {
1506 .core_note_type = NT_S390_HIGH_GPRS,
1507 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1508 .size = sizeof(compat_long_t),
1509 .align = sizeof(compat_long_t),
1510 .regset_get = s390_compat_regs_high_get,
1511 .set = s390_compat_regs_high_set,
1512 },
1513 {
1514 .core_note_type = NT_S390_GS_CB,
1515 .n = sizeof(struct gs_cb) / sizeof(__u64),
1516 .size = sizeof(__u64),
1517 .align = sizeof(__u64),
1518 .regset_get = s390_gs_cb_get,
1519 .set = s390_gs_cb_set,
1520 },
1521 {
1522 .core_note_type = NT_S390_GS_BC,
1523 .n = sizeof(struct gs_cb) / sizeof(__u64),
1524 .size = sizeof(__u64),
1525 .align = sizeof(__u64),
1526 .regset_get = s390_gs_bc_get,
1527 .set = s390_gs_bc_set,
1528 },
1529 {
1530 .core_note_type = NT_S390_RI_CB,
1531 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1532 .size = sizeof(__u64),
1533 .align = sizeof(__u64),
1534 .regset_get = s390_runtime_instr_get,
1535 .set = s390_runtime_instr_set,
1536 },
1537 };
1538
1539 static const struct user_regset_view user_s390_compat_view = {
1540 .name = "s390",
1541 .e_machine = EM_S390,
1542 .regsets = s390_compat_regsets,
1543 .n = ARRAY_SIZE(s390_compat_regsets)
1544 };
1545 #endif
1546
1547 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1548 {
1549 #ifdef CONFIG_COMPAT
1550 if (test_tsk_thread_flag(task, TIF_31BIT))
1551 return &user_s390_compat_view;
1552 #endif
1553 return &user_s390_view;
1554 }
1555
1556 static const char *gpr_names[NUM_GPRS] = {
1557 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1558 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1559 };
1560
1561 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1562 {
1563 if (offset >= NUM_GPRS)
1564 return 0;
1565 return regs->gprs[offset];
1566 }
1567
1568 int regs_query_register_offset(const char *name)
1569 {
1570 unsigned long offset;
1571
1572 if (!name || *name != 'r')
1573 return -EINVAL;
1574 if (kstrtoul(name + 1, 10, &offset))
1575 return -EINVAL;
1576 if (offset >= NUM_GPRS)
1577 return -EINVAL;
1578 return offset;
1579 }
1580
1581 const char *regs_query_register_name(unsigned int offset)
1582 {
1583 if (offset >= NUM_GPRS)
1584 return NULL;
1585 return gpr_names[offset];
1586 }
1587
1588 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1589 {
1590 unsigned long ksp = kernel_stack_pointer(regs);
1591
1592 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1593 }
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1605 {
1606 unsigned long addr;
1607
1608 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1609 if (!regs_within_kernel_stack(regs, addr))
1610 return 0;
1611 return *(unsigned long *)addr;
1612 }