Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Performance event support for the System z CPU-measurement Sampling Facility
0004  *
0005  * Copyright IBM Corp. 2013, 2018
0006  * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
0007  */
0008 #define KMSG_COMPONENT  "cpum_sf"
0009 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
0010 
0011 #include <linux/kernel.h>
0012 #include <linux/kernel_stat.h>
0013 #include <linux/perf_event.h>
0014 #include <linux/percpu.h>
0015 #include <linux/pid.h>
0016 #include <linux/notifier.h>
0017 #include <linux/export.h>
0018 #include <linux/slab.h>
0019 #include <linux/mm.h>
0020 #include <linux/moduleparam.h>
0021 #include <asm/cpu_mf.h>
0022 #include <asm/irq.h>
0023 #include <asm/debug.h>
0024 #include <asm/timex.h>
0025 
0026 /* Minimum number of sample-data-block-tables:
0027  * At least one table is required for the sampling buffer structure.
0028  * A single table contains up to 511 pointers to sample-data-blocks.
0029  */
0030 #define CPUM_SF_MIN_SDBT    1
0031 
0032 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
0033  * A table contains SDB pointers (8 bytes) and one table-link entry
0034  * that points to the origin of the next SDBT.
0035  */
0036 #define CPUM_SF_SDB_PER_TABLE   ((PAGE_SIZE - 8) / 8)
0037 
0038 /* Maximum page offset for an SDBT table-link entry:
0039  * If this page offset is reached, a table-link entry to the next SDBT
0040  * must be added.
0041  */
0042 #define CPUM_SF_SDBT_TL_OFFSET  (CPUM_SF_SDB_PER_TABLE * 8)
0043 static inline int require_table_link(const void *sdbt)
0044 {
0045     return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
0046 }
0047 
0048 /* Minimum and maximum sampling buffer sizes:
0049  *
0050  * This number represents the maximum size of the sampling buffer taking
0051  * the number of sample-data-block-tables into account.  Note that these
0052  * numbers apply to the basic-sampling function only.
0053  * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
0054  * the diagnostic-sampling function is active.
0055  *
0056  * Sampling buffer size     Buffer characteristics
0057  * ---------------------------------------------------
0058  *   64KB           ==    16 pages (4KB per page)
0059  *                 1 page  for SDB-tables
0060  *                15 pages for SDBs
0061  *
0062  *  32MB            ==  8192 pages (4KB per page)
0063  *                16 pages for SDB-tables
0064  *              8176 pages for SDBs
0065  */
0066 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
0067 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
0068 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
0069 
0070 struct sf_buffer {
0071     unsigned long    *sdbt;     /* Sample-data-block-table origin */
0072     /* buffer characteristics (required for buffer increments) */
0073     unsigned long  num_sdb;     /* Number of sample-data-blocks */
0074     unsigned long num_sdbt;     /* Number of sample-data-block-tables */
0075     unsigned long    *tail;     /* last sample-data-block-table */
0076 };
0077 
0078 struct aux_buffer {
0079     struct sf_buffer sfb;
0080     unsigned long head;    /* index of SDB of buffer head */
0081     unsigned long alert_mark;  /* index of SDB of alert request position */
0082     unsigned long empty_mark;  /* mark of SDB not marked full */
0083     unsigned long *sdb_index;  /* SDB address for fast lookup */
0084     unsigned long *sdbt_index; /* SDBT address for fast lookup */
0085 };
0086 
0087 struct cpu_hw_sf {
0088     /* CPU-measurement sampling information block */
0089     struct hws_qsi_info_block qsi;
0090     /* CPU-measurement sampling control block */
0091     struct hws_lsctl_request_block lsctl;
0092     struct sf_buffer sfb;       /* Sampling buffer */
0093     unsigned int flags;     /* Status flags */
0094     struct perf_event *event;   /* Scheduled perf event */
0095     struct perf_output_handle handle; /* AUX buffer output handle */
0096 };
0097 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
0098 
0099 /* Debug feature */
0100 static debug_info_t *sfdbg;
0101 
0102 /*
0103  * sf_disable() - Switch off sampling facility
0104  */
0105 static int sf_disable(void)
0106 {
0107     struct hws_lsctl_request_block sreq;
0108 
0109     memset(&sreq, 0, sizeof(sreq));
0110     return lsctl(&sreq);
0111 }
0112 
0113 /*
0114  * sf_buffer_available() - Check for an allocated sampling buffer
0115  */
0116 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
0117 {
0118     return !!cpuhw->sfb.sdbt;
0119 }
0120 
0121 /*
0122  * deallocate sampling facility buffer
0123  */
0124 static void free_sampling_buffer(struct sf_buffer *sfb)
0125 {
0126     unsigned long *sdbt, *curr;
0127 
0128     if (!sfb->sdbt)
0129         return;
0130 
0131     sdbt = sfb->sdbt;
0132     curr = sdbt;
0133 
0134     /* Free the SDBT after all SDBs are processed... */
0135     while (1) {
0136         if (!*curr || !sdbt)
0137             break;
0138 
0139         /* Process table-link entries */
0140         if (is_link_entry(curr)) {
0141             curr = get_next_sdbt(curr);
0142             if (sdbt)
0143                 free_page((unsigned long) sdbt);
0144 
0145             /* If the origin is reached, sampling buffer is freed */
0146             if (curr == sfb->sdbt)
0147                 break;
0148             else
0149                 sdbt = curr;
0150         } else {
0151             /* Process SDB pointer */
0152             if (*curr) {
0153                 free_page(*curr);
0154                 curr++;
0155             }
0156         }
0157     }
0158 
0159     debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
0160                 (unsigned long)sfb->sdbt);
0161     memset(sfb, 0, sizeof(*sfb));
0162 }
0163 
0164 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
0165 {
0166     unsigned long sdb, *trailer;
0167 
0168     /* Allocate and initialize sample-data-block */
0169     sdb = get_zeroed_page(gfp_flags);
0170     if (!sdb)
0171         return -ENOMEM;
0172     trailer = trailer_entry_ptr(sdb);
0173     *trailer = SDB_TE_ALERT_REQ_MASK;
0174 
0175     /* Link SDB into the sample-data-block-table */
0176     *sdbt = sdb;
0177 
0178     return 0;
0179 }
0180 
0181 /*
0182  * realloc_sampling_buffer() - extend sampler memory
0183  *
0184  * Allocates new sample-data-blocks and adds them to the specified sampling
0185  * buffer memory.
0186  *
0187  * Important: This modifies the sampling buffer and must be called when the
0188  *        sampling facility is disabled.
0189  *
0190  * Returns zero on success, non-zero otherwise.
0191  */
0192 static int realloc_sampling_buffer(struct sf_buffer *sfb,
0193                    unsigned long num_sdb, gfp_t gfp_flags)
0194 {
0195     int i, rc;
0196     unsigned long *new, *tail, *tail_prev = NULL;
0197 
0198     if (!sfb->sdbt || !sfb->tail)
0199         return -EINVAL;
0200 
0201     if (!is_link_entry(sfb->tail))
0202         return -EINVAL;
0203 
0204     /* Append to the existing sampling buffer, overwriting the table-link
0205      * register.
0206      * The tail variables always points to the "tail" (last and table-link)
0207      * entry in an SDB-table.
0208      */
0209     tail = sfb->tail;
0210 
0211     /* Do a sanity check whether the table-link entry points to
0212      * the sampling buffer origin.
0213      */
0214     if (sfb->sdbt != get_next_sdbt(tail)) {
0215         debug_sprintf_event(sfdbg, 3, "%s: "
0216                     "sampling buffer is not linked: origin %#lx"
0217                     " tail %#lx\n", __func__,
0218                     (unsigned long)sfb->sdbt,
0219                     (unsigned long)tail);
0220         return -EINVAL;
0221     }
0222 
0223     /* Allocate remaining SDBs */
0224     rc = 0;
0225     for (i = 0; i < num_sdb; i++) {
0226         /* Allocate a new SDB-table if it is full. */
0227         if (require_table_link(tail)) {
0228             new = (unsigned long *) get_zeroed_page(gfp_flags);
0229             if (!new) {
0230                 rc = -ENOMEM;
0231                 break;
0232             }
0233             sfb->num_sdbt++;
0234             /* Link current page to tail of chain */
0235             *tail = (unsigned long)(void *) new + 1;
0236             tail_prev = tail;
0237             tail = new;
0238         }
0239 
0240         /* Allocate a new sample-data-block.
0241          * If there is not enough memory, stop the realloc process
0242          * and simply use what was allocated.  If this is a temporary
0243          * issue, a new realloc call (if required) might succeed.
0244          */
0245         rc = alloc_sample_data_block(tail, gfp_flags);
0246         if (rc) {
0247             /* Undo last SDBT. An SDBT with no SDB at its first
0248              * entry but with an SDBT entry instead can not be
0249              * handled by the interrupt handler code.
0250              * Avoid this situation.
0251              */
0252             if (tail_prev) {
0253                 sfb->num_sdbt--;
0254                 free_page((unsigned long) new);
0255                 tail = tail_prev;
0256             }
0257             break;
0258         }
0259         sfb->num_sdb++;
0260         tail++;
0261         tail_prev = new = NULL; /* Allocated at least one SBD */
0262     }
0263 
0264     /* Link sampling buffer to its origin */
0265     *tail = (unsigned long) sfb->sdbt + 1;
0266     sfb->tail = tail;
0267 
0268     debug_sprintf_event(sfdbg, 4, "%s: new buffer"
0269                 " settings: sdbt %lu sdb %lu\n", __func__,
0270                 sfb->num_sdbt, sfb->num_sdb);
0271     return rc;
0272 }
0273 
0274 /*
0275  * allocate_sampling_buffer() - allocate sampler memory
0276  *
0277  * Allocates and initializes a sampling buffer structure using the
0278  * specified number of sample-data-blocks (SDB).  For each allocation,
0279  * a 4K page is used.  The number of sample-data-block-tables (SDBT)
0280  * are calculated from SDBs.
0281  * Also set the ALERT_REQ mask in each SDBs trailer.
0282  *
0283  * Returns zero on success, non-zero otherwise.
0284  */
0285 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
0286 {
0287     int rc;
0288 
0289     if (sfb->sdbt)
0290         return -EINVAL;
0291 
0292     /* Allocate the sample-data-block-table origin */
0293     sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
0294     if (!sfb->sdbt)
0295         return -ENOMEM;
0296     sfb->num_sdb = 0;
0297     sfb->num_sdbt = 1;
0298 
0299     /* Link the table origin to point to itself to prepare for
0300      * realloc_sampling_buffer() invocation.
0301      */
0302     sfb->tail = sfb->sdbt;
0303     *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
0304 
0305     /* Allocate requested number of sample-data-blocks */
0306     rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
0307     if (rc) {
0308         free_sampling_buffer(sfb);
0309         debug_sprintf_event(sfdbg, 4, "%s: "
0310             "realloc_sampling_buffer failed with rc %i\n",
0311             __func__, rc);
0312     } else
0313         debug_sprintf_event(sfdbg, 4,
0314             "%s: tear %#lx dear %#lx\n", __func__,
0315             (unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
0316     return rc;
0317 }
0318 
0319 static void sfb_set_limits(unsigned long min, unsigned long max)
0320 {
0321     struct hws_qsi_info_block si;
0322 
0323     CPUM_SF_MIN_SDB = min;
0324     CPUM_SF_MAX_SDB = max;
0325 
0326     memset(&si, 0, sizeof(si));
0327     if (!qsi(&si))
0328         CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
0329 }
0330 
0331 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
0332 {
0333     return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
0334                     : CPUM_SF_MAX_SDB;
0335 }
0336 
0337 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
0338                     struct hw_perf_event *hwc)
0339 {
0340     if (!sfb->sdbt)
0341         return SFB_ALLOC_REG(hwc);
0342     if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
0343         return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
0344     return 0;
0345 }
0346 
0347 static int sfb_has_pending_allocs(struct sf_buffer *sfb,
0348                    struct hw_perf_event *hwc)
0349 {
0350     return sfb_pending_allocs(sfb, hwc) > 0;
0351 }
0352 
0353 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
0354 {
0355     /* Limit the number of SDBs to not exceed the maximum */
0356     num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
0357     if (num)
0358         SFB_ALLOC_REG(hwc) += num;
0359 }
0360 
0361 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
0362 {
0363     SFB_ALLOC_REG(hwc) = 0;
0364     sfb_account_allocs(num, hwc);
0365 }
0366 
0367 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
0368 {
0369     if (cpuhw->sfb.sdbt)
0370         free_sampling_buffer(&cpuhw->sfb);
0371 }
0372 
0373 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
0374 {
0375     unsigned long n_sdb, freq;
0376     size_t sample_size;
0377 
0378     /* Calculate sampling buffers using 4K pages
0379      *
0380      *    1. The sampling size is 32 bytes for basic sampling. This size
0381      *   is the same for all machine types. Diagnostic
0382      *   sampling uses auxlilary data buffer setup which provides the
0383      *   memory for SDBs using linux common code auxiliary trace
0384      *   setup.
0385      *
0386      *    2. Function alloc_sampling_buffer() sets the Alert Request
0387      *   Control indicator to trigger a measurement-alert to harvest
0388      *   sample-data-blocks (SDB). This is done per SDB. This
0389      *   measurement alert interrupt fires quick enough to handle
0390      *   one SDB, on very high frequency and work loads there might
0391      *   be 2 to 3 SBDs available for sample processing.
0392      *   Currently there is no need for setup alert request on every
0393      *   n-th page. This is counterproductive as one IRQ triggers
0394      *   a very high number of samples to be processed at one IRQ.
0395      *
0396      *    3. Use the sampling frequency as input.
0397      *   Compute the number of SDBs and ensure a minimum
0398      *   of CPUM_SF_MIN_SDB.  Depending on frequency add some more
0399      *   SDBs to handle a higher sampling rate.
0400      *   Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
0401      *   (one SDB) for every 10000 HZ frequency increment.
0402      *
0403      *    4. Compute the number of sample-data-block-tables (SDBT) and
0404      *   ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
0405      *   to 511 SDBs).
0406      */
0407     sample_size = sizeof(struct hws_basic_entry);
0408     freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
0409     n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
0410 
0411     /* If there is already a sampling buffer allocated, it is very likely
0412      * that the sampling facility is enabled too.  If the event to be
0413      * initialized requires a greater sampling buffer, the allocation must
0414      * be postponed.  Changing the sampling buffer requires the sampling
0415      * facility to be in the disabled state.  So, account the number of
0416      * required SDBs and let cpumsf_pmu_enable() resize the buffer just
0417      * before the event is started.
0418      */
0419     sfb_init_allocs(n_sdb, hwc);
0420     if (sf_buffer_available(cpuhw))
0421         return 0;
0422 
0423     debug_sprintf_event(sfdbg, 3,
0424                 "%s: rate %lu f %lu sdb %lu/%lu"
0425                 " sample_size %lu cpuhw %p\n", __func__,
0426                 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
0427                 sample_size, cpuhw);
0428 
0429     return alloc_sampling_buffer(&cpuhw->sfb,
0430                      sfb_pending_allocs(&cpuhw->sfb, hwc));
0431 }
0432 
0433 static unsigned long min_percent(unsigned int percent, unsigned long base,
0434                  unsigned long min)
0435 {
0436     return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
0437 }
0438 
0439 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
0440 {
0441     /* Use a percentage-based approach to extend the sampling facility
0442      * buffer.  Accept up to 5% sample data loss.
0443      * Vary the extents between 1% to 5% of the current number of
0444      * sample-data-blocks.
0445      */
0446     if (ratio <= 5)
0447         return 0;
0448     if (ratio <= 25)
0449         return min_percent(1, base, 1);
0450     if (ratio <= 50)
0451         return min_percent(1, base, 1);
0452     if (ratio <= 75)
0453         return min_percent(2, base, 2);
0454     if (ratio <= 100)
0455         return min_percent(3, base, 3);
0456     if (ratio <= 250)
0457         return min_percent(4, base, 4);
0458 
0459     return min_percent(5, base, 8);
0460 }
0461 
0462 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
0463                   struct hw_perf_event *hwc)
0464 {
0465     unsigned long ratio, num;
0466 
0467     if (!OVERFLOW_REG(hwc))
0468         return;
0469 
0470     /* The sample_overflow contains the average number of sample data
0471      * that has been lost because sample-data-blocks were full.
0472      *
0473      * Calculate the total number of sample data entries that has been
0474      * discarded.  Then calculate the ratio of lost samples to total samples
0475      * per second in percent.
0476      */
0477     ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
0478                  sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
0479 
0480     /* Compute number of sample-data-blocks */
0481     num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
0482     if (num)
0483         sfb_account_allocs(num, hwc);
0484 
0485     debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
0486                 __func__, OVERFLOW_REG(hwc), ratio, num);
0487     OVERFLOW_REG(hwc) = 0;
0488 }
0489 
0490 /* extend_sampling_buffer() - Extend sampling buffer
0491  * @sfb:    Sampling buffer structure (for local CPU)
0492  * @hwc:    Perf event hardware structure
0493  *
0494  * Use this function to extend the sampling buffer based on the overflow counter
0495  * and postponed allocation extents stored in the specified Perf event hardware.
0496  *
0497  * Important: This function disables the sampling facility in order to safely
0498  *        change the sampling buffer structure.  Do not call this function
0499  *        when the PMU is active.
0500  */
0501 static void extend_sampling_buffer(struct sf_buffer *sfb,
0502                    struct hw_perf_event *hwc)
0503 {
0504     unsigned long num, num_old;
0505     int rc;
0506 
0507     num = sfb_pending_allocs(sfb, hwc);
0508     if (!num)
0509         return;
0510     num_old = sfb->num_sdb;
0511 
0512     /* Disable the sampling facility to reset any states and also
0513      * clear pending measurement alerts.
0514      */
0515     sf_disable();
0516 
0517     /* Extend the sampling buffer.
0518      * This memory allocation typically happens in an atomic context when
0519      * called by perf.  Because this is a reallocation, it is fine if the
0520      * new SDB-request cannot be satisfied immediately.
0521      */
0522     rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
0523     if (rc)
0524         debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
0525                     __func__, rc);
0526 
0527     if (sfb_has_pending_allocs(sfb, hwc))
0528         debug_sprintf_event(sfdbg, 5, "%s: "
0529                     "req %lu alloc %lu remaining %lu\n",
0530                     __func__, num, sfb->num_sdb - num_old,
0531                     sfb_pending_allocs(sfb, hwc));
0532 }
0533 
0534 /* Number of perf events counting hardware events */
0535 static atomic_t num_events;
0536 /* Used to avoid races in calling reserve/release_cpumf_hardware */
0537 static DEFINE_MUTEX(pmc_reserve_mutex);
0538 
0539 #define PMC_INIT      0
0540 #define PMC_RELEASE   1
0541 #define PMC_FAILURE   2
0542 static void setup_pmc_cpu(void *flags)
0543 {
0544     int err;
0545     struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
0546 
0547     err = 0;
0548     switch (*((int *) flags)) {
0549     case PMC_INIT:
0550         memset(cpusf, 0, sizeof(*cpusf));
0551         err = qsi(&cpusf->qsi);
0552         if (err)
0553             break;
0554         cpusf->flags |= PMU_F_RESERVED;
0555         err = sf_disable();
0556         if (err)
0557             pr_err("Switching off the sampling facility failed "
0558                    "with rc %i\n", err);
0559         debug_sprintf_event(sfdbg, 5,
0560                     "%s: initialized: cpuhw %p\n", __func__,
0561                     cpusf);
0562         break;
0563     case PMC_RELEASE:
0564         cpusf->flags &= ~PMU_F_RESERVED;
0565         err = sf_disable();
0566         if (err) {
0567             pr_err("Switching off the sampling facility failed "
0568                    "with rc %i\n", err);
0569         } else
0570             deallocate_buffers(cpusf);
0571         debug_sprintf_event(sfdbg, 5,
0572                     "%s: released: cpuhw %p\n", __func__,
0573                     cpusf);
0574         break;
0575     }
0576     if (err)
0577         *((int *) flags) |= PMC_FAILURE;
0578 }
0579 
0580 static void release_pmc_hardware(void)
0581 {
0582     int flags = PMC_RELEASE;
0583 
0584     irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
0585     on_each_cpu(setup_pmc_cpu, &flags, 1);
0586 }
0587 
0588 static int reserve_pmc_hardware(void)
0589 {
0590     int flags = PMC_INIT;
0591 
0592     on_each_cpu(setup_pmc_cpu, &flags, 1);
0593     if (flags & PMC_FAILURE) {
0594         release_pmc_hardware();
0595         return -ENODEV;
0596     }
0597     irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
0598 
0599     return 0;
0600 }
0601 
0602 static void hw_perf_event_destroy(struct perf_event *event)
0603 {
0604     /* Release PMC if this is the last perf event */
0605     if (!atomic_add_unless(&num_events, -1, 1)) {
0606         mutex_lock(&pmc_reserve_mutex);
0607         if (atomic_dec_return(&num_events) == 0)
0608             release_pmc_hardware();
0609         mutex_unlock(&pmc_reserve_mutex);
0610     }
0611 }
0612 
0613 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
0614 {
0615     hwc->sample_period = period;
0616     hwc->last_period = hwc->sample_period;
0617     local64_set(&hwc->period_left, hwc->sample_period);
0618 }
0619 
0620 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
0621                    unsigned long rate)
0622 {
0623     return clamp_t(unsigned long, rate,
0624                si->min_sampl_rate, si->max_sampl_rate);
0625 }
0626 
0627 static u32 cpumsf_pid_type(struct perf_event *event,
0628                u32 pid, enum pid_type type)
0629 {
0630     struct task_struct *tsk;
0631 
0632     /* Idle process */
0633     if (!pid)
0634         goto out;
0635 
0636     tsk = find_task_by_pid_ns(pid, &init_pid_ns);
0637     pid = -1;
0638     if (tsk) {
0639         /*
0640          * Only top level events contain the pid namespace in which
0641          * they are created.
0642          */
0643         if (event->parent)
0644             event = event->parent;
0645         pid = __task_pid_nr_ns(tsk, type, event->ns);
0646         /*
0647          * See also 1d953111b648
0648          * "perf/core: Don't report zero PIDs for exiting tasks".
0649          */
0650         if (!pid && !pid_alive(tsk))
0651             pid = -1;
0652     }
0653 out:
0654     return pid;
0655 }
0656 
0657 static void cpumsf_output_event_pid(struct perf_event *event,
0658                     struct perf_sample_data *data,
0659                     struct pt_regs *regs)
0660 {
0661     u32 pid;
0662     struct perf_event_header header;
0663     struct perf_output_handle handle;
0664 
0665     /*
0666      * Obtain the PID from the basic-sampling data entry and
0667      * correct the data->tid_entry.pid value.
0668      */
0669     pid = data->tid_entry.pid;
0670 
0671     /* Protect callchain buffers, tasks */
0672     rcu_read_lock();
0673 
0674     perf_prepare_sample(&header, data, event, regs);
0675     if (perf_output_begin(&handle, data, event, header.size))
0676         goto out;
0677 
0678     /* Update the process ID (see also kernel/events/core.c) */
0679     data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
0680     data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
0681 
0682     perf_output_sample(&handle, &header, data, event);
0683     perf_output_end(&handle);
0684 out:
0685     rcu_read_unlock();
0686 }
0687 
0688 static unsigned long getrate(bool freq, unsigned long sample,
0689                  struct hws_qsi_info_block *si)
0690 {
0691     unsigned long rate;
0692 
0693     if (freq) {
0694         rate = freq_to_sample_rate(si, sample);
0695         rate = hw_limit_rate(si, rate);
0696     } else {
0697         /* The min/max sampling rates specifies the valid range
0698          * of sample periods.  If the specified sample period is
0699          * out of range, limit the period to the range boundary.
0700          */
0701         rate = hw_limit_rate(si, sample);
0702 
0703         /* The perf core maintains a maximum sample rate that is
0704          * configurable through the sysctl interface.  Ensure the
0705          * sampling rate does not exceed this value.  This also helps
0706          * to avoid throttling when pushing samples with
0707          * perf_event_overflow().
0708          */
0709         if (sample_rate_to_freq(si, rate) >
0710             sysctl_perf_event_sample_rate) {
0711             debug_sprintf_event(sfdbg, 1, "%s: "
0712                         "Sampling rate exceeds maximum "
0713                         "perf sample rate\n", __func__);
0714             rate = 0;
0715         }
0716     }
0717     return rate;
0718 }
0719 
0720 /* The sampling information (si) contains information about the
0721  * min/max sampling intervals and the CPU speed.  So calculate the
0722  * correct sampling interval and avoid the whole period adjust
0723  * feedback loop.
0724  *
0725  * Since the CPU Measurement sampling facility can not handle frequency
0726  * calculate the sampling interval when frequency is specified using
0727  * this formula:
0728  *  interval := cpu_speed * 1000000 / sample_freq
0729  *
0730  * Returns errno on bad input and zero on success with parameter interval
0731  * set to the correct sampling rate.
0732  *
0733  * Note: This function turns off freq bit to avoid calling function
0734  * perf_adjust_period(). This causes frequency adjustment in the common
0735  * code part which causes tremendous variations in the counter values.
0736  */
0737 static int __hw_perf_event_init_rate(struct perf_event *event,
0738                      struct hws_qsi_info_block *si)
0739 {
0740     struct perf_event_attr *attr = &event->attr;
0741     struct hw_perf_event *hwc = &event->hw;
0742     unsigned long rate;
0743 
0744     if (attr->freq) {
0745         if (!attr->sample_freq)
0746             return -EINVAL;
0747         rate = getrate(attr->freq, attr->sample_freq, si);
0748         attr->freq = 0;     /* Don't call  perf_adjust_period() */
0749         SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
0750     } else {
0751         rate = getrate(attr->freq, attr->sample_period, si);
0752         if (!rate)
0753             return -EINVAL;
0754     }
0755     attr->sample_period = rate;
0756     SAMPL_RATE(hwc) = rate;
0757     hw_init_period(hwc, SAMPL_RATE(hwc));
0758     debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
0759                 __func__, event->cpu, event->attr.sample_period,
0760                 event->attr.freq, SAMPLE_FREQ_MODE(hwc));
0761     return 0;
0762 }
0763 
0764 static int __hw_perf_event_init(struct perf_event *event)
0765 {
0766     struct cpu_hw_sf *cpuhw;
0767     struct hws_qsi_info_block si;
0768     struct perf_event_attr *attr = &event->attr;
0769     struct hw_perf_event *hwc = &event->hw;
0770     int cpu, err;
0771 
0772     /* Reserve CPU-measurement sampling facility */
0773     err = 0;
0774     if (!atomic_inc_not_zero(&num_events)) {
0775         mutex_lock(&pmc_reserve_mutex);
0776         if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
0777             err = -EBUSY;
0778         else
0779             atomic_inc(&num_events);
0780         mutex_unlock(&pmc_reserve_mutex);
0781     }
0782     event->destroy = hw_perf_event_destroy;
0783 
0784     if (err)
0785         goto out;
0786 
0787     /* Access per-CPU sampling information (query sampling info) */
0788     /*
0789      * The event->cpu value can be -1 to count on every CPU, for example,
0790      * when attaching to a task.  If this is specified, use the query
0791      * sampling info from the current CPU, otherwise use event->cpu to
0792      * retrieve the per-CPU information.
0793      * Later, cpuhw indicates whether to allocate sampling buffers for a
0794      * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
0795      */
0796     memset(&si, 0, sizeof(si));
0797     cpuhw = NULL;
0798     if (event->cpu == -1)
0799         qsi(&si);
0800     else {
0801         /* Event is pinned to a particular CPU, retrieve the per-CPU
0802          * sampling structure for accessing the CPU-specific QSI.
0803          */
0804         cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
0805         si = cpuhw->qsi;
0806     }
0807 
0808     /* Check sampling facility authorization and, if not authorized,
0809      * fall back to other PMUs.  It is safe to check any CPU because
0810      * the authorization is identical for all configured CPUs.
0811      */
0812     if (!si.as) {
0813         err = -ENOENT;
0814         goto out;
0815     }
0816 
0817     if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
0818         pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
0819         err = -EBUSY;
0820         goto out;
0821     }
0822 
0823     /* Always enable basic sampling */
0824     SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
0825 
0826     /* Check if diagnostic sampling is requested.  Deny if the required
0827      * sampling authorization is missing.
0828      */
0829     if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
0830         if (!si.ad) {
0831             err = -EPERM;
0832             goto out;
0833         }
0834         SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
0835     }
0836 
0837     /* Check and set other sampling flags */
0838     if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
0839         SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
0840 
0841     err =  __hw_perf_event_init_rate(event, &si);
0842     if (err)
0843         goto out;
0844 
0845     /* Initialize sample data overflow accounting */
0846     hwc->extra_reg.reg = REG_OVERFLOW;
0847     OVERFLOW_REG(hwc) = 0;
0848 
0849     /* Use AUX buffer. No need to allocate it by ourself */
0850     if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
0851         return 0;
0852 
0853     /* Allocate the per-CPU sampling buffer using the CPU information
0854      * from the event.  If the event is not pinned to a particular
0855      * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
0856      * buffers for each online CPU.
0857      */
0858     if (cpuhw)
0859         /* Event is pinned to a particular CPU */
0860         err = allocate_buffers(cpuhw, hwc);
0861     else {
0862         /* Event is not pinned, allocate sampling buffer on
0863          * each online CPU
0864          */
0865         for_each_online_cpu(cpu) {
0866             cpuhw = &per_cpu(cpu_hw_sf, cpu);
0867             err = allocate_buffers(cpuhw, hwc);
0868             if (err)
0869                 break;
0870         }
0871     }
0872 
0873     /* If PID/TID sampling is active, replace the default overflow
0874      * handler to extract and resolve the PIDs from the basic-sampling
0875      * data entries.
0876      */
0877     if (event->attr.sample_type & PERF_SAMPLE_TID)
0878         if (is_default_overflow_handler(event))
0879             event->overflow_handler = cpumsf_output_event_pid;
0880 out:
0881     return err;
0882 }
0883 
0884 static bool is_callchain_event(struct perf_event *event)
0885 {
0886     u64 sample_type = event->attr.sample_type;
0887 
0888     return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
0889                   PERF_SAMPLE_STACK_USER);
0890 }
0891 
0892 static int cpumsf_pmu_event_init(struct perf_event *event)
0893 {
0894     int err;
0895 
0896     /* No support for taken branch sampling */
0897     /* No support for callchain, stacks and registers */
0898     if (has_branch_stack(event) || is_callchain_event(event))
0899         return -EOPNOTSUPP;
0900 
0901     switch (event->attr.type) {
0902     case PERF_TYPE_RAW:
0903         if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
0904             (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
0905             return -ENOENT;
0906         break;
0907     case PERF_TYPE_HARDWARE:
0908         /* Support sampling of CPU cycles in addition to the
0909          * counter facility.  However, the counter facility
0910          * is more precise and, hence, restrict this PMU to
0911          * sampling events only.
0912          */
0913         if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
0914             return -ENOENT;
0915         if (!is_sampling_event(event))
0916             return -ENOENT;
0917         break;
0918     default:
0919         return -ENOENT;
0920     }
0921 
0922     /* Check online status of the CPU to which the event is pinned */
0923     if (event->cpu >= 0 && !cpu_online(event->cpu))
0924         return -ENODEV;
0925 
0926     /* Force reset of idle/hv excludes regardless of what the
0927      * user requested.
0928      */
0929     if (event->attr.exclude_hv)
0930         event->attr.exclude_hv = 0;
0931     if (event->attr.exclude_idle)
0932         event->attr.exclude_idle = 0;
0933 
0934     err = __hw_perf_event_init(event);
0935     if (unlikely(err))
0936         if (event->destroy)
0937             event->destroy(event);
0938     return err;
0939 }
0940 
0941 static void cpumsf_pmu_enable(struct pmu *pmu)
0942 {
0943     struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
0944     struct hw_perf_event *hwc;
0945     int err;
0946 
0947     if (cpuhw->flags & PMU_F_ENABLED)
0948         return;
0949 
0950     if (cpuhw->flags & PMU_F_ERR_MASK)
0951         return;
0952 
0953     /* Check whether to extent the sampling buffer.
0954      *
0955      * Two conditions trigger an increase of the sampling buffer for a
0956      * perf event:
0957      *    1. Postponed buffer allocations from the event initialization.
0958      *    2. Sampling overflows that contribute to pending allocations.
0959      *
0960      * Note that the extend_sampling_buffer() function disables the sampling
0961      * facility, but it can be fully re-enabled using sampling controls that
0962      * have been saved in cpumsf_pmu_disable().
0963      */
0964     if (cpuhw->event) {
0965         hwc = &cpuhw->event->hw;
0966         if (!(SAMPL_DIAG_MODE(hwc))) {
0967             /*
0968              * Account number of overflow-designated
0969              * buffer extents
0970              */
0971             sfb_account_overflows(cpuhw, hwc);
0972             extend_sampling_buffer(&cpuhw->sfb, hwc);
0973         }
0974         /* Rate may be adjusted with ioctl() */
0975         cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
0976     }
0977 
0978     /* (Re)enable the PMU and sampling facility */
0979     cpuhw->flags |= PMU_F_ENABLED;
0980     barrier();
0981 
0982     err = lsctl(&cpuhw->lsctl);
0983     if (err) {
0984         cpuhw->flags &= ~PMU_F_ENABLED;
0985         pr_err("Loading sampling controls failed: op %i err %i\n",
0986             1, err);
0987         return;
0988     }
0989 
0990     /* Load current program parameter */
0991     lpp(&S390_lowcore.lpp);
0992 
0993     debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
0994                 "interval %#lx tear %#lx dear %#lx\n", __func__,
0995                 cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
0996                 cpuhw->lsctl.cd, cpuhw->lsctl.interval,
0997                 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
0998 }
0999 
1000 static void cpumsf_pmu_disable(struct pmu *pmu)
1001 {
1002     struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1003     struct hws_lsctl_request_block inactive;
1004     struct hws_qsi_info_block si;
1005     int err;
1006 
1007     if (!(cpuhw->flags & PMU_F_ENABLED))
1008         return;
1009 
1010     if (cpuhw->flags & PMU_F_ERR_MASK)
1011         return;
1012 
1013     /* Switch off sampling activation control */
1014     inactive = cpuhw->lsctl;
1015     inactive.cs = 0;
1016     inactive.cd = 0;
1017 
1018     err = lsctl(&inactive);
1019     if (err) {
1020         pr_err("Loading sampling controls failed: op %i err %i\n",
1021             2, err);
1022         return;
1023     }
1024 
1025     /* Save state of TEAR and DEAR register contents */
1026     err = qsi(&si);
1027     if (!err) {
1028         /* TEAR/DEAR values are valid only if the sampling facility is
1029          * enabled.  Note that cpumsf_pmu_disable() might be called even
1030          * for a disabled sampling facility because cpumsf_pmu_enable()
1031          * controls the enable/disable state.
1032          */
1033         if (si.es) {
1034             cpuhw->lsctl.tear = si.tear;
1035             cpuhw->lsctl.dear = si.dear;
1036         }
1037     } else
1038         debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
1039                     __func__, err);
1040 
1041     cpuhw->flags &= ~PMU_F_ENABLED;
1042 }
1043 
1044 /* perf_exclude_event() - Filter event
1045  * @event:  The perf event
1046  * @regs:   pt_regs structure
1047  * @sde_regs:   Sample-data-entry (sde) regs structure
1048  *
1049  * Filter perf events according to their exclude specification.
1050  *
1051  * Return non-zero if the event shall be excluded.
1052  */
1053 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1054                   struct perf_sf_sde_regs *sde_regs)
1055 {
1056     if (event->attr.exclude_user && user_mode(regs))
1057         return 1;
1058     if (event->attr.exclude_kernel && !user_mode(regs))
1059         return 1;
1060     if (event->attr.exclude_guest && sde_regs->in_guest)
1061         return 1;
1062     if (event->attr.exclude_host && !sde_regs->in_guest)
1063         return 1;
1064     return 0;
1065 }
1066 
1067 /* perf_push_sample() - Push samples to perf
1068  * @event:  The perf event
1069  * @sample: Hardware sample data
1070  *
1071  * Use the hardware sample data to create perf event sample.  The sample
1072  * is the pushed to the event subsystem and the function checks for
1073  * possible event overflows.  If an event overflow occurs, the PMU is
1074  * stopped.
1075  *
1076  * Return non-zero if an event overflow occurred.
1077  */
1078 static int perf_push_sample(struct perf_event *event,
1079                 struct hws_basic_entry *basic)
1080 {
1081     int overflow;
1082     struct pt_regs regs;
1083     struct perf_sf_sde_regs *sde_regs;
1084     struct perf_sample_data data;
1085 
1086     /* Setup perf sample */
1087     perf_sample_data_init(&data, 0, event->hw.last_period);
1088 
1089     /* Setup pt_regs to look like an CPU-measurement external interrupt
1090      * using the Program Request Alert code.  The regs.int_parm_long
1091      * field which is unused contains additional sample-data-entry related
1092      * indicators.
1093      */
1094     memset(&regs, 0, sizeof(regs));
1095     regs.int_code = 0x1407;
1096     regs.int_parm = CPU_MF_INT_SF_PRA;
1097     sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
1098 
1099     psw_bits(regs.psw).ia   = basic->ia;
1100     psw_bits(regs.psw).dat  = basic->T;
1101     psw_bits(regs.psw).wait = basic->W;
1102     psw_bits(regs.psw).pstate = basic->P;
1103     psw_bits(regs.psw).as   = basic->AS;
1104 
1105     /*
1106      * Use the hardware provided configuration level to decide if the
1107      * sample belongs to a guest or host. If that is not available,
1108      * fall back to the following heuristics:
1109      * A non-zero guest program parameter always indicates a guest
1110      * sample. Some early samples or samples from guests without
1111      * lpp usage would be misaccounted to the host. We use the asn
1112      * value as an addon heuristic to detect most of these guest samples.
1113      * If the value differs from 0xffff (the host value), we assume to
1114      * be a KVM guest.
1115      */
1116     switch (basic->CL) {
1117     case 1: /* logical partition */
1118         sde_regs->in_guest = 0;
1119         break;
1120     case 2: /* virtual machine */
1121         sde_regs->in_guest = 1;
1122         break;
1123     default: /* old machine, use heuristics */
1124         if (basic->gpp || basic->prim_asn != 0xffff)
1125             sde_regs->in_guest = 1;
1126         break;
1127     }
1128 
1129     /*
1130      * Store the PID value from the sample-data-entry to be
1131      * processed and resolved by cpumsf_output_event_pid().
1132      */
1133     data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1134 
1135     overflow = 0;
1136     if (perf_exclude_event(event, &regs, sde_regs))
1137         goto out;
1138     if (perf_event_overflow(event, &data, &regs)) {
1139         overflow = 1;
1140         event->pmu->stop(event, 0);
1141     }
1142     perf_event_update_userpage(event);
1143 out:
1144     return overflow;
1145 }
1146 
1147 static void perf_event_count_update(struct perf_event *event, u64 count)
1148 {
1149     local64_add(count, &event->count);
1150 }
1151 
1152 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1153  * @event:  The perf event
1154  * @sdbt:   Sample-data-block table
1155  * @overflow:   Event overflow counter
1156  *
1157  * Walks through a sample-data-block and collects sampling data entries that are
1158  * then pushed to the perf event subsystem.  Depending on the sampling function,
1159  * there can be either basic-sampling or combined-sampling data entries.  A
1160  * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1161  * data entry.  The sampling function is determined by the flags in the perf
1162  * event hardware structure.  The function always works with a combined-sampling
1163  * data entry but ignores the the diagnostic portion if it is not available.
1164  *
1165  * Note that the implementation focuses on basic-sampling data entries and, if
1166  * such an entry is not valid, the entire combined-sampling data entry is
1167  * ignored.
1168  *
1169  * The overflow variables counts the number of samples that has been discarded
1170  * due to a perf event overflow.
1171  */
1172 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1173                    unsigned long long *overflow)
1174 {
1175     struct hws_trailer_entry *te;
1176     struct hws_basic_entry *sample;
1177 
1178     te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1179     sample = (struct hws_basic_entry *) *sdbt;
1180     while ((unsigned long *) sample < (unsigned long *) te) {
1181         /* Check for an empty sample */
1182         if (!sample->def || sample->LS)
1183             break;
1184 
1185         /* Update perf event period */
1186         perf_event_count_update(event, SAMPL_RATE(&event->hw));
1187 
1188         /* Check whether sample is valid */
1189         if (sample->def == 0x0001) {
1190             /* If an event overflow occurred, the PMU is stopped to
1191              * throttle event delivery.  Remaining sample data is
1192              * discarded.
1193              */
1194             if (!*overflow) {
1195                 /* Check whether sample is consistent */
1196                 if (sample->I == 0 && sample->W == 0) {
1197                     /* Deliver sample data to perf */
1198                     *overflow = perf_push_sample(event,
1199                                      sample);
1200                 }
1201             } else
1202                 /* Count discarded samples */
1203                 *overflow += 1;
1204         } else {
1205             debug_sprintf_event(sfdbg, 4,
1206                         "%s: Found unknown"
1207                         " sampling data entry: te->f %i"
1208                         " basic.def %#4x (%p)\n", __func__,
1209                         te->f, sample->def, sample);
1210             /* Sample slot is not yet written or other record.
1211              *
1212              * This condition can occur if the buffer was reused
1213              * from a combined basic- and diagnostic-sampling.
1214              * If only basic-sampling is then active, entries are
1215              * written into the larger diagnostic entries.
1216              * This is typically the case for sample-data-blocks
1217              * that are not full.  Stop processing if the first
1218              * invalid format was detected.
1219              */
1220             if (!te->f)
1221                 break;
1222         }
1223 
1224         /* Reset sample slot and advance to next sample */
1225         sample->def = 0;
1226         sample++;
1227     }
1228 }
1229 
1230 /* hw_perf_event_update() - Process sampling buffer
1231  * @event:  The perf event
1232  * @flush_all:  Flag to also flush partially filled sample-data-blocks
1233  *
1234  * Processes the sampling buffer and create perf event samples.
1235  * The sampling buffer position are retrieved and saved in the TEAR_REG
1236  * register of the specified perf event.
1237  *
1238  * Only full sample-data-blocks are processed.  Specify the flash_all flag
1239  * to also walk through partially filled sample-data-blocks.  It is ignored
1240  * if PERF_CPUM_SF_FULL_BLOCKS is set.  The PERF_CPUM_SF_FULL_BLOCKS flag
1241  * enforces the processing of full sample-data-blocks only (trailer entries
1242  * with the block-full-indicator bit set).
1243  */
1244 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1245 {
1246     struct hw_perf_event *hwc = &event->hw;
1247     struct hws_trailer_entry *te;
1248     unsigned long *sdbt;
1249     unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1250     int done;
1251 
1252     /*
1253      * AUX buffer is used when in diagnostic sampling mode.
1254      * No perf events/samples are created.
1255      */
1256     if (SAMPL_DIAG_MODE(&event->hw))
1257         return;
1258 
1259     if (flush_all && SDB_FULL_BLOCKS(hwc))
1260         flush_all = 0;
1261 
1262     sdbt = (unsigned long *) TEAR_REG(hwc);
1263     done = event_overflow = sampl_overflow = num_sdb = 0;
1264     while (!done) {
1265         /* Get the trailer entry of the sample-data-block */
1266         te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1267 
1268         /* Leave loop if no more work to do (block full indicator) */
1269         if (!te->f) {
1270             done = 1;
1271             if (!flush_all)
1272                 break;
1273         }
1274 
1275         /* Check the sample overflow count */
1276         if (te->overflow)
1277             /* Account sample overflows and, if a particular limit
1278              * is reached, extend the sampling buffer.
1279              * For details, see sfb_account_overflows().
1280              */
1281             sampl_overflow += te->overflow;
1282 
1283         /* Timestamps are valid for full sample-data-blocks only */
1284         debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx "
1285                     "overflow %llu timestamp %#llx\n",
1286                     __func__, (unsigned long)sdbt, te->overflow,
1287                     (te->f) ? trailer_timestamp(te) : 0ULL);
1288 
1289         /* Collect all samples from a single sample-data-block and
1290          * flag if an (perf) event overflow happened.  If so, the PMU
1291          * is stopped and remaining samples will be discarded.
1292          */
1293         hw_collect_samples(event, sdbt, &event_overflow);
1294         num_sdb++;
1295 
1296         /* Reset trailer (using compare-double-and-swap) */
1297         do {
1298             te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1299             te_flags |= SDB_TE_ALERT_REQ_MASK;
1300         } while (!cmpxchg_double(&te->flags, &te->overflow,
1301                      te->flags, te->overflow,
1302                      te_flags, 0ULL));
1303 
1304         /* Advance to next sample-data-block */
1305         sdbt++;
1306         if (is_link_entry(sdbt))
1307             sdbt = get_next_sdbt(sdbt);
1308 
1309         /* Update event hardware registers */
1310         TEAR_REG(hwc) = (unsigned long) sdbt;
1311 
1312         /* Stop processing sample-data if all samples of the current
1313          * sample-data-block were flushed even if it was not full.
1314          */
1315         if (flush_all && done)
1316             break;
1317     }
1318 
1319     /* Account sample overflows in the event hardware structure */
1320     if (sampl_overflow)
1321         OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1322                          sampl_overflow, 1 + num_sdb);
1323 
1324     /* Perf_event_overflow() and perf_event_account_interrupt() limit
1325      * the interrupt rate to an upper limit. Roughly 1000 samples per
1326      * task tick.
1327      * Hitting this limit results in a large number
1328      * of throttled REF_REPORT_THROTTLE entries and the samples
1329      * are dropped.
1330      * Slightly increase the interval to avoid hitting this limit.
1331      */
1332     if (event_overflow) {
1333         SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1334         debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
1335                     __func__,
1336                     DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
1337     }
1338 
1339     if (sampl_overflow || event_overflow)
1340         debug_sprintf_event(sfdbg, 4, "%s: "
1341                     "overflows: sample %llu event %llu"
1342                     " total %llu num_sdb %llu\n",
1343                     __func__, sampl_overflow, event_overflow,
1344                     OVERFLOW_REG(hwc), num_sdb);
1345 }
1346 
1347 #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
1348 #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
1349 #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
1350 #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
1351 
1352 /*
1353  * Get trailer entry by index of SDB.
1354  */
1355 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1356                          unsigned long index)
1357 {
1358     unsigned long sdb;
1359 
1360     index = AUX_SDB_INDEX(aux, index);
1361     sdb = aux->sdb_index[index];
1362     return (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1363 }
1364 
1365 /*
1366  * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1367  * disabled. Collect the full SDBs in AUX buffer which have not reached
1368  * the point of alert indicator. And ignore the SDBs which are not
1369  * full.
1370  *
1371  * 1. Scan SDBs to see how much data is there and consume them.
1372  * 2. Remove alert indicator in the buffer.
1373  */
1374 static void aux_output_end(struct perf_output_handle *handle)
1375 {
1376     unsigned long i, range_scan, idx;
1377     struct aux_buffer *aux;
1378     struct hws_trailer_entry *te;
1379 
1380     aux = perf_get_aux(handle);
1381     if (!aux)
1382         return;
1383 
1384     range_scan = AUX_SDB_NUM_ALERT(aux);
1385     for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1386         te = aux_sdb_trailer(aux, idx);
1387         if (!(te->flags & SDB_TE_BUFFER_FULL_MASK))
1388             break;
1389     }
1390     /* i is num of SDBs which are full */
1391     perf_aux_output_end(handle, i << PAGE_SHIFT);
1392 
1393     /* Remove alert indicators in the buffer */
1394     te = aux_sdb_trailer(aux, aux->alert_mark);
1395     te->flags &= ~SDB_TE_ALERT_REQ_MASK;
1396 
1397     debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
1398                 __func__, i, range_scan, aux->head);
1399 }
1400 
1401 /*
1402  * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1403  * is first added to the CPU or rescheduled again to the CPU. It is called
1404  * with pmu disabled.
1405  *
1406  * 1. Reset the trailer of SDBs to get ready for new data.
1407  * 2. Tell the hardware where to put the data by reset the SDBs buffer
1408  *    head(tear/dear).
1409  */
1410 static int aux_output_begin(struct perf_output_handle *handle,
1411                 struct aux_buffer *aux,
1412                 struct cpu_hw_sf *cpuhw)
1413 {
1414     unsigned long range;
1415     unsigned long i, range_scan, idx;
1416     unsigned long head, base, offset;
1417     struct hws_trailer_entry *te;
1418 
1419     if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
1420         return -EINVAL;
1421 
1422     aux->head = handle->head >> PAGE_SHIFT;
1423     range = (handle->size + 1) >> PAGE_SHIFT;
1424     if (range <= 1)
1425         return -ENOMEM;
1426 
1427     /*
1428      * SDBs between aux->head and aux->empty_mark are already ready
1429      * for new data. range_scan is num of SDBs not within them.
1430      */
1431     debug_sprintf_event(sfdbg, 6,
1432                 "%s: range %ld head %ld alert %ld empty %ld\n",
1433                 __func__, range, aux->head, aux->alert_mark,
1434                 aux->empty_mark);
1435     if (range > AUX_SDB_NUM_EMPTY(aux)) {
1436         range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1437         idx = aux->empty_mark + 1;
1438         for (i = 0; i < range_scan; i++, idx++) {
1439             te = aux_sdb_trailer(aux, idx);
1440             te->flags &= ~(SDB_TE_BUFFER_FULL_MASK |
1441                        SDB_TE_ALERT_REQ_MASK);
1442             te->overflow = 0;
1443         }
1444         /* Save the position of empty SDBs */
1445         aux->empty_mark = aux->head + range - 1;
1446     }
1447 
1448     /* Set alert indicator */
1449     aux->alert_mark = aux->head + range/2 - 1;
1450     te = aux_sdb_trailer(aux, aux->alert_mark);
1451     te->flags = te->flags | SDB_TE_ALERT_REQ_MASK;
1452 
1453     /* Reset hardware buffer head */
1454     head = AUX_SDB_INDEX(aux, aux->head);
1455     base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1456     offset = head % CPUM_SF_SDB_PER_TABLE;
1457     cpuhw->lsctl.tear = base + offset * sizeof(unsigned long);
1458     cpuhw->lsctl.dear = aux->sdb_index[head];
1459 
1460     debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
1461                 "index %ld tear %#lx dear %#lx\n", __func__,
1462                 aux->head, aux->alert_mark, aux->empty_mark,
1463                 head / CPUM_SF_SDB_PER_TABLE,
1464                 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1465 
1466     return 0;
1467 }
1468 
1469 /*
1470  * Set alert indicator on SDB at index @alert_index while sampler is running.
1471  *
1472  * Return true if successfully.
1473  * Return false if full indicator is already set by hardware sampler.
1474  */
1475 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1476               unsigned long long *overflow)
1477 {
1478     unsigned long long orig_overflow, orig_flags, new_flags;
1479     struct hws_trailer_entry *te;
1480 
1481     te = aux_sdb_trailer(aux, alert_index);
1482     do {
1483         orig_flags = te->flags;
1484         *overflow = orig_overflow = te->overflow;
1485         if (orig_flags & SDB_TE_BUFFER_FULL_MASK) {
1486             /*
1487              * SDB is already set by hardware.
1488              * Abort and try to set somewhere
1489              * behind.
1490              */
1491             return false;
1492         }
1493         new_flags = orig_flags | SDB_TE_ALERT_REQ_MASK;
1494     } while (!cmpxchg_double(&te->flags, &te->overflow,
1495                  orig_flags, orig_overflow,
1496                  new_flags, 0ULL));
1497     return true;
1498 }
1499 
1500 /*
1501  * aux_reset_buffer() - Scan and setup SDBs for new samples
1502  * @aux:    The AUX buffer to set
1503  * @range:  The range of SDBs to scan started from aux->head
1504  * @overflow:   Set to overflow count
1505  *
1506  * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1507  * marked as empty, check if it is already set full by the hardware sampler.
1508  * If yes, that means new data is already there before we can set an alert
1509  * indicator. Caller should try to set alert indicator to some position behind.
1510  *
1511  * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1512  * previously and have already been consumed by user space. Reset these SDBs
1513  * (clear full indicator and alert indicator) for new data.
1514  * If aux->alert_mark fall in this area, just set it. Overflow count is
1515  * recorded while scanning.
1516  *
1517  * SDBs between aux->head and aux->empty_mark are already reset at last time.
1518  * and ready for new samples. So scanning on this area could be skipped.
1519  *
1520  * Return true if alert indicator is set successfully and false if not.
1521  */
1522 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1523                  unsigned long long *overflow)
1524 {
1525     unsigned long long orig_overflow, orig_flags, new_flags;
1526     unsigned long i, range_scan, idx, idx_old;
1527     struct hws_trailer_entry *te;
1528 
1529     debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
1530                 "empty %ld\n", __func__, range, aux->head,
1531                 aux->alert_mark, aux->empty_mark);
1532     if (range <= AUX_SDB_NUM_EMPTY(aux))
1533         /*
1534          * No need to scan. All SDBs in range are marked as empty.
1535          * Just set alert indicator. Should check race with hardware
1536          * sampler.
1537          */
1538         return aux_set_alert(aux, aux->alert_mark, overflow);
1539 
1540     if (aux->alert_mark <= aux->empty_mark)
1541         /*
1542          * Set alert indicator on empty SDB. Should check race
1543          * with hardware sampler.
1544          */
1545         if (!aux_set_alert(aux, aux->alert_mark, overflow))
1546             return false;
1547 
1548     /*
1549      * Scan the SDBs to clear full and alert indicator used previously.
1550      * Start scanning from one SDB behind empty_mark. If the new alert
1551      * indicator fall into this range, set it.
1552      */
1553     range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1554     idx_old = idx = aux->empty_mark + 1;
1555     for (i = 0; i < range_scan; i++, idx++) {
1556         te = aux_sdb_trailer(aux, idx);
1557         do {
1558             orig_flags = te->flags;
1559             orig_overflow = te->overflow;
1560             new_flags = orig_flags & ~SDB_TE_BUFFER_FULL_MASK;
1561             if (idx == aux->alert_mark)
1562                 new_flags |= SDB_TE_ALERT_REQ_MASK;
1563             else
1564                 new_flags &= ~SDB_TE_ALERT_REQ_MASK;
1565         } while (!cmpxchg_double(&te->flags, &te->overflow,
1566                      orig_flags, orig_overflow,
1567                      new_flags, 0ULL));
1568         *overflow += orig_overflow;
1569     }
1570 
1571     /* Update empty_mark to new position */
1572     aux->empty_mark = aux->head + range - 1;
1573 
1574     debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
1575                 "empty %ld\n", __func__, range_scan, idx_old,
1576                 idx - 1, aux->empty_mark);
1577     return true;
1578 }
1579 
1580 /*
1581  * Measurement alert handler for diagnostic mode sampling.
1582  */
1583 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1584 {
1585     struct aux_buffer *aux;
1586     int done = 0;
1587     unsigned long range = 0, size;
1588     unsigned long long overflow = 0;
1589     struct perf_output_handle *handle = &cpuhw->handle;
1590     unsigned long num_sdb;
1591 
1592     aux = perf_get_aux(handle);
1593     if (WARN_ON_ONCE(!aux))
1594         return;
1595 
1596     /* Inform user space new data arrived */
1597     size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1598     debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
1599                 size >> PAGE_SHIFT);
1600     perf_aux_output_end(handle, size);
1601 
1602     num_sdb = aux->sfb.num_sdb;
1603     while (!done) {
1604         /* Get an output handle */
1605         aux = perf_aux_output_begin(handle, cpuhw->event);
1606         if (handle->size == 0) {
1607             pr_err("The AUX buffer with %lu pages for the "
1608                    "diagnostic-sampling mode is full\n",
1609                 num_sdb);
1610             debug_sprintf_event(sfdbg, 1,
1611                         "%s: AUX buffer used up\n",
1612                         __func__);
1613             break;
1614         }
1615         if (WARN_ON_ONCE(!aux))
1616             return;
1617 
1618         /* Update head and alert_mark to new position */
1619         aux->head = handle->head >> PAGE_SHIFT;
1620         range = (handle->size + 1) >> PAGE_SHIFT;
1621         if (range == 1)
1622             aux->alert_mark = aux->head;
1623         else
1624             aux->alert_mark = aux->head + range/2 - 1;
1625 
1626         if (aux_reset_buffer(aux, range, &overflow)) {
1627             if (!overflow) {
1628                 done = 1;
1629                 break;
1630             }
1631             size = range << PAGE_SHIFT;
1632             perf_aux_output_end(&cpuhw->handle, size);
1633             pr_err("Sample data caused the AUX buffer with %lu "
1634                    "pages to overflow\n", aux->sfb.num_sdb);
1635             debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
1636                         "overflow %lld\n", __func__,
1637                         aux->head, range, overflow);
1638         } else {
1639             size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1640             perf_aux_output_end(&cpuhw->handle, size);
1641             debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1642                         "already full, try another\n",
1643                         __func__,
1644                         aux->head, aux->alert_mark);
1645         }
1646     }
1647 
1648     if (done)
1649         debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1650                     "empty %ld\n", __func__, aux->head,
1651                     aux->alert_mark, aux->empty_mark);
1652 }
1653 
1654 /*
1655  * Callback when freeing AUX buffers.
1656  */
1657 static void aux_buffer_free(void *data)
1658 {
1659     struct aux_buffer *aux = data;
1660     unsigned long i, num_sdbt;
1661 
1662     if (!aux)
1663         return;
1664 
1665     /* Free SDBT. SDB is freed by the caller */
1666     num_sdbt = aux->sfb.num_sdbt;
1667     for (i = 0; i < num_sdbt; i++)
1668         free_page(aux->sdbt_index[i]);
1669 
1670     kfree(aux->sdbt_index);
1671     kfree(aux->sdb_index);
1672     kfree(aux);
1673 
1674     debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
1675 }
1676 
1677 static void aux_sdb_init(unsigned long sdb)
1678 {
1679     struct hws_trailer_entry *te;
1680 
1681     te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1682 
1683     /* Save clock base */
1684     te->clock_base = 1;
1685     te->progusage2 = tod_clock_base.tod;
1686 }
1687 
1688 /*
1689  * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1690  * @event:  Event the buffer is setup for, event->cpu == -1 means current
1691  * @pages:  Array of pointers to buffer pages passed from perf core
1692  * @nr_pages:   Total pages
1693  * @snapshot:   Flag for snapshot mode
1694  *
1695  * This is the callback when setup an event using AUX buffer. Perf tool can
1696  * trigger this by an additional mmap() call on the event. Unlike the buffer
1697  * for basic samples, AUX buffer belongs to the event. It is scheduled with
1698  * the task among online cpus when it is a per-thread event.
1699  *
1700  * Return the private AUX buffer structure if success or NULL if fails.
1701  */
1702 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1703                   int nr_pages, bool snapshot)
1704 {
1705     struct sf_buffer *sfb;
1706     struct aux_buffer *aux;
1707     unsigned long *new, *tail;
1708     int i, n_sdbt;
1709 
1710     if (!nr_pages || !pages)
1711         return NULL;
1712 
1713     if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1714         pr_err("AUX buffer size (%i pages) is larger than the "
1715                "maximum sampling buffer limit\n",
1716                nr_pages);
1717         return NULL;
1718     } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1719         pr_err("AUX buffer size (%i pages) is less than the "
1720                "minimum sampling buffer limit\n",
1721                nr_pages);
1722         return NULL;
1723     }
1724 
1725     /* Allocate aux_buffer struct for the event */
1726     aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1727     if (!aux)
1728         goto no_aux;
1729     sfb = &aux->sfb;
1730 
1731     /* Allocate sdbt_index for fast reference */
1732     n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1733     aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1734     if (!aux->sdbt_index)
1735         goto no_sdbt_index;
1736 
1737     /* Allocate sdb_index for fast reference */
1738     aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1739     if (!aux->sdb_index)
1740         goto no_sdb_index;
1741 
1742     /* Allocate the first SDBT */
1743     sfb->num_sdbt = 0;
1744     sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1745     if (!sfb->sdbt)
1746         goto no_sdbt;
1747     aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1748     tail = sfb->tail = sfb->sdbt;
1749 
1750     /*
1751      * Link the provided pages of AUX buffer to SDBT.
1752      * Allocate SDBT if needed.
1753      */
1754     for (i = 0; i < nr_pages; i++, tail++) {
1755         if (require_table_link(tail)) {
1756             new = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1757             if (!new)
1758                 goto no_sdbt;
1759             aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1760             /* Link current page to tail of chain */
1761             *tail = (unsigned long)(void *) new + 1;
1762             tail = new;
1763         }
1764         /* Tail is the entry in a SDBT */
1765         *tail = (unsigned long)pages[i];
1766         aux->sdb_index[i] = (unsigned long)pages[i];
1767         aux_sdb_init((unsigned long)pages[i]);
1768     }
1769     sfb->num_sdb = nr_pages;
1770 
1771     /* Link the last entry in the SDBT to the first SDBT */
1772     *tail = (unsigned long) sfb->sdbt + 1;
1773     sfb->tail = tail;
1774 
1775     /*
1776      * Initial all SDBs are zeroed. Mark it as empty.
1777      * So there is no need to clear the full indicator
1778      * when this event is first added.
1779      */
1780     aux->empty_mark = sfb->num_sdb - 1;
1781 
1782     debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
1783                 sfb->num_sdbt, sfb->num_sdb);
1784 
1785     return aux;
1786 
1787 no_sdbt:
1788     /* SDBs (AUX buffer pages) are freed by caller */
1789     for (i = 0; i < sfb->num_sdbt; i++)
1790         free_page(aux->sdbt_index[i]);
1791     kfree(aux->sdb_index);
1792 no_sdb_index:
1793     kfree(aux->sdbt_index);
1794 no_sdbt_index:
1795     kfree(aux);
1796 no_aux:
1797     return NULL;
1798 }
1799 
1800 static void cpumsf_pmu_read(struct perf_event *event)
1801 {
1802     /* Nothing to do ... updates are interrupt-driven */
1803 }
1804 
1805 /* Check if the new sampling period/freqeuncy is appropriate.
1806  *
1807  * Return non-zero on error and zero on passed checks.
1808  */
1809 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1810 {
1811     struct hws_qsi_info_block si;
1812     unsigned long rate;
1813     bool do_freq;
1814 
1815     memset(&si, 0, sizeof(si));
1816     if (event->cpu == -1) {
1817         if (qsi(&si))
1818             return -ENODEV;
1819     } else {
1820         /* Event is pinned to a particular CPU, retrieve the per-CPU
1821          * sampling structure for accessing the CPU-specific QSI.
1822          */
1823         struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1824 
1825         si = cpuhw->qsi;
1826     }
1827 
1828     do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
1829     rate = getrate(do_freq, value, &si);
1830     if (!rate)
1831         return -EINVAL;
1832 
1833     event->attr.sample_period = rate;
1834     SAMPL_RATE(&event->hw) = rate;
1835     hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1836     debug_sprintf_event(sfdbg, 4, "%s:"
1837                 " cpu %d value %#llx period %#llx freq %d\n",
1838                 __func__, event->cpu, value,
1839                 event->attr.sample_period, do_freq);
1840     return 0;
1841 }
1842 
1843 /* Activate sampling control.
1844  * Next call of pmu_enable() starts sampling.
1845  */
1846 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1847 {
1848     struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1849 
1850     if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1851         return;
1852 
1853     if (flags & PERF_EF_RELOAD)
1854         WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1855 
1856     perf_pmu_disable(event->pmu);
1857     event->hw.state = 0;
1858     cpuhw->lsctl.cs = 1;
1859     if (SAMPL_DIAG_MODE(&event->hw))
1860         cpuhw->lsctl.cd = 1;
1861     perf_pmu_enable(event->pmu);
1862 }
1863 
1864 /* Deactivate sampling control.
1865  * Next call of pmu_enable() stops sampling.
1866  */
1867 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1868 {
1869     struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1870 
1871     if (event->hw.state & PERF_HES_STOPPED)
1872         return;
1873 
1874     perf_pmu_disable(event->pmu);
1875     cpuhw->lsctl.cs = 0;
1876     cpuhw->lsctl.cd = 0;
1877     event->hw.state |= PERF_HES_STOPPED;
1878 
1879     if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1880         hw_perf_event_update(event, 1);
1881         event->hw.state |= PERF_HES_UPTODATE;
1882     }
1883     perf_pmu_enable(event->pmu);
1884 }
1885 
1886 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1887 {
1888     struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1889     struct aux_buffer *aux;
1890     int err;
1891 
1892     if (cpuhw->flags & PMU_F_IN_USE)
1893         return -EAGAIN;
1894 
1895     if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1896         return -EINVAL;
1897 
1898     err = 0;
1899     perf_pmu_disable(event->pmu);
1900 
1901     event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1902 
1903     /* Set up sampling controls.  Always program the sampling register
1904      * using the SDB-table start.  Reset TEAR_REG event hardware register
1905      * that is used by hw_perf_event_update() to store the sampling buffer
1906      * position after samples have been flushed.
1907      */
1908     cpuhw->lsctl.s = 0;
1909     cpuhw->lsctl.h = 1;
1910     cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1911     if (!SAMPL_DIAG_MODE(&event->hw)) {
1912         cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1913         cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1914         TEAR_REG(&event->hw) = (unsigned long) cpuhw->sfb.sdbt;
1915     }
1916 
1917     /* Ensure sampling functions are in the disabled state.  If disabled,
1918      * switch on sampling enable control. */
1919     if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1920         err = -EAGAIN;
1921         goto out;
1922     }
1923     if (SAMPL_DIAG_MODE(&event->hw)) {
1924         aux = perf_aux_output_begin(&cpuhw->handle, event);
1925         if (!aux) {
1926             err = -EINVAL;
1927             goto out;
1928         }
1929         err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1930         if (err)
1931             goto out;
1932         cpuhw->lsctl.ed = 1;
1933     }
1934     cpuhw->lsctl.es = 1;
1935 
1936     /* Set in_use flag and store event */
1937     cpuhw->event = event;
1938     cpuhw->flags |= PMU_F_IN_USE;
1939 
1940     if (flags & PERF_EF_START)
1941         cpumsf_pmu_start(event, PERF_EF_RELOAD);
1942 out:
1943     perf_event_update_userpage(event);
1944     perf_pmu_enable(event->pmu);
1945     return err;
1946 }
1947 
1948 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1949 {
1950     struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1951 
1952     perf_pmu_disable(event->pmu);
1953     cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1954 
1955     cpuhw->lsctl.es = 0;
1956     cpuhw->lsctl.ed = 0;
1957     cpuhw->flags &= ~PMU_F_IN_USE;
1958     cpuhw->event = NULL;
1959 
1960     if (SAMPL_DIAG_MODE(&event->hw))
1961         aux_output_end(&cpuhw->handle);
1962     perf_event_update_userpage(event);
1963     perf_pmu_enable(event->pmu);
1964 }
1965 
1966 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1967 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1968 
1969 /* Attribute list for CPU_SF.
1970  *
1971  * The availablitiy depends on the CPU_MF sampling facility authorization
1972  * for basic + diagnositic samples. This is determined at initialization
1973  * time by the sampling facility device driver.
1974  * If the authorization for basic samples is turned off, it should be
1975  * also turned off for diagnostic sampling.
1976  *
1977  * During initialization of the device driver, check the authorization
1978  * level for diagnostic sampling and installs the attribute
1979  * file for diagnostic sampling if necessary.
1980  *
1981  * For now install a placeholder to reference all possible attributes:
1982  * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1983  * Add another entry for the final NULL pointer.
1984  */
1985 enum {
1986     SF_CYCLES_BASIC_ATTR_IDX = 0,
1987     SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1988     SF_CYCLES_ATTR_MAX
1989 };
1990 
1991 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1992     [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1993 };
1994 
1995 PMU_FORMAT_ATTR(event, "config:0-63");
1996 
1997 static struct attribute *cpumsf_pmu_format_attr[] = {
1998     &format_attr_event.attr,
1999     NULL,
2000 };
2001 
2002 static struct attribute_group cpumsf_pmu_events_group = {
2003     .name = "events",
2004     .attrs = cpumsf_pmu_events_attr,
2005 };
2006 
2007 static struct attribute_group cpumsf_pmu_format_group = {
2008     .name = "format",
2009     .attrs = cpumsf_pmu_format_attr,
2010 };
2011 
2012 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
2013     &cpumsf_pmu_events_group,
2014     &cpumsf_pmu_format_group,
2015     NULL,
2016 };
2017 
2018 static struct pmu cpumf_sampling = {
2019     .pmu_enable   = cpumsf_pmu_enable,
2020     .pmu_disable  = cpumsf_pmu_disable,
2021 
2022     .event_init   = cpumsf_pmu_event_init,
2023     .add          = cpumsf_pmu_add,
2024     .del          = cpumsf_pmu_del,
2025 
2026     .start        = cpumsf_pmu_start,
2027     .stop         = cpumsf_pmu_stop,
2028     .read         = cpumsf_pmu_read,
2029 
2030     .attr_groups  = cpumsf_pmu_attr_groups,
2031 
2032     .setup_aux    = aux_buffer_setup,
2033     .free_aux     = aux_buffer_free,
2034 
2035     .check_period = cpumsf_pmu_check_period,
2036 };
2037 
2038 static void cpumf_measurement_alert(struct ext_code ext_code,
2039                     unsigned int alert, unsigned long unused)
2040 {
2041     struct cpu_hw_sf *cpuhw;
2042 
2043     if (!(alert & CPU_MF_INT_SF_MASK))
2044         return;
2045     inc_irq_stat(IRQEXT_CMS);
2046     cpuhw = this_cpu_ptr(&cpu_hw_sf);
2047 
2048     /* Measurement alerts are shared and might happen when the PMU
2049      * is not reserved.  Ignore these alerts in this case. */
2050     if (!(cpuhw->flags & PMU_F_RESERVED))
2051         return;
2052 
2053     /* The processing below must take care of multiple alert events that
2054      * might be indicated concurrently. */
2055 
2056     /* Program alert request */
2057     if (alert & CPU_MF_INT_SF_PRA) {
2058         if (cpuhw->flags & PMU_F_IN_USE)
2059             if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
2060                 hw_collect_aux(cpuhw);
2061             else
2062                 hw_perf_event_update(cpuhw->event, 0);
2063         else
2064             WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
2065     }
2066 
2067     /* Report measurement alerts only for non-PRA codes */
2068     if (alert != CPU_MF_INT_SF_PRA)
2069         debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
2070                     alert);
2071 
2072     /* Sampling authorization change request */
2073     if (alert & CPU_MF_INT_SF_SACA)
2074         qsi(&cpuhw->qsi);
2075 
2076     /* Loss of sample data due to high-priority machine activities */
2077     if (alert & CPU_MF_INT_SF_LSDA) {
2078         pr_err("Sample data was lost\n");
2079         cpuhw->flags |= PMU_F_ERR_LSDA;
2080         sf_disable();
2081     }
2082 
2083     /* Invalid sampling buffer entry */
2084     if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
2085         pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2086                alert);
2087         cpuhw->flags |= PMU_F_ERR_IBE;
2088         sf_disable();
2089     }
2090 }
2091 
2092 static int cpusf_pmu_setup(unsigned int cpu, int flags)
2093 {
2094     /* Ignore the notification if no events are scheduled on the PMU.
2095      * This might be racy...
2096      */
2097     if (!atomic_read(&num_events))
2098         return 0;
2099 
2100     local_irq_disable();
2101     setup_pmc_cpu(&flags);
2102     local_irq_enable();
2103     return 0;
2104 }
2105 
2106 static int s390_pmu_sf_online_cpu(unsigned int cpu)
2107 {
2108     return cpusf_pmu_setup(cpu, PMC_INIT);
2109 }
2110 
2111 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2112 {
2113     return cpusf_pmu_setup(cpu, PMC_RELEASE);
2114 }
2115 
2116 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2117 {
2118     if (!cpum_sf_avail())
2119         return -ENODEV;
2120     return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2121 }
2122 
2123 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2124 {
2125     int rc;
2126     unsigned long min, max;
2127 
2128     if (!cpum_sf_avail())
2129         return -ENODEV;
2130     if (!val || !strlen(val))
2131         return -EINVAL;
2132 
2133     /* Valid parameter values: "min,max" or "max" */
2134     min = CPUM_SF_MIN_SDB;
2135     max = CPUM_SF_MAX_SDB;
2136     if (strchr(val, ','))
2137         rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2138     else
2139         rc = kstrtoul(val, 10, &max);
2140 
2141     if (min < 2 || min >= max || max > get_num_physpages())
2142         rc = -EINVAL;
2143     if (rc)
2144         return rc;
2145 
2146     sfb_set_limits(min, max);
2147     pr_info("The sampling buffer limits have changed to: "
2148         "min %lu max %lu (diag %lu)\n",
2149         CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2150     return 0;
2151 }
2152 
2153 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2154 static const struct kernel_param_ops param_ops_sfb_size = {
2155     .set = param_set_sfb_size,
2156     .get = param_get_sfb_size,
2157 };
2158 
2159 #define RS_INIT_FAILURE_QSI   0x0001
2160 #define RS_INIT_FAILURE_BSDES     0x0002
2161 #define RS_INIT_FAILURE_ALRT      0x0003
2162 #define RS_INIT_FAILURE_PERF      0x0004
2163 static void __init pr_cpumsf_err(unsigned int reason)
2164 {
2165     pr_err("Sampling facility support for perf is not available: "
2166            "reason %#x\n", reason);
2167 }
2168 
2169 static int __init init_cpum_sampling_pmu(void)
2170 {
2171     struct hws_qsi_info_block si;
2172     int err;
2173 
2174     if (!cpum_sf_avail())
2175         return -ENODEV;
2176 
2177     memset(&si, 0, sizeof(si));
2178     if (qsi(&si)) {
2179         pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2180         return -ENODEV;
2181     }
2182 
2183     if (!si.as && !si.ad)
2184         return -ENODEV;
2185 
2186     if (si.bsdes != sizeof(struct hws_basic_entry)) {
2187         pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2188         return -EINVAL;
2189     }
2190 
2191     if (si.ad) {
2192         sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2193         /* Sampling of diagnostic data authorized,
2194          * install event into attribute list of PMU device.
2195          */
2196         cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2197             CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2198     }
2199 
2200     sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2201     if (!sfdbg) {
2202         pr_err("Registering for s390dbf failed\n");
2203         return -ENOMEM;
2204     }
2205     debug_register_view(sfdbg, &debug_sprintf_view);
2206 
2207     err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2208                     cpumf_measurement_alert);
2209     if (err) {
2210         pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2211         debug_unregister(sfdbg);
2212         goto out;
2213     }
2214 
2215     err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2216     if (err) {
2217         pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2218         unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2219                     cpumf_measurement_alert);
2220         debug_unregister(sfdbg);
2221         goto out;
2222     }
2223 
2224     cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2225               s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2226 out:
2227     return err;
2228 }
2229 
2230 arch_initcall(init_cpum_sampling_pmu);
2231 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);