Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * In-Memory Collection (IMC) Performance Monitor counter support.
0004  *
0005  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
0006  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
0007  *           (C) 2017 Hemant K Shaw, IBM Corporation.
0008  */
0009 #include <linux/of.h>
0010 #include <linux/perf_event.h>
0011 #include <linux/slab.h>
0012 #include <asm/opal.h>
0013 #include <asm/imc-pmu.h>
0014 #include <asm/cputhreads.h>
0015 #include <asm/smp.h>
0016 #include <linux/string.h>
0017 
0018 /* Nest IMC data structures and variables */
0019 
0020 /*
0021  * Used to avoid races in counting the nest-pmu units during hotplug
0022  * register and unregister
0023  */
0024 static DEFINE_MUTEX(nest_init_lock);
0025 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
0026 static struct imc_pmu **per_nest_pmu_arr;
0027 static cpumask_t nest_imc_cpumask;
0028 static struct imc_pmu_ref *nest_imc_refc;
0029 static int nest_pmus;
0030 
0031 /* Core IMC data structures and variables */
0032 
0033 static cpumask_t core_imc_cpumask;
0034 static struct imc_pmu_ref *core_imc_refc;
0035 static struct imc_pmu *core_imc_pmu;
0036 
0037 /* Thread IMC data structures and variables */
0038 
0039 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
0040 static struct imc_pmu *thread_imc_pmu;
0041 static int thread_imc_mem_size;
0042 
0043 /* Trace IMC data structures */
0044 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
0045 static struct imc_pmu_ref *trace_imc_refc;
0046 static int trace_imc_mem_size;
0047 
0048 /*
0049  * Global data structure used to avoid races between thread,
0050  * core and trace-imc
0051  */
0052 static struct imc_pmu_ref imc_global_refc = {
0053     .lock = __MUTEX_INITIALIZER(imc_global_refc.lock),
0054     .id = 0,
0055     .refc = 0,
0056 };
0057 
0058 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
0059 {
0060     return container_of(event->pmu, struct imc_pmu, pmu);
0061 }
0062 
0063 PMU_FORMAT_ATTR(event, "config:0-61");
0064 PMU_FORMAT_ATTR(offset, "config:0-31");
0065 PMU_FORMAT_ATTR(rvalue, "config:32");
0066 PMU_FORMAT_ATTR(mode, "config:33-40");
0067 static struct attribute *imc_format_attrs[] = {
0068     &format_attr_event.attr,
0069     &format_attr_offset.attr,
0070     &format_attr_rvalue.attr,
0071     &format_attr_mode.attr,
0072     NULL,
0073 };
0074 
0075 static const struct attribute_group imc_format_group = {
0076     .name = "format",
0077     .attrs = imc_format_attrs,
0078 };
0079 
0080 /* Format attribute for imc trace-mode */
0081 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
0082 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
0083 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
0084 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
0085 static struct attribute *trace_imc_format_attrs[] = {
0086     &format_attr_event.attr,
0087     &format_attr_cpmc_reserved.attr,
0088     &format_attr_cpmc_event.attr,
0089     &format_attr_cpmc_samplesel.attr,
0090     &format_attr_cpmc_load.attr,
0091     NULL,
0092 };
0093 
0094 static const struct attribute_group trace_imc_format_group = {
0095 .name = "format",
0096 .attrs = trace_imc_format_attrs,
0097 };
0098 
0099 /* Get the cpumask printed to a buffer "buf" */
0100 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
0101                     struct device_attribute *attr,
0102                     char *buf)
0103 {
0104     struct pmu *pmu = dev_get_drvdata(dev);
0105     struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
0106     cpumask_t *active_mask;
0107 
0108     switch(imc_pmu->domain){
0109     case IMC_DOMAIN_NEST:
0110         active_mask = &nest_imc_cpumask;
0111         break;
0112     case IMC_DOMAIN_CORE:
0113         active_mask = &core_imc_cpumask;
0114         break;
0115     default:
0116         return 0;
0117     }
0118 
0119     return cpumap_print_to_pagebuf(true, buf, active_mask);
0120 }
0121 
0122 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
0123 
0124 static struct attribute *imc_pmu_cpumask_attrs[] = {
0125     &dev_attr_cpumask.attr,
0126     NULL,
0127 };
0128 
0129 static const struct attribute_group imc_pmu_cpumask_attr_group = {
0130     .attrs = imc_pmu_cpumask_attrs,
0131 };
0132 
0133 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
0134 static struct attribute *device_str_attr_create(const char *name, const char *str)
0135 {
0136     struct perf_pmu_events_attr *attr;
0137 
0138     attr = kzalloc(sizeof(*attr), GFP_KERNEL);
0139     if (!attr)
0140         return NULL;
0141     sysfs_attr_init(&attr->attr.attr);
0142 
0143     attr->event_str = str;
0144     attr->attr.attr.name = name;
0145     attr->attr.attr.mode = 0444;
0146     attr->attr.show = perf_event_sysfs_show;
0147 
0148     return &attr->attr.attr;
0149 }
0150 
0151 static int imc_parse_event(struct device_node *np, const char *scale,
0152                   const char *unit, const char *prefix,
0153                   u32 base, struct imc_events *event)
0154 {
0155     const char *s;
0156     u32 reg;
0157 
0158     if (of_property_read_u32(np, "reg", &reg))
0159         goto error;
0160     /* Add the base_reg value to the "reg" */
0161     event->value = base + reg;
0162 
0163     if (of_property_read_string(np, "event-name", &s))
0164         goto error;
0165 
0166     event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
0167     if (!event->name)
0168         goto error;
0169 
0170     if (of_property_read_string(np, "scale", &s))
0171         s = scale;
0172 
0173     if (s) {
0174         event->scale = kstrdup(s, GFP_KERNEL);
0175         if (!event->scale)
0176             goto error;
0177     }
0178 
0179     if (of_property_read_string(np, "unit", &s))
0180         s = unit;
0181 
0182     if (s) {
0183         event->unit = kstrdup(s, GFP_KERNEL);
0184         if (!event->unit)
0185             goto error;
0186     }
0187 
0188     return 0;
0189 error:
0190     kfree(event->unit);
0191     kfree(event->scale);
0192     kfree(event->name);
0193     return -EINVAL;
0194 }
0195 
0196 /*
0197  * imc_free_events: Function to cleanup the events list, having
0198  *          "nr_entries".
0199  */
0200 static void imc_free_events(struct imc_events *events, int nr_entries)
0201 {
0202     int i;
0203 
0204     /* Nothing to clean, return */
0205     if (!events)
0206         return;
0207     for (i = 0; i < nr_entries; i++) {
0208         kfree(events[i].unit);
0209         kfree(events[i].scale);
0210         kfree(events[i].name);
0211     }
0212 
0213     kfree(events);
0214 }
0215 
0216 /*
0217  * update_events_in_group: Update the "events" information in an attr_group
0218  *                         and assign the attr_group to the pmu "pmu".
0219  */
0220 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
0221 {
0222     struct attribute_group *attr_group;
0223     struct attribute **attrs, *dev_str;
0224     struct device_node *np, *pmu_events;
0225     u32 handle, base_reg;
0226     int i = 0, j = 0, ct, ret;
0227     const char *prefix, *g_scale, *g_unit;
0228     const char *ev_val_str, *ev_scale_str, *ev_unit_str;
0229 
0230     if (!of_property_read_u32(node, "events", &handle))
0231         pmu_events = of_find_node_by_phandle(handle);
0232     else
0233         return 0;
0234 
0235     /* Did not find any node with a given phandle */
0236     if (!pmu_events)
0237         return 0;
0238 
0239     /* Get a count of number of child nodes */
0240     ct = of_get_child_count(pmu_events);
0241 
0242     /* Get the event prefix */
0243     if (of_property_read_string(node, "events-prefix", &prefix))
0244         return 0;
0245 
0246     /* Get a global unit and scale data if available */
0247     if (of_property_read_string(node, "scale", &g_scale))
0248         g_scale = NULL;
0249 
0250     if (of_property_read_string(node, "unit", &g_unit))
0251         g_unit = NULL;
0252 
0253     /* "reg" property gives out the base offset of the counters data */
0254     of_property_read_u32(node, "reg", &base_reg);
0255 
0256     /* Allocate memory for the events */
0257     pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
0258     if (!pmu->events)
0259         return -ENOMEM;
0260 
0261     ct = 0;
0262     /* Parse the events and update the struct */
0263     for_each_child_of_node(pmu_events, np) {
0264         ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
0265         if (!ret)
0266             ct++;
0267     }
0268 
0269     /* Allocate memory for attribute group */
0270     attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
0271     if (!attr_group) {
0272         imc_free_events(pmu->events, ct);
0273         return -ENOMEM;
0274     }
0275 
0276     /*
0277      * Allocate memory for attributes.
0278      * Since we have count of events for this pmu, we also allocate
0279      * memory for the scale and unit attribute for now.
0280      * "ct" has the total event structs added from the events-parent node.
0281      * So allocate three times the "ct" (this includes event, event_scale and
0282      * event_unit).
0283      */
0284     attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
0285     if (!attrs) {
0286         kfree(attr_group);
0287         imc_free_events(pmu->events, ct);
0288         return -ENOMEM;
0289     }
0290 
0291     attr_group->name = "events";
0292     attr_group->attrs = attrs;
0293     do {
0294         ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
0295         dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
0296         if (!dev_str)
0297             continue;
0298 
0299         attrs[j++] = dev_str;
0300         if (pmu->events[i].scale) {
0301             ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
0302             dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
0303             if (!dev_str)
0304                 continue;
0305 
0306             attrs[j++] = dev_str;
0307         }
0308 
0309         if (pmu->events[i].unit) {
0310             ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
0311             dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
0312             if (!dev_str)
0313                 continue;
0314 
0315             attrs[j++] = dev_str;
0316         }
0317     } while (++i < ct);
0318 
0319     /* Save the event attribute */
0320     pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
0321 
0322     return 0;
0323 }
0324 
0325 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
0326 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
0327 {
0328     return per_cpu(local_nest_imc_refc, cpu);
0329 }
0330 
0331 static void nest_change_cpu_context(int old_cpu, int new_cpu)
0332 {
0333     struct imc_pmu **pn = per_nest_pmu_arr;
0334 
0335     if (old_cpu < 0 || new_cpu < 0)
0336         return;
0337 
0338     while (*pn) {
0339         perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
0340         pn++;
0341     }
0342 }
0343 
0344 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
0345 {
0346     int nid, target = -1;
0347     const struct cpumask *l_cpumask;
0348     struct imc_pmu_ref *ref;
0349 
0350     /*
0351      * Check in the designated list for this cpu. Dont bother
0352      * if not one of them.
0353      */
0354     if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
0355         return 0;
0356 
0357     /*
0358      * Check whether nest_imc is registered. We could end up here if the
0359      * cpuhotplug callback registration fails. i.e, callback invokes the
0360      * offline path for all successfully registered nodes. At this stage,
0361      * nest_imc pmu will not be registered and we should return here.
0362      *
0363      * We return with a zero since this is not an offline failure. And
0364      * cpuhp_setup_state() returns the actual failure reason to the caller,
0365      * which in turn will call the cleanup routine.
0366      */
0367     if (!nest_pmus)
0368         return 0;
0369 
0370     /*
0371      * Now that this cpu is one of the designated,
0372      * find a next cpu a) which is online and b) in same chip.
0373      */
0374     nid = cpu_to_node(cpu);
0375     l_cpumask = cpumask_of_node(nid);
0376     target = cpumask_last(l_cpumask);
0377 
0378     /*
0379      * If this(target) is the last cpu in the cpumask for this chip,
0380      * check for any possible online cpu in the chip.
0381      */
0382     if (unlikely(target == cpu))
0383         target = cpumask_any_but(l_cpumask, cpu);
0384 
0385     /*
0386      * Update the cpumask with the target cpu and
0387      * migrate the context if needed
0388      */
0389     if (target >= 0 && target < nr_cpu_ids) {
0390         cpumask_set_cpu(target, &nest_imc_cpumask);
0391         nest_change_cpu_context(cpu, target);
0392     } else {
0393         opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
0394                        get_hard_smp_processor_id(cpu));
0395         /*
0396          * If this is the last cpu in this chip then, skip the reference
0397          * count mutex lock and make the reference count on this chip zero.
0398          */
0399         ref = get_nest_pmu_ref(cpu);
0400         if (!ref)
0401             return -EINVAL;
0402 
0403         ref->refc = 0;
0404     }
0405     return 0;
0406 }
0407 
0408 static int ppc_nest_imc_cpu_online(unsigned int cpu)
0409 {
0410     const struct cpumask *l_cpumask;
0411     static struct cpumask tmp_mask;
0412     int res;
0413 
0414     /* Get the cpumask of this node */
0415     l_cpumask = cpumask_of_node(cpu_to_node(cpu));
0416 
0417     /*
0418      * If this is not the first online CPU on this node, then
0419      * just return.
0420      */
0421     if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
0422         return 0;
0423 
0424     /*
0425      * If this is the first online cpu on this node
0426      * disable the nest counters by making an OPAL call.
0427      */
0428     res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
0429                      get_hard_smp_processor_id(cpu));
0430     if (res)
0431         return res;
0432 
0433     /* Make this CPU the designated target for counter collection */
0434     cpumask_set_cpu(cpu, &nest_imc_cpumask);
0435     return 0;
0436 }
0437 
0438 static int nest_pmu_cpumask_init(void)
0439 {
0440     return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
0441                  "perf/powerpc/imc:online",
0442                  ppc_nest_imc_cpu_online,
0443                  ppc_nest_imc_cpu_offline);
0444 }
0445 
0446 static void nest_imc_counters_release(struct perf_event *event)
0447 {
0448     int rc, node_id;
0449     struct imc_pmu_ref *ref;
0450 
0451     if (event->cpu < 0)
0452         return;
0453 
0454     node_id = cpu_to_node(event->cpu);
0455 
0456     /*
0457      * See if we need to disable the nest PMU.
0458      * If no events are currently in use, then we have to take a
0459      * mutex to ensure that we don't race with another task doing
0460      * enable or disable the nest counters.
0461      */
0462     ref = get_nest_pmu_ref(event->cpu);
0463     if (!ref)
0464         return;
0465 
0466     /* Take the mutex lock for this node and then decrement the reference count */
0467     mutex_lock(&ref->lock);
0468     if (ref->refc == 0) {
0469         /*
0470          * The scenario where this is true is, when perf session is
0471          * started, followed by offlining of all cpus in a given node.
0472          *
0473          * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
0474          * function set the ref->count to zero, if the cpu which is
0475          * about to offline is the last cpu in a given node and make
0476          * an OPAL call to disable the engine in that node.
0477          *
0478          */
0479         mutex_unlock(&ref->lock);
0480         return;
0481     }
0482     ref->refc--;
0483     if (ref->refc == 0) {
0484         rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
0485                         get_hard_smp_processor_id(event->cpu));
0486         if (rc) {
0487             mutex_unlock(&ref->lock);
0488             pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
0489             return;
0490         }
0491     } else if (ref->refc < 0) {
0492         WARN(1, "nest-imc: Invalid event reference count\n");
0493         ref->refc = 0;
0494     }
0495     mutex_unlock(&ref->lock);
0496 }
0497 
0498 static int nest_imc_event_init(struct perf_event *event)
0499 {
0500     int chip_id, rc, node_id;
0501     u32 l_config, config = event->attr.config;
0502     struct imc_mem_info *pcni;
0503     struct imc_pmu *pmu;
0504     struct imc_pmu_ref *ref;
0505     bool flag = false;
0506 
0507     if (event->attr.type != event->pmu->type)
0508         return -ENOENT;
0509 
0510     /* Sampling not supported */
0511     if (event->hw.sample_period)
0512         return -EINVAL;
0513 
0514     if (event->cpu < 0)
0515         return -EINVAL;
0516 
0517     pmu = imc_event_to_pmu(event);
0518 
0519     /* Sanity check for config (event offset) */
0520     if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
0521         return -EINVAL;
0522 
0523     /*
0524      * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
0525      * Get the base memory address for this cpu.
0526      */
0527     chip_id = cpu_to_chip_id(event->cpu);
0528 
0529     /* Return, if chip_id is not valid */
0530     if (chip_id < 0)
0531         return -ENODEV;
0532 
0533     pcni = pmu->mem_info;
0534     do {
0535         if (pcni->id == chip_id) {
0536             flag = true;
0537             break;
0538         }
0539         pcni++;
0540     } while (pcni->vbase != 0);
0541 
0542     if (!flag)
0543         return -ENODEV;
0544 
0545     /*
0546      * Add the event offset to the base address.
0547      */
0548     l_config = config & IMC_EVENT_OFFSET_MASK;
0549     event->hw.event_base = (u64)pcni->vbase + l_config;
0550     node_id = cpu_to_node(event->cpu);
0551 
0552     /*
0553      * Get the imc_pmu_ref struct for this node.
0554      * Take the mutex lock and then increment the count of nest pmu events
0555      * inited.
0556      */
0557     ref = get_nest_pmu_ref(event->cpu);
0558     if (!ref)
0559         return -EINVAL;
0560 
0561     mutex_lock(&ref->lock);
0562     if (ref->refc == 0) {
0563         rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
0564                          get_hard_smp_processor_id(event->cpu));
0565         if (rc) {
0566             mutex_unlock(&ref->lock);
0567             pr_err("nest-imc: Unable to start the counters for node %d\n",
0568                                     node_id);
0569             return rc;
0570         }
0571     }
0572     ++ref->refc;
0573     mutex_unlock(&ref->lock);
0574 
0575     event->destroy = nest_imc_counters_release;
0576     return 0;
0577 }
0578 
0579 /*
0580  * core_imc_mem_init : Initializes memory for the current core.
0581  *
0582  * Uses alloc_pages_node() and uses the returned address as an argument to
0583  * an opal call to configure the pdbar. The address sent as an argument is
0584  * converted to physical address before the opal call is made. This is the
0585  * base address at which the core imc counters are populated.
0586  */
0587 static int core_imc_mem_init(int cpu, int size)
0588 {
0589     int nid, rc = 0, core_id = (cpu / threads_per_core);
0590     struct imc_mem_info *mem_info;
0591     struct page *page;
0592 
0593     /*
0594      * alloc_pages_node() will allocate memory for core in the
0595      * local node only.
0596      */
0597     nid = cpu_to_node(cpu);
0598     mem_info = &core_imc_pmu->mem_info[core_id];
0599     mem_info->id = core_id;
0600 
0601     /* We need only vbase for core counters */
0602     page = alloc_pages_node(nid,
0603                 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
0604                 __GFP_NOWARN, get_order(size));
0605     if (!page)
0606         return -ENOMEM;
0607     mem_info->vbase = page_address(page);
0608 
0609     /* Init the mutex */
0610     core_imc_refc[core_id].id = core_id;
0611     mutex_init(&core_imc_refc[core_id].lock);
0612 
0613     rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
0614                 __pa((void *)mem_info->vbase),
0615                 get_hard_smp_processor_id(cpu));
0616     if (rc) {
0617         free_pages((u64)mem_info->vbase, get_order(size));
0618         mem_info->vbase = NULL;
0619     }
0620 
0621     return rc;
0622 }
0623 
0624 static bool is_core_imc_mem_inited(int cpu)
0625 {
0626     struct imc_mem_info *mem_info;
0627     int core_id = (cpu / threads_per_core);
0628 
0629     mem_info = &core_imc_pmu->mem_info[core_id];
0630     if (!mem_info->vbase)
0631         return false;
0632 
0633     return true;
0634 }
0635 
0636 static int ppc_core_imc_cpu_online(unsigned int cpu)
0637 {
0638     const struct cpumask *l_cpumask;
0639     static struct cpumask tmp_mask;
0640     int ret = 0;
0641 
0642     /* Get the cpumask for this core */
0643     l_cpumask = cpu_sibling_mask(cpu);
0644 
0645     /* If a cpu for this core is already set, then, don't do anything */
0646     if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
0647         return 0;
0648 
0649     if (!is_core_imc_mem_inited(cpu)) {
0650         ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
0651         if (ret) {
0652             pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
0653             return ret;
0654         }
0655     }
0656 
0657     /* set the cpu in the mask */
0658     cpumask_set_cpu(cpu, &core_imc_cpumask);
0659     return 0;
0660 }
0661 
0662 static int ppc_core_imc_cpu_offline(unsigned int cpu)
0663 {
0664     unsigned int core_id;
0665     int ncpu;
0666     struct imc_pmu_ref *ref;
0667 
0668     /*
0669      * clear this cpu out of the mask, if not present in the mask,
0670      * don't bother doing anything.
0671      */
0672     if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
0673         return 0;
0674 
0675     /*
0676      * Check whether core_imc is registered. We could end up here
0677      * if the cpuhotplug callback registration fails. i.e, callback
0678      * invokes the offline path for all successfully registered cpus.
0679      * At this stage, core_imc pmu will not be registered and we
0680      * should return here.
0681      *
0682      * We return with a zero since this is not an offline failure.
0683      * And cpuhp_setup_state() returns the actual failure reason
0684      * to the caller, which inturn will call the cleanup routine.
0685      */
0686     if (!core_imc_pmu->pmu.event_init)
0687         return 0;
0688 
0689     /* Find any online cpu in that core except the current "cpu" */
0690     ncpu = cpumask_last(cpu_sibling_mask(cpu));
0691 
0692     if (unlikely(ncpu == cpu))
0693         ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
0694 
0695     if (ncpu >= 0 && ncpu < nr_cpu_ids) {
0696         cpumask_set_cpu(ncpu, &core_imc_cpumask);
0697         perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
0698     } else {
0699         /*
0700          * If this is the last cpu in this core then, skip taking refernce
0701          * count mutex lock for this core and directly zero "refc" for
0702          * this core.
0703          */
0704         opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
0705                        get_hard_smp_processor_id(cpu));
0706         core_id = cpu / threads_per_core;
0707         ref = &core_imc_refc[core_id];
0708         if (!ref)
0709             return -EINVAL;
0710 
0711         ref->refc = 0;
0712         /*
0713          * Reduce the global reference count, if this is the
0714          * last cpu in this core and core-imc event running
0715          * in this cpu.
0716          */
0717         mutex_lock(&imc_global_refc.lock);
0718         if (imc_global_refc.id == IMC_DOMAIN_CORE)
0719             imc_global_refc.refc--;
0720 
0721         mutex_unlock(&imc_global_refc.lock);
0722     }
0723     return 0;
0724 }
0725 
0726 static int core_imc_pmu_cpumask_init(void)
0727 {
0728     return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
0729                  "perf/powerpc/imc_core:online",
0730                  ppc_core_imc_cpu_online,
0731                  ppc_core_imc_cpu_offline);
0732 }
0733 
0734 static void reset_global_refc(struct perf_event *event)
0735 {
0736         mutex_lock(&imc_global_refc.lock);
0737         imc_global_refc.refc--;
0738 
0739         /*
0740          * If no other thread is running any
0741          * event for this domain(thread/core/trace),
0742          * set the global id to zero.
0743          */
0744         if (imc_global_refc.refc <= 0) {
0745             imc_global_refc.refc = 0;
0746             imc_global_refc.id = 0;
0747         }
0748         mutex_unlock(&imc_global_refc.lock);
0749 }
0750 
0751 static void core_imc_counters_release(struct perf_event *event)
0752 {
0753     int rc, core_id;
0754     struct imc_pmu_ref *ref;
0755 
0756     if (event->cpu < 0)
0757         return;
0758     /*
0759      * See if we need to disable the IMC PMU.
0760      * If no events are currently in use, then we have to take a
0761      * mutex to ensure that we don't race with another task doing
0762      * enable or disable the core counters.
0763      */
0764     core_id = event->cpu / threads_per_core;
0765 
0766     /* Take the mutex lock and decrement the refernce count for this core */
0767     ref = &core_imc_refc[core_id];
0768     if (!ref)
0769         return;
0770 
0771     mutex_lock(&ref->lock);
0772     if (ref->refc == 0) {
0773         /*
0774          * The scenario where this is true is, when perf session is
0775          * started, followed by offlining of all cpus in a given core.
0776          *
0777          * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
0778          * function set the ref->count to zero, if the cpu which is
0779          * about to offline is the last cpu in a given core and make
0780          * an OPAL call to disable the engine in that core.
0781          *
0782          */
0783         mutex_unlock(&ref->lock);
0784         return;
0785     }
0786     ref->refc--;
0787     if (ref->refc == 0) {
0788         rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
0789                         get_hard_smp_processor_id(event->cpu));
0790         if (rc) {
0791             mutex_unlock(&ref->lock);
0792             pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
0793             return;
0794         }
0795     } else if (ref->refc < 0) {
0796         WARN(1, "core-imc: Invalid event reference count\n");
0797         ref->refc = 0;
0798     }
0799     mutex_unlock(&ref->lock);
0800 
0801     reset_global_refc(event);
0802 }
0803 
0804 static int core_imc_event_init(struct perf_event *event)
0805 {
0806     int core_id, rc;
0807     u64 config = event->attr.config;
0808     struct imc_mem_info *pcmi;
0809     struct imc_pmu *pmu;
0810     struct imc_pmu_ref *ref;
0811 
0812     if (event->attr.type != event->pmu->type)
0813         return -ENOENT;
0814 
0815     /* Sampling not supported */
0816     if (event->hw.sample_period)
0817         return -EINVAL;
0818 
0819     if (event->cpu < 0)
0820         return -EINVAL;
0821 
0822     event->hw.idx = -1;
0823     pmu = imc_event_to_pmu(event);
0824 
0825     /* Sanity check for config (event offset) */
0826     if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
0827         return -EINVAL;
0828 
0829     if (!is_core_imc_mem_inited(event->cpu))
0830         return -ENODEV;
0831 
0832     core_id = event->cpu / threads_per_core;
0833     pcmi = &core_imc_pmu->mem_info[core_id];
0834     if ((!pcmi->vbase))
0835         return -ENODEV;
0836 
0837     /* Get the core_imc mutex for this core */
0838     ref = &core_imc_refc[core_id];
0839     if (!ref)
0840         return -EINVAL;
0841 
0842     /*
0843      * Core pmu units are enabled only when it is used.
0844      * See if this is triggered for the first time.
0845      * If yes, take the mutex lock and enable the core counters.
0846      * If not, just increment the count in core_imc_refc struct.
0847      */
0848     mutex_lock(&ref->lock);
0849     if (ref->refc == 0) {
0850         rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
0851                          get_hard_smp_processor_id(event->cpu));
0852         if (rc) {
0853             mutex_unlock(&ref->lock);
0854             pr_err("core-imc: Unable to start the counters for core %d\n",
0855                                     core_id);
0856             return rc;
0857         }
0858     }
0859     ++ref->refc;
0860     mutex_unlock(&ref->lock);
0861 
0862     /*
0863      * Since the system can run either in accumulation or trace-mode
0864      * of IMC at a time, core-imc events are allowed only if no other
0865      * trace/thread imc events are enabled/monitored.
0866      *
0867      * Take the global lock, and check the refc.id
0868      * to know whether any other trace/thread imc
0869      * events are running.
0870      */
0871     mutex_lock(&imc_global_refc.lock);
0872     if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
0873         /*
0874          * No other trace/thread imc events are running in
0875          * the system, so set the refc.id to core-imc.
0876          */
0877         imc_global_refc.id = IMC_DOMAIN_CORE;
0878         imc_global_refc.refc++;
0879     } else {
0880         mutex_unlock(&imc_global_refc.lock);
0881         return -EBUSY;
0882     }
0883     mutex_unlock(&imc_global_refc.lock);
0884 
0885     event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
0886     event->destroy = core_imc_counters_release;
0887     return 0;
0888 }
0889 
0890 /*
0891  * Allocates a page of memory for each of the online cpus, and load
0892  * LDBAR with 0.
0893  * The physical base address of the page allocated for a cpu will be
0894  * written to the LDBAR for that cpu, when the thread-imc event
0895  * is added.
0896  *
0897  * LDBAR Register Layout:
0898  *
0899  *  0          4         8         12        16        20        24        28
0900  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
0901  *   | |       [   ]    [                   Counter Address [8:50]
0902  *   | * Mode    |
0903  *   |           * PB Scope
0904  *   * Enable/Disable
0905  *
0906  *  32        36        40        44        48        52        56        60
0907  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
0908  *           Counter Address [8:50]              ]
0909  *
0910  */
0911 static int thread_imc_mem_alloc(int cpu_id, int size)
0912 {
0913     u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
0914     int nid = cpu_to_node(cpu_id);
0915 
0916     if (!local_mem) {
0917         struct page *page;
0918         /*
0919          * This case could happen only once at start, since we dont
0920          * free the memory in cpu offline path.
0921          */
0922         page = alloc_pages_node(nid,
0923                   GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
0924                   __GFP_NOWARN, get_order(size));
0925         if (!page)
0926             return -ENOMEM;
0927         local_mem = page_address(page);
0928 
0929         per_cpu(thread_imc_mem, cpu_id) = local_mem;
0930     }
0931 
0932     mtspr(SPRN_LDBAR, 0);
0933     return 0;
0934 }
0935 
0936 static int ppc_thread_imc_cpu_online(unsigned int cpu)
0937 {
0938     return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
0939 }
0940 
0941 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
0942 {
0943     /*
0944      * Set the bit 0 of LDBAR to zero.
0945      *
0946      * If bit 0 of LDBAR is unset, it will stop posting
0947      * the counter data to memory.
0948      * For thread-imc, bit 0 of LDBAR will be set to 1 in the
0949      * event_add function. So reset this bit here, to stop the updates
0950      * to memory in the cpu_offline path.
0951      */
0952     mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
0953 
0954     /* Reduce the refc if thread-imc event running on this cpu */
0955     mutex_lock(&imc_global_refc.lock);
0956     if (imc_global_refc.id == IMC_DOMAIN_THREAD)
0957         imc_global_refc.refc--;
0958     mutex_unlock(&imc_global_refc.lock);
0959 
0960     return 0;
0961 }
0962 
0963 static int thread_imc_cpu_init(void)
0964 {
0965     return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
0966               "perf/powerpc/imc_thread:online",
0967               ppc_thread_imc_cpu_online,
0968               ppc_thread_imc_cpu_offline);
0969 }
0970 
0971 static int thread_imc_event_init(struct perf_event *event)
0972 {
0973     u32 config = event->attr.config;
0974     struct task_struct *target;
0975     struct imc_pmu *pmu;
0976 
0977     if (event->attr.type != event->pmu->type)
0978         return -ENOENT;
0979 
0980     if (!perfmon_capable())
0981         return -EACCES;
0982 
0983     /* Sampling not supported */
0984     if (event->hw.sample_period)
0985         return -EINVAL;
0986 
0987     event->hw.idx = -1;
0988     pmu = imc_event_to_pmu(event);
0989 
0990     /* Sanity check for config offset */
0991     if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
0992         return -EINVAL;
0993 
0994     target = event->hw.target;
0995     if (!target)
0996         return -EINVAL;
0997 
0998     mutex_lock(&imc_global_refc.lock);
0999     /*
1000      * Check if any other trace/core imc events are running in the
1001      * system, if not set the global id to thread-imc.
1002      */
1003     if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1004         imc_global_refc.id = IMC_DOMAIN_THREAD;
1005         imc_global_refc.refc++;
1006     } else {
1007         mutex_unlock(&imc_global_refc.lock);
1008         return -EBUSY;
1009     }
1010     mutex_unlock(&imc_global_refc.lock);
1011 
1012     event->pmu->task_ctx_nr = perf_sw_context;
1013     event->destroy = reset_global_refc;
1014     return 0;
1015 }
1016 
1017 static bool is_thread_imc_pmu(struct perf_event *event)
1018 {
1019     if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1020         return true;
1021 
1022     return false;
1023 }
1024 
1025 static u64 * get_event_base_addr(struct perf_event *event)
1026 {
1027     u64 addr;
1028 
1029     if (is_thread_imc_pmu(event)) {
1030         addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1031         return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1032     }
1033 
1034     return (u64 *)event->hw.event_base;
1035 }
1036 
1037 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1038                      unsigned int txn_flags)
1039 {
1040     if (txn_flags & ~PERF_PMU_TXN_ADD)
1041         return;
1042     perf_pmu_disable(pmu);
1043 }
1044 
1045 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1046 {
1047     perf_pmu_enable(pmu);
1048 }
1049 
1050 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1051 {
1052     perf_pmu_enable(pmu);
1053     return 0;
1054 }
1055 
1056 static u64 imc_read_counter(struct perf_event *event)
1057 {
1058     u64 *addr, data;
1059 
1060     /*
1061      * In-Memory Collection (IMC) counters are free flowing counters.
1062      * So we take a snapshot of the counter value on enable and save it
1063      * to calculate the delta at later stage to present the event counter
1064      * value.
1065      */
1066     addr = get_event_base_addr(event);
1067     data = be64_to_cpu(READ_ONCE(*addr));
1068     local64_set(&event->hw.prev_count, data);
1069 
1070     return data;
1071 }
1072 
1073 static void imc_event_update(struct perf_event *event)
1074 {
1075     u64 counter_prev, counter_new, final_count;
1076 
1077     counter_prev = local64_read(&event->hw.prev_count);
1078     counter_new = imc_read_counter(event);
1079     final_count = counter_new - counter_prev;
1080 
1081     /* Update the delta to the event count */
1082     local64_add(final_count, &event->count);
1083 }
1084 
1085 static void imc_event_start(struct perf_event *event, int flags)
1086 {
1087     /*
1088      * In Memory Counters are free flowing counters. HW or the microcode
1089      * keeps adding to the counter offset in memory. To get event
1090      * counter value, we snapshot the value here and we calculate
1091      * delta at later point.
1092      */
1093     imc_read_counter(event);
1094 }
1095 
1096 static void imc_event_stop(struct perf_event *event, int flags)
1097 {
1098     /*
1099      * Take a snapshot and calculate the delta and update
1100      * the event counter values.
1101      */
1102     imc_event_update(event);
1103 }
1104 
1105 static int imc_event_add(struct perf_event *event, int flags)
1106 {
1107     if (flags & PERF_EF_START)
1108         imc_event_start(event, flags);
1109 
1110     return 0;
1111 }
1112 
1113 static int thread_imc_event_add(struct perf_event *event, int flags)
1114 {
1115     int core_id;
1116     struct imc_pmu_ref *ref;
1117     u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1118 
1119     if (flags & PERF_EF_START)
1120         imc_event_start(event, flags);
1121 
1122     if (!is_core_imc_mem_inited(smp_processor_id()))
1123         return -EINVAL;
1124 
1125     core_id = smp_processor_id() / threads_per_core;
1126     ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1127     mtspr(SPRN_LDBAR, ldbar_value);
1128 
1129     /*
1130      * imc pmus are enabled only when it is used.
1131      * See if this is triggered for the first time.
1132      * If yes, take the mutex lock and enable the counters.
1133      * If not, just increment the count in ref count struct.
1134      */
1135     ref = &core_imc_refc[core_id];
1136     if (!ref)
1137         return -EINVAL;
1138 
1139     mutex_lock(&ref->lock);
1140     if (ref->refc == 0) {
1141         if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1142             get_hard_smp_processor_id(smp_processor_id()))) {
1143             mutex_unlock(&ref->lock);
1144             pr_err("thread-imc: Unable to start the counter\
1145                 for core %d\n", core_id);
1146             return -EINVAL;
1147         }
1148     }
1149     ++ref->refc;
1150     mutex_unlock(&ref->lock);
1151     return 0;
1152 }
1153 
1154 static void thread_imc_event_del(struct perf_event *event, int flags)
1155 {
1156 
1157     int core_id;
1158     struct imc_pmu_ref *ref;
1159 
1160     core_id = smp_processor_id() / threads_per_core;
1161     ref = &core_imc_refc[core_id];
1162     if (!ref) {
1163         pr_debug("imc: Failed to get event reference count\n");
1164         return;
1165     }
1166 
1167     mutex_lock(&ref->lock);
1168     ref->refc--;
1169     if (ref->refc == 0) {
1170         if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1171             get_hard_smp_processor_id(smp_processor_id()))) {
1172             mutex_unlock(&ref->lock);
1173             pr_err("thread-imc: Unable to stop the counters\
1174                 for core %d\n", core_id);
1175             return;
1176         }
1177     } else if (ref->refc < 0) {
1178         ref->refc = 0;
1179     }
1180     mutex_unlock(&ref->lock);
1181 
1182     /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1183     mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1184 
1185     /*
1186      * Take a snapshot and calculate the delta and update
1187      * the event counter values.
1188      */
1189     imc_event_update(event);
1190 }
1191 
1192 /*
1193  * Allocate a page of memory for each cpu, and load LDBAR with 0.
1194  */
1195 static int trace_imc_mem_alloc(int cpu_id, int size)
1196 {
1197     u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1198     int phys_id = cpu_to_node(cpu_id), rc = 0;
1199     int core_id = (cpu_id / threads_per_core);
1200 
1201     if (!local_mem) {
1202         struct page *page;
1203 
1204         page = alloc_pages_node(phys_id,
1205                 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1206                 __GFP_NOWARN, get_order(size));
1207         if (!page)
1208             return -ENOMEM;
1209         local_mem = page_address(page);
1210         per_cpu(trace_imc_mem, cpu_id) = local_mem;
1211 
1212         /* Initialise the counters for trace mode */
1213         rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1214                         get_hard_smp_processor_id(cpu_id));
1215         if (rc) {
1216             pr_info("IMC:opal init failed for trace imc\n");
1217             return rc;
1218         }
1219     }
1220 
1221     /* Init the mutex, if not already */
1222     trace_imc_refc[core_id].id = core_id;
1223     mutex_init(&trace_imc_refc[core_id].lock);
1224 
1225     mtspr(SPRN_LDBAR, 0);
1226     return 0;
1227 }
1228 
1229 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1230 {
1231     return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1232 }
1233 
1234 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1235 {
1236     /*
1237      * No need to set bit 0 of LDBAR to zero, as
1238      * it is set to zero for imc trace-mode
1239      *
1240      * Reduce the refc if any trace-imc event running
1241      * on this cpu.
1242      */
1243     mutex_lock(&imc_global_refc.lock);
1244     if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1245         imc_global_refc.refc--;
1246     mutex_unlock(&imc_global_refc.lock);
1247 
1248     return 0;
1249 }
1250 
1251 static int trace_imc_cpu_init(void)
1252 {
1253     return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1254               "perf/powerpc/imc_trace:online",
1255               ppc_trace_imc_cpu_online,
1256               ppc_trace_imc_cpu_offline);
1257 }
1258 
1259 static u64 get_trace_imc_event_base_addr(void)
1260 {
1261     return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1262 }
1263 
1264 /*
1265  * Function to parse trace-imc data obtained
1266  * and to prepare the perf sample.
1267  */
1268 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1269                     struct perf_sample_data *data,
1270                     u64 *prev_tb,
1271                     struct perf_event_header *header,
1272                     struct perf_event *event)
1273 {
1274     /* Sanity checks for a valid record */
1275     if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1276         *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1277     else
1278         return -EINVAL;
1279 
1280     if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1281              be64_to_cpu(READ_ONCE(mem->tb2)))
1282         return -EINVAL;
1283 
1284     /* Prepare perf sample */
1285     data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1286     data->period = event->hw.last_period;
1287 
1288     header->type = PERF_RECORD_SAMPLE;
1289     header->size = sizeof(*header) + event->header_size;
1290     header->misc = 0;
1291 
1292     if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1293         switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1294         case 0:/* when MSR HV and PR not set in the trace-record */
1295             header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1296             break;
1297         case 1: /* MSR HV is 0 and PR is 1 */
1298             header->misc |= PERF_RECORD_MISC_GUEST_USER;
1299             break;
1300         case 2: /* MSR HV is 1 and PR is 0 */
1301             header->misc |= PERF_RECORD_MISC_KERNEL;
1302             break;
1303         case 3: /* MSR HV is 1 and PR is 1 */
1304             header->misc |= PERF_RECORD_MISC_USER;
1305             break;
1306         default:
1307             pr_info("IMC: Unable to set the flag based on MSR bits\n");
1308             break;
1309         }
1310     } else {
1311         if (is_kernel_addr(data->ip))
1312             header->misc |= PERF_RECORD_MISC_KERNEL;
1313         else
1314             header->misc |= PERF_RECORD_MISC_USER;
1315     }
1316     perf_event_header__init_id(header, data, event);
1317 
1318     return 0;
1319 }
1320 
1321 static void dump_trace_imc_data(struct perf_event *event)
1322 {
1323     struct trace_imc_data *mem;
1324     int i, ret;
1325     u64 prev_tb = 0;
1326 
1327     mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1328     for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1329         i++, mem++) {
1330         struct perf_sample_data data;
1331         struct perf_event_header header;
1332 
1333         ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1334         if (ret) /* Exit, if not a valid record */
1335             break;
1336         else {
1337             /* If this is a valid record, create the sample */
1338             struct perf_output_handle handle;
1339 
1340             if (perf_output_begin(&handle, &data, event, header.size))
1341                 return;
1342 
1343             perf_output_sample(&handle, &header, &data, event);
1344             perf_output_end(&handle);
1345         }
1346     }
1347 }
1348 
1349 static int trace_imc_event_add(struct perf_event *event, int flags)
1350 {
1351     int core_id = smp_processor_id() / threads_per_core;
1352     struct imc_pmu_ref *ref = NULL;
1353     u64 local_mem, ldbar_value;
1354 
1355     /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1356     local_mem = get_trace_imc_event_base_addr();
1357     ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1358 
1359     /* trace-imc reference count */
1360     if (trace_imc_refc)
1361         ref = &trace_imc_refc[core_id];
1362     if (!ref) {
1363         pr_debug("imc: Failed to get the event reference count\n");
1364         return -EINVAL;
1365     }
1366 
1367     mtspr(SPRN_LDBAR, ldbar_value);
1368     mutex_lock(&ref->lock);
1369     if (ref->refc == 0) {
1370         if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1371                 get_hard_smp_processor_id(smp_processor_id()))) {
1372             mutex_unlock(&ref->lock);
1373             pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1374             return -EINVAL;
1375         }
1376     }
1377     ++ref->refc;
1378     mutex_unlock(&ref->lock);
1379     return 0;
1380 }
1381 
1382 static void trace_imc_event_read(struct perf_event *event)
1383 {
1384     return;
1385 }
1386 
1387 static void trace_imc_event_stop(struct perf_event *event, int flags)
1388 {
1389     u64 local_mem = get_trace_imc_event_base_addr();
1390     dump_trace_imc_data(event);
1391     memset((void *)local_mem, 0, sizeof(u64));
1392 }
1393 
1394 static void trace_imc_event_start(struct perf_event *event, int flags)
1395 {
1396     return;
1397 }
1398 
1399 static void trace_imc_event_del(struct perf_event *event, int flags)
1400 {
1401     int core_id = smp_processor_id() / threads_per_core;
1402     struct imc_pmu_ref *ref = NULL;
1403 
1404     if (trace_imc_refc)
1405         ref = &trace_imc_refc[core_id];
1406     if (!ref) {
1407         pr_debug("imc: Failed to get event reference count\n");
1408         return;
1409     }
1410 
1411     mutex_lock(&ref->lock);
1412     ref->refc--;
1413     if (ref->refc == 0) {
1414         if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1415                 get_hard_smp_processor_id(smp_processor_id()))) {
1416             mutex_unlock(&ref->lock);
1417             pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1418             return;
1419         }
1420     } else if (ref->refc < 0) {
1421         ref->refc = 0;
1422     }
1423     mutex_unlock(&ref->lock);
1424 
1425     trace_imc_event_stop(event, flags);
1426 }
1427 
1428 static int trace_imc_event_init(struct perf_event *event)
1429 {
1430     if (event->attr.type != event->pmu->type)
1431         return -ENOENT;
1432 
1433     if (!perfmon_capable())
1434         return -EACCES;
1435 
1436     /* Return if this is a couting event */
1437     if (event->attr.sample_period == 0)
1438         return -ENOENT;
1439 
1440     /*
1441      * Take the global lock, and make sure
1442      * no other thread is running any core/thread imc
1443      * events
1444      */
1445     mutex_lock(&imc_global_refc.lock);
1446     if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1447         /*
1448          * No core/thread imc events are running in the
1449          * system, so set the refc.id to trace-imc.
1450          */
1451         imc_global_refc.id = IMC_DOMAIN_TRACE;
1452         imc_global_refc.refc++;
1453     } else {
1454         mutex_unlock(&imc_global_refc.lock);
1455         return -EBUSY;
1456     }
1457     mutex_unlock(&imc_global_refc.lock);
1458 
1459     event->hw.idx = -1;
1460 
1461     /*
1462      * There can only be a single PMU for perf_hw_context events which is assigned to
1463      * core PMU. Hence use "perf_sw_context" for trace_imc.
1464      */
1465     event->pmu->task_ctx_nr = perf_sw_context;
1466     event->destroy = reset_global_refc;
1467     return 0;
1468 }
1469 
1470 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1471 static int update_pmu_ops(struct imc_pmu *pmu)
1472 {
1473     pmu->pmu.task_ctx_nr = perf_invalid_context;
1474     pmu->pmu.add = imc_event_add;
1475     pmu->pmu.del = imc_event_stop;
1476     pmu->pmu.start = imc_event_start;
1477     pmu->pmu.stop = imc_event_stop;
1478     pmu->pmu.read = imc_event_update;
1479     pmu->pmu.attr_groups = pmu->attr_groups;
1480     pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1481     pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1482 
1483     switch (pmu->domain) {
1484     case IMC_DOMAIN_NEST:
1485         pmu->pmu.event_init = nest_imc_event_init;
1486         pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1487         break;
1488     case IMC_DOMAIN_CORE:
1489         pmu->pmu.event_init = core_imc_event_init;
1490         pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1491         break;
1492     case IMC_DOMAIN_THREAD:
1493         pmu->pmu.event_init = thread_imc_event_init;
1494         pmu->pmu.add = thread_imc_event_add;
1495         pmu->pmu.del = thread_imc_event_del;
1496         pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1497         pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1498         pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1499         break;
1500     case IMC_DOMAIN_TRACE:
1501         pmu->pmu.event_init = trace_imc_event_init;
1502         pmu->pmu.add = trace_imc_event_add;
1503         pmu->pmu.del = trace_imc_event_del;
1504         pmu->pmu.start = trace_imc_event_start;
1505         pmu->pmu.stop = trace_imc_event_stop;
1506         pmu->pmu.read = trace_imc_event_read;
1507         pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1508         break;
1509     default:
1510         break;
1511     }
1512 
1513     return 0;
1514 }
1515 
1516 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1517 static int init_nest_pmu_ref(void)
1518 {
1519     int nid, i, cpu;
1520 
1521     nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1522                                 GFP_KERNEL);
1523 
1524     if (!nest_imc_refc)
1525         return -ENOMEM;
1526 
1527     i = 0;
1528     for_each_node(nid) {
1529         /*
1530          * Mutex lock to avoid races while tracking the number of
1531          * sessions using the chip's nest pmu units.
1532          */
1533         mutex_init(&nest_imc_refc[i].lock);
1534 
1535         /*
1536          * Loop to init the "id" with the node_id. Variable "i" initialized to
1537          * 0 and will be used as index to the array. "i" will not go off the
1538          * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1539          * nodes only.
1540          */
1541         nest_imc_refc[i++].id = nid;
1542     }
1543 
1544     /*
1545      * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1546      * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1547      */
1548     for_each_possible_cpu(cpu) {
1549         nid = cpu_to_node(cpu);
1550         for (i = 0; i < num_possible_nodes(); i++) {
1551             if (nest_imc_refc[i].id == nid) {
1552                 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1553                 break;
1554             }
1555         }
1556     }
1557     return 0;
1558 }
1559 
1560 static void cleanup_all_core_imc_memory(void)
1561 {
1562     int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1563     struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1564     int size = core_imc_pmu->counter_mem_size;
1565 
1566     /* mem_info will never be NULL */
1567     for (i = 0; i < nr_cores; i++) {
1568         if (ptr[i].vbase)
1569             free_pages((u64)ptr[i].vbase, get_order(size));
1570     }
1571 
1572     kfree(ptr);
1573     kfree(core_imc_refc);
1574 }
1575 
1576 static void thread_imc_ldbar_disable(void *dummy)
1577 {
1578     /*
1579      * By setting 0th bit of LDBAR to zero, we disable thread-imc
1580      * updates to memory.
1581      */
1582     mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1583 }
1584 
1585 void thread_imc_disable(void)
1586 {
1587     on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1588 }
1589 
1590 static void cleanup_all_thread_imc_memory(void)
1591 {
1592     int i, order = get_order(thread_imc_mem_size);
1593 
1594     for_each_online_cpu(i) {
1595         if (per_cpu(thread_imc_mem, i))
1596             free_pages((u64)per_cpu(thread_imc_mem, i), order);
1597 
1598     }
1599 }
1600 
1601 static void cleanup_all_trace_imc_memory(void)
1602 {
1603     int i, order = get_order(trace_imc_mem_size);
1604 
1605     for_each_online_cpu(i) {
1606         if (per_cpu(trace_imc_mem, i))
1607             free_pages((u64)per_cpu(trace_imc_mem, i), order);
1608 
1609     }
1610     kfree(trace_imc_refc);
1611 }
1612 
1613 /* Function to free the attr_groups which are dynamically allocated */
1614 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1615 {
1616     if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1617         kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1618     kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1619 }
1620 
1621 /*
1622  * Common function to unregister cpu hotplug callback and
1623  * free the memory.
1624  * TODO: Need to handle pmu unregistering, which will be
1625  * done in followup series.
1626  */
1627 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1628 {
1629     if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1630         mutex_lock(&nest_init_lock);
1631         if (nest_pmus == 1) {
1632             cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1633             kfree(nest_imc_refc);
1634             kfree(per_nest_pmu_arr);
1635             per_nest_pmu_arr = NULL;
1636         }
1637 
1638         if (nest_pmus > 0)
1639             nest_pmus--;
1640         mutex_unlock(&nest_init_lock);
1641     }
1642 
1643     /* Free core_imc memory */
1644     if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1645         cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1646         cleanup_all_core_imc_memory();
1647     }
1648 
1649     /* Free thread_imc memory */
1650     if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1651         cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1652         cleanup_all_thread_imc_memory();
1653     }
1654 
1655     if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1656         cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1657         cleanup_all_trace_imc_memory();
1658     }
1659 }
1660 
1661 /*
1662  * Function to unregister thread-imc if core-imc
1663  * is not registered.
1664  */
1665 void unregister_thread_imc(void)
1666 {
1667     imc_common_cpuhp_mem_free(thread_imc_pmu);
1668     imc_common_mem_free(thread_imc_pmu);
1669     perf_pmu_unregister(&thread_imc_pmu->pmu);
1670 }
1671 
1672 /*
1673  * imc_mem_init : Function to support memory allocation for core imc.
1674  */
1675 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1676                                 int pmu_index)
1677 {
1678     const char *s;
1679     int nr_cores, cpu, res = -ENOMEM;
1680 
1681     if (of_property_read_string(parent, "name", &s))
1682         return -ENODEV;
1683 
1684     switch (pmu_ptr->domain) {
1685     case IMC_DOMAIN_NEST:
1686         /* Update the pmu name */
1687         pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1688         if (!pmu_ptr->pmu.name)
1689             goto err;
1690 
1691         /* Needed for hotplug/migration */
1692         if (!per_nest_pmu_arr) {
1693             per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1694                         sizeof(struct imc_pmu *),
1695                         GFP_KERNEL);
1696             if (!per_nest_pmu_arr)
1697                 goto err;
1698         }
1699         per_nest_pmu_arr[pmu_index] = pmu_ptr;
1700         break;
1701     case IMC_DOMAIN_CORE:
1702         /* Update the pmu name */
1703         pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1704         if (!pmu_ptr->pmu.name)
1705             goto err;
1706 
1707         nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1708         pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1709                                 GFP_KERNEL);
1710 
1711         if (!pmu_ptr->mem_info)
1712             goto err;
1713 
1714         core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1715                                 GFP_KERNEL);
1716 
1717         if (!core_imc_refc) {
1718             kfree(pmu_ptr->mem_info);
1719             goto err;
1720         }
1721 
1722         core_imc_pmu = pmu_ptr;
1723         break;
1724     case IMC_DOMAIN_THREAD:
1725         /* Update the pmu name */
1726         pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1727         if (!pmu_ptr->pmu.name)
1728             goto err;
1729 
1730         thread_imc_mem_size = pmu_ptr->counter_mem_size;
1731         for_each_online_cpu(cpu) {
1732             res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1733             if (res) {
1734                 cleanup_all_thread_imc_memory();
1735                 goto err;
1736             }
1737         }
1738 
1739         thread_imc_pmu = pmu_ptr;
1740         break;
1741     case IMC_DOMAIN_TRACE:
1742         /* Update the pmu name */
1743         pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1744         if (!pmu_ptr->pmu.name)
1745             return -ENOMEM;
1746 
1747         nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1748         trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1749                                 GFP_KERNEL);
1750         if (!trace_imc_refc)
1751             return -ENOMEM;
1752 
1753         trace_imc_mem_size = pmu_ptr->counter_mem_size;
1754         for_each_online_cpu(cpu) {
1755             res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1756             if (res) {
1757                 cleanup_all_trace_imc_memory();
1758                 goto err;
1759             }
1760         }
1761         break;
1762     default:
1763         return -EINVAL;
1764     }
1765 
1766     return 0;
1767 err:
1768     return res;
1769 }
1770 
1771 /*
1772  * init_imc_pmu : Setup and register the IMC pmu device.
1773  *
1774  * @parent: Device tree unit node
1775  * @pmu_ptr:    memory allocated for this pmu
1776  * @pmu_idx:    Count of nest pmc registered
1777  *
1778  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1779  * Handles failure cases and accordingly frees memory.
1780  */
1781 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1782 {
1783     int ret;
1784 
1785     ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1786     if (ret)
1787         goto err_free_mem;
1788 
1789     switch (pmu_ptr->domain) {
1790     case IMC_DOMAIN_NEST:
1791         /*
1792         * Nest imc pmu need only one cpu per chip, we initialize the
1793         * cpumask for the first nest imc pmu and use the same for the
1794         * rest. To handle the cpuhotplug callback unregister, we track
1795         * the number of nest pmus in "nest_pmus".
1796         */
1797         mutex_lock(&nest_init_lock);
1798         if (nest_pmus == 0) {
1799             ret = init_nest_pmu_ref();
1800             if (ret) {
1801                 mutex_unlock(&nest_init_lock);
1802                 kfree(per_nest_pmu_arr);
1803                 per_nest_pmu_arr = NULL;
1804                 goto err_free_mem;
1805             }
1806             /* Register for cpu hotplug notification. */
1807             ret = nest_pmu_cpumask_init();
1808             if (ret) {
1809                 mutex_unlock(&nest_init_lock);
1810                 kfree(nest_imc_refc);
1811                 kfree(per_nest_pmu_arr);
1812                 per_nest_pmu_arr = NULL;
1813                 goto err_free_mem;
1814             }
1815         }
1816         nest_pmus++;
1817         mutex_unlock(&nest_init_lock);
1818         break;
1819     case IMC_DOMAIN_CORE:
1820         ret = core_imc_pmu_cpumask_init();
1821         if (ret) {
1822             cleanup_all_core_imc_memory();
1823             goto err_free_mem;
1824         }
1825 
1826         break;
1827     case IMC_DOMAIN_THREAD:
1828         ret = thread_imc_cpu_init();
1829         if (ret) {
1830             cleanup_all_thread_imc_memory();
1831             goto err_free_mem;
1832         }
1833 
1834         break;
1835     case IMC_DOMAIN_TRACE:
1836         ret = trace_imc_cpu_init();
1837         if (ret) {
1838             cleanup_all_trace_imc_memory();
1839             goto err_free_mem;
1840         }
1841 
1842         break;
1843     default:
1844         return  -EINVAL;    /* Unknown domain */
1845     }
1846 
1847     ret = update_events_in_group(parent, pmu_ptr);
1848     if (ret)
1849         goto err_free_cpuhp_mem;
1850 
1851     ret = update_pmu_ops(pmu_ptr);
1852     if (ret)
1853         goto err_free_cpuhp_mem;
1854 
1855     ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1856     if (ret)
1857         goto err_free_cpuhp_mem;
1858 
1859     pr_debug("%s performance monitor hardware support registered\n",
1860                             pmu_ptr->pmu.name);
1861 
1862     return 0;
1863 
1864 err_free_cpuhp_mem:
1865     imc_common_cpuhp_mem_free(pmu_ptr);
1866 err_free_mem:
1867     imc_common_mem_free(pmu_ptr);
1868     return ret;
1869 }