Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
0004  *   {mikejc|engebret}@us.ibm.com
0005  *
0006  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
0007  *
0008  * SMP scalability work:
0009  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
0010  *
0011  *    Module name: htab.c
0012  *
0013  *    Description:
0014  *      PowerPC Hashed Page Table functions
0015  */
0016 
0017 #undef DEBUG
0018 #undef DEBUG_LOW
0019 
0020 #define pr_fmt(fmt) "hash-mmu: " fmt
0021 #include <linux/spinlock.h>
0022 #include <linux/errno.h>
0023 #include <linux/sched/mm.h>
0024 #include <linux/proc_fs.h>
0025 #include <linux/stat.h>
0026 #include <linux/sysctl.h>
0027 #include <linux/export.h>
0028 #include <linux/ctype.h>
0029 #include <linux/cache.h>
0030 #include <linux/init.h>
0031 #include <linux/signal.h>
0032 #include <linux/memblock.h>
0033 #include <linux/context_tracking.h>
0034 #include <linux/libfdt.h>
0035 #include <linux/pkeys.h>
0036 #include <linux/hugetlb.h>
0037 #include <linux/cpu.h>
0038 #include <linux/pgtable.h>
0039 #include <linux/debugfs.h>
0040 #include <linux/random.h>
0041 #include <linux/elf-randomize.h>
0042 #include <linux/of_fdt.h>
0043 
0044 #include <asm/interrupt.h>
0045 #include <asm/processor.h>
0046 #include <asm/mmu.h>
0047 #include <asm/mmu_context.h>
0048 #include <asm/page.h>
0049 #include <asm/types.h>
0050 #include <linux/uaccess.h>
0051 #include <asm/machdep.h>
0052 #include <asm/io.h>
0053 #include <asm/eeh.h>
0054 #include <asm/tlb.h>
0055 #include <asm/cacheflush.h>
0056 #include <asm/cputable.h>
0057 #include <asm/sections.h>
0058 #include <asm/copro.h>
0059 #include <asm/udbg.h>
0060 #include <asm/code-patching.h>
0061 #include <asm/fadump.h>
0062 #include <asm/firmware.h>
0063 #include <asm/tm.h>
0064 #include <asm/trace.h>
0065 #include <asm/ps3.h>
0066 #include <asm/pte-walk.h>
0067 #include <asm/asm-prototypes.h>
0068 #include <asm/ultravisor.h>
0069 
0070 #include <mm/mmu_decl.h>
0071 
0072 #include "internal.h"
0073 
0074 
0075 #ifdef DEBUG
0076 #define DBG(fmt...) udbg_printf(fmt)
0077 #else
0078 #define DBG(fmt...)
0079 #endif
0080 
0081 #ifdef DEBUG_LOW
0082 #define DBG_LOW(fmt...) udbg_printf(fmt)
0083 #else
0084 #define DBG_LOW(fmt...)
0085 #endif
0086 
0087 #define KB (1024)
0088 #define MB (1024*KB)
0089 #define GB (1024L*MB)
0090 
0091 /*
0092  * Note:  pte   --> Linux PTE
0093  *        HPTE  --> PowerPC Hashed Page Table Entry
0094  *
0095  * Execution context:
0096  *   htab_initialize is called with the MMU off (of course), but
0097  *   the kernel has been copied down to zero so it can directly
0098  *   reference global data.  At this point it is very difficult
0099  *   to print debug info.
0100  *
0101  */
0102 
0103 static unsigned long _SDR1;
0104 
0105 u8 hpte_page_sizes[1 << LP_BITS];
0106 EXPORT_SYMBOL_GPL(hpte_page_sizes);
0107 
0108 struct hash_pte *htab_address;
0109 unsigned long htab_size_bytes;
0110 unsigned long htab_hash_mask;
0111 EXPORT_SYMBOL_GPL(htab_hash_mask);
0112 int mmu_linear_psize = MMU_PAGE_4K;
0113 EXPORT_SYMBOL_GPL(mmu_linear_psize);
0114 int mmu_virtual_psize = MMU_PAGE_4K;
0115 int mmu_vmalloc_psize = MMU_PAGE_4K;
0116 EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
0117 int mmu_io_psize = MMU_PAGE_4K;
0118 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
0119 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
0120 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
0121 u16 mmu_slb_size = 64;
0122 EXPORT_SYMBOL_GPL(mmu_slb_size);
0123 #ifdef CONFIG_PPC_64K_PAGES
0124 int mmu_ci_restrictions;
0125 #endif
0126 #ifdef CONFIG_DEBUG_PAGEALLOC
0127 static u8 *linear_map_hash_slots;
0128 static unsigned long linear_map_hash_count;
0129 static DEFINE_SPINLOCK(linear_map_hash_lock);
0130 #endif /* CONFIG_DEBUG_PAGEALLOC */
0131 struct mmu_hash_ops mmu_hash_ops;
0132 EXPORT_SYMBOL(mmu_hash_ops);
0133 
0134 /*
0135  * These are definitions of page sizes arrays to be used when none
0136  * is provided by the firmware.
0137  */
0138 
0139 /*
0140  * Fallback (4k pages only)
0141  */
0142 static struct mmu_psize_def mmu_psize_defaults[] = {
0143     [MMU_PAGE_4K] = {
0144         .shift  = 12,
0145         .sllp   = 0,
0146         .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
0147         .avpnm  = 0,
0148         .tlbiel = 0,
0149     },
0150 };
0151 
0152 /*
0153  * POWER4, GPUL, POWER5
0154  *
0155  * Support for 16Mb large pages
0156  */
0157 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
0158     [MMU_PAGE_4K] = {
0159         .shift  = 12,
0160         .sllp   = 0,
0161         .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
0162         .avpnm  = 0,
0163         .tlbiel = 1,
0164     },
0165     [MMU_PAGE_16M] = {
0166         .shift  = 24,
0167         .sllp   = SLB_VSID_L,
0168         .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
0169                 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
0170         .avpnm  = 0x1UL,
0171         .tlbiel = 0,
0172     },
0173 };
0174 
0175 static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is)
0176 {
0177     unsigned long rb;
0178 
0179     rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
0180 
0181     asm volatile("tlbiel %0" : : "r" (rb));
0182 }
0183 
0184 /*
0185  * tlbiel instruction for hash, set invalidation
0186  * i.e., r=1 and is=01 or is=10 or is=11
0187  */
0188 static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is,
0189                     unsigned int pid,
0190                     unsigned int ric, unsigned int prs)
0191 {
0192     unsigned long rb;
0193     unsigned long rs;
0194     unsigned int r = 0; /* hash format */
0195 
0196     rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
0197     rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
0198 
0199     asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4)
0200              : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r)
0201              : "memory");
0202 }
0203 
0204 
0205 static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is)
0206 {
0207     unsigned int set;
0208 
0209     asm volatile("ptesync": : :"memory");
0210 
0211     for (set = 0; set < num_sets; set++)
0212         tlbiel_hash_set_isa206(set, is);
0213 
0214     ppc_after_tlbiel_barrier();
0215 }
0216 
0217 static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
0218 {
0219     unsigned int set;
0220 
0221     asm volatile("ptesync": : :"memory");
0222 
0223     /*
0224      * Flush the partition table cache if this is HV mode.
0225      */
0226     if (early_cpu_has_feature(CPU_FTR_HVMODE))
0227         tlbiel_hash_set_isa300(0, is, 0, 2, 0);
0228 
0229     /*
0230      * Now invalidate the process table cache. UPRT=0 HPT modes (what
0231      * current hardware implements) do not use the process table, but
0232      * add the flushes anyway.
0233      *
0234      * From ISA v3.0B p. 1078:
0235      *     The following forms are invalid.
0236      *      * PRS=1, R=0, and RIC!=2 (The only process-scoped
0237      *        HPT caching is of the Process Table.)
0238      */
0239     tlbiel_hash_set_isa300(0, is, 0, 2, 1);
0240 
0241     /*
0242      * Then flush the sets of the TLB proper. Hash mode uses
0243      * partition scoped TLB translations, which may be flushed
0244      * in !HV mode.
0245      */
0246     for (set = 0; set < num_sets; set++)
0247         tlbiel_hash_set_isa300(set, is, 0, 0, 0);
0248 
0249     ppc_after_tlbiel_barrier();
0250 
0251     asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
0252 }
0253 
0254 void hash__tlbiel_all(unsigned int action)
0255 {
0256     unsigned int is;
0257 
0258     switch (action) {
0259     case TLB_INVAL_SCOPE_GLOBAL:
0260         is = 3;
0261         break;
0262     case TLB_INVAL_SCOPE_LPID:
0263         is = 2;
0264         break;
0265     default:
0266         BUG();
0267     }
0268 
0269     if (early_cpu_has_feature(CPU_FTR_ARCH_300))
0270         tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is);
0271     else if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
0272         tlbiel_all_isa206(POWER8_TLB_SETS, is);
0273     else if (early_cpu_has_feature(CPU_FTR_ARCH_206))
0274         tlbiel_all_isa206(POWER7_TLB_SETS, is);
0275     else
0276         WARN(1, "%s called on pre-POWER7 CPU\n", __func__);
0277 }
0278 
0279 /*
0280  * 'R' and 'C' update notes:
0281  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
0282  *     create writeable HPTEs without C set, because the hcall H_PROTECT
0283  *     that we use in that case will not update C
0284  *  - The above is however not a problem, because we also don't do that
0285  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
0286  *     do the right thing and thus we don't have the race I described earlier
0287  *
0288  *    - Under bare metal,  we do have the race, so we need R and C set
0289  *    - We make sure R is always set and never lost
0290  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
0291  */
0292 unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
0293 {
0294     unsigned long rflags = 0;
0295 
0296     /* _PAGE_EXEC -> NOEXEC */
0297     if ((pteflags & _PAGE_EXEC) == 0)
0298         rflags |= HPTE_R_N;
0299     /*
0300      * PPP bits:
0301      * Linux uses slb key 0 for kernel and 1 for user.
0302      * kernel RW areas are mapped with PPP=0b000
0303      * User area is mapped with PPP=0b010 for read/write
0304      * or PPP=0b011 for read-only (including writeable but clean pages).
0305      */
0306     if (pteflags & _PAGE_PRIVILEGED) {
0307         /*
0308          * Kernel read only mapped with ppp bits 0b110
0309          */
0310         if (!(pteflags & _PAGE_WRITE)) {
0311             if (mmu_has_feature(MMU_FTR_KERNEL_RO))
0312                 rflags |= (HPTE_R_PP0 | 0x2);
0313             else
0314                 rflags |= 0x3;
0315         }
0316     } else {
0317         if (pteflags & _PAGE_RWX)
0318             rflags |= 0x2;
0319         if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
0320             rflags |= 0x1;
0321     }
0322     /*
0323      * We can't allow hardware to update hpte bits. Hence always
0324      * set 'R' bit and set 'C' if it is a write fault
0325      */
0326     rflags |=  HPTE_R_R;
0327 
0328     if (pteflags & _PAGE_DIRTY)
0329         rflags |= HPTE_R_C;
0330     /*
0331      * Add in WIG bits
0332      */
0333 
0334     if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
0335         rflags |= HPTE_R_I;
0336     else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
0337         rflags |= (HPTE_R_I | HPTE_R_G);
0338     else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
0339         rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
0340     else
0341         /*
0342          * Add memory coherence if cache inhibited is not set
0343          */
0344         rflags |= HPTE_R_M;
0345 
0346     rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
0347     return rflags;
0348 }
0349 
0350 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
0351               unsigned long pstart, unsigned long prot,
0352               int psize, int ssize)
0353 {
0354     unsigned long vaddr, paddr;
0355     unsigned int step, shift;
0356     int ret = 0;
0357 
0358     shift = mmu_psize_defs[psize].shift;
0359     step = 1 << shift;
0360 
0361     prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
0362 
0363     DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
0364         vstart, vend, pstart, prot, psize, ssize);
0365 
0366     /* Carefully map only the possible range */
0367     vaddr = ALIGN(vstart, step);
0368     paddr = ALIGN(pstart, step);
0369     vend  = ALIGN_DOWN(vend, step);
0370 
0371     for (; vaddr < vend; vaddr += step, paddr += step) {
0372         unsigned long hash, hpteg;
0373         unsigned long vsid = get_kernel_vsid(vaddr, ssize);
0374         unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
0375         unsigned long tprot = prot;
0376         bool secondary_hash = false;
0377 
0378         /*
0379          * If we hit a bad address return error.
0380          */
0381         if (!vsid)
0382             return -1;
0383         /* Make kernel text executable */
0384         if (overlaps_kernel_text(vaddr, vaddr + step))
0385             tprot &= ~HPTE_R_N;
0386 
0387         /*
0388          * If relocatable, check if it overlaps interrupt vectors that
0389          * are copied down to real 0. For relocatable kernel
0390          * (e.g. kdump case) we copy interrupt vectors down to real
0391          * address 0. Mark that region as executable. This is
0392          * because on p8 system with relocation on exception feature
0393          * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
0394          * in order to execute the interrupt handlers in virtual
0395          * mode the vector region need to be marked as executable.
0396          */
0397         if ((PHYSICAL_START > MEMORY_START) &&
0398             overlaps_interrupt_vector_text(vaddr, vaddr + step))
0399                 tprot &= ~HPTE_R_N;
0400 
0401         hash = hpt_hash(vpn, shift, ssize);
0402         hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
0403 
0404         BUG_ON(!mmu_hash_ops.hpte_insert);
0405 repeat:
0406         ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
0407                            HPTE_V_BOLTED, psize, psize,
0408                            ssize);
0409         if (ret == -1) {
0410             /*
0411              * Try to keep bolted entries in primary.
0412              * Remove non bolted entries and try insert again
0413              */
0414             ret = mmu_hash_ops.hpte_remove(hpteg);
0415             if (ret != -1)
0416                 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
0417                                    HPTE_V_BOLTED, psize, psize,
0418                                    ssize);
0419             if (ret == -1 && !secondary_hash) {
0420                 secondary_hash = true;
0421                 hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
0422                 goto repeat;
0423             }
0424         }
0425 
0426         if (ret < 0)
0427             break;
0428 
0429         cond_resched();
0430 #ifdef CONFIG_DEBUG_PAGEALLOC
0431         if (debug_pagealloc_enabled() &&
0432             (paddr >> PAGE_SHIFT) < linear_map_hash_count)
0433             linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
0434 #endif /* CONFIG_DEBUG_PAGEALLOC */
0435     }
0436     return ret < 0 ? ret : 0;
0437 }
0438 
0439 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
0440               int psize, int ssize)
0441 {
0442     unsigned long vaddr, time_limit;
0443     unsigned int step, shift;
0444     int rc;
0445     int ret = 0;
0446 
0447     shift = mmu_psize_defs[psize].shift;
0448     step = 1 << shift;
0449 
0450     if (!mmu_hash_ops.hpte_removebolted)
0451         return -ENODEV;
0452 
0453     /* Unmap the full range specificied */
0454     vaddr = ALIGN_DOWN(vstart, step);
0455     time_limit = jiffies + HZ;
0456 
0457     for (;vaddr < vend; vaddr += step) {
0458         rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
0459 
0460         /*
0461          * For large number of mappings introduce a cond_resched()
0462          * to prevent softlockup warnings.
0463          */
0464         if (time_after(jiffies, time_limit)) {
0465             cond_resched();
0466             time_limit = jiffies + HZ;
0467         }
0468         if (rc == -ENOENT) {
0469             ret = -ENOENT;
0470             continue;
0471         }
0472         if (rc < 0)
0473             return rc;
0474     }
0475 
0476     return ret;
0477 }
0478 
0479 static bool disable_1tb_segments = false;
0480 
0481 static int __init parse_disable_1tb_segments(char *p)
0482 {
0483     disable_1tb_segments = true;
0484     return 0;
0485 }
0486 early_param("disable_1tb_segments", parse_disable_1tb_segments);
0487 
0488 static int __init htab_dt_scan_seg_sizes(unsigned long node,
0489                      const char *uname, int depth,
0490                      void *data)
0491 {
0492     const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
0493     const __be32 *prop;
0494     int size = 0;
0495 
0496     /* We are scanning "cpu" nodes only */
0497     if (type == NULL || strcmp(type, "cpu") != 0)
0498         return 0;
0499 
0500     prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
0501     if (prop == NULL)
0502         return 0;
0503     for (; size >= 4; size -= 4, ++prop) {
0504         if (be32_to_cpu(prop[0]) == 40) {
0505             DBG("1T segment support detected\n");
0506 
0507             if (disable_1tb_segments) {
0508                 DBG("1T segments disabled by command line\n");
0509                 break;
0510             }
0511 
0512             cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
0513             return 1;
0514         }
0515     }
0516     cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
0517     return 0;
0518 }
0519 
0520 static int __init get_idx_from_shift(unsigned int shift)
0521 {
0522     int idx = -1;
0523 
0524     switch (shift) {
0525     case 0xc:
0526         idx = MMU_PAGE_4K;
0527         break;
0528     case 0x10:
0529         idx = MMU_PAGE_64K;
0530         break;
0531     case 0x14:
0532         idx = MMU_PAGE_1M;
0533         break;
0534     case 0x18:
0535         idx = MMU_PAGE_16M;
0536         break;
0537     case 0x22:
0538         idx = MMU_PAGE_16G;
0539         break;
0540     }
0541     return idx;
0542 }
0543 
0544 static int __init htab_dt_scan_page_sizes(unsigned long node,
0545                       const char *uname, int depth,
0546                       void *data)
0547 {
0548     const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
0549     const __be32 *prop;
0550     int size = 0;
0551 
0552     /* We are scanning "cpu" nodes only */
0553     if (type == NULL || strcmp(type, "cpu") != 0)
0554         return 0;
0555 
0556     prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
0557     if (!prop)
0558         return 0;
0559 
0560     pr_info("Page sizes from device-tree:\n");
0561     size /= 4;
0562     cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
0563     while(size > 0) {
0564         unsigned int base_shift = be32_to_cpu(prop[0]);
0565         unsigned int slbenc = be32_to_cpu(prop[1]);
0566         unsigned int lpnum = be32_to_cpu(prop[2]);
0567         struct mmu_psize_def *def;
0568         int idx, base_idx;
0569 
0570         size -= 3; prop += 3;
0571         base_idx = get_idx_from_shift(base_shift);
0572         if (base_idx < 0) {
0573             /* skip the pte encoding also */
0574             prop += lpnum * 2; size -= lpnum * 2;
0575             continue;
0576         }
0577         def = &mmu_psize_defs[base_idx];
0578         if (base_idx == MMU_PAGE_16M)
0579             cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
0580 
0581         def->shift = base_shift;
0582         if (base_shift <= 23)
0583             def->avpnm = 0;
0584         else
0585             def->avpnm = (1 << (base_shift - 23)) - 1;
0586         def->sllp = slbenc;
0587         /*
0588          * We don't know for sure what's up with tlbiel, so
0589          * for now we only set it for 4K and 64K pages
0590          */
0591         if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
0592             def->tlbiel = 1;
0593         else
0594             def->tlbiel = 0;
0595 
0596         while (size > 0 && lpnum) {
0597             unsigned int shift = be32_to_cpu(prop[0]);
0598             int penc  = be32_to_cpu(prop[1]);
0599 
0600             prop += 2; size -= 2;
0601             lpnum--;
0602 
0603             idx = get_idx_from_shift(shift);
0604             if (idx < 0)
0605                 continue;
0606 
0607             if (penc == -1)
0608                 pr_err("Invalid penc for base_shift=%d "
0609                        "shift=%d\n", base_shift, shift);
0610 
0611             def->penc[idx] = penc;
0612             pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
0613                 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
0614                 base_shift, shift, def->sllp,
0615                 def->avpnm, def->tlbiel, def->penc[idx]);
0616         }
0617     }
0618 
0619     return 1;
0620 }
0621 
0622 #ifdef CONFIG_HUGETLB_PAGE
0623 /*
0624  * Scan for 16G memory blocks that have been set aside for huge pages
0625  * and reserve those blocks for 16G huge pages.
0626  */
0627 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
0628                     const char *uname, int depth,
0629                     void *data) {
0630     const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
0631     const __be64 *addr_prop;
0632     const __be32 *page_count_prop;
0633     unsigned int expected_pages;
0634     long unsigned int phys_addr;
0635     long unsigned int block_size;
0636 
0637     /* We are scanning "memory" nodes only */
0638     if (type == NULL || strcmp(type, "memory") != 0)
0639         return 0;
0640 
0641     /*
0642      * This property is the log base 2 of the number of virtual pages that
0643      * will represent this memory block.
0644      */
0645     page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
0646     if (page_count_prop == NULL)
0647         return 0;
0648     expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
0649     addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
0650     if (addr_prop == NULL)
0651         return 0;
0652     phys_addr = be64_to_cpu(addr_prop[0]);
0653     block_size = be64_to_cpu(addr_prop[1]);
0654     if (block_size != (16 * GB))
0655         return 0;
0656     printk(KERN_INFO "Huge page(16GB) memory: "
0657             "addr = 0x%lX size = 0x%lX pages = %d\n",
0658             phys_addr, block_size, expected_pages);
0659     if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
0660         memblock_reserve(phys_addr, block_size * expected_pages);
0661         pseries_add_gpage(phys_addr, block_size, expected_pages);
0662     }
0663     return 0;
0664 }
0665 #endif /* CONFIG_HUGETLB_PAGE */
0666 
0667 static void __init mmu_psize_set_default_penc(void)
0668 {
0669     int bpsize, apsize;
0670     for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
0671         for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
0672             mmu_psize_defs[bpsize].penc[apsize] = -1;
0673 }
0674 
0675 #ifdef CONFIG_PPC_64K_PAGES
0676 
0677 static bool __init might_have_hea(void)
0678 {
0679     /*
0680      * The HEA ethernet adapter requires awareness of the
0681      * GX bus. Without that awareness we can easily assume
0682      * we will never see an HEA ethernet device.
0683      */
0684 #ifdef CONFIG_IBMEBUS
0685     return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
0686         firmware_has_feature(FW_FEATURE_SPLPAR);
0687 #else
0688     return false;
0689 #endif
0690 }
0691 
0692 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
0693 
0694 static void __init htab_scan_page_sizes(void)
0695 {
0696     int rc;
0697 
0698     /* se the invalid penc to -1 */
0699     mmu_psize_set_default_penc();
0700 
0701     /* Default to 4K pages only */
0702     memcpy(mmu_psize_defs, mmu_psize_defaults,
0703            sizeof(mmu_psize_defaults));
0704 
0705     /*
0706      * Try to find the available page sizes in the device-tree
0707      */
0708     rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
0709     if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
0710         /*
0711          * Nothing in the device-tree, but the CPU supports 16M pages,
0712          * so let's fallback on a known size list for 16M capable CPUs.
0713          */
0714         memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
0715                sizeof(mmu_psize_defaults_gp));
0716     }
0717 
0718 #ifdef CONFIG_HUGETLB_PAGE
0719     if (!hugetlb_disabled && !early_radix_enabled() ) {
0720         /* Reserve 16G huge page memory sections for huge pages */
0721         of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
0722     }
0723 #endif /* CONFIG_HUGETLB_PAGE */
0724 }
0725 
0726 /*
0727  * Fill in the hpte_page_sizes[] array.
0728  * We go through the mmu_psize_defs[] array looking for all the
0729  * supported base/actual page size combinations.  Each combination
0730  * has a unique pagesize encoding (penc) value in the low bits of
0731  * the LP field of the HPTE.  For actual page sizes less than 1MB,
0732  * some of the upper LP bits are used for RPN bits, meaning that
0733  * we need to fill in several entries in hpte_page_sizes[].
0734  *
0735  * In diagrammatic form, with r = RPN bits and z = page size bits:
0736  *        PTE LP     actual page size
0737  *    rrrr rrrz     >=8KB
0738  *    rrrr rrzz     >=16KB
0739  *    rrrr rzzz     >=32KB
0740  *    rrrr zzzz     >=64KB
0741  *    ...
0742  *
0743  * The zzzz bits are implementation-specific but are chosen so that
0744  * no encoding for a larger page size uses the same value in its
0745  * low-order N bits as the encoding for the 2^(12+N) byte page size
0746  * (if it exists).
0747  */
0748 static void __init init_hpte_page_sizes(void)
0749 {
0750     long int ap, bp;
0751     long int shift, penc;
0752 
0753     for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
0754         if (!mmu_psize_defs[bp].shift)
0755             continue;   /* not a supported page size */
0756         for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
0757             penc = mmu_psize_defs[bp].penc[ap];
0758             if (penc == -1 || !mmu_psize_defs[ap].shift)
0759                 continue;
0760             shift = mmu_psize_defs[ap].shift - LP_SHIFT;
0761             if (shift <= 0)
0762                 continue;   /* should never happen */
0763             /*
0764              * For page sizes less than 1MB, this loop
0765              * replicates the entry for all possible values
0766              * of the rrrr bits.
0767              */
0768             while (penc < (1 << LP_BITS)) {
0769                 hpte_page_sizes[penc] = (ap << 4) | bp;
0770                 penc += 1 << shift;
0771             }
0772         }
0773     }
0774 }
0775 
0776 static void __init htab_init_page_sizes(void)
0777 {
0778     bool aligned = true;
0779     init_hpte_page_sizes();
0780 
0781     if (!debug_pagealloc_enabled()) {
0782         /*
0783          * Pick a size for the linear mapping. Currently, we only
0784          * support 16M, 1M and 4K which is the default
0785          */
0786         if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
0787             (unsigned long)_stext % 0x1000000) {
0788             if (mmu_psize_defs[MMU_PAGE_16M].shift)
0789                 pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
0790             aligned = false;
0791         }
0792 
0793         if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
0794             mmu_linear_psize = MMU_PAGE_16M;
0795         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
0796             mmu_linear_psize = MMU_PAGE_1M;
0797     }
0798 
0799 #ifdef CONFIG_PPC_64K_PAGES
0800     /*
0801      * Pick a size for the ordinary pages. Default is 4K, we support
0802      * 64K for user mappings and vmalloc if supported by the processor.
0803      * We only use 64k for ioremap if the processor
0804      * (and firmware) support cache-inhibited large pages.
0805      * If not, we use 4k and set mmu_ci_restrictions so that
0806      * hash_page knows to switch processes that use cache-inhibited
0807      * mappings to 4k pages.
0808      */
0809     if (mmu_psize_defs[MMU_PAGE_64K].shift) {
0810         mmu_virtual_psize = MMU_PAGE_64K;
0811         mmu_vmalloc_psize = MMU_PAGE_64K;
0812         if (mmu_linear_psize == MMU_PAGE_4K)
0813             mmu_linear_psize = MMU_PAGE_64K;
0814         if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
0815             /*
0816              * When running on pSeries using 64k pages for ioremap
0817              * would stop us accessing the HEA ethernet. So if we
0818              * have the chance of ever seeing one, stay at 4k.
0819              */
0820             if (!might_have_hea())
0821                 mmu_io_psize = MMU_PAGE_64K;
0822         } else
0823             mmu_ci_restrictions = 1;
0824     }
0825 #endif /* CONFIG_PPC_64K_PAGES */
0826 
0827 #ifdef CONFIG_SPARSEMEM_VMEMMAP
0828     /*
0829      * We try to use 16M pages for vmemmap if that is supported
0830      * and we have at least 1G of RAM at boot
0831      */
0832     if (mmu_psize_defs[MMU_PAGE_16M].shift &&
0833         memblock_phys_mem_size() >= 0x40000000)
0834         mmu_vmemmap_psize = MMU_PAGE_16M;
0835     else
0836         mmu_vmemmap_psize = mmu_virtual_psize;
0837 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
0838 
0839     printk(KERN_DEBUG "Page orders: linear mapping = %d, "
0840            "virtual = %d, io = %d"
0841 #ifdef CONFIG_SPARSEMEM_VMEMMAP
0842            ", vmemmap = %d"
0843 #endif
0844            "\n",
0845            mmu_psize_defs[mmu_linear_psize].shift,
0846            mmu_psize_defs[mmu_virtual_psize].shift,
0847            mmu_psize_defs[mmu_io_psize].shift
0848 #ifdef CONFIG_SPARSEMEM_VMEMMAP
0849            ,mmu_psize_defs[mmu_vmemmap_psize].shift
0850 #endif
0851            );
0852 }
0853 
0854 static int __init htab_dt_scan_pftsize(unsigned long node,
0855                        const char *uname, int depth,
0856                        void *data)
0857 {
0858     const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
0859     const __be32 *prop;
0860 
0861     /* We are scanning "cpu" nodes only */
0862     if (type == NULL || strcmp(type, "cpu") != 0)
0863         return 0;
0864 
0865     prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
0866     if (prop != NULL) {
0867         /* pft_size[0] is the NUMA CEC cookie */
0868         ppc64_pft_size = be32_to_cpu(prop[1]);
0869         return 1;
0870     }
0871     return 0;
0872 }
0873 
0874 unsigned htab_shift_for_mem_size(unsigned long mem_size)
0875 {
0876     unsigned memshift = __ilog2(mem_size);
0877     unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
0878     unsigned pteg_shift;
0879 
0880     /* round mem_size up to next power of 2 */
0881     if ((1UL << memshift) < mem_size)
0882         memshift += 1;
0883 
0884     /* aim for 2 pages / pteg */
0885     pteg_shift = memshift - (pshift + 1);
0886 
0887     /*
0888      * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
0889      * size permitted by the architecture.
0890      */
0891     return max(pteg_shift + 7, 18U);
0892 }
0893 
0894 static unsigned long __init htab_get_table_size(void)
0895 {
0896     /*
0897      * If hash size isn't already provided by the platform, we try to
0898      * retrieve it from the device-tree. If it's not there neither, we
0899      * calculate it now based on the total RAM size
0900      */
0901     if (ppc64_pft_size == 0)
0902         of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
0903     if (ppc64_pft_size)
0904         return 1UL << ppc64_pft_size;
0905 
0906     return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
0907 }
0908 
0909 #ifdef CONFIG_MEMORY_HOTPLUG
0910 static int resize_hpt_for_hotplug(unsigned long new_mem_size)
0911 {
0912     unsigned target_hpt_shift;
0913 
0914     if (!mmu_hash_ops.resize_hpt)
0915         return 0;
0916 
0917     target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
0918 
0919     /*
0920      * To avoid lots of HPT resizes if memory size is fluctuating
0921      * across a boundary, we deliberately have some hysterisis
0922      * here: we immediately increase the HPT size if the target
0923      * shift exceeds the current shift, but we won't attempt to
0924      * reduce unless the target shift is at least 2 below the
0925      * current shift
0926      */
0927     if (target_hpt_shift > ppc64_pft_size ||
0928         target_hpt_shift < ppc64_pft_size - 1)
0929         return mmu_hash_ops.resize_hpt(target_hpt_shift);
0930 
0931     return 0;
0932 }
0933 
0934 int hash__create_section_mapping(unsigned long start, unsigned long end,
0935                  int nid, pgprot_t prot)
0936 {
0937     int rc;
0938 
0939     if (end >= H_VMALLOC_START) {
0940         pr_warn("Outside the supported range\n");
0941         return -1;
0942     }
0943 
0944     resize_hpt_for_hotplug(memblock_phys_mem_size());
0945 
0946     rc = htab_bolt_mapping(start, end, __pa(start),
0947                    pgprot_val(prot), mmu_linear_psize,
0948                    mmu_kernel_ssize);
0949 
0950     if (rc < 0) {
0951         int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
0952                           mmu_kernel_ssize);
0953         BUG_ON(rc2 && (rc2 != -ENOENT));
0954     }
0955     return rc;
0956 }
0957 
0958 int hash__remove_section_mapping(unsigned long start, unsigned long end)
0959 {
0960     int rc = htab_remove_mapping(start, end, mmu_linear_psize,
0961                      mmu_kernel_ssize);
0962 
0963     if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
0964         pr_warn("Hash collision while resizing HPT\n");
0965 
0966     return rc;
0967 }
0968 #endif /* CONFIG_MEMORY_HOTPLUG */
0969 
0970 static void __init hash_init_partition_table(phys_addr_t hash_table,
0971                          unsigned long htab_size)
0972 {
0973     mmu_partition_table_init();
0974 
0975     /*
0976      * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
0977      * For now, UPRT is 0 and we have no segment table.
0978      */
0979     htab_size =  __ilog2(htab_size) - 18;
0980     mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
0981     pr_info("Partition table %p\n", partition_tb);
0982 }
0983 
0984 static void __init htab_initialize(void)
0985 {
0986     unsigned long table;
0987     unsigned long pteg_count;
0988     unsigned long prot;
0989     phys_addr_t base = 0, size = 0, end;
0990     u64 i;
0991 
0992     DBG(" -> htab_initialize()\n");
0993 
0994     if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
0995         mmu_kernel_ssize = MMU_SEGSIZE_1T;
0996         mmu_highuser_ssize = MMU_SEGSIZE_1T;
0997         printk(KERN_INFO "Using 1TB segments\n");
0998     }
0999 
1000     if (stress_slb_enabled)
1001         static_branch_enable(&stress_slb_key);
1002 
1003     /*
1004      * Calculate the required size of the htab.  We want the number of
1005      * PTEGs to equal one half the number of real pages.
1006      */
1007     htab_size_bytes = htab_get_table_size();
1008     pteg_count = htab_size_bytes >> 7;
1009 
1010     htab_hash_mask = pteg_count - 1;
1011 
1012     if (firmware_has_feature(FW_FEATURE_LPAR) ||
1013         firmware_has_feature(FW_FEATURE_PS3_LV1)) {
1014         /* Using a hypervisor which owns the htab */
1015         htab_address = NULL;
1016         _SDR1 = 0;
1017 #ifdef CONFIG_FA_DUMP
1018         /*
1019          * If firmware assisted dump is active firmware preserves
1020          * the contents of htab along with entire partition memory.
1021          * Clear the htab if firmware assisted dump is active so
1022          * that we dont end up using old mappings.
1023          */
1024         if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
1025             mmu_hash_ops.hpte_clear_all();
1026 #endif
1027     } else {
1028         unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
1029 
1030 #ifdef CONFIG_PPC_CELL
1031         /*
1032          * Cell may require the hash table down low when using the
1033          * Axon IOMMU in order to fit the dynamic region over it, see
1034          * comments in cell/iommu.c
1035          */
1036         if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
1037             limit = 0x80000000;
1038             pr_info("Hash table forced below 2G for Axon IOMMU\n");
1039         }
1040 #endif /* CONFIG_PPC_CELL */
1041 
1042         table = memblock_phys_alloc_range(htab_size_bytes,
1043                           htab_size_bytes,
1044                           0, limit);
1045         if (!table)
1046             panic("ERROR: Failed to allocate %pa bytes below %pa\n",
1047                   &htab_size_bytes, &limit);
1048 
1049         DBG("Hash table allocated at %lx, size: %lx\n", table,
1050             htab_size_bytes);
1051 
1052         htab_address = __va(table);
1053 
1054         /* htab absolute addr + encoded htabsize */
1055         _SDR1 = table + __ilog2(htab_size_bytes) - 18;
1056 
1057         /* Initialize the HPT with no entries */
1058         memset((void *)table, 0, htab_size_bytes);
1059 
1060         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1061             /* Set SDR1 */
1062             mtspr(SPRN_SDR1, _SDR1);
1063         else
1064             hash_init_partition_table(table, htab_size_bytes);
1065     }
1066 
1067     prot = pgprot_val(PAGE_KERNEL);
1068 
1069 #ifdef CONFIG_DEBUG_PAGEALLOC
1070     if (debug_pagealloc_enabled()) {
1071         linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
1072         linear_map_hash_slots = memblock_alloc_try_nid(
1073                 linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
1074                 ppc64_rma_size, NUMA_NO_NODE);
1075         if (!linear_map_hash_slots)
1076             panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
1077                   __func__, linear_map_hash_count, &ppc64_rma_size);
1078     }
1079 #endif /* CONFIG_DEBUG_PAGEALLOC */
1080 
1081     /* create bolted the linear mapping in the hash table */
1082     for_each_mem_range(i, &base, &end) {
1083         size = end - base;
1084         base = (unsigned long)__va(base);
1085 
1086         DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
1087             base, size, prot);
1088 
1089         if ((base + size) >= H_VMALLOC_START) {
1090             pr_warn("Outside the supported range\n");
1091             continue;
1092         }
1093 
1094         BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
1095                 prot, mmu_linear_psize, mmu_kernel_ssize));
1096     }
1097     memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
1098 
1099     /*
1100      * If we have a memory_limit and we've allocated TCEs then we need to
1101      * explicitly map the TCE area at the top of RAM. We also cope with the
1102      * case that the TCEs start below memory_limit.
1103      * tce_alloc_start/end are 16MB aligned so the mapping should work
1104      * for either 4K or 16MB pages.
1105      */
1106     if (tce_alloc_start) {
1107         tce_alloc_start = (unsigned long)__va(tce_alloc_start);
1108         tce_alloc_end = (unsigned long)__va(tce_alloc_end);
1109 
1110         if (base + size >= tce_alloc_start)
1111             tce_alloc_start = base + size + 1;
1112 
1113         BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1114                      __pa(tce_alloc_start), prot,
1115                      mmu_linear_psize, mmu_kernel_ssize));
1116     }
1117 
1118 
1119     DBG(" <- htab_initialize()\n");
1120 }
1121 #undef KB
1122 #undef MB
1123 
1124 void __init hash__early_init_devtree(void)
1125 {
1126     /* Initialize segment sizes */
1127     of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1128 
1129     /* Initialize page sizes */
1130     htab_scan_page_sizes();
1131 }
1132 
1133 static struct hash_mm_context init_hash_mm_context;
1134 void __init hash__early_init_mmu(void)
1135 {
1136 #ifndef CONFIG_PPC_64K_PAGES
1137     /*
1138      * We have code in __hash_page_4K() and elsewhere, which assumes it can
1139      * do the following:
1140      *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1141      *
1142      * Where the slot number is between 0-15, and values of 8-15 indicate
1143      * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1144      * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1145      * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1146      * with a BUILD_BUG_ON().
1147      */
1148     BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1149 #endif /* CONFIG_PPC_64K_PAGES */
1150 
1151     htab_init_page_sizes();
1152 
1153     /*
1154      * initialize page table size
1155      */
1156     __pte_frag_nr = H_PTE_FRAG_NR;
1157     __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1158     __pmd_frag_nr = H_PMD_FRAG_NR;
1159     __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1160 
1161     __pte_index_size = H_PTE_INDEX_SIZE;
1162     __pmd_index_size = H_PMD_INDEX_SIZE;
1163     __pud_index_size = H_PUD_INDEX_SIZE;
1164     __pgd_index_size = H_PGD_INDEX_SIZE;
1165     __pud_cache_index = H_PUD_CACHE_INDEX;
1166     __pte_table_size = H_PTE_TABLE_SIZE;
1167     __pmd_table_size = H_PMD_TABLE_SIZE;
1168     __pud_table_size = H_PUD_TABLE_SIZE;
1169     __pgd_table_size = H_PGD_TABLE_SIZE;
1170     /*
1171      * 4k use hugepd format, so for hash set then to
1172      * zero
1173      */
1174     __pmd_val_bits = HASH_PMD_VAL_BITS;
1175     __pud_val_bits = HASH_PUD_VAL_BITS;
1176     __pgd_val_bits = HASH_PGD_VAL_BITS;
1177 
1178     __kernel_virt_start = H_KERN_VIRT_START;
1179     __vmalloc_start = H_VMALLOC_START;
1180     __vmalloc_end = H_VMALLOC_END;
1181     __kernel_io_start = H_KERN_IO_START;
1182     __kernel_io_end = H_KERN_IO_END;
1183     vmemmap = (struct page *)H_VMEMMAP_START;
1184     ioremap_bot = IOREMAP_BASE;
1185 
1186 #ifdef CONFIG_PCI
1187     pci_io_base = ISA_IO_BASE;
1188 #endif
1189 
1190     /* Select appropriate backend */
1191     if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1192         ps3_early_mm_init();
1193     else if (firmware_has_feature(FW_FEATURE_LPAR))
1194         hpte_init_pseries();
1195     else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE))
1196         hpte_init_native();
1197 
1198     if (!mmu_hash_ops.hpte_insert)
1199         panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1200 
1201     /*
1202      * Initialize the MMU Hash table and create the linear mapping
1203      * of memory. Has to be done before SLB initialization as this is
1204      * currently where the page size encoding is obtained.
1205      */
1206     htab_initialize();
1207 
1208     init_mm.context.hash_context = &init_hash_mm_context;
1209     mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1210 
1211     pr_info("Initializing hash mmu with SLB\n");
1212     /* Initialize SLB management */
1213     slb_initialize();
1214 
1215     if (cpu_has_feature(CPU_FTR_ARCH_206)
1216             && cpu_has_feature(CPU_FTR_HVMODE))
1217         tlbiel_all();
1218 }
1219 
1220 #ifdef CONFIG_SMP
1221 void hash__early_init_mmu_secondary(void)
1222 {
1223     /* Initialize hash table for that CPU */
1224     if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1225 
1226         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1227             mtspr(SPRN_SDR1, _SDR1);
1228         else
1229             set_ptcr_when_no_uv(__pa(partition_tb) |
1230                         (PATB_SIZE_SHIFT - 12));
1231     }
1232     /* Initialize SLB */
1233     slb_initialize();
1234 
1235     if (cpu_has_feature(CPU_FTR_ARCH_206)
1236             && cpu_has_feature(CPU_FTR_HVMODE))
1237         tlbiel_all();
1238 
1239 #ifdef CONFIG_PPC_MEM_KEYS
1240     if (mmu_has_feature(MMU_FTR_PKEY))
1241         mtspr(SPRN_UAMOR, default_uamor);
1242 #endif
1243 }
1244 #endif /* CONFIG_SMP */
1245 
1246 /*
1247  * Called by asm hashtable.S for doing lazy icache flush
1248  */
1249 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1250 {
1251     struct page *page;
1252 
1253     if (!pfn_valid(pte_pfn(pte)))
1254         return pp;
1255 
1256     page = pte_page(pte);
1257 
1258     /* page is dirty */
1259     if (!test_bit(PG_dcache_clean, &page->flags) && !PageReserved(page)) {
1260         if (trap == INTERRUPT_INST_STORAGE) {
1261             flush_dcache_icache_page(page);
1262             set_bit(PG_dcache_clean, &page->flags);
1263         } else
1264             pp |= HPTE_R_N;
1265     }
1266     return pp;
1267 }
1268 
1269 static unsigned int get_paca_psize(unsigned long addr)
1270 {
1271     unsigned char *psizes;
1272     unsigned long index, mask_index;
1273 
1274     if (addr < SLICE_LOW_TOP) {
1275         psizes = get_paca()->mm_ctx_low_slices_psize;
1276         index = GET_LOW_SLICE_INDEX(addr);
1277     } else {
1278         psizes = get_paca()->mm_ctx_high_slices_psize;
1279         index = GET_HIGH_SLICE_INDEX(addr);
1280     }
1281     mask_index = index & 0x1;
1282     return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1283 }
1284 
1285 
1286 /*
1287  * Demote a segment to using 4k pages.
1288  * For now this makes the whole process use 4k pages.
1289  */
1290 #ifdef CONFIG_PPC_64K_PAGES
1291 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1292 {
1293     if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1294         return;
1295     slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1296     copro_flush_all_slbs(mm);
1297     if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1298 
1299         copy_mm_to_paca(mm);
1300         slb_flush_and_restore_bolted();
1301     }
1302 }
1303 #endif /* CONFIG_PPC_64K_PAGES */
1304 
1305 #ifdef CONFIG_PPC_SUBPAGE_PROT
1306 /*
1307  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1308  * Userspace sets the subpage permissions using the subpage_prot system call.
1309  *
1310  * Result is 0: full permissions, _PAGE_RW: read-only,
1311  * _PAGE_RWX: no access.
1312  */
1313 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1314 {
1315     struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1316     u32 spp = 0;
1317     u32 **sbpm, *sbpp;
1318 
1319     if (!spt)
1320         return 0;
1321 
1322     if (ea >= spt->maxaddr)
1323         return 0;
1324     if (ea < 0x100000000UL) {
1325         /* addresses below 4GB use spt->low_prot */
1326         sbpm = spt->low_prot;
1327     } else {
1328         sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1329         if (!sbpm)
1330             return 0;
1331     }
1332     sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1333     if (!sbpp)
1334         return 0;
1335     spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1336 
1337     /* extract 2-bit bitfield for this 4k subpage */
1338     spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1339 
1340     /*
1341      * 0 -> full permission
1342      * 1 -> Read only
1343      * 2 -> no access.
1344      * We return the flag that need to be cleared.
1345      */
1346     spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1347     return spp;
1348 }
1349 
1350 #else /* CONFIG_PPC_SUBPAGE_PROT */
1351 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1352 {
1353     return 0;
1354 }
1355 #endif
1356 
1357 void hash_failure_debug(unsigned long ea, unsigned long access,
1358             unsigned long vsid, unsigned long trap,
1359             int ssize, int psize, int lpsize, unsigned long pte)
1360 {
1361     if (!printk_ratelimit())
1362         return;
1363     pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1364         ea, access, current->comm);
1365     pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1366         trap, vsid, ssize, psize, lpsize, pte);
1367 }
1368 
1369 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1370                  int psize, bool user_region)
1371 {
1372     if (user_region) {
1373         if (psize != get_paca_psize(ea)) {
1374             copy_mm_to_paca(mm);
1375             slb_flush_and_restore_bolted();
1376         }
1377     } else if (get_paca()->vmalloc_sllp !=
1378            mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1379         get_paca()->vmalloc_sllp =
1380             mmu_psize_defs[mmu_vmalloc_psize].sllp;
1381         slb_vmalloc_update();
1382     }
1383 }
1384 
1385 /*
1386  * Result code is:
1387  *  0 - handled
1388  *  1 - normal page fault
1389  * -1 - critical hash insertion error
1390  * -2 - access not permitted by subpage protection mechanism
1391  */
1392 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1393          unsigned long access, unsigned long trap,
1394          unsigned long flags)
1395 {
1396     bool is_thp;
1397     pgd_t *pgdir;
1398     unsigned long vsid;
1399     pte_t *ptep;
1400     unsigned hugeshift;
1401     int rc, user_region = 0;
1402     int psize, ssize;
1403 
1404     DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1405         ea, access, trap);
1406     trace_hash_fault(ea, access, trap);
1407 
1408     /* Get region & vsid */
1409     switch (get_region_id(ea)) {
1410     case USER_REGION_ID:
1411         user_region = 1;
1412         if (! mm) {
1413             DBG_LOW(" user region with no mm !\n");
1414             rc = 1;
1415             goto bail;
1416         }
1417         psize = get_slice_psize(mm, ea);
1418         ssize = user_segment_size(ea);
1419         vsid = get_user_vsid(&mm->context, ea, ssize);
1420         break;
1421     case VMALLOC_REGION_ID:
1422         vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1423         psize = mmu_vmalloc_psize;
1424         ssize = mmu_kernel_ssize;
1425         flags |= HPTE_USE_KERNEL_KEY;
1426         break;
1427 
1428     case IO_REGION_ID:
1429         vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1430         psize = mmu_io_psize;
1431         ssize = mmu_kernel_ssize;
1432         flags |= HPTE_USE_KERNEL_KEY;
1433         break;
1434     default:
1435         /*
1436          * Not a valid range
1437          * Send the problem up to do_page_fault()
1438          */
1439         rc = 1;
1440         goto bail;
1441     }
1442     DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1443 
1444     /* Bad address. */
1445     if (!vsid) {
1446         DBG_LOW("Bad address!\n");
1447         rc = 1;
1448         goto bail;
1449     }
1450     /* Get pgdir */
1451     pgdir = mm->pgd;
1452     if (pgdir == NULL) {
1453         rc = 1;
1454         goto bail;
1455     }
1456 
1457     /* Check CPU locality */
1458     if (user_region && mm_is_thread_local(mm))
1459         flags |= HPTE_LOCAL_UPDATE;
1460 
1461 #ifndef CONFIG_PPC_64K_PAGES
1462     /*
1463      * If we use 4K pages and our psize is not 4K, then we might
1464      * be hitting a special driver mapping, and need to align the
1465      * address before we fetch the PTE.
1466      *
1467      * It could also be a hugepage mapping, in which case this is
1468      * not necessary, but it's not harmful, either.
1469      */
1470     if (psize != MMU_PAGE_4K)
1471         ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1472 #endif /* CONFIG_PPC_64K_PAGES */
1473 
1474     /* Get PTE and page size from page tables */
1475     ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1476     if (ptep == NULL || !pte_present(*ptep)) {
1477         DBG_LOW(" no PTE !\n");
1478         rc = 1;
1479         goto bail;
1480     }
1481 
1482     /*
1483      * Add _PAGE_PRESENT to the required access perm. If there are parallel
1484      * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1485      *
1486      * We can safely use the return pte address in rest of the function
1487      * because we do set H_PAGE_BUSY which prevents further updates to pte
1488      * from generic code.
1489      */
1490     access |= _PAGE_PRESENT | _PAGE_PTE;
1491 
1492     /*
1493      * Pre-check access permissions (will be re-checked atomically
1494      * in __hash_page_XX but this pre-check is a fast path
1495      */
1496     if (!check_pte_access(access, pte_val(*ptep))) {
1497         DBG_LOW(" no access !\n");
1498         rc = 1;
1499         goto bail;
1500     }
1501 
1502     if (hugeshift) {
1503         if (is_thp)
1504             rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1505                          trap, flags, ssize, psize);
1506 #ifdef CONFIG_HUGETLB_PAGE
1507         else
1508             rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1509                           flags, ssize, hugeshift, psize);
1510 #else
1511         else {
1512             /*
1513              * if we have hugeshift, and is not transhuge with
1514              * hugetlb disabled, something is really wrong.
1515              */
1516             rc = 1;
1517             WARN_ON(1);
1518         }
1519 #endif
1520         if (current->mm == mm)
1521             check_paca_psize(ea, mm, psize, user_region);
1522 
1523         goto bail;
1524     }
1525 
1526 #ifndef CONFIG_PPC_64K_PAGES
1527     DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1528 #else
1529     DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1530         pte_val(*(ptep + PTRS_PER_PTE)));
1531 #endif
1532     /* Do actual hashing */
1533 #ifdef CONFIG_PPC_64K_PAGES
1534     /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1535     if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1536         demote_segment_4k(mm, ea);
1537         psize = MMU_PAGE_4K;
1538     }
1539 
1540     /*
1541      * If this PTE is non-cacheable and we have restrictions on
1542      * using non cacheable large pages, then we switch to 4k
1543      */
1544     if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1545         if (user_region) {
1546             demote_segment_4k(mm, ea);
1547             psize = MMU_PAGE_4K;
1548         } else if (ea < VMALLOC_END) {
1549             /*
1550              * some driver did a non-cacheable mapping
1551              * in vmalloc space, so switch vmalloc
1552              * to 4k pages
1553              */
1554             printk(KERN_ALERT "Reducing vmalloc segment "
1555                    "to 4kB pages because of "
1556                    "non-cacheable mapping\n");
1557             psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1558             copro_flush_all_slbs(mm);
1559         }
1560     }
1561 
1562 #endif /* CONFIG_PPC_64K_PAGES */
1563 
1564     if (current->mm == mm)
1565         check_paca_psize(ea, mm, psize, user_region);
1566 
1567 #ifdef CONFIG_PPC_64K_PAGES
1568     if (psize == MMU_PAGE_64K)
1569         rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1570                      flags, ssize);
1571     else
1572 #endif /* CONFIG_PPC_64K_PAGES */
1573     {
1574         int spp = subpage_protection(mm, ea);
1575         if (access & spp)
1576             rc = -2;
1577         else
1578             rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1579                         flags, ssize, spp);
1580     }
1581 
1582     /*
1583      * Dump some info in case of hash insertion failure, they should
1584      * never happen so it is really useful to know if/when they do
1585      */
1586     if (rc == -1)
1587         hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1588                    psize, pte_val(*ptep));
1589 #ifndef CONFIG_PPC_64K_PAGES
1590     DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1591 #else
1592     DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1593         pte_val(*(ptep + PTRS_PER_PTE)));
1594 #endif
1595     DBG_LOW(" -> rc=%d\n", rc);
1596 
1597 bail:
1598     return rc;
1599 }
1600 EXPORT_SYMBOL_GPL(hash_page_mm);
1601 
1602 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1603           unsigned long dsisr)
1604 {
1605     unsigned long flags = 0;
1606     struct mm_struct *mm = current->mm;
1607 
1608     if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1609         (get_region_id(ea) == IO_REGION_ID))
1610         mm = &init_mm;
1611 
1612     if (dsisr & DSISR_NOHPTE)
1613         flags |= HPTE_NOHPTE_UPDATE;
1614 
1615     return hash_page_mm(mm, ea, access, trap, flags);
1616 }
1617 EXPORT_SYMBOL_GPL(hash_page);
1618 
1619 DEFINE_INTERRUPT_HANDLER(do_hash_fault)
1620 {
1621     unsigned long ea = regs->dar;
1622     unsigned long dsisr = regs->dsisr;
1623     unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1624     unsigned long flags = 0;
1625     struct mm_struct *mm;
1626     unsigned int region_id;
1627     long err;
1628 
1629     if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) {
1630         hash__do_page_fault(regs);
1631         return;
1632     }
1633 
1634     region_id = get_region_id(ea);
1635     if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1636         mm = &init_mm;
1637     else
1638         mm = current->mm;
1639 
1640     if (dsisr & DSISR_NOHPTE)
1641         flags |= HPTE_NOHPTE_UPDATE;
1642 
1643     if (dsisr & DSISR_ISSTORE)
1644         access |= _PAGE_WRITE;
1645     /*
1646      * We set _PAGE_PRIVILEGED only when
1647      * kernel mode access kernel space.
1648      *
1649      * _PAGE_PRIVILEGED is NOT set
1650      * 1) when kernel mode access user space
1651      * 2) user space access kernel space.
1652      */
1653     access |= _PAGE_PRIVILEGED;
1654     if (user_mode(regs) || (region_id == USER_REGION_ID))
1655         access &= ~_PAGE_PRIVILEGED;
1656 
1657     if (TRAP(regs) == INTERRUPT_INST_STORAGE)
1658         access |= _PAGE_EXEC;
1659 
1660     err = hash_page_mm(mm, ea, access, TRAP(regs), flags);
1661     if (unlikely(err < 0)) {
1662         // failed to insert a hash PTE due to an hypervisor error
1663         if (user_mode(regs)) {
1664             if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
1665                 _exception(SIGSEGV, regs, SEGV_ACCERR, ea);
1666             else
1667                 _exception(SIGBUS, regs, BUS_ADRERR, ea);
1668         } else {
1669             bad_page_fault(regs, SIGBUS);
1670         }
1671         err = 0;
1672 
1673     } else if (err) {
1674         hash__do_page_fault(regs);
1675     }
1676 }
1677 
1678 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1679 {
1680     int psize = get_slice_psize(mm, ea);
1681 
1682     /* We only prefault standard pages for now */
1683     if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1684         return false;
1685 
1686     /*
1687      * Don't prefault if subpage protection is enabled for the EA.
1688      */
1689     if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1690         return false;
1691 
1692     return true;
1693 }
1694 
1695 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1696              bool is_exec, unsigned long trap)
1697 {
1698     unsigned long vsid;
1699     pgd_t *pgdir;
1700     int rc, ssize, update_flags = 0;
1701     unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1702     unsigned long flags;
1703 
1704     BUG_ON(get_region_id(ea) != USER_REGION_ID);
1705 
1706     if (!should_hash_preload(mm, ea))
1707         return;
1708 
1709     DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1710         " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1711 
1712     /* Get Linux PTE if available */
1713     pgdir = mm->pgd;
1714     if (pgdir == NULL)
1715         return;
1716 
1717     /* Get VSID */
1718     ssize = user_segment_size(ea);
1719     vsid = get_user_vsid(&mm->context, ea, ssize);
1720     if (!vsid)
1721         return;
1722 
1723 #ifdef CONFIG_PPC_64K_PAGES
1724     /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1725      * a 64K kernel), then we don't preload, hash_page() will take
1726      * care of it once we actually try to access the page.
1727      * That way we don't have to duplicate all of the logic for segment
1728      * page size demotion here
1729      * Called with  PTL held, hence can be sure the value won't change in
1730      * between.
1731      */
1732     if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1733         return;
1734 #endif /* CONFIG_PPC_64K_PAGES */
1735 
1736     /*
1737      * __hash_page_* must run with interrupts off, including PMI interrupts
1738      * off, as it sets the H_PAGE_BUSY bit.
1739      *
1740      * It's otherwise possible for perf interrupts to hit at any time and
1741      * may take a hash fault reading the user stack, which could take a
1742      * hash miss and deadlock on the same H_PAGE_BUSY bit.
1743      *
1744      * Interrupts must also be off for the duration of the
1745      * mm_is_thread_local test and update, to prevent preempt running the
1746      * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1747      */
1748     powerpc_local_irq_pmu_save(flags);
1749 
1750     /* Is that local to this CPU ? */
1751     if (mm_is_thread_local(mm))
1752         update_flags |= HPTE_LOCAL_UPDATE;
1753 
1754     /* Hash it in */
1755 #ifdef CONFIG_PPC_64K_PAGES
1756     if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1757         rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1758                      update_flags, ssize);
1759     else
1760 #endif /* CONFIG_PPC_64K_PAGES */
1761         rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1762                     ssize, subpage_protection(mm, ea));
1763 
1764     /* Dump some info in case of hash insertion failure, they should
1765      * never happen so it is really useful to know if/when they do
1766      */
1767     if (rc == -1)
1768         hash_failure_debug(ea, access, vsid, trap, ssize,
1769                    mm_ctx_user_psize(&mm->context),
1770                    mm_ctx_user_psize(&mm->context),
1771                    pte_val(*ptep));
1772 
1773     powerpc_local_irq_pmu_restore(flags);
1774 }
1775 
1776 /*
1777  * This is called at the end of handling a user page fault, when the
1778  * fault has been handled by updating a PTE in the linux page tables.
1779  * We use it to preload an HPTE into the hash table corresponding to
1780  * the updated linux PTE.
1781  *
1782  * This must always be called with the pte lock held.
1783  */
1784 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1785               pte_t *ptep)
1786 {
1787     /*
1788      * We don't need to worry about _PAGE_PRESENT here because we are
1789      * called with either mm->page_table_lock held or ptl lock held
1790      */
1791     unsigned long trap;
1792     bool is_exec;
1793 
1794     if (radix_enabled())
1795         return;
1796 
1797     /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1798     if (!pte_young(*ptep) || address >= TASK_SIZE)
1799         return;
1800 
1801     /*
1802      * We try to figure out if we are coming from an instruction
1803      * access fault and pass that down to __hash_page so we avoid
1804      * double-faulting on execution of fresh text. We have to test
1805      * for regs NULL since init will get here first thing at boot.
1806      *
1807      * We also avoid filling the hash if not coming from a fault.
1808      */
1809 
1810     trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1811     switch (trap) {
1812     case 0x300:
1813         is_exec = false;
1814         break;
1815     case 0x400:
1816         is_exec = true;
1817         break;
1818     default:
1819         return;
1820     }
1821 
1822     hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
1823 }
1824 
1825 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1826 static inline void tm_flush_hash_page(int local)
1827 {
1828     /*
1829      * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1830      * page back to a block device w/PIO could pick up transactional data
1831      * (bad!) so we force an abort here. Before the sync the page will be
1832      * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1833      * kernel uses a page from userspace without unmapping it first, it may
1834      * see the speculated version.
1835      */
1836     if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1837         MSR_TM_ACTIVE(current->thread.regs->msr)) {
1838         tm_enable();
1839         tm_abort(TM_CAUSE_TLBI);
1840     }
1841 }
1842 #else
1843 static inline void tm_flush_hash_page(int local)
1844 {
1845 }
1846 #endif
1847 
1848 /*
1849  * Return the global hash slot, corresponding to the given PTE, which contains
1850  * the HPTE.
1851  */
1852 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1853         int ssize, real_pte_t rpte, unsigned int subpg_index)
1854 {
1855     unsigned long hash, gslot, hidx;
1856 
1857     hash = hpt_hash(vpn, shift, ssize);
1858     hidx = __rpte_to_hidx(rpte, subpg_index);
1859     if (hidx & _PTEIDX_SECONDARY)
1860         hash = ~hash;
1861     gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1862     gslot += hidx & _PTEIDX_GROUP_IX;
1863     return gslot;
1864 }
1865 
1866 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1867              unsigned long flags)
1868 {
1869     unsigned long index, shift, gslot;
1870     int local = flags & HPTE_LOCAL_UPDATE;
1871 
1872     DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1873     pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1874         gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1875         DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1876         /*
1877          * We use same base page size and actual psize, because we don't
1878          * use these functions for hugepage
1879          */
1880         mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1881                          ssize, local);
1882     } pte_iterate_hashed_end();
1883 
1884     tm_flush_hash_page(local);
1885 }
1886 
1887 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1888 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1889              pmd_t *pmdp, unsigned int psize, int ssize,
1890              unsigned long flags)
1891 {
1892     int i, max_hpte_count, valid;
1893     unsigned long s_addr;
1894     unsigned char *hpte_slot_array;
1895     unsigned long hidx, shift, vpn, hash, slot;
1896     int local = flags & HPTE_LOCAL_UPDATE;
1897 
1898     s_addr = addr & HPAGE_PMD_MASK;
1899     hpte_slot_array = get_hpte_slot_array(pmdp);
1900     /*
1901      * IF we try to do a HUGE PTE update after a withdraw is done.
1902      * we will find the below NULL. This happens when we do
1903      * split_huge_pmd
1904      */
1905     if (!hpte_slot_array)
1906         return;
1907 
1908     if (mmu_hash_ops.hugepage_invalidate) {
1909         mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1910                          psize, ssize, local);
1911         goto tm_abort;
1912     }
1913     /*
1914      * No bluk hpte removal support, invalidate each entry
1915      */
1916     shift = mmu_psize_defs[psize].shift;
1917     max_hpte_count = HPAGE_PMD_SIZE >> shift;
1918     for (i = 0; i < max_hpte_count; i++) {
1919         /*
1920          * 8 bits per each hpte entries
1921          * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1922          */
1923         valid = hpte_valid(hpte_slot_array, i);
1924         if (!valid)
1925             continue;
1926         hidx =  hpte_hash_index(hpte_slot_array, i);
1927 
1928         /* get the vpn */
1929         addr = s_addr + (i * (1ul << shift));
1930         vpn = hpt_vpn(addr, vsid, ssize);
1931         hash = hpt_hash(vpn, shift, ssize);
1932         if (hidx & _PTEIDX_SECONDARY)
1933             hash = ~hash;
1934 
1935         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1936         slot += hidx & _PTEIDX_GROUP_IX;
1937         mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1938                          MMU_PAGE_16M, ssize, local);
1939     }
1940 tm_abort:
1941     tm_flush_hash_page(local);
1942 }
1943 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1944 
1945 void flush_hash_range(unsigned long number, int local)
1946 {
1947     if (mmu_hash_ops.flush_hash_range)
1948         mmu_hash_ops.flush_hash_range(number, local);
1949     else {
1950         int i;
1951         struct ppc64_tlb_batch *batch =
1952             this_cpu_ptr(&ppc64_tlb_batch);
1953 
1954         for (i = 0; i < number; i++)
1955             flush_hash_page(batch->vpn[i], batch->pte[i],
1956                     batch->psize, batch->ssize, local);
1957     }
1958 }
1959 
1960 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1961                unsigned long pa, unsigned long rflags,
1962                unsigned long vflags, int psize, int ssize)
1963 {
1964     unsigned long hpte_group;
1965     long slot;
1966 
1967 repeat:
1968     hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1969 
1970     /* Insert into the hash table, primary slot */
1971     slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1972                     psize, psize, ssize);
1973 
1974     /* Primary is full, try the secondary */
1975     if (unlikely(slot == -1)) {
1976         hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1977         slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1978                         vflags | HPTE_V_SECONDARY,
1979                         psize, psize, ssize);
1980         if (slot == -1) {
1981             if (mftb() & 0x1)
1982                 hpte_group = (hash & htab_hash_mask) *
1983                         HPTES_PER_GROUP;
1984 
1985             mmu_hash_ops.hpte_remove(hpte_group);
1986             goto repeat;
1987         }
1988     }
1989 
1990     return slot;
1991 }
1992 
1993 #ifdef CONFIG_DEBUG_PAGEALLOC
1994 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1995 {
1996     unsigned long hash;
1997     unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1998     unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1999     unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
2000     long ret;
2001 
2002     hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2003 
2004     /* Don't create HPTE entries for bad address */
2005     if (!vsid)
2006         return;
2007 
2008     ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
2009                     HPTE_V_BOLTED,
2010                     mmu_linear_psize, mmu_kernel_ssize);
2011 
2012     BUG_ON (ret < 0);
2013     spin_lock(&linear_map_hash_lock);
2014     BUG_ON(linear_map_hash_slots[lmi] & 0x80);
2015     linear_map_hash_slots[lmi] = ret | 0x80;
2016     spin_unlock(&linear_map_hash_lock);
2017 }
2018 
2019 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
2020 {
2021     unsigned long hash, hidx, slot;
2022     unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
2023     unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
2024 
2025     hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2026     spin_lock(&linear_map_hash_lock);
2027     BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
2028     hidx = linear_map_hash_slots[lmi] & 0x7f;
2029     linear_map_hash_slots[lmi] = 0;
2030     spin_unlock(&linear_map_hash_lock);
2031     if (hidx & _PTEIDX_SECONDARY)
2032         hash = ~hash;
2033     slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2034     slot += hidx & _PTEIDX_GROUP_IX;
2035     mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
2036                      mmu_linear_psize,
2037                      mmu_kernel_ssize, 0);
2038 }
2039 
2040 void hash__kernel_map_pages(struct page *page, int numpages, int enable)
2041 {
2042     unsigned long flags, vaddr, lmi;
2043     int i;
2044 
2045     local_irq_save(flags);
2046     for (i = 0; i < numpages; i++, page++) {
2047         vaddr = (unsigned long)page_address(page);
2048         lmi = __pa(vaddr) >> PAGE_SHIFT;
2049         if (lmi >= linear_map_hash_count)
2050             continue;
2051         if (enable)
2052             kernel_map_linear_page(vaddr, lmi);
2053         else
2054             kernel_unmap_linear_page(vaddr, lmi);
2055     }
2056     local_irq_restore(flags);
2057 }
2058 #endif /* CONFIG_DEBUG_PAGEALLOC */
2059 
2060 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
2061                 phys_addr_t first_memblock_size)
2062 {
2063     /*
2064      * We don't currently support the first MEMBLOCK not mapping 0
2065      * physical on those processors
2066      */
2067     BUG_ON(first_memblock_base != 0);
2068 
2069     /*
2070      * On virtualized systems the first entry is our RMA region aka VRMA,
2071      * non-virtualized 64-bit hash MMU systems don't have a limitation
2072      * on real mode access.
2073      *
2074      * For guests on platforms before POWER9, we clamp the it limit to 1G
2075      * to avoid some funky things such as RTAS bugs etc...
2076      *
2077      * On POWER9 we limit to 1TB in case the host erroneously told us that
2078      * the RMA was >1TB. Effective address bits 0:23 are treated as zero
2079      * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
2080      * for virtual real mode addressing and so it doesn't make sense to
2081      * have an area larger than 1TB as it can't be addressed.
2082      */
2083     if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
2084         ppc64_rma_size = first_memblock_size;
2085         if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
2086             ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2087         else
2088             ppc64_rma_size = min_t(u64, ppc64_rma_size,
2089                            1UL << SID_SHIFT_1T);
2090 
2091         /* Finally limit subsequent allocations */
2092         memblock_set_current_limit(ppc64_rma_size);
2093     } else {
2094         ppc64_rma_size = ULONG_MAX;
2095     }
2096 }
2097 
2098 #ifdef CONFIG_DEBUG_FS
2099 
2100 static int hpt_order_get(void *data, u64 *val)
2101 {
2102     *val = ppc64_pft_size;
2103     return 0;
2104 }
2105 
2106 static int hpt_order_set(void *data, u64 val)
2107 {
2108     int ret;
2109 
2110     if (!mmu_hash_ops.resize_hpt)
2111         return -ENODEV;
2112 
2113     cpus_read_lock();
2114     ret = mmu_hash_ops.resize_hpt(val);
2115     cpus_read_unlock();
2116 
2117     return ret;
2118 }
2119 
2120 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2121 
2122 static int __init hash64_debugfs(void)
2123 {
2124     debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL,
2125                 &fops_hpt_order);
2126     return 0;
2127 }
2128 machine_device_initcall(pseries, hash64_debugfs);
2129 #endif /* CONFIG_DEBUG_FS */
2130 
2131 void __init print_system_hash_info(void)
2132 {
2133     pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2134 
2135     if (htab_hash_mask)
2136         pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2137 }
2138 
2139 unsigned long arch_randomize_brk(struct mm_struct *mm)
2140 {
2141     /*
2142      * If we are using 1TB segments and we are allowed to randomise
2143      * the heap, we can put it above 1TB so it is backed by a 1TB
2144      * segment. Otherwise the heap will be in the bottom 1TB
2145      * which always uses 256MB segments and this may result in a
2146      * performance penalty.
2147      */
2148     if (is_32bit_task())
2149         return randomize_page(mm->brk, SZ_32M);
2150     else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T)
2151         return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G);
2152     else
2153         return randomize_page(mm->brk, SZ_1G);
2154 }