Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
0004  *
0005  * Authors:
0006  *    Alexander Graf <agraf@suse.de>
0007  *    Kevin Wolf <mail@kevin-wolf.de>
0008  *    Paul Mackerras <paulus@samba.org>
0009  *
0010  * Description:
0011  * Functions relating to running KVM on Book 3S processors where
0012  * we don't have access to hypervisor mode, and we run the guest
0013  * in problem state (user mode).
0014  *
0015  * This file is derived from arch/powerpc/kvm/44x.c,
0016  * by Hollis Blanchard <hollisb@us.ibm.com>.
0017  */
0018 
0019 #include <linux/kvm_host.h>
0020 #include <linux/export.h>
0021 #include <linux/err.h>
0022 #include <linux/slab.h>
0023 
0024 #include <asm/reg.h>
0025 #include <asm/cputable.h>
0026 #include <asm/cacheflush.h>
0027 #include <linux/uaccess.h>
0028 #include <asm/interrupt.h>
0029 #include <asm/io.h>
0030 #include <asm/kvm_ppc.h>
0031 #include <asm/kvm_book3s.h>
0032 #include <asm/mmu_context.h>
0033 #include <asm/switch_to.h>
0034 #include <asm/firmware.h>
0035 #include <asm/setup.h>
0036 #include <linux/gfp.h>
0037 #include <linux/sched.h>
0038 #include <linux/vmalloc.h>
0039 #include <linux/highmem.h>
0040 #include <linux/module.h>
0041 #include <linux/miscdevice.h>
0042 #include <asm/asm-prototypes.h>
0043 #include <asm/tm.h>
0044 
0045 #include "book3s.h"
0046 
0047 #define CREATE_TRACE_POINTS
0048 #include "trace_pr.h"
0049 
0050 /* #define EXIT_DEBUG */
0051 /* #define DEBUG_EXT */
0052 
0053 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
0054                  ulong msr);
0055 #ifdef CONFIG_PPC_BOOK3S_64
0056 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
0057 #endif
0058 
0059 /* Some compatibility defines */
0060 #ifdef CONFIG_PPC_BOOK3S_32
0061 #define MSR_USER32 MSR_USER
0062 #define MSR_USER64 MSR_USER
0063 #define HW_PAGE_SIZE PAGE_SIZE
0064 #define HPTE_R_M   _PAGE_COHERENT
0065 #endif
0066 
0067 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
0068 {
0069     ulong msr = kvmppc_get_msr(vcpu);
0070     return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
0071 }
0072 
0073 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
0074 {
0075     ulong msr = kvmppc_get_msr(vcpu);
0076     ulong pc = kvmppc_get_pc(vcpu);
0077 
0078     /* We are in DR only split real mode */
0079     if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
0080         return;
0081 
0082     /* We have not fixed up the guest already */
0083     if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
0084         return;
0085 
0086     /* The code is in fixupable address space */
0087     if (pc & SPLIT_HACK_MASK)
0088         return;
0089 
0090     vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
0091     kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
0092 }
0093 
0094 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
0095 {
0096     if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
0097         ulong pc = kvmppc_get_pc(vcpu);
0098         ulong lr = kvmppc_get_lr(vcpu);
0099         if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
0100             kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
0101         if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
0102             kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
0103         vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
0104     }
0105 }
0106 
0107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
0108 {
0109     unsigned long msr, pc, new_msr, new_pc;
0110 
0111     kvmppc_unfixup_split_real(vcpu);
0112 
0113     msr = kvmppc_get_msr(vcpu);
0114     pc = kvmppc_get_pc(vcpu);
0115     new_msr = vcpu->arch.intr_msr;
0116     new_pc = to_book3s(vcpu)->hior + vec;
0117 
0118 #ifdef CONFIG_PPC_BOOK3S_64
0119     /* If transactional, change to suspend mode on IRQ delivery */
0120     if (MSR_TM_TRANSACTIONAL(msr))
0121         new_msr |= MSR_TS_S;
0122     else
0123         new_msr |= msr & MSR_TS_MASK;
0124 #endif
0125 
0126     kvmppc_set_srr0(vcpu, pc);
0127     kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
0128     kvmppc_set_pc(vcpu, new_pc);
0129     kvmppc_set_msr(vcpu, new_msr);
0130 }
0131 
0132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
0133 {
0134 #ifdef CONFIG_PPC_BOOK3S_64
0135     struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
0136     memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
0137     svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
0138     svcpu->in_use = 0;
0139     svcpu_put(svcpu);
0140 
0141     /* Disable AIL if supported */
0142     if (cpu_has_feature(CPU_FTR_HVMODE)) {
0143         if (cpu_has_feature(CPU_FTR_ARCH_207S))
0144             mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
0145         if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
0146             mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
0147     }
0148 #endif
0149 
0150     vcpu->cpu = smp_processor_id();
0151 #ifdef CONFIG_PPC_BOOK3S_32
0152     current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
0153 #endif
0154 
0155     if (kvmppc_is_split_real(vcpu))
0156         kvmppc_fixup_split_real(vcpu);
0157 
0158     kvmppc_restore_tm_pr(vcpu);
0159 }
0160 
0161 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
0162 {
0163 #ifdef CONFIG_PPC_BOOK3S_64
0164     struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
0165     if (svcpu->in_use) {
0166         kvmppc_copy_from_svcpu(vcpu);
0167     }
0168     memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
0169     to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
0170     svcpu_put(svcpu);
0171 
0172     /* Enable AIL if supported */
0173     if (cpu_has_feature(CPU_FTR_HVMODE)) {
0174         if (cpu_has_feature(CPU_FTR_ARCH_207S))
0175             mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
0176         if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
0177             mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
0178     }
0179 #endif
0180 
0181     if (kvmppc_is_split_real(vcpu))
0182         kvmppc_unfixup_split_real(vcpu);
0183 
0184     kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
0185     kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
0186     kvmppc_save_tm_pr(vcpu);
0187 
0188     vcpu->cpu = -1;
0189 }
0190 
0191 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
0192 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
0193 {
0194     struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
0195 
0196     svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
0197     svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
0198     svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
0199     svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
0200     svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
0201     svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
0202     svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
0203     svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
0204     svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
0205     svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
0206     svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
0207     svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
0208     svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
0209     svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
0210     svcpu->cr  = vcpu->arch.regs.ccr;
0211     svcpu->xer = vcpu->arch.regs.xer;
0212     svcpu->ctr = vcpu->arch.regs.ctr;
0213     svcpu->lr  = vcpu->arch.regs.link;
0214     svcpu->pc  = vcpu->arch.regs.nip;
0215 #ifdef CONFIG_PPC_BOOK3S_64
0216     svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
0217 #endif
0218     /*
0219      * Now also save the current time base value. We use this
0220      * to find the guest purr and spurr value.
0221      */
0222     vcpu->arch.entry_tb = get_tb();
0223     vcpu->arch.entry_vtb = get_vtb();
0224     if (cpu_has_feature(CPU_FTR_ARCH_207S))
0225         vcpu->arch.entry_ic = mfspr(SPRN_IC);
0226     svcpu->in_use = true;
0227 
0228     svcpu_put(svcpu);
0229 }
0230 
0231 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
0232 {
0233     ulong guest_msr = kvmppc_get_msr(vcpu);
0234     ulong smsr = guest_msr;
0235 
0236     /* Guest MSR values */
0237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
0238     smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
0239         MSR_TM | MSR_TS_MASK;
0240 #else
0241     smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
0242 #endif
0243     /* Process MSR values */
0244     smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
0245     /* External providers the guest reserved */
0246     smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
0247     /* 64-bit Process MSR values */
0248 #ifdef CONFIG_PPC_BOOK3S_64
0249     smsr |= MSR_HV;
0250 #endif
0251 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
0252     /*
0253      * in guest privileged state, we want to fail all TM transactions.
0254      * So disable MSR TM bit so that all tbegin. will be able to be
0255      * trapped into host.
0256      */
0257     if (!(guest_msr & MSR_PR))
0258         smsr &= ~MSR_TM;
0259 #endif
0260     vcpu->arch.shadow_msr = smsr;
0261 }
0262 
0263 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
0264 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
0265 {
0266     struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
0267 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
0268     ulong old_msr;
0269 #endif
0270 
0271     /*
0272      * Maybe we were already preempted and synced the svcpu from
0273      * our preempt notifiers. Don't bother touching this svcpu then.
0274      */
0275     if (!svcpu->in_use)
0276         goto out;
0277 
0278     vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
0279     vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
0280     vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
0281     vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
0282     vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
0283     vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
0284     vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
0285     vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
0286     vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
0287     vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
0288     vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
0289     vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
0290     vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
0291     vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
0292     vcpu->arch.regs.ccr  = svcpu->cr;
0293     vcpu->arch.regs.xer = svcpu->xer;
0294     vcpu->arch.regs.ctr = svcpu->ctr;
0295     vcpu->arch.regs.link  = svcpu->lr;
0296     vcpu->arch.regs.nip  = svcpu->pc;
0297     vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
0298     vcpu->arch.fault_dar   = svcpu->fault_dar;
0299     vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
0300     vcpu->arch.last_inst   = svcpu->last_inst;
0301 #ifdef CONFIG_PPC_BOOK3S_64
0302     vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
0303 #endif
0304     /*
0305      * Update purr and spurr using time base on exit.
0306      */
0307     vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
0308     vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
0309     to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
0310     if (cpu_has_feature(CPU_FTR_ARCH_207S))
0311         vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
0312 
0313 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
0314     /*
0315      * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
0316      * notifying host:
0317      *  modified by unprivileged instructions like "tbegin"/"tend"/
0318      * "tresume"/"tsuspend" in PR KVM guest.
0319      *
0320      * It is necessary to sync here to calculate a correct shadow_msr.
0321      *
0322      * privileged guest's tbegin will be failed at present. So we
0323      * only take care of problem state guest.
0324      */
0325     old_msr = kvmppc_get_msr(vcpu);
0326     if (unlikely((old_msr & MSR_PR) &&
0327         (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
0328                 (old_msr & (MSR_TS_MASK)))) {
0329         old_msr &= ~(MSR_TS_MASK);
0330         old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
0331         kvmppc_set_msr_fast(vcpu, old_msr);
0332         kvmppc_recalc_shadow_msr(vcpu);
0333     }
0334 #endif
0335 
0336     svcpu->in_use = false;
0337 
0338 out:
0339     svcpu_put(svcpu);
0340 }
0341 
0342 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
0343 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
0344 {
0345     tm_enable();
0346     vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
0347     vcpu->arch.texasr = mfspr(SPRN_TEXASR);
0348     vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
0349     tm_disable();
0350 }
0351 
0352 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
0353 {
0354     tm_enable();
0355     mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
0356     mtspr(SPRN_TEXASR, vcpu->arch.texasr);
0357     mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
0358     tm_disable();
0359 }
0360 
0361 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
0362  * hardware.
0363  */
0364 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
0365 {
0366     ulong exit_nr;
0367     ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
0368         (MSR_FP | MSR_VEC | MSR_VSX);
0369 
0370     if (!ext_diff)
0371         return;
0372 
0373     if (ext_diff == MSR_FP)
0374         exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
0375     else if (ext_diff == MSR_VEC)
0376         exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
0377     else
0378         exit_nr = BOOK3S_INTERRUPT_VSX;
0379 
0380     kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
0381 }
0382 
0383 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
0384 {
0385     if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
0386         kvmppc_save_tm_sprs(vcpu);
0387         return;
0388     }
0389 
0390     kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
0391     kvmppc_giveup_ext(vcpu, MSR_VSX);
0392 
0393     preempt_disable();
0394     _kvmppc_save_tm_pr(vcpu, mfmsr());
0395     preempt_enable();
0396 }
0397 
0398 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
0399 {
0400     if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
0401         kvmppc_restore_tm_sprs(vcpu);
0402         if (kvmppc_get_msr(vcpu) & MSR_TM) {
0403             kvmppc_handle_lost_math_exts(vcpu);
0404             if (vcpu->arch.fscr & FSCR_TAR)
0405                 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
0406         }
0407         return;
0408     }
0409 
0410     preempt_disable();
0411     _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
0412     preempt_enable();
0413 
0414     if (kvmppc_get_msr(vcpu) & MSR_TM) {
0415         kvmppc_handle_lost_math_exts(vcpu);
0416         if (vcpu->arch.fscr & FSCR_TAR)
0417             kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
0418     }
0419 }
0420 #endif
0421 
0422 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
0423 {
0424     int r = 1; /* Indicate we want to get back into the guest */
0425 
0426     /* We misuse TLB_FLUSH to indicate that we want to clear
0427        all shadow cache entries */
0428     if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
0429         kvmppc_mmu_pte_flush(vcpu, 0, 0);
0430 
0431     return r;
0432 }
0433 
0434 /************* MMU Notifiers *************/
0435 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
0436 {
0437     unsigned long i;
0438     struct kvm_vcpu *vcpu;
0439 
0440     kvm_for_each_vcpu(i, vcpu, kvm)
0441         kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
0442                       range->end << PAGE_SHIFT);
0443 
0444     return false;
0445 }
0446 
0447 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
0448 {
0449     return do_kvm_unmap_gfn(kvm, range);
0450 }
0451 
0452 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
0453 {
0454     /* XXX could be more clever ;) */
0455     return false;
0456 }
0457 
0458 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
0459 {
0460     /* XXX could be more clever ;) */
0461     return false;
0462 }
0463 
0464 static bool kvm_set_spte_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
0465 {
0466     /* The page will get remapped properly on its next fault */
0467     return do_kvm_unmap_gfn(kvm, range);
0468 }
0469 
0470 /*****************************************/
0471 
0472 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
0473 {
0474     ulong old_msr;
0475 
0476     /* For PAPR guest, make sure MSR reflects guest mode */
0477     if (vcpu->arch.papr_enabled)
0478         msr = (msr & ~MSR_HV) | MSR_ME;
0479 
0480 #ifdef EXIT_DEBUG
0481     printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
0482 #endif
0483 
0484 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
0485     /* We should never target guest MSR to TS=10 && PR=0,
0486      * since we always fail transaction for guest privilege
0487      * state.
0488      */
0489     if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
0490         kvmppc_emulate_tabort(vcpu,
0491             TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
0492 #endif
0493 
0494     old_msr = kvmppc_get_msr(vcpu);
0495     msr &= to_book3s(vcpu)->msr_mask;
0496     kvmppc_set_msr_fast(vcpu, msr);
0497     kvmppc_recalc_shadow_msr(vcpu);
0498 
0499     if (msr & MSR_POW) {
0500         if (!vcpu->arch.pending_exceptions) {
0501             kvm_vcpu_halt(vcpu);
0502             kvm_clear_request(KVM_REQ_UNHALT, vcpu);
0503             vcpu->stat.generic.halt_wakeup++;
0504 
0505             /* Unset POW bit after we woke up */
0506             msr &= ~MSR_POW;
0507             kvmppc_set_msr_fast(vcpu, msr);
0508         }
0509     }
0510 
0511     if (kvmppc_is_split_real(vcpu))
0512         kvmppc_fixup_split_real(vcpu);
0513     else
0514         kvmppc_unfixup_split_real(vcpu);
0515 
0516     if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
0517            (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
0518         kvmppc_mmu_flush_segments(vcpu);
0519         kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
0520 
0521         /* Preload magic page segment when in kernel mode */
0522         if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
0523             struct kvm_vcpu_arch *a = &vcpu->arch;
0524 
0525             if (msr & MSR_DR)
0526                 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
0527             else
0528                 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
0529         }
0530     }
0531 
0532     /*
0533      * When switching from 32 to 64-bit, we may have a stale 32-bit
0534      * magic page around, we need to flush it. Typically 32-bit magic
0535      * page will be instantiated when calling into RTAS. Note: We
0536      * assume that such transition only happens while in kernel mode,
0537      * ie, we never transition from user 32-bit to kernel 64-bit with
0538      * a 32-bit magic page around.
0539      */
0540     if (vcpu->arch.magic_page_pa &&
0541         !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
0542         /* going from RTAS to normal kernel code */
0543         kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
0544                      ~0xFFFUL);
0545     }
0546 
0547     /* Preload FPU if it's enabled */
0548     if (kvmppc_get_msr(vcpu) & MSR_FP)
0549         kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
0550 
0551 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
0552     if (kvmppc_get_msr(vcpu) & MSR_TM)
0553         kvmppc_handle_lost_math_exts(vcpu);
0554 #endif
0555 }
0556 
0557 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
0558 {
0559     u32 host_pvr;
0560 
0561     vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
0562     vcpu->arch.pvr = pvr;
0563 #ifdef CONFIG_PPC_BOOK3S_64
0564     if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
0565         kvmppc_mmu_book3s_64_init(vcpu);
0566         if (!to_book3s(vcpu)->hior_explicit)
0567             to_book3s(vcpu)->hior = 0xfff00000;
0568         to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
0569         vcpu->arch.cpu_type = KVM_CPU_3S_64;
0570     } else
0571 #endif
0572     {
0573         kvmppc_mmu_book3s_32_init(vcpu);
0574         if (!to_book3s(vcpu)->hior_explicit)
0575             to_book3s(vcpu)->hior = 0;
0576         to_book3s(vcpu)->msr_mask = 0xffffffffULL;
0577         vcpu->arch.cpu_type = KVM_CPU_3S_32;
0578     }
0579 
0580     kvmppc_sanity_check(vcpu);
0581 
0582     /* If we are in hypervisor level on 970, we can tell the CPU to
0583      * treat DCBZ as 32 bytes store */
0584     vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
0585     if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
0586         !strcmp(cur_cpu_spec->platform, "ppc970"))
0587         vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
0588 
0589     /* Cell performs badly if MSR_FEx are set. So let's hope nobody
0590        really needs them in a VM on Cell and force disable them. */
0591     if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
0592         to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
0593 
0594     /*
0595      * If they're asking for POWER6 or later, set the flag
0596      * indicating that we can do multiple large page sizes
0597      * and 1TB segments.
0598      * Also set the flag that indicates that tlbie has the large
0599      * page bit in the RB operand instead of the instruction.
0600      */
0601     switch (PVR_VER(pvr)) {
0602     case PVR_POWER6:
0603     case PVR_POWER7:
0604     case PVR_POWER7p:
0605     case PVR_POWER8:
0606     case PVR_POWER8E:
0607     case PVR_POWER8NVL:
0608     case PVR_POWER9:
0609         vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
0610             BOOK3S_HFLAG_NEW_TLBIE;
0611         break;
0612     }
0613 
0614 #ifdef CONFIG_PPC_BOOK3S_32
0615     /* 32 bit Book3S always has 32 byte dcbz */
0616     vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
0617 #endif
0618 
0619     /* On some CPUs we can execute paired single operations natively */
0620     asm ( "mfpvr %0" : "=r"(host_pvr));
0621     switch (host_pvr) {
0622     case 0x00080200:    /* lonestar 2.0 */
0623     case 0x00088202:    /* lonestar 2.2 */
0624     case 0x70000100:    /* gekko 1.0 */
0625     case 0x00080100:    /* gekko 2.0 */
0626     case 0x00083203:    /* gekko 2.3a */
0627     case 0x00083213:    /* gekko 2.3b */
0628     case 0x00083204:    /* gekko 2.4 */
0629     case 0x00083214:    /* gekko 2.4e (8SE) - retail HW2 */
0630     case 0x00087200:    /* broadway */
0631         vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
0632         /* Enable HID2.PSE - in case we need it later */
0633         mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
0634     }
0635 }
0636 
0637 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
0638  * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
0639  * emulate 32 bytes dcbz length.
0640  *
0641  * The Book3s_64 inventors also realized this case and implemented a special bit
0642  * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
0643  *
0644  * My approach here is to patch the dcbz instruction on executing pages.
0645  */
0646 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
0647 {
0648     struct page *hpage;
0649     u64 hpage_offset;
0650     u32 *page;
0651     int i;
0652 
0653     hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
0654     if (is_error_page(hpage))
0655         return;
0656 
0657     hpage_offset = pte->raddr & ~PAGE_MASK;
0658     hpage_offset &= ~0xFFFULL;
0659     hpage_offset /= 4;
0660 
0661     get_page(hpage);
0662     page = kmap_atomic(hpage);
0663 
0664     /* patch dcbz into reserved instruction, so we trap */
0665     for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
0666         if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
0667             page[i] &= cpu_to_be32(0xfffffff7);
0668 
0669     kunmap_atomic(page);
0670     put_page(hpage);
0671 }
0672 
0673 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
0674 {
0675     ulong mp_pa = vcpu->arch.magic_page_pa;
0676 
0677     if (!(kvmppc_get_msr(vcpu) & MSR_SF))
0678         mp_pa = (uint32_t)mp_pa;
0679 
0680     gpa &= ~0xFFFULL;
0681     if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
0682         return true;
0683     }
0684 
0685     return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
0686 }
0687 
0688 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
0689                 ulong eaddr, int vec)
0690 {
0691     bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
0692     bool iswrite = false;
0693     int r = RESUME_GUEST;
0694     int relocated;
0695     int page_found = 0;
0696     struct kvmppc_pte pte = { 0 };
0697     bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
0698     bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
0699     u64 vsid;
0700 
0701     relocated = data ? dr : ir;
0702     if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
0703         iswrite = true;
0704 
0705     /* Resolve real address if translation turned on */
0706     if (relocated) {
0707         page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
0708     } else {
0709         pte.may_execute = true;
0710         pte.may_read = true;
0711         pte.may_write = true;
0712         pte.raddr = eaddr & KVM_PAM;
0713         pte.eaddr = eaddr;
0714         pte.vpage = eaddr >> 12;
0715         pte.page_size = MMU_PAGE_64K;
0716         pte.wimg = HPTE_R_M;
0717     }
0718 
0719     switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
0720     case 0:
0721         pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
0722         break;
0723     case MSR_DR:
0724         if (!data &&
0725             (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
0726             ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
0727             pte.raddr &= ~SPLIT_HACK_MASK;
0728         fallthrough;
0729     case MSR_IR:
0730         vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
0731 
0732         if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
0733             pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
0734         else
0735             pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
0736         pte.vpage |= vsid;
0737 
0738         if (vsid == -1)
0739             page_found = -EINVAL;
0740         break;
0741     }
0742 
0743     if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
0744        (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
0745         /*
0746          * If we do the dcbz hack, we have to NX on every execution,
0747          * so we can patch the executing code. This renders our guest
0748          * NX-less.
0749          */
0750         pte.may_execute = !data;
0751     }
0752 
0753     if (page_found == -ENOENT || page_found == -EPERM) {
0754         /* Page not found in guest PTE entries, or protection fault */
0755         u64 flags;
0756 
0757         if (page_found == -EPERM)
0758             flags = DSISR_PROTFAULT;
0759         else
0760             flags = DSISR_NOHPTE;
0761         if (data) {
0762             flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
0763             kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
0764         } else {
0765             kvmppc_core_queue_inst_storage(vcpu, flags);
0766         }
0767     } else if (page_found == -EINVAL) {
0768         /* Page not found in guest SLB */
0769         kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
0770         kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
0771     } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
0772         if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
0773             /*
0774              * There is already a host HPTE there, presumably
0775              * a read-only one for a page the guest thinks
0776              * is writable, so get rid of it first.
0777              */
0778             kvmppc_mmu_unmap_page(vcpu, &pte);
0779         }
0780         /* The guest's PTE is not mapped yet. Map on the host */
0781         if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
0782             /* Exit KVM if mapping failed */
0783             vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
0784             return RESUME_HOST;
0785         }
0786         if (data)
0787             vcpu->stat.sp_storage++;
0788         else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
0789              (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
0790             kvmppc_patch_dcbz(vcpu, &pte);
0791     } else {
0792         /* MMIO */
0793         vcpu->stat.mmio_exits++;
0794         vcpu->arch.paddr_accessed = pte.raddr;
0795         vcpu->arch.vaddr_accessed = pte.eaddr;
0796         r = kvmppc_emulate_mmio(vcpu);
0797         if ( r == RESUME_HOST_NV )
0798             r = RESUME_HOST;
0799     }
0800 
0801     return r;
0802 }
0803 
0804 /* Give up external provider (FPU, Altivec, VSX) */
0805 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
0806 {
0807     struct thread_struct *t = &current->thread;
0808 
0809     /*
0810      * VSX instructions can access FP and vector registers, so if
0811      * we are giving up VSX, make sure we give up FP and VMX as well.
0812      */
0813     if (msr & MSR_VSX)
0814         msr |= MSR_FP | MSR_VEC;
0815 
0816     msr &= vcpu->arch.guest_owned_ext;
0817     if (!msr)
0818         return;
0819 
0820 #ifdef DEBUG_EXT
0821     printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
0822 #endif
0823 
0824     if (msr & MSR_FP) {
0825         /*
0826          * Note that on CPUs with VSX, giveup_fpu stores
0827          * both the traditional FP registers and the added VSX
0828          * registers into thread.fp_state.fpr[].
0829          */
0830         if (t->regs->msr & MSR_FP)
0831             giveup_fpu(current);
0832         t->fp_save_area = NULL;
0833     }
0834 
0835 #ifdef CONFIG_ALTIVEC
0836     if (msr & MSR_VEC) {
0837         if (current->thread.regs->msr & MSR_VEC)
0838             giveup_altivec(current);
0839         t->vr_save_area = NULL;
0840     }
0841 #endif
0842 
0843     vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
0844     kvmppc_recalc_shadow_msr(vcpu);
0845 }
0846 
0847 /* Give up facility (TAR / EBB / DSCR) */
0848 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
0849 {
0850 #ifdef CONFIG_PPC_BOOK3S_64
0851     if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
0852         /* Facility not available to the guest, ignore giveup request*/
0853         return;
0854     }
0855 
0856     switch (fac) {
0857     case FSCR_TAR_LG:
0858         vcpu->arch.tar = mfspr(SPRN_TAR);
0859         mtspr(SPRN_TAR, current->thread.tar);
0860         vcpu->arch.shadow_fscr &= ~FSCR_TAR;
0861         break;
0862     }
0863 #endif
0864 }
0865 
0866 /* Handle external providers (FPU, Altivec, VSX) */
0867 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
0868                  ulong msr)
0869 {
0870     struct thread_struct *t = &current->thread;
0871 
0872     /* When we have paired singles, we emulate in software */
0873     if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
0874         return RESUME_GUEST;
0875 
0876     if (!(kvmppc_get_msr(vcpu) & msr)) {
0877         kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
0878         return RESUME_GUEST;
0879     }
0880 
0881     if (msr == MSR_VSX) {
0882         /* No VSX?  Give an illegal instruction interrupt */
0883 #ifdef CONFIG_VSX
0884         if (!cpu_has_feature(CPU_FTR_VSX))
0885 #endif
0886         {
0887             kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
0888             return RESUME_GUEST;
0889         }
0890 
0891         /*
0892          * We have to load up all the FP and VMX registers before
0893          * we can let the guest use VSX instructions.
0894          */
0895         msr = MSR_FP | MSR_VEC | MSR_VSX;
0896     }
0897 
0898     /* See if we already own all the ext(s) needed */
0899     msr &= ~vcpu->arch.guest_owned_ext;
0900     if (!msr)
0901         return RESUME_GUEST;
0902 
0903 #ifdef DEBUG_EXT
0904     printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
0905 #endif
0906 
0907     if (msr & MSR_FP) {
0908         preempt_disable();
0909         enable_kernel_fp();
0910         load_fp_state(&vcpu->arch.fp);
0911         disable_kernel_fp();
0912         t->fp_save_area = &vcpu->arch.fp;
0913         preempt_enable();
0914     }
0915 
0916     if (msr & MSR_VEC) {
0917 #ifdef CONFIG_ALTIVEC
0918         preempt_disable();
0919         enable_kernel_altivec();
0920         load_vr_state(&vcpu->arch.vr);
0921         disable_kernel_altivec();
0922         t->vr_save_area = &vcpu->arch.vr;
0923         preempt_enable();
0924 #endif
0925     }
0926 
0927     t->regs->msr |= msr;
0928     vcpu->arch.guest_owned_ext |= msr;
0929     kvmppc_recalc_shadow_msr(vcpu);
0930 
0931     return RESUME_GUEST;
0932 }
0933 
0934 /*
0935  * Kernel code using FP or VMX could have flushed guest state to
0936  * the thread_struct; if so, get it back now.
0937  */
0938 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
0939 {
0940     unsigned long lost_ext;
0941 
0942     lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
0943     if (!lost_ext)
0944         return;
0945 
0946     if (lost_ext & MSR_FP) {
0947         preempt_disable();
0948         enable_kernel_fp();
0949         load_fp_state(&vcpu->arch.fp);
0950         disable_kernel_fp();
0951         preempt_enable();
0952     }
0953 #ifdef CONFIG_ALTIVEC
0954     if (lost_ext & MSR_VEC) {
0955         preempt_disable();
0956         enable_kernel_altivec();
0957         load_vr_state(&vcpu->arch.vr);
0958         disable_kernel_altivec();
0959         preempt_enable();
0960     }
0961 #endif
0962     current->thread.regs->msr |= lost_ext;
0963 }
0964 
0965 #ifdef CONFIG_PPC_BOOK3S_64
0966 
0967 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
0968 {
0969     /* Inject the Interrupt Cause field and trigger a guest interrupt */
0970     vcpu->arch.fscr &= ~(0xffULL << 56);
0971     vcpu->arch.fscr |= (fac << 56);
0972     kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
0973 }
0974 
0975 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
0976 {
0977     enum emulation_result er = EMULATE_FAIL;
0978 
0979     if (!(kvmppc_get_msr(vcpu) & MSR_PR))
0980         er = kvmppc_emulate_instruction(vcpu);
0981 
0982     if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
0983         /* Couldn't emulate, trigger interrupt in guest */
0984         kvmppc_trigger_fac_interrupt(vcpu, fac);
0985     }
0986 }
0987 
0988 /* Enable facilities (TAR, EBB, DSCR) for the guest */
0989 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
0990 {
0991     bool guest_fac_enabled;
0992     BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
0993 
0994     /*
0995      * Not every facility is enabled by FSCR bits, check whether the
0996      * guest has this facility enabled at all.
0997      */
0998     switch (fac) {
0999     case FSCR_TAR_LG:
1000     case FSCR_EBB_LG:
1001         guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
1002         break;
1003     case FSCR_TM_LG:
1004         guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
1005         break;
1006     default:
1007         guest_fac_enabled = false;
1008         break;
1009     }
1010 
1011     if (!guest_fac_enabled) {
1012         /* Facility not enabled by the guest */
1013         kvmppc_trigger_fac_interrupt(vcpu, fac);
1014         return RESUME_GUEST;
1015     }
1016 
1017     switch (fac) {
1018     case FSCR_TAR_LG:
1019         /* TAR switching isn't lazy in Linux yet */
1020         current->thread.tar = mfspr(SPRN_TAR);
1021         mtspr(SPRN_TAR, vcpu->arch.tar);
1022         vcpu->arch.shadow_fscr |= FSCR_TAR;
1023         break;
1024     default:
1025         kvmppc_emulate_fac(vcpu, fac);
1026         break;
1027     }
1028 
1029 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1030     /* Since we disabled MSR_TM at privilege state, the mfspr instruction
1031      * for TM spr can trigger TM fac unavailable. In this case, the
1032      * emulation is handled by kvmppc_emulate_fac(), which invokes
1033      * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1034      * RT for NV registers. So it need to restore those NV reg to reflect
1035      * the update.
1036      */
1037     if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1038         return RESUME_GUEST_NV;
1039 #endif
1040 
1041     return RESUME_GUEST;
1042 }
1043 
1044 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1045 {
1046     if (fscr & FSCR_SCV)
1047         fscr &= ~FSCR_SCV; /* SCV must not be enabled */
1048     if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1049         /* TAR got dropped, drop it in shadow too */
1050         kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1051     } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1052         vcpu->arch.fscr = fscr;
1053         kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1054         return;
1055     }
1056 
1057     vcpu->arch.fscr = fscr;
1058 }
1059 #endif
1060 
1061 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1062 {
1063     if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1064         u64 msr = kvmppc_get_msr(vcpu);
1065 
1066         kvmppc_set_msr(vcpu, msr | MSR_SE);
1067     }
1068 }
1069 
1070 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1071 {
1072     if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1073         u64 msr = kvmppc_get_msr(vcpu);
1074 
1075         kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1076     }
1077 }
1078 
1079 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1080 {
1081     enum emulation_result er;
1082     ulong flags;
1083     u32 last_inst;
1084     int emul, r;
1085 
1086     /*
1087      * shadow_srr1 only contains valid flags if we came here via a program
1088      * exception. The other exceptions (emulation assist, FP unavailable,
1089      * etc.) do not provide flags in SRR1, so use an illegal-instruction
1090      * exception when injecting a program interrupt into the guest.
1091      */
1092     if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1093         flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1094     else
1095         flags = SRR1_PROGILL;
1096 
1097     emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1098     if (emul != EMULATE_DONE)
1099         return RESUME_GUEST;
1100 
1101     if (kvmppc_get_msr(vcpu) & MSR_PR) {
1102 #ifdef EXIT_DEBUG
1103         pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1104             kvmppc_get_pc(vcpu), last_inst);
1105 #endif
1106         if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1107             kvmppc_core_queue_program(vcpu, flags);
1108             return RESUME_GUEST;
1109         }
1110     }
1111 
1112     vcpu->stat.emulated_inst_exits++;
1113     er = kvmppc_emulate_instruction(vcpu);
1114     switch (er) {
1115     case EMULATE_DONE:
1116         r = RESUME_GUEST_NV;
1117         break;
1118     case EMULATE_AGAIN:
1119         r = RESUME_GUEST;
1120         break;
1121     case EMULATE_FAIL:
1122         pr_crit("%s: emulation at %lx failed (%08x)\n",
1123             __func__, kvmppc_get_pc(vcpu), last_inst);
1124         kvmppc_core_queue_program(vcpu, flags);
1125         r = RESUME_GUEST;
1126         break;
1127     case EMULATE_DO_MMIO:
1128         vcpu->run->exit_reason = KVM_EXIT_MMIO;
1129         r = RESUME_HOST_NV;
1130         break;
1131     case EMULATE_EXIT_USER:
1132         r = RESUME_HOST_NV;
1133         break;
1134     default:
1135         BUG();
1136     }
1137 
1138     return r;
1139 }
1140 
1141 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1142 {
1143     struct kvm_run *run = vcpu->run;
1144     int r = RESUME_HOST;
1145     int s;
1146 
1147     vcpu->stat.sum_exits++;
1148 
1149     run->exit_reason = KVM_EXIT_UNKNOWN;
1150     run->ready_for_interrupt_injection = 1;
1151 
1152     /* We get here with MSR.EE=1 */
1153 
1154     trace_kvm_exit(exit_nr, vcpu);
1155     guest_exit();
1156 
1157     switch (exit_nr) {
1158     case BOOK3S_INTERRUPT_INST_STORAGE:
1159     {
1160         ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1161         vcpu->stat.pf_instruc++;
1162 
1163         if (kvmppc_is_split_real(vcpu))
1164             kvmppc_fixup_split_real(vcpu);
1165 
1166 #ifdef CONFIG_PPC_BOOK3S_32
1167         /* We set segments as unused segments when invalidating them. So
1168          * treat the respective fault as segment fault. */
1169         {
1170             struct kvmppc_book3s_shadow_vcpu *svcpu;
1171             u32 sr;
1172 
1173             svcpu = svcpu_get(vcpu);
1174             sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1175             svcpu_put(svcpu);
1176             if (sr == SR_INVALID) {
1177                 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1178                 r = RESUME_GUEST;
1179                 break;
1180             }
1181         }
1182 #endif
1183 
1184         /* only care about PTEG not found errors, but leave NX alone */
1185         if (shadow_srr1 & 0x40000000) {
1186             int idx = srcu_read_lock(&vcpu->kvm->srcu);
1187             r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1188             srcu_read_unlock(&vcpu->kvm->srcu, idx);
1189             vcpu->stat.sp_instruc++;
1190         } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1191               (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1192             /*
1193              * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1194              *     so we can't use the NX bit inside the guest. Let's cross our fingers,
1195              *     that no guest that needs the dcbz hack does NX.
1196              */
1197             kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1198             r = RESUME_GUEST;
1199         } else {
1200             kvmppc_core_queue_inst_storage(vcpu,
1201                         shadow_srr1 & 0x58000000);
1202             r = RESUME_GUEST;
1203         }
1204         break;
1205     }
1206     case BOOK3S_INTERRUPT_DATA_STORAGE:
1207     {
1208         ulong dar = kvmppc_get_fault_dar(vcpu);
1209         u32 fault_dsisr = vcpu->arch.fault_dsisr;
1210         vcpu->stat.pf_storage++;
1211 
1212 #ifdef CONFIG_PPC_BOOK3S_32
1213         /* We set segments as unused segments when invalidating them. So
1214          * treat the respective fault as segment fault. */
1215         {
1216             struct kvmppc_book3s_shadow_vcpu *svcpu;
1217             u32 sr;
1218 
1219             svcpu = svcpu_get(vcpu);
1220             sr = svcpu->sr[dar >> SID_SHIFT];
1221             svcpu_put(svcpu);
1222             if (sr == SR_INVALID) {
1223                 kvmppc_mmu_map_segment(vcpu, dar);
1224                 r = RESUME_GUEST;
1225                 break;
1226             }
1227         }
1228 #endif
1229 
1230         /*
1231          * We need to handle missing shadow PTEs, and
1232          * protection faults due to us mapping a page read-only
1233          * when the guest thinks it is writable.
1234          */
1235         if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1236             int idx = srcu_read_lock(&vcpu->kvm->srcu);
1237             r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1238             srcu_read_unlock(&vcpu->kvm->srcu, idx);
1239         } else {
1240             kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1241             r = RESUME_GUEST;
1242         }
1243         break;
1244     }
1245     case BOOK3S_INTERRUPT_DATA_SEGMENT:
1246         if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1247             kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1248             kvmppc_book3s_queue_irqprio(vcpu,
1249                 BOOK3S_INTERRUPT_DATA_SEGMENT);
1250         }
1251         r = RESUME_GUEST;
1252         break;
1253     case BOOK3S_INTERRUPT_INST_SEGMENT:
1254         if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1255             kvmppc_book3s_queue_irqprio(vcpu,
1256                 BOOK3S_INTERRUPT_INST_SEGMENT);
1257         }
1258         r = RESUME_GUEST;
1259         break;
1260     /* We're good on these - the host merely wanted to get our attention */
1261     case BOOK3S_INTERRUPT_DECREMENTER:
1262     case BOOK3S_INTERRUPT_HV_DECREMENTER:
1263     case BOOK3S_INTERRUPT_DOORBELL:
1264     case BOOK3S_INTERRUPT_H_DOORBELL:
1265         vcpu->stat.dec_exits++;
1266         r = RESUME_GUEST;
1267         break;
1268     case BOOK3S_INTERRUPT_EXTERNAL:
1269     case BOOK3S_INTERRUPT_EXTERNAL_HV:
1270     case BOOK3S_INTERRUPT_H_VIRT:
1271         vcpu->stat.ext_intr_exits++;
1272         r = RESUME_GUEST;
1273         break;
1274     case BOOK3S_INTERRUPT_HMI:
1275     case BOOK3S_INTERRUPT_PERFMON:
1276     case BOOK3S_INTERRUPT_SYSTEM_RESET:
1277         r = RESUME_GUEST;
1278         break;
1279     case BOOK3S_INTERRUPT_PROGRAM:
1280     case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1281         r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1282         break;
1283     case BOOK3S_INTERRUPT_SYSCALL:
1284     {
1285         u32 last_sc;
1286         int emul;
1287 
1288         /* Get last sc for papr */
1289         if (vcpu->arch.papr_enabled) {
1290             /* The sc instruction points SRR0 to the next inst */
1291             emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1292             if (emul != EMULATE_DONE) {
1293                 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1294                 r = RESUME_GUEST;
1295                 break;
1296             }
1297         }
1298 
1299         if (vcpu->arch.papr_enabled &&
1300             (last_sc == 0x44000022) &&
1301             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1302             /* SC 1 papr hypercalls */
1303             ulong cmd = kvmppc_get_gpr(vcpu, 3);
1304             int i;
1305 
1306 #ifdef CONFIG_PPC_BOOK3S_64
1307             if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1308                 r = RESUME_GUEST;
1309                 break;
1310             }
1311 #endif
1312 
1313             run->papr_hcall.nr = cmd;
1314             for (i = 0; i < 9; ++i) {
1315                 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1316                 run->papr_hcall.args[i] = gpr;
1317             }
1318             run->exit_reason = KVM_EXIT_PAPR_HCALL;
1319             vcpu->arch.hcall_needed = 1;
1320             r = RESUME_HOST;
1321         } else if (vcpu->arch.osi_enabled &&
1322             (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1323             (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1324             /* MOL hypercalls */
1325             u64 *gprs = run->osi.gprs;
1326             int i;
1327 
1328             run->exit_reason = KVM_EXIT_OSI;
1329             for (i = 0; i < 32; i++)
1330                 gprs[i] = kvmppc_get_gpr(vcpu, i);
1331             vcpu->arch.osi_needed = 1;
1332             r = RESUME_HOST_NV;
1333         } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1334             (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1335             /* KVM PV hypercalls */
1336             kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1337             r = RESUME_GUEST;
1338         } else {
1339             /* Guest syscalls */
1340             vcpu->stat.syscall_exits++;
1341             kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1342             r = RESUME_GUEST;
1343         }
1344         break;
1345     }
1346     case BOOK3S_INTERRUPT_FP_UNAVAIL:
1347     case BOOK3S_INTERRUPT_ALTIVEC:
1348     case BOOK3S_INTERRUPT_VSX:
1349     {
1350         int ext_msr = 0;
1351         int emul;
1352         u32 last_inst;
1353 
1354         if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1355             /* Do paired single instruction emulation */
1356             emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1357                             &last_inst);
1358             if (emul == EMULATE_DONE)
1359                 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1360             else
1361                 r = RESUME_GUEST;
1362 
1363             break;
1364         }
1365 
1366         /* Enable external provider */
1367         switch (exit_nr) {
1368         case BOOK3S_INTERRUPT_FP_UNAVAIL:
1369             ext_msr = MSR_FP;
1370             break;
1371 
1372         case BOOK3S_INTERRUPT_ALTIVEC:
1373             ext_msr = MSR_VEC;
1374             break;
1375 
1376         case BOOK3S_INTERRUPT_VSX:
1377             ext_msr = MSR_VSX;
1378             break;
1379         }
1380 
1381         r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1382         break;
1383     }
1384     case BOOK3S_INTERRUPT_ALIGNMENT:
1385     {
1386         u32 last_inst;
1387         int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1388 
1389         if (emul == EMULATE_DONE) {
1390             u32 dsisr;
1391             u64 dar;
1392 
1393             dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1394             dar = kvmppc_alignment_dar(vcpu, last_inst);
1395 
1396             kvmppc_set_dsisr(vcpu, dsisr);
1397             kvmppc_set_dar(vcpu, dar);
1398 
1399             kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1400         }
1401         r = RESUME_GUEST;
1402         break;
1403     }
1404 #ifdef CONFIG_PPC_BOOK3S_64
1405     case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1406         r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1407         break;
1408 #endif
1409     case BOOK3S_INTERRUPT_MACHINE_CHECK:
1410         kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1411         r = RESUME_GUEST;
1412         break;
1413     case BOOK3S_INTERRUPT_TRACE:
1414         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1415             run->exit_reason = KVM_EXIT_DEBUG;
1416             r = RESUME_HOST;
1417         } else {
1418             kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1419             r = RESUME_GUEST;
1420         }
1421         break;
1422     default:
1423     {
1424         ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1425         /* Ugh - bork here! What did we get? */
1426         printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1427             exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1428         r = RESUME_HOST;
1429         BUG();
1430         break;
1431     }
1432     }
1433 
1434     if (!(r & RESUME_HOST)) {
1435         /* To avoid clobbering exit_reason, only check for signals if
1436          * we aren't already exiting to userspace for some other
1437          * reason. */
1438 
1439         /*
1440          * Interrupts could be timers for the guest which we have to
1441          * inject again, so let's postpone them until we're in the guest
1442          * and if we really did time things so badly, then we just exit
1443          * again due to a host external interrupt.
1444          */
1445         s = kvmppc_prepare_to_enter(vcpu);
1446         if (s <= 0)
1447             r = s;
1448         else {
1449             /* interrupts now hard-disabled */
1450             kvmppc_fix_ee_before_entry();
1451         }
1452 
1453         kvmppc_handle_lost_ext(vcpu);
1454     }
1455 
1456     trace_kvm_book3s_reenter(r, vcpu);
1457 
1458     return r;
1459 }
1460 
1461 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1462                         struct kvm_sregs *sregs)
1463 {
1464     struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1465     int i;
1466 
1467     sregs->pvr = vcpu->arch.pvr;
1468 
1469     sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1470     if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1471         for (i = 0; i < 64; i++) {
1472             sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1473             sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1474         }
1475     } else {
1476         for (i = 0; i < 16; i++)
1477             sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1478 
1479         for (i = 0; i < 8; i++) {
1480             sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1481             sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1482         }
1483     }
1484 
1485     return 0;
1486 }
1487 
1488 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1489                         struct kvm_sregs *sregs)
1490 {
1491     struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1492     int i;
1493 
1494     kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1495 
1496     vcpu3s->sdr1 = sregs->u.s.sdr1;
1497 #ifdef CONFIG_PPC_BOOK3S_64
1498     if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1499         /* Flush all SLB entries */
1500         vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1501         vcpu->arch.mmu.slbia(vcpu);
1502 
1503         for (i = 0; i < 64; i++) {
1504             u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1505             u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1506 
1507             if (rb & SLB_ESID_V)
1508                 vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1509         }
1510     } else
1511 #endif
1512     {
1513         for (i = 0; i < 16; i++) {
1514             vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1515         }
1516         for (i = 0; i < 8; i++) {
1517             kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1518                        (u32)sregs->u.s.ppc32.ibat[i]);
1519             kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1520                        (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1521             kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1522                        (u32)sregs->u.s.ppc32.dbat[i]);
1523             kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1524                        (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1525         }
1526     }
1527 
1528     /* Flush the MMU after messing with the segments */
1529     kvmppc_mmu_pte_flush(vcpu, 0, 0);
1530 
1531     return 0;
1532 }
1533 
1534 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1535                  union kvmppc_one_reg *val)
1536 {
1537     int r = 0;
1538 
1539     switch (id) {
1540     case KVM_REG_PPC_DEBUG_INST:
1541         *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1542         break;
1543     case KVM_REG_PPC_HIOR:
1544         *val = get_reg_val(id, to_book3s(vcpu)->hior);
1545         break;
1546     case KVM_REG_PPC_VTB:
1547         *val = get_reg_val(id, to_book3s(vcpu)->vtb);
1548         break;
1549     case KVM_REG_PPC_LPCR:
1550     case KVM_REG_PPC_LPCR_64:
1551         /*
1552          * We are only interested in the LPCR_ILE bit
1553          */
1554         if (vcpu->arch.intr_msr & MSR_LE)
1555             *val = get_reg_val(id, LPCR_ILE);
1556         else
1557             *val = get_reg_val(id, 0);
1558         break;
1559 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1560     case KVM_REG_PPC_TFHAR:
1561         *val = get_reg_val(id, vcpu->arch.tfhar);
1562         break;
1563     case KVM_REG_PPC_TFIAR:
1564         *val = get_reg_val(id, vcpu->arch.tfiar);
1565         break;
1566     case KVM_REG_PPC_TEXASR:
1567         *val = get_reg_val(id, vcpu->arch.texasr);
1568         break;
1569     case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1570         *val = get_reg_val(id,
1571                 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1572         break;
1573     case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1574     {
1575         int i, j;
1576 
1577         i = id - KVM_REG_PPC_TM_VSR0;
1578         if (i < 32)
1579             for (j = 0; j < TS_FPRWIDTH; j++)
1580                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1581         else {
1582             if (cpu_has_feature(CPU_FTR_ALTIVEC))
1583                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1584             else
1585                 r = -ENXIO;
1586         }
1587         break;
1588     }
1589     case KVM_REG_PPC_TM_CR:
1590         *val = get_reg_val(id, vcpu->arch.cr_tm);
1591         break;
1592     case KVM_REG_PPC_TM_XER:
1593         *val = get_reg_val(id, vcpu->arch.xer_tm);
1594         break;
1595     case KVM_REG_PPC_TM_LR:
1596         *val = get_reg_val(id, vcpu->arch.lr_tm);
1597         break;
1598     case KVM_REG_PPC_TM_CTR:
1599         *val = get_reg_val(id, vcpu->arch.ctr_tm);
1600         break;
1601     case KVM_REG_PPC_TM_FPSCR:
1602         *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1603         break;
1604     case KVM_REG_PPC_TM_AMR:
1605         *val = get_reg_val(id, vcpu->arch.amr_tm);
1606         break;
1607     case KVM_REG_PPC_TM_PPR:
1608         *val = get_reg_val(id, vcpu->arch.ppr_tm);
1609         break;
1610     case KVM_REG_PPC_TM_VRSAVE:
1611         *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1612         break;
1613     case KVM_REG_PPC_TM_VSCR:
1614         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1615             *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1616         else
1617             r = -ENXIO;
1618         break;
1619     case KVM_REG_PPC_TM_DSCR:
1620         *val = get_reg_val(id, vcpu->arch.dscr_tm);
1621         break;
1622     case KVM_REG_PPC_TM_TAR:
1623         *val = get_reg_val(id, vcpu->arch.tar_tm);
1624         break;
1625 #endif
1626     default:
1627         r = -EINVAL;
1628         break;
1629     }
1630 
1631     return r;
1632 }
1633 
1634 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1635 {
1636     if (new_lpcr & LPCR_ILE)
1637         vcpu->arch.intr_msr |= MSR_LE;
1638     else
1639         vcpu->arch.intr_msr &= ~MSR_LE;
1640 }
1641 
1642 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1643                  union kvmppc_one_reg *val)
1644 {
1645     int r = 0;
1646 
1647     switch (id) {
1648     case KVM_REG_PPC_HIOR:
1649         to_book3s(vcpu)->hior = set_reg_val(id, *val);
1650         to_book3s(vcpu)->hior_explicit = true;
1651         break;
1652     case KVM_REG_PPC_VTB:
1653         to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1654         break;
1655     case KVM_REG_PPC_LPCR:
1656     case KVM_REG_PPC_LPCR_64:
1657         kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1658         break;
1659 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1660     case KVM_REG_PPC_TFHAR:
1661         vcpu->arch.tfhar = set_reg_val(id, *val);
1662         break;
1663     case KVM_REG_PPC_TFIAR:
1664         vcpu->arch.tfiar = set_reg_val(id, *val);
1665         break;
1666     case KVM_REG_PPC_TEXASR:
1667         vcpu->arch.texasr = set_reg_val(id, *val);
1668         break;
1669     case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1670         vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1671             set_reg_val(id, *val);
1672         break;
1673     case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1674     {
1675         int i, j;
1676 
1677         i = id - KVM_REG_PPC_TM_VSR0;
1678         if (i < 32)
1679             for (j = 0; j < TS_FPRWIDTH; j++)
1680                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1681         else
1682             if (cpu_has_feature(CPU_FTR_ALTIVEC))
1683                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1684             else
1685                 r = -ENXIO;
1686         break;
1687     }
1688     case KVM_REG_PPC_TM_CR:
1689         vcpu->arch.cr_tm = set_reg_val(id, *val);
1690         break;
1691     case KVM_REG_PPC_TM_XER:
1692         vcpu->arch.xer_tm = set_reg_val(id, *val);
1693         break;
1694     case KVM_REG_PPC_TM_LR:
1695         vcpu->arch.lr_tm = set_reg_val(id, *val);
1696         break;
1697     case KVM_REG_PPC_TM_CTR:
1698         vcpu->arch.ctr_tm = set_reg_val(id, *val);
1699         break;
1700     case KVM_REG_PPC_TM_FPSCR:
1701         vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1702         break;
1703     case KVM_REG_PPC_TM_AMR:
1704         vcpu->arch.amr_tm = set_reg_val(id, *val);
1705         break;
1706     case KVM_REG_PPC_TM_PPR:
1707         vcpu->arch.ppr_tm = set_reg_val(id, *val);
1708         break;
1709     case KVM_REG_PPC_TM_VRSAVE:
1710         vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1711         break;
1712     case KVM_REG_PPC_TM_VSCR:
1713         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1714             vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1715         else
1716             r = -ENXIO;
1717         break;
1718     case KVM_REG_PPC_TM_DSCR:
1719         vcpu->arch.dscr_tm = set_reg_val(id, *val);
1720         break;
1721     case KVM_REG_PPC_TM_TAR:
1722         vcpu->arch.tar_tm = set_reg_val(id, *val);
1723         break;
1724 #endif
1725     default:
1726         r = -EINVAL;
1727         break;
1728     }
1729 
1730     return r;
1731 }
1732 
1733 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1734 {
1735     struct kvmppc_vcpu_book3s *vcpu_book3s;
1736     unsigned long p;
1737     int err;
1738 
1739     err = -ENOMEM;
1740 
1741     vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1742     if (!vcpu_book3s)
1743         goto out;
1744     vcpu->arch.book3s = vcpu_book3s;
1745 
1746 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1747     vcpu->arch.shadow_vcpu =
1748         kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1749     if (!vcpu->arch.shadow_vcpu)
1750         goto free_vcpu3s;
1751 #endif
1752 
1753     p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1754     if (!p)
1755         goto free_shadow_vcpu;
1756     vcpu->arch.shared = (void *)p;
1757 #ifdef CONFIG_PPC_BOOK3S_64
1758     /* Always start the shared struct in native endian mode */
1759 #ifdef __BIG_ENDIAN__
1760         vcpu->arch.shared_big_endian = true;
1761 #else
1762         vcpu->arch.shared_big_endian = false;
1763 #endif
1764 
1765     /*
1766      * Default to the same as the host if we're on sufficiently
1767      * recent machine that we have 1TB segments;
1768      * otherwise default to PPC970FX.
1769      */
1770     vcpu->arch.pvr = 0x3C0301;
1771     if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1772         vcpu->arch.pvr = mfspr(SPRN_PVR);
1773     vcpu->arch.intr_msr = MSR_SF;
1774 #else
1775     /* default to book3s_32 (750) */
1776     vcpu->arch.pvr = 0x84202;
1777     vcpu->arch.intr_msr = 0;
1778 #endif
1779     kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1780     vcpu->arch.slb_nr = 64;
1781 
1782     vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1783 
1784     err = kvmppc_mmu_init_pr(vcpu);
1785     if (err < 0)
1786         goto free_shared_page;
1787 
1788     return 0;
1789 
1790 free_shared_page:
1791     free_page((unsigned long)vcpu->arch.shared);
1792 free_shadow_vcpu:
1793 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1794     kfree(vcpu->arch.shadow_vcpu);
1795 free_vcpu3s:
1796 #endif
1797     vfree(vcpu_book3s);
1798 out:
1799     return err;
1800 }
1801 
1802 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1803 {
1804     struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1805 
1806     kvmppc_mmu_destroy_pr(vcpu);
1807     free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1808 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1809     kfree(vcpu->arch.shadow_vcpu);
1810 #endif
1811     vfree(vcpu_book3s);
1812 }
1813 
1814 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1815 {
1816     int ret;
1817 
1818     /* Check if we can run the vcpu at all */
1819     if (!vcpu->arch.sane) {
1820         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1821         ret = -EINVAL;
1822         goto out;
1823     }
1824 
1825     kvmppc_setup_debug(vcpu);
1826 
1827     /*
1828      * Interrupts could be timers for the guest which we have to inject
1829      * again, so let's postpone them until we're in the guest and if we
1830      * really did time things so badly, then we just exit again due to
1831      * a host external interrupt.
1832      */
1833     ret = kvmppc_prepare_to_enter(vcpu);
1834     if (ret <= 0)
1835         goto out;
1836     /* interrupts now hard-disabled */
1837 
1838     /* Save FPU, Altivec and VSX state */
1839     giveup_all(current);
1840 
1841     /* Preload FPU if it's enabled */
1842     if (kvmppc_get_msr(vcpu) & MSR_FP)
1843         kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1844 
1845     kvmppc_fix_ee_before_entry();
1846 
1847     ret = __kvmppc_vcpu_run(vcpu);
1848 
1849     kvmppc_clear_debug(vcpu);
1850 
1851     /* No need for guest_exit. It's done in handle_exit.
1852        We also get here with interrupts enabled. */
1853 
1854     /* Make sure we save the guest FPU/Altivec/VSX state */
1855     kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1856 
1857     /* Make sure we save the guest TAR/EBB/DSCR state */
1858     kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1859 
1860     srr_regs_clobbered();
1861 out:
1862     vcpu->mode = OUTSIDE_GUEST_MODE;
1863     return ret;
1864 }
1865 
1866 /*
1867  * Get (and clear) the dirty memory log for a memory slot.
1868  */
1869 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1870                      struct kvm_dirty_log *log)
1871 {
1872     struct kvm_memory_slot *memslot;
1873     struct kvm_vcpu *vcpu;
1874     ulong ga, ga_end;
1875     int is_dirty = 0;
1876     int r;
1877     unsigned long n;
1878 
1879     mutex_lock(&kvm->slots_lock);
1880 
1881     r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1882     if (r)
1883         goto out;
1884 
1885     /* If nothing is dirty, don't bother messing with page tables. */
1886     if (is_dirty) {
1887         ga = memslot->base_gfn << PAGE_SHIFT;
1888         ga_end = ga + (memslot->npages << PAGE_SHIFT);
1889 
1890         kvm_for_each_vcpu(n, vcpu, kvm)
1891             kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1892 
1893         n = kvm_dirty_bitmap_bytes(memslot);
1894         memset(memslot->dirty_bitmap, 0, n);
1895     }
1896 
1897     r = 0;
1898 out:
1899     mutex_unlock(&kvm->slots_lock);
1900     return r;
1901 }
1902 
1903 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1904                      struct kvm_memory_slot *memslot)
1905 {
1906     return;
1907 }
1908 
1909 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1910                 const struct kvm_memory_slot *old,
1911                 struct kvm_memory_slot *new,
1912                 enum kvm_mr_change change)
1913 {
1914     return 0;
1915 }
1916 
1917 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1918                 struct kvm_memory_slot *old,
1919                 const struct kvm_memory_slot *new,
1920                 enum kvm_mr_change change)
1921 {
1922     return;
1923 }
1924 
1925 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1926 {
1927     return;
1928 }
1929 
1930 #ifdef CONFIG_PPC64
1931 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1932                      struct kvm_ppc_smmu_info *info)
1933 {
1934     long int i;
1935     struct kvm_vcpu *vcpu;
1936 
1937     info->flags = 0;
1938 
1939     /* SLB is always 64 entries */
1940     info->slb_size = 64;
1941 
1942     /* Standard 4k base page size segment */
1943     info->sps[0].page_shift = 12;
1944     info->sps[0].slb_enc = 0;
1945     info->sps[0].enc[0].page_shift = 12;
1946     info->sps[0].enc[0].pte_enc = 0;
1947 
1948     /*
1949      * 64k large page size.
1950      * We only want to put this in if the CPUs we're emulating
1951      * support it, but unfortunately we don't have a vcpu easily
1952      * to hand here to test.  Just pick the first vcpu, and if
1953      * that doesn't exist yet, report the minimum capability,
1954      * i.e., no 64k pages.
1955      * 1T segment support goes along with 64k pages.
1956      */
1957     i = 1;
1958     vcpu = kvm_get_vcpu(kvm, 0);
1959     if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1960         info->flags = KVM_PPC_1T_SEGMENTS;
1961         info->sps[i].page_shift = 16;
1962         info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1963         info->sps[i].enc[0].page_shift = 16;
1964         info->sps[i].enc[0].pte_enc = 1;
1965         ++i;
1966     }
1967 
1968     /* Standard 16M large page size segment */
1969     info->sps[i].page_shift = 24;
1970     info->sps[i].slb_enc = SLB_VSID_L;
1971     info->sps[i].enc[0].page_shift = 24;
1972     info->sps[i].enc[0].pte_enc = 0;
1973 
1974     return 0;
1975 }
1976 
1977 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1978 {
1979     if (!cpu_has_feature(CPU_FTR_ARCH_300))
1980         return -ENODEV;
1981     /* Require flags and process table base and size to all be zero. */
1982     if (cfg->flags || cfg->process_table)
1983         return -EINVAL;
1984     return 0;
1985 }
1986 
1987 #else
1988 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1989                      struct kvm_ppc_smmu_info *info)
1990 {
1991     /* We should not get called */
1992     BUG();
1993     return 0;
1994 }
1995 #endif /* CONFIG_PPC64 */
1996 
1997 static unsigned int kvm_global_user_count = 0;
1998 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1999 
2000 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2001 {
2002     mutex_init(&kvm->arch.hpt_mutex);
2003 
2004 #ifdef CONFIG_PPC_BOOK3S_64
2005     /* Start out with the default set of hcalls enabled */
2006     kvmppc_pr_init_default_hcalls(kvm);
2007 #endif
2008 
2009     if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2010         spin_lock(&kvm_global_user_count_lock);
2011         if (++kvm_global_user_count == 1)
2012             pseries_disable_reloc_on_exc();
2013         spin_unlock(&kvm_global_user_count_lock);
2014     }
2015     return 0;
2016 }
2017 
2018 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2019 {
2020 #ifdef CONFIG_PPC64
2021     WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2022 #endif
2023 
2024     if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2025         spin_lock(&kvm_global_user_count_lock);
2026         BUG_ON(kvm_global_user_count == 0);
2027         if (--kvm_global_user_count == 0)
2028             pseries_enable_reloc_on_exc();
2029         spin_unlock(&kvm_global_user_count_lock);
2030     }
2031 }
2032 
2033 static int kvmppc_core_check_processor_compat_pr(void)
2034 {
2035     /*
2036      * PR KVM can work on POWER9 inside a guest partition
2037      * running in HPT mode.  It can't work if we are using
2038      * radix translation (because radix provides no way for
2039      * a process to have unique translations in quadrant 3).
2040      */
2041     if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2042         return -EIO;
2043     return 0;
2044 }
2045 
2046 static long kvm_arch_vm_ioctl_pr(struct file *filp,
2047                  unsigned int ioctl, unsigned long arg)
2048 {
2049     return -ENOTTY;
2050 }
2051 
2052 static struct kvmppc_ops kvm_ops_pr = {
2053     .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2054     .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2055     .get_one_reg = kvmppc_get_one_reg_pr,
2056     .set_one_reg = kvmppc_set_one_reg_pr,
2057     .vcpu_load   = kvmppc_core_vcpu_load_pr,
2058     .vcpu_put    = kvmppc_core_vcpu_put_pr,
2059     .inject_interrupt = kvmppc_inject_interrupt_pr,
2060     .set_msr     = kvmppc_set_msr_pr,
2061     .vcpu_run    = kvmppc_vcpu_run_pr,
2062     .vcpu_create = kvmppc_core_vcpu_create_pr,
2063     .vcpu_free   = kvmppc_core_vcpu_free_pr,
2064     .check_requests = kvmppc_core_check_requests_pr,
2065     .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2066     .flush_memslot = kvmppc_core_flush_memslot_pr,
2067     .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2068     .commit_memory_region = kvmppc_core_commit_memory_region_pr,
2069     .unmap_gfn_range = kvm_unmap_gfn_range_pr,
2070     .age_gfn  = kvm_age_gfn_pr,
2071     .test_age_gfn = kvm_test_age_gfn_pr,
2072     .set_spte_gfn = kvm_set_spte_gfn_pr,
2073     .free_memslot = kvmppc_core_free_memslot_pr,
2074     .init_vm = kvmppc_core_init_vm_pr,
2075     .destroy_vm = kvmppc_core_destroy_vm_pr,
2076     .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2077     .emulate_op = kvmppc_core_emulate_op_pr,
2078     .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2079     .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2080     .fast_vcpu_kick = kvm_vcpu_kick,
2081     .arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2082 #ifdef CONFIG_PPC_BOOK3S_64
2083     .hcall_implemented = kvmppc_hcall_impl_pr,
2084     .configure_mmu = kvm_configure_mmu_pr,
2085 #endif
2086     .giveup_ext = kvmppc_giveup_ext,
2087 };
2088 
2089 
2090 int kvmppc_book3s_init_pr(void)
2091 {
2092     int r;
2093 
2094     r = kvmppc_core_check_processor_compat_pr();
2095     if (r < 0)
2096         return r;
2097 
2098     kvm_ops_pr.owner = THIS_MODULE;
2099     kvmppc_pr_ops = &kvm_ops_pr;
2100 
2101     r = kvmppc_mmu_hpte_sysinit();
2102     return r;
2103 }
2104 
2105 void kvmppc_book3s_exit_pr(void)
2106 {
2107     kvmppc_pr_ops = NULL;
2108     kvmppc_mmu_hpte_sysexit();
2109 }
2110 
2111 /*
2112  * We only support separate modules for book3s 64
2113  */
2114 #ifdef CONFIG_PPC_BOOK3S_64
2115 
2116 module_init(kvmppc_book3s_init_pr);
2117 module_exit(kvmppc_book3s_exit_pr);
2118 
2119 MODULE_LICENSE("GPL");
2120 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2121 MODULE_ALIAS("devname:kvm");
2122 #endif