Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0004  */
0005 
0006 #include <linux/cpu.h>
0007 #include <linux/kvm_host.h>
0008 #include <linux/preempt.h>
0009 #include <linux/export.h>
0010 #include <linux/sched.h>
0011 #include <linux/spinlock.h>
0012 #include <linux/init.h>
0013 #include <linux/memblock.h>
0014 #include <linux/sizes.h>
0015 #include <linux/cma.h>
0016 #include <linux/bitops.h>
0017 
0018 #include <asm/cputable.h>
0019 #include <asm/interrupt.h>
0020 #include <asm/kvm_ppc.h>
0021 #include <asm/kvm_book3s.h>
0022 #include <asm/machdep.h>
0023 #include <asm/xics.h>
0024 #include <asm/xive.h>
0025 #include <asm/dbell.h>
0026 #include <asm/cputhreads.h>
0027 #include <asm/io.h>
0028 #include <asm/opal.h>
0029 #include <asm/smp.h>
0030 
0031 #define KVM_CMA_CHUNK_ORDER 18
0032 
0033 #include "book3s_xics.h"
0034 #include "book3s_xive.h"
0035 
0036 /*
0037  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
0038  * should be power of 2.
0039  */
0040 #define HPT_ALIGN_PAGES     ((1 << 18) >> PAGE_SHIFT) /* 256k */
0041 /*
0042  * By default we reserve 5% of memory for hash pagetable allocation.
0043  */
0044 static unsigned long kvm_cma_resv_ratio = 5;
0045 
0046 static struct cma *kvm_cma;
0047 
0048 static int __init early_parse_kvm_cma_resv(char *p)
0049 {
0050     pr_debug("%s(%s)\n", __func__, p);
0051     if (!p)
0052         return -EINVAL;
0053     return kstrtoul(p, 0, &kvm_cma_resv_ratio);
0054 }
0055 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
0056 
0057 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
0058 {
0059     VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
0060 
0061     return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
0062              false);
0063 }
0064 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
0065 
0066 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
0067 {
0068     cma_release(kvm_cma, page, nr_pages);
0069 }
0070 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
0071 
0072 /**
0073  * kvm_cma_reserve() - reserve area for kvm hash pagetable
0074  *
0075  * This function reserves memory from early allocator. It should be
0076  * called by arch specific code once the memblock allocator
0077  * has been activated and all other subsystems have already allocated/reserved
0078  * memory.
0079  */
0080 void __init kvm_cma_reserve(void)
0081 {
0082     unsigned long align_size;
0083     phys_addr_t selected_size;
0084 
0085     /*
0086      * We need CMA reservation only when we are in HV mode
0087      */
0088     if (!cpu_has_feature(CPU_FTR_HVMODE))
0089         return;
0090 
0091     selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
0092     if (selected_size) {
0093         pr_info("%s: reserving %ld MiB for global area\n", __func__,
0094              (unsigned long)selected_size / SZ_1M);
0095         align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
0096         cma_declare_contiguous(0, selected_size, 0, align_size,
0097             KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
0098             &kvm_cma);
0099     }
0100 }
0101 
0102 /*
0103  * Real-mode H_CONFER implementation.
0104  * We check if we are the only vcpu out of this virtual core
0105  * still running in the guest and not ceded.  If so, we pop up
0106  * to the virtual-mode implementation; if not, just return to
0107  * the guest.
0108  */
0109 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
0110                 unsigned int yield_count)
0111 {
0112     struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
0113     int ptid = local_paca->kvm_hstate.ptid;
0114     int threads_running;
0115     int threads_ceded;
0116     int threads_conferring;
0117     u64 stop = get_tb() + 10 * tb_ticks_per_usec;
0118     int rv = H_SUCCESS; /* => don't yield */
0119 
0120     set_bit(ptid, &vc->conferring_threads);
0121     while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
0122         threads_running = VCORE_ENTRY_MAP(vc);
0123         threads_ceded = vc->napping_threads;
0124         threads_conferring = vc->conferring_threads;
0125         if ((threads_ceded | threads_conferring) == threads_running) {
0126             rv = H_TOO_HARD; /* => do yield */
0127             break;
0128         }
0129     }
0130     clear_bit(ptid, &vc->conferring_threads);
0131     return rv;
0132 }
0133 
0134 /*
0135  * When running HV mode KVM we need to block certain operations while KVM VMs
0136  * exist in the system. We use a counter of VMs to track this.
0137  *
0138  * One of the operations we need to block is onlining of secondaries, so we
0139  * protect hv_vm_count with cpus_read_lock/unlock().
0140  */
0141 static atomic_t hv_vm_count;
0142 
0143 void kvm_hv_vm_activated(void)
0144 {
0145     cpus_read_lock();
0146     atomic_inc(&hv_vm_count);
0147     cpus_read_unlock();
0148 }
0149 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
0150 
0151 void kvm_hv_vm_deactivated(void)
0152 {
0153     cpus_read_lock();
0154     atomic_dec(&hv_vm_count);
0155     cpus_read_unlock();
0156 }
0157 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
0158 
0159 bool kvm_hv_mode_active(void)
0160 {
0161     return atomic_read(&hv_vm_count) != 0;
0162 }
0163 
0164 extern int hcall_real_table[], hcall_real_table_end[];
0165 
0166 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
0167 {
0168     cmd /= 4;
0169     if (cmd < hcall_real_table_end - hcall_real_table &&
0170         hcall_real_table[cmd])
0171         return 1;
0172 
0173     return 0;
0174 }
0175 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
0176 
0177 int kvmppc_hwrng_present(void)
0178 {
0179     return ppc_md.get_random_seed != NULL;
0180 }
0181 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
0182 
0183 long kvmppc_rm_h_random(struct kvm_vcpu *vcpu)
0184 {
0185     if (ppc_md.get_random_seed &&
0186         ppc_md.get_random_seed(&vcpu->arch.regs.gpr[4]))
0187         return H_SUCCESS;
0188 
0189     return H_HARDWARE;
0190 }
0191 
0192 /*
0193  * Send an interrupt or message to another CPU.
0194  * The caller needs to include any barrier needed to order writes
0195  * to memory vs. the IPI/message.
0196  */
0197 void kvmhv_rm_send_ipi(int cpu)
0198 {
0199     void __iomem *xics_phys;
0200     unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
0201 
0202     /* On POWER9 we can use msgsnd for any destination cpu. */
0203     if (cpu_has_feature(CPU_FTR_ARCH_300)) {
0204         msg |= get_hard_smp_processor_id(cpu);
0205         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
0206         return;
0207     }
0208 
0209     /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
0210     if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
0211         cpu_first_thread_sibling(cpu) ==
0212         cpu_first_thread_sibling(raw_smp_processor_id())) {
0213         msg |= cpu_thread_in_core(cpu);
0214         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
0215         return;
0216     }
0217 
0218     /* We should never reach this */
0219     if (WARN_ON_ONCE(xics_on_xive()))
0220         return;
0221 
0222     /* Else poke the target with an IPI */
0223     xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
0224     if (xics_phys)
0225         __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
0226     else
0227         opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
0228 }
0229 
0230 /*
0231  * The following functions are called from the assembly code
0232  * in book3s_hv_rmhandlers.S.
0233  */
0234 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
0235 {
0236     int cpu = vc->pcpu;
0237 
0238     /* Order setting of exit map vs. msgsnd/IPI */
0239     smp_mb();
0240     for (; active; active >>= 1, ++cpu)
0241         if (active & 1)
0242             kvmhv_rm_send_ipi(cpu);
0243 }
0244 
0245 void kvmhv_commence_exit(int trap)
0246 {
0247     struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
0248     int ptid = local_paca->kvm_hstate.ptid;
0249     struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
0250     int me, ee, i;
0251 
0252     /* Set our bit in the threads-exiting-guest map in the 0xff00
0253        bits of vcore->entry_exit_map */
0254     me = 0x100 << ptid;
0255     do {
0256         ee = vc->entry_exit_map;
0257     } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
0258 
0259     /* Are we the first here? */
0260     if ((ee >> 8) != 0)
0261         return;
0262 
0263     /*
0264      * Trigger the other threads in this vcore to exit the guest.
0265      * If this is a hypervisor decrementer interrupt then they
0266      * will be already on their way out of the guest.
0267      */
0268     if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
0269         kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
0270 
0271     /*
0272      * If we are doing dynamic micro-threading, interrupt the other
0273      * subcores to pull them out of their guests too.
0274      */
0275     if (!sip)
0276         return;
0277 
0278     for (i = 0; i < MAX_SUBCORES; ++i) {
0279         vc = sip->vc[i];
0280         if (!vc)
0281             break;
0282         do {
0283             ee = vc->entry_exit_map;
0284             /* Already asked to exit? */
0285             if ((ee >> 8) != 0)
0286                 break;
0287         } while (cmpxchg(&vc->entry_exit_map, ee,
0288                  ee | VCORE_EXIT_REQ) != ee);
0289         if ((ee >> 8) == 0)
0290             kvmhv_interrupt_vcore(vc, ee);
0291     }
0292 }
0293 
0294 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
0295 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
0296 
0297 #ifdef CONFIG_KVM_XICS
0298 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
0299                      u32 xisr)
0300 {
0301     int i;
0302 
0303     /*
0304      * We access the mapped array here without a lock.  That
0305      * is safe because we never reduce the number of entries
0306      * in the array and we never change the v_hwirq field of
0307      * an entry once it is set.
0308      *
0309      * We have also carefully ordered the stores in the writer
0310      * and the loads here in the reader, so that if we find a matching
0311      * hwirq here, the associated GSI and irq_desc fields are valid.
0312      */
0313     for (i = 0; i < pimap->n_mapped; i++)  {
0314         if (xisr == pimap->mapped[i].r_hwirq) {
0315             /*
0316              * Order subsequent reads in the caller to serialize
0317              * with the writer.
0318              */
0319             smp_rmb();
0320             return &pimap->mapped[i];
0321         }
0322     }
0323     return NULL;
0324 }
0325 
0326 /*
0327  * If we have an interrupt that's not an IPI, check if we have a
0328  * passthrough adapter and if so, check if this external interrupt
0329  * is for the adapter.
0330  * We will attempt to deliver the IRQ directly to the target VCPU's
0331  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
0332  *
0333  * If the delivery fails or if this is not for a passthrough adapter,
0334  * return to the host to handle this interrupt. We earlier
0335  * saved a copy of the XIRR in the PACA, it will be picked up by
0336  * the host ICP driver.
0337  */
0338 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
0339 {
0340     struct kvmppc_passthru_irqmap *pimap;
0341     struct kvmppc_irq_map *irq_map;
0342     struct kvm_vcpu *vcpu;
0343 
0344     vcpu = local_paca->kvm_hstate.kvm_vcpu;
0345     if (!vcpu)
0346         return 1;
0347     pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
0348     if (!pimap)
0349         return 1;
0350     irq_map = get_irqmap(pimap, xisr);
0351     if (!irq_map)
0352         return 1;
0353 
0354     /* We're handling this interrupt, generic code doesn't need to */
0355     local_paca->kvm_hstate.saved_xirr = 0;
0356 
0357     return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
0358 }
0359 
0360 #else
0361 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
0362 {
0363     return 1;
0364 }
0365 #endif
0366 
0367 /*
0368  * Determine what sort of external interrupt is pending (if any).
0369  * Returns:
0370  *  0 if no interrupt is pending
0371  *  1 if an interrupt is pending that needs to be handled by the host
0372  *  2 Passthrough that needs completion in the host
0373  *  -1 if there was a guest wakeup IPI (which has now been cleared)
0374  *  -2 if there is PCI passthrough external interrupt that was handled
0375  */
0376 static long kvmppc_read_one_intr(bool *again);
0377 
0378 long kvmppc_read_intr(void)
0379 {
0380     long ret = 0;
0381     long rc;
0382     bool again;
0383 
0384     if (xive_enabled())
0385         return 1;
0386 
0387     do {
0388         again = false;
0389         rc = kvmppc_read_one_intr(&again);
0390         if (rc && (ret == 0 || rc > ret))
0391             ret = rc;
0392     } while (again);
0393     return ret;
0394 }
0395 
0396 static long kvmppc_read_one_intr(bool *again)
0397 {
0398     void __iomem *xics_phys;
0399     u32 h_xirr;
0400     __be32 xirr;
0401     u32 xisr;
0402     u8 host_ipi;
0403     int64_t rc;
0404 
0405     if (xive_enabled())
0406         return 1;
0407 
0408     /* see if a host IPI is pending */
0409     host_ipi = local_paca->kvm_hstate.host_ipi;
0410     if (host_ipi)
0411         return 1;
0412 
0413     /* Now read the interrupt from the ICP */
0414     xics_phys = local_paca->kvm_hstate.xics_phys;
0415     rc = 0;
0416     if (!xics_phys)
0417         rc = opal_int_get_xirr(&xirr, false);
0418     else
0419         xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
0420     if (rc < 0)
0421         return 1;
0422 
0423     /*
0424      * Save XIRR for later. Since we get control in reverse endian
0425      * on LE systems, save it byte reversed and fetch it back in
0426      * host endian. Note that xirr is the value read from the
0427      * XIRR register, while h_xirr is the host endian version.
0428      */
0429     h_xirr = be32_to_cpu(xirr);
0430     local_paca->kvm_hstate.saved_xirr = h_xirr;
0431     xisr = h_xirr & 0xffffff;
0432     /*
0433      * Ensure that the store/load complete to guarantee all side
0434      * effects of loading from XIRR has completed
0435      */
0436     smp_mb();
0437 
0438     /* if nothing pending in the ICP */
0439     if (!xisr)
0440         return 0;
0441 
0442     /* We found something in the ICP...
0443      *
0444      * If it is an IPI, clear the MFRR and EOI it.
0445      */
0446     if (xisr == XICS_IPI) {
0447         rc = 0;
0448         if (xics_phys) {
0449             __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
0450             __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
0451         } else {
0452             opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
0453             rc = opal_int_eoi(h_xirr);
0454         }
0455         /* If rc > 0, there is another interrupt pending */
0456         *again = rc > 0;
0457 
0458         /*
0459          * Need to ensure side effects of above stores
0460          * complete before proceeding.
0461          */
0462         smp_mb();
0463 
0464         /*
0465          * We need to re-check host IPI now in case it got set in the
0466          * meantime. If it's clear, we bounce the interrupt to the
0467          * guest
0468          */
0469         host_ipi = local_paca->kvm_hstate.host_ipi;
0470         if (unlikely(host_ipi != 0)) {
0471             /* We raced with the host,
0472              * we need to resend that IPI, bummer
0473              */
0474             if (xics_phys)
0475                 __raw_rm_writeb(IPI_PRIORITY,
0476                         xics_phys + XICS_MFRR);
0477             else
0478                 opal_int_set_mfrr(hard_smp_processor_id(),
0479                           IPI_PRIORITY);
0480             /* Let side effects complete */
0481             smp_mb();
0482             return 1;
0483         }
0484 
0485         /* OK, it's an IPI for us */
0486         local_paca->kvm_hstate.saved_xirr = 0;
0487         return -1;
0488     }
0489 
0490     return kvmppc_check_passthru(xisr, xirr, again);
0491 }
0492 
0493 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
0494 {
0495     vcpu->arch.ceded = 0;
0496     if (vcpu->arch.timer_running) {
0497         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
0498         vcpu->arch.timer_running = 0;
0499     }
0500 }
0501 
0502 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
0503 {
0504     /* Guest must always run with ME enabled, HV disabled. */
0505     msr = (msr | MSR_ME) & ~MSR_HV;
0506 
0507     /*
0508      * Check for illegal transactional state bit combination
0509      * and if we find it, force the TS field to a safe state.
0510      */
0511     if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
0512         msr &= ~MSR_TS_MASK;
0513     vcpu->arch.shregs.msr = msr;
0514     kvmppc_end_cede(vcpu);
0515 }
0516 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
0517 
0518 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
0519 {
0520     unsigned long msr, pc, new_msr, new_pc;
0521 
0522     msr = kvmppc_get_msr(vcpu);
0523     pc = kvmppc_get_pc(vcpu);
0524     new_msr = vcpu->arch.intr_msr;
0525     new_pc = vec;
0526 
0527     /* If transactional, change to suspend mode on IRQ delivery */
0528     if (MSR_TM_TRANSACTIONAL(msr))
0529         new_msr |= MSR_TS_S;
0530     else
0531         new_msr |= msr & MSR_TS_MASK;
0532 
0533     /*
0534      * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
0535      * applicable. AIL=2 is not supported.
0536      *
0537      * AIL does not apply to SRESET, MCE, or HMI (which is never
0538      * delivered to the guest), and does not apply if IR=0 or DR=0.
0539      */
0540     if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
0541         vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
0542         (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
0543         (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
0544         new_msr |= MSR_IR | MSR_DR;
0545         new_pc += 0xC000000000004000ULL;
0546     }
0547 
0548     kvmppc_set_srr0(vcpu, pc);
0549     kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
0550     kvmppc_set_pc(vcpu, new_pc);
0551     vcpu->arch.shregs.msr = new_msr;
0552 }
0553 
0554 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
0555 {
0556     inject_interrupt(vcpu, vec, srr1_flags);
0557     kvmppc_end_cede(vcpu);
0558 }
0559 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
0560 
0561 /*
0562  * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
0563  * Can we inject a Decrementer or a External interrupt?
0564  */
0565 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
0566 {
0567     int ext;
0568     unsigned long lpcr;
0569 
0570     WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
0571 
0572     /* Insert EXTERNAL bit into LPCR at the MER bit position */
0573     ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
0574     lpcr = mfspr(SPRN_LPCR);
0575     lpcr |= ext << LPCR_MER_SH;
0576     mtspr(SPRN_LPCR, lpcr);
0577     isync();
0578 
0579     if (vcpu->arch.shregs.msr & MSR_EE) {
0580         if (ext) {
0581             inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
0582         } else {
0583             long int dec = mfspr(SPRN_DEC);
0584             if (!(lpcr & LPCR_LD))
0585                 dec = (int) dec;
0586             if (dec < 0)
0587                 inject_interrupt(vcpu,
0588                     BOOK3S_INTERRUPT_DECREMENTER, 0);
0589         }
0590     }
0591 
0592     if (vcpu->arch.doorbell_request) {
0593         mtspr(SPRN_DPDES, 1);
0594         vcpu->arch.vcore->dpdes = 1;
0595         smp_wmb();
0596         vcpu->arch.doorbell_request = 0;
0597     }
0598 }
0599 
0600 static void flush_guest_tlb(struct kvm *kvm)
0601 {
0602     unsigned long rb, set;
0603 
0604     rb = PPC_BIT(52);   /* IS = 2 */
0605     for (set = 0; set < kvm->arch.tlb_sets; ++set) {
0606         /* R=0 PRS=0 RIC=0 */
0607         asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
0608                  : : "r" (rb), "i" (0), "i" (0), "i" (0),
0609                    "r" (0) : "memory");
0610         rb += PPC_BIT(51);  /* increment set number */
0611     }
0612     asm volatile("ptesync": : :"memory");
0613 }
0614 
0615 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu)
0616 {
0617     if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) {
0618         flush_guest_tlb(kvm);
0619 
0620         /* Clear the bit after the TLB flush */
0621         cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush);
0622     }
0623 }
0624 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);