Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Copyright IBM Corporation 2001, 2005, 2006
0004  * Copyright Dave Engebretsen & Todd Inglett 2001
0005  * Copyright Linas Vepstas 2005, 2006
0006  * Copyright 2001-2012 IBM Corporation.
0007  *
0008  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
0009  */
0010 
0011 #include <linux/delay.h>
0012 #include <linux/sched.h>
0013 #include <linux/init.h>
0014 #include <linux/list.h>
0015 #include <linux/pci.h>
0016 #include <linux/iommu.h>
0017 #include <linux/proc_fs.h>
0018 #include <linux/rbtree.h>
0019 #include <linux/reboot.h>
0020 #include <linux/seq_file.h>
0021 #include <linux/spinlock.h>
0022 #include <linux/export.h>
0023 #include <linux/of.h>
0024 #include <linux/debugfs.h>
0025 
0026 #include <linux/atomic.h>
0027 #include <asm/eeh.h>
0028 #include <asm/eeh_event.h>
0029 #include <asm/io.h>
0030 #include <asm/iommu.h>
0031 #include <asm/machdep.h>
0032 #include <asm/ppc-pci.h>
0033 #include <asm/rtas.h>
0034 #include <asm/pte-walk.h>
0035 
0036 
0037 /** Overview:
0038  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
0039  *  dealing with PCI bus errors that can't be dealt with within the
0040  *  usual PCI framework, except by check-stopping the CPU.  Systems
0041  *  that are designed for high-availability/reliability cannot afford
0042  *  to crash due to a "mere" PCI error, thus the need for EEH.
0043  *  An EEH-capable bridge operates by converting a detected error
0044  *  into a "slot freeze", taking the PCI adapter off-line, making
0045  *  the slot behave, from the OS'es point of view, as if the slot
0046  *  were "empty": all reads return 0xff's and all writes are silently
0047  *  ignored.  EEH slot isolation events can be triggered by parity
0048  *  errors on the address or data busses (e.g. during posted writes),
0049  *  which in turn might be caused by low voltage on the bus, dust,
0050  *  vibration, humidity, radioactivity or plain-old failed hardware.
0051  *
0052  *  Note, however, that one of the leading causes of EEH slot
0053  *  freeze events are buggy device drivers, buggy device microcode,
0054  *  or buggy device hardware.  This is because any attempt by the
0055  *  device to bus-master data to a memory address that is not
0056  *  assigned to the device will trigger a slot freeze.   (The idea
0057  *  is to prevent devices-gone-wild from corrupting system memory).
0058  *  Buggy hardware/drivers will have a miserable time co-existing
0059  *  with EEH.
0060  *
0061  *  Ideally, a PCI device driver, when suspecting that an isolation
0062  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
0063  *  whether this is the case, and then take appropriate steps to
0064  *  reset the PCI slot, the PCI device, and then resume operations.
0065  *  However, until that day,  the checking is done here, with the
0066  *  eeh_check_failure() routine embedded in the MMIO macros.  If
0067  *  the slot is found to be isolated, an "EEH Event" is synthesized
0068  *  and sent out for processing.
0069  */
0070 
0071 /* If a device driver keeps reading an MMIO register in an interrupt
0072  * handler after a slot isolation event, it might be broken.
0073  * This sets the threshold for how many read attempts we allow
0074  * before printing an error message.
0075  */
0076 #define EEH_MAX_FAILS   2100000
0077 
0078 /* Time to wait for a PCI slot to report status, in milliseconds */
0079 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
0080 
0081 /*
0082  * EEH probe mode support, which is part of the flags,
0083  * is to support multiple platforms for EEH. Some platforms
0084  * like pSeries do PCI emunation based on device tree.
0085  * However, other platforms like powernv probe PCI devices
0086  * from hardware. The flag is used to distinguish that.
0087  * In addition, struct eeh_ops::probe would be invoked for
0088  * particular OF node or PCI device so that the corresponding
0089  * PE would be created there.
0090  */
0091 int eeh_subsystem_flags;
0092 EXPORT_SYMBOL(eeh_subsystem_flags);
0093 
0094 /*
0095  * EEH allowed maximal frozen times. If one particular PE's
0096  * frozen count in last hour exceeds this limit, the PE will
0097  * be forced to be offline permanently.
0098  */
0099 u32 eeh_max_freezes = 5;
0100 
0101 /*
0102  * Controls whether a recovery event should be scheduled when an
0103  * isolated device is discovered. This is only really useful for
0104  * debugging problems with the EEH core.
0105  */
0106 bool eeh_debugfs_no_recover;
0107 
0108 /* Platform dependent EEH operations */
0109 struct eeh_ops *eeh_ops = NULL;
0110 
0111 /* Lock to avoid races due to multiple reports of an error */
0112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
0113 EXPORT_SYMBOL_GPL(confirm_error_lock);
0114 
0115 /* Lock to protect passed flags */
0116 static DEFINE_MUTEX(eeh_dev_mutex);
0117 
0118 /* Buffer for reporting pci register dumps. Its here in BSS, and
0119  * not dynamically alloced, so that it ends up in RMO where RTAS
0120  * can access it.
0121  */
0122 #define EEH_PCI_REGS_LOG_LEN 8192
0123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
0124 
0125 /*
0126  * The struct is used to maintain the EEH global statistic
0127  * information. Besides, the EEH global statistics will be
0128  * exported to user space through procfs
0129  */
0130 struct eeh_stats {
0131     u64 no_device;      /* PCI device not found     */
0132     u64 no_dn;      /* OF node not found        */
0133     u64 no_cfg_addr;    /* Config address not found */
0134     u64 ignored_check;  /* EEH check skipped        */
0135     u64 total_mmio_ffs; /* Total EEH checks     */
0136     u64 false_positives;    /* Unnecessary EEH checks   */
0137     u64 slot_resets;    /* PE reset         */
0138 };
0139 
0140 static struct eeh_stats eeh_stats;
0141 
0142 static int __init eeh_setup(char *str)
0143 {
0144     if (!strcmp(str, "off"))
0145         eeh_add_flag(EEH_FORCE_DISABLED);
0146     else if (!strcmp(str, "early_log"))
0147         eeh_add_flag(EEH_EARLY_DUMP_LOG);
0148 
0149     return 1;
0150 }
0151 __setup("eeh=", eeh_setup);
0152 
0153 void eeh_show_enabled(void)
0154 {
0155     if (eeh_has_flag(EEH_FORCE_DISABLED))
0156         pr_info("EEH: Recovery disabled by kernel parameter.\n");
0157     else if (eeh_has_flag(EEH_ENABLED))
0158         pr_info("EEH: Capable adapter found: recovery enabled.\n");
0159     else
0160         pr_info("EEH: No capable adapters found: recovery disabled.\n");
0161 }
0162 
0163 /*
0164  * This routine captures assorted PCI configuration space data
0165  * for the indicated PCI device, and puts them into a buffer
0166  * for RTAS error logging.
0167  */
0168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
0169 {
0170     u32 cfg;
0171     int cap, i;
0172     int n = 0, l = 0;
0173     char buffer[128];
0174 
0175     n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
0176             edev->pe->phb->global_number, edev->bdfn >> 8,
0177             PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
0178     pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
0179         edev->pe->phb->global_number, edev->bdfn >> 8,
0180         PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
0181 
0182     eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
0183     n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
0184     pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
0185 
0186     eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
0187     n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
0188     pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
0189 
0190     /* Gather bridge-specific registers */
0191     if (edev->mode & EEH_DEV_BRIDGE) {
0192         eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
0193         n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
0194         pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
0195 
0196         eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
0197         n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
0198         pr_warn("EEH: Bridge control: %04x\n", cfg);
0199     }
0200 
0201     /* Dump out the PCI-X command and status regs */
0202     cap = edev->pcix_cap;
0203     if (cap) {
0204         eeh_ops->read_config(edev, cap, 4, &cfg);
0205         n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
0206         pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
0207 
0208         eeh_ops->read_config(edev, cap+4, 4, &cfg);
0209         n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
0210         pr_warn("EEH: PCI-X status: %08x\n", cfg);
0211     }
0212 
0213     /* If PCI-E capable, dump PCI-E cap 10 */
0214     cap = edev->pcie_cap;
0215     if (cap) {
0216         n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
0217         pr_warn("EEH: PCI-E capabilities and status follow:\n");
0218 
0219         for (i=0; i<=8; i++) {
0220             eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
0221             n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
0222 
0223             if ((i % 4) == 0) {
0224                 if (i != 0)
0225                     pr_warn("%s\n", buffer);
0226 
0227                 l = scnprintf(buffer, sizeof(buffer),
0228                           "EEH: PCI-E %02x: %08x ",
0229                           4*i, cfg);
0230             } else {
0231                 l += scnprintf(buffer+l, sizeof(buffer)-l,
0232                            "%08x ", cfg);
0233             }
0234 
0235         }
0236 
0237         pr_warn("%s\n", buffer);
0238     }
0239 
0240     /* If AER capable, dump it */
0241     cap = edev->aer_cap;
0242     if (cap) {
0243         n += scnprintf(buf+n, len-n, "pci-e AER:\n");
0244         pr_warn("EEH: PCI-E AER capability register set follows:\n");
0245 
0246         for (i=0; i<=13; i++) {
0247             eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
0248             n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
0249 
0250             if ((i % 4) == 0) {
0251                 if (i != 0)
0252                     pr_warn("%s\n", buffer);
0253 
0254                 l = scnprintf(buffer, sizeof(buffer),
0255                           "EEH: PCI-E AER %02x: %08x ",
0256                           4*i, cfg);
0257             } else {
0258                 l += scnprintf(buffer+l, sizeof(buffer)-l,
0259                            "%08x ", cfg);
0260             }
0261         }
0262 
0263         pr_warn("%s\n", buffer);
0264     }
0265 
0266     return n;
0267 }
0268 
0269 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
0270 {
0271     struct eeh_dev *edev, *tmp;
0272     size_t *plen = flag;
0273 
0274     eeh_pe_for_each_dev(pe, edev, tmp)
0275         *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
0276                       EEH_PCI_REGS_LOG_LEN - *plen);
0277 
0278     return NULL;
0279 }
0280 
0281 /**
0282  * eeh_slot_error_detail - Generate combined log including driver log and error log
0283  * @pe: EEH PE
0284  * @severity: temporary or permanent error log
0285  *
0286  * This routine should be called to generate the combined log, which
0287  * is comprised of driver log and error log. The driver log is figured
0288  * out from the config space of the corresponding PCI device, while
0289  * the error log is fetched through platform dependent function call.
0290  */
0291 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
0292 {
0293     size_t loglen = 0;
0294 
0295     /*
0296      * When the PHB is fenced or dead, it's pointless to collect
0297      * the data from PCI config space because it should return
0298      * 0xFF's. For ER, we still retrieve the data from the PCI
0299      * config space.
0300      *
0301      * For pHyp, we have to enable IO for log retrieval. Otherwise,
0302      * 0xFF's is always returned from PCI config space.
0303      *
0304      * When the @severity is EEH_LOG_PERM, the PE is going to be
0305      * removed. Prior to that, the drivers for devices included in
0306      * the PE will be closed. The drivers rely on working IO path
0307      * to bring the devices to quiet state. Otherwise, PCI traffic
0308      * from those devices after they are removed is like to cause
0309      * another unexpected EEH error.
0310      */
0311     if (!(pe->type & EEH_PE_PHB)) {
0312         if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
0313             severity == EEH_LOG_PERM)
0314             eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
0315 
0316         /*
0317          * The config space of some PCI devices can't be accessed
0318          * when their PEs are in frozen state. Otherwise, fenced
0319          * PHB might be seen. Those PEs are identified with flag
0320          * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
0321          * is set automatically when the PE is put to EEH_PE_ISOLATED.
0322          *
0323          * Restoring BARs possibly triggers PCI config access in
0324          * (OPAL) firmware and then causes fenced PHB. If the
0325          * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
0326          * pointless to restore BARs and dump config space.
0327          */
0328         eeh_ops->configure_bridge(pe);
0329         if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
0330             eeh_pe_restore_bars(pe);
0331 
0332             pci_regs_buf[0] = 0;
0333             eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
0334         }
0335     }
0336 
0337     eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
0338 }
0339 
0340 /**
0341  * eeh_token_to_phys - Convert EEH address token to phys address
0342  * @token: I/O token, should be address in the form 0xA....
0343  *
0344  * This routine should be called to convert virtual I/O address
0345  * to physical one.
0346  */
0347 static inline unsigned long eeh_token_to_phys(unsigned long token)
0348 {
0349     return ppc_find_vmap_phys(token);
0350 }
0351 
0352 /*
0353  * On PowerNV platform, we might already have fenced PHB there.
0354  * For that case, it's meaningless to recover frozen PE. Intead,
0355  * We have to handle fenced PHB firstly.
0356  */
0357 static int eeh_phb_check_failure(struct eeh_pe *pe)
0358 {
0359     struct eeh_pe *phb_pe;
0360     unsigned long flags;
0361     int ret;
0362 
0363     if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
0364         return -EPERM;
0365 
0366     /* Find the PHB PE */
0367     phb_pe = eeh_phb_pe_get(pe->phb);
0368     if (!phb_pe) {
0369         pr_warn("%s Can't find PE for PHB#%x\n",
0370             __func__, pe->phb->global_number);
0371         return -EEXIST;
0372     }
0373 
0374     /* If the PHB has been in problematic state */
0375     eeh_serialize_lock(&flags);
0376     if (phb_pe->state & EEH_PE_ISOLATED) {
0377         ret = 0;
0378         goto out;
0379     }
0380 
0381     /* Check PHB state */
0382     ret = eeh_ops->get_state(phb_pe, NULL);
0383     if ((ret < 0) ||
0384         (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
0385         ret = 0;
0386         goto out;
0387     }
0388 
0389     /* Isolate the PHB and send event */
0390     eeh_pe_mark_isolated(phb_pe);
0391     eeh_serialize_unlock(flags);
0392 
0393     pr_debug("EEH: PHB#%x failure detected, location: %s\n",
0394         phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
0395     eeh_send_failure_event(phb_pe);
0396     return 1;
0397 out:
0398     eeh_serialize_unlock(flags);
0399     return ret;
0400 }
0401 
0402 static inline const char *eeh_driver_name(struct pci_dev *pdev)
0403 {
0404     if (pdev)
0405         return dev_driver_string(&pdev->dev);
0406 
0407     return "<null>";
0408 }
0409 
0410 /**
0411  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
0412  * @edev: eeh device
0413  *
0414  * Check for an EEH failure for the given device node.  Call this
0415  * routine if the result of a read was all 0xff's and you want to
0416  * find out if this is due to an EEH slot freeze.  This routine
0417  * will query firmware for the EEH status.
0418  *
0419  * Returns 0 if there has not been an EEH error; otherwise returns
0420  * a non-zero value and queues up a slot isolation event notification.
0421  *
0422  * It is safe to call this routine in an interrupt context.
0423  */
0424 int eeh_dev_check_failure(struct eeh_dev *edev)
0425 {
0426     int ret;
0427     unsigned long flags;
0428     struct device_node *dn;
0429     struct pci_dev *dev;
0430     struct eeh_pe *pe, *parent_pe;
0431     int rc = 0;
0432     const char *location = NULL;
0433 
0434     eeh_stats.total_mmio_ffs++;
0435 
0436     if (!eeh_enabled())
0437         return 0;
0438 
0439     if (!edev) {
0440         eeh_stats.no_dn++;
0441         return 0;
0442     }
0443     dev = eeh_dev_to_pci_dev(edev);
0444     pe = eeh_dev_to_pe(edev);
0445 
0446     /* Access to IO BARs might get this far and still not want checking. */
0447     if (!pe) {
0448         eeh_stats.ignored_check++;
0449         eeh_edev_dbg(edev, "Ignored check\n");
0450         return 0;
0451     }
0452 
0453     /*
0454      * On PowerNV platform, we might already have fenced PHB
0455      * there and we need take care of that firstly.
0456      */
0457     ret = eeh_phb_check_failure(pe);
0458     if (ret > 0)
0459         return ret;
0460 
0461     /*
0462      * If the PE isn't owned by us, we shouldn't check the
0463      * state. Instead, let the owner handle it if the PE has
0464      * been frozen.
0465      */
0466     if (eeh_pe_passed(pe))
0467         return 0;
0468 
0469     /* If we already have a pending isolation event for this
0470      * slot, we know it's bad already, we don't need to check.
0471      * Do this checking under a lock; as multiple PCI devices
0472      * in one slot might report errors simultaneously, and we
0473      * only want one error recovery routine running.
0474      */
0475     eeh_serialize_lock(&flags);
0476     rc = 1;
0477     if (pe->state & EEH_PE_ISOLATED) {
0478         pe->check_count++;
0479         if (pe->check_count == EEH_MAX_FAILS) {
0480             dn = pci_device_to_OF_node(dev);
0481             if (dn)
0482                 location = of_get_property(dn, "ibm,loc-code",
0483                         NULL);
0484             eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
0485                 pe->check_count,
0486                 location ? location : "unknown",
0487                 eeh_driver_name(dev));
0488             eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
0489                 eeh_driver_name(dev));
0490             dump_stack();
0491         }
0492         goto dn_unlock;
0493     }
0494 
0495     /*
0496      * Now test for an EEH failure.  This is VERY expensive.
0497      * Note that the eeh_config_addr may be a parent device
0498      * in the case of a device behind a bridge, or it may be
0499      * function zero of a multi-function device.
0500      * In any case they must share a common PHB.
0501      */
0502     ret = eeh_ops->get_state(pe, NULL);
0503 
0504     /* Note that config-io to empty slots may fail;
0505      * they are empty when they don't have children.
0506      * We will punt with the following conditions: Failure to get
0507      * PE's state, EEH not support and Permanently unavailable
0508      * state, PE is in good state.
0509      */
0510     if ((ret < 0) ||
0511         (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
0512         eeh_stats.false_positives++;
0513         pe->false_positives++;
0514         rc = 0;
0515         goto dn_unlock;
0516     }
0517 
0518     /*
0519      * It should be corner case that the parent PE has been
0520      * put into frozen state as well. We should take care
0521      * that at first.
0522      */
0523     parent_pe = pe->parent;
0524     while (parent_pe) {
0525         /* Hit the ceiling ? */
0526         if (parent_pe->type & EEH_PE_PHB)
0527             break;
0528 
0529         /* Frozen parent PE ? */
0530         ret = eeh_ops->get_state(parent_pe, NULL);
0531         if (ret > 0 && !eeh_state_active(ret)) {
0532             pe = parent_pe;
0533             pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
0534                    pe->phb->global_number, pe->addr,
0535                    pe->phb->global_number, parent_pe->addr);
0536         }
0537 
0538         /* Next parent level */
0539         parent_pe = parent_pe->parent;
0540     }
0541 
0542     eeh_stats.slot_resets++;
0543 
0544     /* Avoid repeated reports of this failure, including problems
0545      * with other functions on this device, and functions under
0546      * bridges.
0547      */
0548     eeh_pe_mark_isolated(pe);
0549     eeh_serialize_unlock(flags);
0550 
0551     /* Most EEH events are due to device driver bugs.  Having
0552      * a stack trace will help the device-driver authors figure
0553      * out what happened.  So print that out.
0554      */
0555     pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
0556         __func__, pe->phb->global_number, pe->addr);
0557     eeh_send_failure_event(pe);
0558 
0559     return 1;
0560 
0561 dn_unlock:
0562     eeh_serialize_unlock(flags);
0563     return rc;
0564 }
0565 
0566 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
0567 
0568 /**
0569  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
0570  * @token: I/O address
0571  *
0572  * Check for an EEH failure at the given I/O address. Call this
0573  * routine if the result of a read was all 0xff's and you want to
0574  * find out if this is due to an EEH slot freeze event. This routine
0575  * will query firmware for the EEH status.
0576  *
0577  * Note this routine is safe to call in an interrupt context.
0578  */
0579 int eeh_check_failure(const volatile void __iomem *token)
0580 {
0581     unsigned long addr;
0582     struct eeh_dev *edev;
0583 
0584     /* Finding the phys addr + pci device; this is pretty quick. */
0585     addr = eeh_token_to_phys((unsigned long __force) token);
0586     edev = eeh_addr_cache_get_dev(addr);
0587     if (!edev) {
0588         eeh_stats.no_device++;
0589         return 0;
0590     }
0591 
0592     return eeh_dev_check_failure(edev);
0593 }
0594 EXPORT_SYMBOL(eeh_check_failure);
0595 
0596 
0597 /**
0598  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
0599  * @pe: EEH PE
0600  * @function: EEH option
0601  *
0602  * This routine should be called to reenable frozen MMIO or DMA
0603  * so that it would work correctly again. It's useful while doing
0604  * recovery or log collection on the indicated device.
0605  */
0606 int eeh_pci_enable(struct eeh_pe *pe, int function)
0607 {
0608     int active_flag, rc;
0609 
0610     /*
0611      * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
0612      * Also, it's pointless to enable them on unfrozen PE. So
0613      * we have to check before enabling IO or DMA.
0614      */
0615     switch (function) {
0616     case EEH_OPT_THAW_MMIO:
0617         active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
0618         break;
0619     case EEH_OPT_THAW_DMA:
0620         active_flag = EEH_STATE_DMA_ACTIVE;
0621         break;
0622     case EEH_OPT_DISABLE:
0623     case EEH_OPT_ENABLE:
0624     case EEH_OPT_FREEZE_PE:
0625         active_flag = 0;
0626         break;
0627     default:
0628         pr_warn("%s: Invalid function %d\n",
0629             __func__, function);
0630         return -EINVAL;
0631     }
0632 
0633     /*
0634      * Check if IO or DMA has been enabled before
0635      * enabling them.
0636      */
0637     if (active_flag) {
0638         rc = eeh_ops->get_state(pe, NULL);
0639         if (rc < 0)
0640             return rc;
0641 
0642         /* Needn't enable it at all */
0643         if (rc == EEH_STATE_NOT_SUPPORT)
0644             return 0;
0645 
0646         /* It's already enabled */
0647         if (rc & active_flag)
0648             return 0;
0649     }
0650 
0651 
0652     /* Issue the request */
0653     rc = eeh_ops->set_option(pe, function);
0654     if (rc)
0655         pr_warn("%s: Unexpected state change %d on "
0656             "PHB#%x-PE#%x, err=%d\n",
0657             __func__, function, pe->phb->global_number,
0658             pe->addr, rc);
0659 
0660     /* Check if the request is finished successfully */
0661     if (active_flag) {
0662         rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
0663         if (rc < 0)
0664             return rc;
0665 
0666         if (rc & active_flag)
0667             return 0;
0668 
0669         return -EIO;
0670     }
0671 
0672     return rc;
0673 }
0674 
0675 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
0676                         void *userdata)
0677 {
0678     struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
0679     struct pci_dev *dev = userdata;
0680 
0681     /*
0682      * The caller should have disabled and saved the
0683      * state for the specified device
0684      */
0685     if (!pdev || pdev == dev)
0686         return;
0687 
0688     /* Ensure we have D0 power state */
0689     pci_set_power_state(pdev, PCI_D0);
0690 
0691     /* Save device state */
0692     pci_save_state(pdev);
0693 
0694     /*
0695      * Disable device to avoid any DMA traffic and
0696      * interrupt from the device
0697      */
0698     pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
0699 }
0700 
0701 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
0702 {
0703     struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
0704     struct pci_dev *dev = userdata;
0705 
0706     if (!pdev)
0707         return;
0708 
0709     /* Apply customization from firmware */
0710     if (eeh_ops->restore_config)
0711         eeh_ops->restore_config(edev);
0712 
0713     /* The caller should restore state for the specified device */
0714     if (pdev != dev)
0715         pci_restore_state(pdev);
0716 }
0717 
0718 /**
0719  * pcibios_set_pcie_reset_state - Set PCI-E reset state
0720  * @dev: pci device struct
0721  * @state: reset state to enter
0722  *
0723  * Return value:
0724  *  0 if success
0725  */
0726 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
0727 {
0728     struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
0729     struct eeh_pe *pe = eeh_dev_to_pe(edev);
0730 
0731     if (!pe) {
0732         pr_err("%s: No PE found on PCI device %s\n",
0733             __func__, pci_name(dev));
0734         return -EINVAL;
0735     }
0736 
0737     switch (state) {
0738     case pcie_deassert_reset:
0739         eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
0740         eeh_unfreeze_pe(pe);
0741         if (!(pe->type & EEH_PE_VF))
0742             eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
0743         eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
0744         eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
0745         break;
0746     case pcie_hot_reset:
0747         eeh_pe_mark_isolated(pe);
0748         eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
0749         eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
0750         eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
0751         if (!(pe->type & EEH_PE_VF))
0752             eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
0753         eeh_ops->reset(pe, EEH_RESET_HOT);
0754         break;
0755     case pcie_warm_reset:
0756         eeh_pe_mark_isolated(pe);
0757         eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
0758         eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
0759         eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
0760         if (!(pe->type & EEH_PE_VF))
0761             eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
0762         eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
0763         break;
0764     default:
0765         eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
0766         return -EINVAL;
0767     }
0768 
0769     return 0;
0770 }
0771 
0772 /**
0773  * eeh_set_dev_freset - Check the required reset for the indicated device
0774  * @edev: EEH device
0775  * @flag: return value
0776  *
0777  * Each device might have its preferred reset type: fundamental or
0778  * hot reset. The routine is used to collected the information for
0779  * the indicated device and its children so that the bunch of the
0780  * devices could be reset properly.
0781  */
0782 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
0783 {
0784     struct pci_dev *dev;
0785     unsigned int *freset = (unsigned int *)flag;
0786 
0787     dev = eeh_dev_to_pci_dev(edev);
0788     if (dev)
0789         *freset |= dev->needs_freset;
0790 }
0791 
0792 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
0793 {
0794     struct eeh_pe *pe;
0795     int state;
0796 
0797     eeh_for_each_pe(root, pe) {
0798         if (eeh_pe_passed(pe)) {
0799             state = eeh_ops->get_state(pe, NULL);
0800             if (state &
0801                (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
0802                 pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
0803                     pe->phb->global_number, pe->addr);
0804                 eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
0805             }
0806         }
0807     }
0808 }
0809 
0810 /**
0811  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
0812  * @pe: EEH PE
0813  * @include_passed: include passed-through devices?
0814  *
0815  * This function executes a full reset procedure on a PE, including setting
0816  * the appropriate flags, performing a fundamental or hot reset, and then
0817  * deactivating the reset status.  It is designed to be used within the EEH
0818  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
0819  * only performs a single operation at a time.
0820  *
0821  * This function will attempt to reset a PE three times before failing.
0822  */
0823 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
0824 {
0825     int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
0826     int type = EEH_RESET_HOT;
0827     unsigned int freset = 0;
0828     int i, state = 0, ret;
0829 
0830     /*
0831      * Determine the type of reset to perform - hot or fundamental.
0832      * Hot reset is the default operation, unless any device under the
0833      * PE requires a fundamental reset.
0834      */
0835     eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
0836 
0837     if (freset)
0838         type = EEH_RESET_FUNDAMENTAL;
0839 
0840     /* Mark the PE as in reset state and block config space accesses */
0841     eeh_pe_state_mark(pe, reset_state);
0842 
0843     /* Make three attempts at resetting the bus */
0844     for (i = 0; i < 3; i++) {
0845         ret = eeh_pe_reset(pe, type, include_passed);
0846         if (!ret)
0847             ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
0848                        include_passed);
0849         if (ret) {
0850             ret = -EIO;
0851             pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
0852                 state, pe->phb->global_number, pe->addr, i + 1);
0853             continue;
0854         }
0855         if (i)
0856             pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
0857                 pe->phb->global_number, pe->addr, i + 1);
0858 
0859         /* Wait until the PE is in a functioning state */
0860         state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
0861         if (state < 0) {
0862             pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
0863                 pe->phb->global_number, pe->addr);
0864             ret = -ENOTRECOVERABLE;
0865             break;
0866         }
0867         if (eeh_state_active(state))
0868             break;
0869         else
0870             pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
0871                 pe->phb->global_number, pe->addr, state, i + 1);
0872     }
0873 
0874     /* Resetting the PE may have unfrozen child PEs. If those PEs have been
0875      * (potentially) passed through to a guest, re-freeze them:
0876      */
0877     if (!include_passed)
0878         eeh_pe_refreeze_passed(pe);
0879 
0880     eeh_pe_state_clear(pe, reset_state, true);
0881     return ret;
0882 }
0883 
0884 /**
0885  * eeh_save_bars - Save device bars
0886  * @edev: PCI device associated EEH device
0887  *
0888  * Save the values of the device bars. Unlike the restore
0889  * routine, this routine is *not* recursive. This is because
0890  * PCI devices are added individually; but, for the restore,
0891  * an entire slot is reset at a time.
0892  */
0893 void eeh_save_bars(struct eeh_dev *edev)
0894 {
0895     int i;
0896 
0897     if (!edev)
0898         return;
0899 
0900     for (i = 0; i < 16; i++)
0901         eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
0902 
0903     /*
0904      * For PCI bridges including root port, we need enable bus
0905      * master explicitly. Otherwise, it can't fetch IODA table
0906      * entries correctly. So we cache the bit in advance so that
0907      * we can restore it after reset, either PHB range or PE range.
0908      */
0909     if (edev->mode & EEH_DEV_BRIDGE)
0910         edev->config_space[1] |= PCI_COMMAND_MASTER;
0911 }
0912 
0913 static int eeh_reboot_notifier(struct notifier_block *nb,
0914                    unsigned long action, void *unused)
0915 {
0916     eeh_clear_flag(EEH_ENABLED);
0917     return NOTIFY_DONE;
0918 }
0919 
0920 static struct notifier_block eeh_reboot_nb = {
0921     .notifier_call = eeh_reboot_notifier,
0922 };
0923 
0924 static int eeh_device_notifier(struct notifier_block *nb,
0925                    unsigned long action, void *data)
0926 {
0927     struct device *dev = data;
0928 
0929     switch (action) {
0930     /*
0931      * Note: It's not possible to perform EEH device addition (i.e.
0932      * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
0933      * the device's resources, which have not yet been set up.
0934      */
0935     case BUS_NOTIFY_DEL_DEVICE:
0936         eeh_remove_device(to_pci_dev(dev));
0937         break;
0938     default:
0939         break;
0940     }
0941     return NOTIFY_DONE;
0942 }
0943 
0944 static struct notifier_block eeh_device_nb = {
0945     .notifier_call = eeh_device_notifier,
0946 };
0947 
0948 /**
0949  * eeh_init - System wide EEH initialization
0950  * @ops: struct to trace EEH operation callback functions
0951  *
0952  * It's the platform's job to call this from an arch_initcall().
0953  */
0954 int eeh_init(struct eeh_ops *ops)
0955 {
0956     struct pci_controller *hose, *tmp;
0957     int ret = 0;
0958 
0959     /* the platform should only initialise EEH once */
0960     if (WARN_ON(eeh_ops))
0961         return -EEXIST;
0962     if (WARN_ON(!ops))
0963         return -ENOENT;
0964     eeh_ops = ops;
0965 
0966     /* Register reboot notifier */
0967     ret = register_reboot_notifier(&eeh_reboot_nb);
0968     if (ret) {
0969         pr_warn("%s: Failed to register reboot notifier (%d)\n",
0970             __func__, ret);
0971         return ret;
0972     }
0973 
0974     ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
0975     if (ret) {
0976         pr_warn("%s: Failed to register bus notifier (%d)\n",
0977             __func__, ret);
0978         return ret;
0979     }
0980 
0981     /* Initialize PHB PEs */
0982     list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
0983         eeh_phb_pe_create(hose);
0984 
0985     eeh_addr_cache_init();
0986 
0987     /* Initialize EEH event */
0988     return eeh_event_init();
0989 }
0990 
0991 /**
0992  * eeh_probe_device() - Perform EEH initialization for the indicated pci device
0993  * @dev: pci device for which to set up EEH
0994  *
0995  * This routine must be used to complete EEH initialization for PCI
0996  * devices that were added after system boot (e.g. hotplug, dlpar).
0997  */
0998 void eeh_probe_device(struct pci_dev *dev)
0999 {
1000     struct eeh_dev *edev;
1001 
1002     pr_debug("EEH: Adding device %s\n", pci_name(dev));
1003 
1004     /*
1005      * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1006      * already called for this device.
1007      */
1008     if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1009         pci_dbg(dev, "Already bound to an eeh_dev!\n");
1010         return;
1011     }
1012 
1013     edev = eeh_ops->probe(dev);
1014     if (!edev) {
1015         pr_debug("EEH: Adding device failed\n");
1016         return;
1017     }
1018 
1019     /*
1020      * FIXME: We rely on pcibios_release_device() to remove the
1021      * existing EEH state. The release function is only called if
1022      * the pci_dev's refcount drops to zero so if something is
1023      * keeping a ref to a device (e.g. a filesystem) we need to
1024      * remove the old EEH state.
1025      *
1026      * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1027      */
1028     if (edev->pdev && edev->pdev != dev) {
1029         eeh_pe_tree_remove(edev);
1030         eeh_addr_cache_rmv_dev(edev->pdev);
1031         eeh_sysfs_remove_device(edev->pdev);
1032 
1033         /*
1034          * We definitely should have the PCI device removed
1035          * though it wasn't correctly. So we needn't call
1036          * into error handler afterwards.
1037          */
1038         edev->mode |= EEH_DEV_NO_HANDLER;
1039     }
1040 
1041     /* bind the pdev and the edev together */
1042     edev->pdev = dev;
1043     dev->dev.archdata.edev = edev;
1044     eeh_addr_cache_insert_dev(dev);
1045     eeh_sysfs_add_device(dev);
1046 }
1047 
1048 /**
1049  * eeh_remove_device - Undo EEH setup for the indicated pci device
1050  * @dev: pci device to be removed
1051  *
1052  * This routine should be called when a device is removed from
1053  * a running system (e.g. by hotplug or dlpar).  It unregisters
1054  * the PCI device from the EEH subsystem.  I/O errors affecting
1055  * this device will no longer be detected after this call; thus,
1056  * i/o errors affecting this slot may leave this device unusable.
1057  */
1058 void eeh_remove_device(struct pci_dev *dev)
1059 {
1060     struct eeh_dev *edev;
1061 
1062     if (!dev || !eeh_enabled())
1063         return;
1064     edev = pci_dev_to_eeh_dev(dev);
1065 
1066     /* Unregister the device with the EEH/PCI address search system */
1067     dev_dbg(&dev->dev, "EEH: Removing device\n");
1068 
1069     if (!edev || !edev->pdev || !edev->pe) {
1070         dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1071         return;
1072     }
1073 
1074     /*
1075      * During the hotplug for EEH error recovery, we need the EEH
1076      * device attached to the parent PE in order for BAR restore
1077      * a bit later. So we keep it for BAR restore and remove it
1078      * from the parent PE during the BAR resotre.
1079      */
1080     edev->pdev = NULL;
1081 
1082     /*
1083      * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1084      * remove the sysfs files before clearing dev.archdata.edev
1085      */
1086     if (edev->mode & EEH_DEV_SYSFS)
1087         eeh_sysfs_remove_device(dev);
1088 
1089     /*
1090      * We're removing from the PCI subsystem, that means
1091      * the PCI device driver can't support EEH or not
1092      * well. So we rely on hotplug completely to do recovery
1093      * for the specific PCI device.
1094      */
1095     edev->mode |= EEH_DEV_NO_HANDLER;
1096 
1097     eeh_addr_cache_rmv_dev(dev);
1098 
1099     /*
1100      * The flag "in_error" is used to trace EEH devices for VFs
1101      * in error state or not. It's set in eeh_report_error(). If
1102      * it's not set, eeh_report_{reset,resume}() won't be called
1103      * for the VF EEH device.
1104      */
1105     edev->in_error = false;
1106     dev->dev.archdata.edev = NULL;
1107     if (!(edev->pe->state & EEH_PE_KEEP))
1108         eeh_pe_tree_remove(edev);
1109     else
1110         edev->mode |= EEH_DEV_DISCONNECTED;
1111 }
1112 
1113 int eeh_unfreeze_pe(struct eeh_pe *pe)
1114 {
1115     int ret;
1116 
1117     ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1118     if (ret) {
1119         pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1120             __func__, ret, pe->phb->global_number, pe->addr);
1121         return ret;
1122     }
1123 
1124     ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1125     if (ret) {
1126         pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1127             __func__, ret, pe->phb->global_number, pe->addr);
1128         return ret;
1129     }
1130 
1131     return ret;
1132 }
1133 
1134 
1135 static struct pci_device_id eeh_reset_ids[] = {
1136     { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE     */
1137     { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1138     { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1139     { 0 }
1140 };
1141 
1142 static int eeh_pe_change_owner(struct eeh_pe *pe)
1143 {
1144     struct eeh_dev *edev, *tmp;
1145     struct pci_dev *pdev;
1146     struct pci_device_id *id;
1147     int ret;
1148 
1149     /* Check PE state */
1150     ret = eeh_ops->get_state(pe, NULL);
1151     if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1152         return 0;
1153 
1154     /* Unfrozen PE, nothing to do */
1155     if (eeh_state_active(ret))
1156         return 0;
1157 
1158     /* Frozen PE, check if it needs PE level reset */
1159     eeh_pe_for_each_dev(pe, edev, tmp) {
1160         pdev = eeh_dev_to_pci_dev(edev);
1161         if (!pdev)
1162             continue;
1163 
1164         for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1165             if (id->vendor != PCI_ANY_ID &&
1166                 id->vendor != pdev->vendor)
1167                 continue;
1168             if (id->device != PCI_ANY_ID &&
1169                 id->device != pdev->device)
1170                 continue;
1171             if (id->subvendor != PCI_ANY_ID &&
1172                 id->subvendor != pdev->subsystem_vendor)
1173                 continue;
1174             if (id->subdevice != PCI_ANY_ID &&
1175                 id->subdevice != pdev->subsystem_device)
1176                 continue;
1177 
1178             return eeh_pe_reset_and_recover(pe);
1179         }
1180     }
1181 
1182     ret = eeh_unfreeze_pe(pe);
1183     if (!ret)
1184         eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1185     return ret;
1186 }
1187 
1188 /**
1189  * eeh_dev_open - Increase count of pass through devices for PE
1190  * @pdev: PCI device
1191  *
1192  * Increase count of passed through devices for the indicated
1193  * PE. In the result, the EEH errors detected on the PE won't be
1194  * reported. The PE owner will be responsible for detection
1195  * and recovery.
1196  */
1197 int eeh_dev_open(struct pci_dev *pdev)
1198 {
1199     struct eeh_dev *edev;
1200     int ret = -ENODEV;
1201 
1202     mutex_lock(&eeh_dev_mutex);
1203 
1204     /* No PCI device ? */
1205     if (!pdev)
1206         goto out;
1207 
1208     /* No EEH device or PE ? */
1209     edev = pci_dev_to_eeh_dev(pdev);
1210     if (!edev || !edev->pe)
1211         goto out;
1212 
1213     /*
1214      * The PE might have been put into frozen state, but we
1215      * didn't detect that yet. The passed through PCI devices
1216      * in frozen PE won't work properly. Clear the frozen state
1217      * in advance.
1218      */
1219     ret = eeh_pe_change_owner(edev->pe);
1220     if (ret)
1221         goto out;
1222 
1223     /* Increase PE's pass through count */
1224     atomic_inc(&edev->pe->pass_dev_cnt);
1225     mutex_unlock(&eeh_dev_mutex);
1226 
1227     return 0;
1228 out:
1229     mutex_unlock(&eeh_dev_mutex);
1230     return ret;
1231 }
1232 EXPORT_SYMBOL_GPL(eeh_dev_open);
1233 
1234 /**
1235  * eeh_dev_release - Decrease count of pass through devices for PE
1236  * @pdev: PCI device
1237  *
1238  * Decrease count of pass through devices for the indicated PE. If
1239  * there is no passed through device in PE, the EEH errors detected
1240  * on the PE will be reported and handled as usual.
1241  */
1242 void eeh_dev_release(struct pci_dev *pdev)
1243 {
1244     struct eeh_dev *edev;
1245 
1246     mutex_lock(&eeh_dev_mutex);
1247 
1248     /* No PCI device ? */
1249     if (!pdev)
1250         goto out;
1251 
1252     /* No EEH device ? */
1253     edev = pci_dev_to_eeh_dev(pdev);
1254     if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1255         goto out;
1256 
1257     /* Decrease PE's pass through count */
1258     WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1259     eeh_pe_change_owner(edev->pe);
1260 out:
1261     mutex_unlock(&eeh_dev_mutex);
1262 }
1263 EXPORT_SYMBOL(eeh_dev_release);
1264 
1265 #ifdef CONFIG_IOMMU_API
1266 
1267 static int dev_has_iommu_table(struct device *dev, void *data)
1268 {
1269     struct pci_dev *pdev = to_pci_dev(dev);
1270     struct pci_dev **ppdev = data;
1271 
1272     if (!dev)
1273         return 0;
1274 
1275     if (device_iommu_mapped(dev)) {
1276         *ppdev = pdev;
1277         return 1;
1278     }
1279 
1280     return 0;
1281 }
1282 
1283 /**
1284  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1285  * @group: IOMMU group
1286  *
1287  * The routine is called to convert IOMMU group to EEH PE.
1288  */
1289 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1290 {
1291     struct pci_dev *pdev = NULL;
1292     struct eeh_dev *edev;
1293     int ret;
1294 
1295     /* No IOMMU group ? */
1296     if (!group)
1297         return NULL;
1298 
1299     ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1300     if (!ret || !pdev)
1301         return NULL;
1302 
1303     /* No EEH device or PE ? */
1304     edev = pci_dev_to_eeh_dev(pdev);
1305     if (!edev || !edev->pe)
1306         return NULL;
1307 
1308     return edev->pe;
1309 }
1310 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1311 
1312 #endif /* CONFIG_IOMMU_API */
1313 
1314 /**
1315  * eeh_pe_set_option - Set options for the indicated PE
1316  * @pe: EEH PE
1317  * @option: requested option
1318  *
1319  * The routine is called to enable or disable EEH functionality
1320  * on the indicated PE, to enable IO or DMA for the frozen PE.
1321  */
1322 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1323 {
1324     int ret = 0;
1325 
1326     /* Invalid PE ? */
1327     if (!pe)
1328         return -ENODEV;
1329 
1330     /*
1331      * EEH functionality could possibly be disabled, just
1332      * return error for the case. And the EEH functionality
1333      * isn't expected to be disabled on one specific PE.
1334      */
1335     switch (option) {
1336     case EEH_OPT_ENABLE:
1337         if (eeh_enabled()) {
1338             ret = eeh_pe_change_owner(pe);
1339             break;
1340         }
1341         ret = -EIO;
1342         break;
1343     case EEH_OPT_DISABLE:
1344         break;
1345     case EEH_OPT_THAW_MMIO:
1346     case EEH_OPT_THAW_DMA:
1347     case EEH_OPT_FREEZE_PE:
1348         if (!eeh_ops || !eeh_ops->set_option) {
1349             ret = -ENOENT;
1350             break;
1351         }
1352 
1353         ret = eeh_pci_enable(pe, option);
1354         break;
1355     default:
1356         pr_debug("%s: Option %d out of range (%d, %d)\n",
1357             __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1358         ret = -EINVAL;
1359     }
1360 
1361     return ret;
1362 }
1363 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1364 
1365 /**
1366  * eeh_pe_get_state - Retrieve PE's state
1367  * @pe: EEH PE
1368  *
1369  * Retrieve the PE's state, which includes 3 aspects: enabled
1370  * DMA, enabled IO and asserted reset.
1371  */
1372 int eeh_pe_get_state(struct eeh_pe *pe)
1373 {
1374     int result, ret = 0;
1375     bool rst_active, dma_en, mmio_en;
1376 
1377     /* Existing PE ? */
1378     if (!pe)
1379         return -ENODEV;
1380 
1381     if (!eeh_ops || !eeh_ops->get_state)
1382         return -ENOENT;
1383 
1384     /*
1385      * If the parent PE is owned by the host kernel and is undergoing
1386      * error recovery, we should return the PE state as temporarily
1387      * unavailable so that the error recovery on the guest is suspended
1388      * until the recovery completes on the host.
1389      */
1390     if (pe->parent &&
1391         !(pe->state & EEH_PE_REMOVED) &&
1392         (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1393         return EEH_PE_STATE_UNAVAIL;
1394 
1395     result = eeh_ops->get_state(pe, NULL);
1396     rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1397     dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1398     mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1399 
1400     if (rst_active)
1401         ret = EEH_PE_STATE_RESET;
1402     else if (dma_en && mmio_en)
1403         ret = EEH_PE_STATE_NORMAL;
1404     else if (!dma_en && !mmio_en)
1405         ret = EEH_PE_STATE_STOPPED_IO_DMA;
1406     else if (!dma_en && mmio_en)
1407         ret = EEH_PE_STATE_STOPPED_DMA;
1408     else
1409         ret = EEH_PE_STATE_UNAVAIL;
1410 
1411     return ret;
1412 }
1413 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1414 
1415 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1416 {
1417     struct eeh_dev *edev, *tmp;
1418     struct pci_dev *pdev;
1419     int ret = 0;
1420 
1421     eeh_pe_restore_bars(pe);
1422 
1423     /*
1424      * Reenable PCI devices as the devices passed
1425      * through are always enabled before the reset.
1426      */
1427     eeh_pe_for_each_dev(pe, edev, tmp) {
1428         pdev = eeh_dev_to_pci_dev(edev);
1429         if (!pdev)
1430             continue;
1431 
1432         ret = pci_reenable_device(pdev);
1433         if (ret) {
1434             pr_warn("%s: Failure %d reenabling %s\n",
1435                 __func__, ret, pci_name(pdev));
1436             return ret;
1437         }
1438     }
1439 
1440     /* The PE is still in frozen state */
1441     if (include_passed || !eeh_pe_passed(pe)) {
1442         ret = eeh_unfreeze_pe(pe);
1443     } else
1444         pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1445             pe->phb->global_number, pe->addr);
1446     if (!ret)
1447         eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1448     return ret;
1449 }
1450 
1451 
1452 /**
1453  * eeh_pe_reset - Issue PE reset according to specified type
1454  * @pe: EEH PE
1455  * @option: reset type
1456  * @include_passed: include passed-through devices?
1457  *
1458  * The routine is called to reset the specified PE with the
1459  * indicated type, either fundamental reset or hot reset.
1460  * PE reset is the most important part for error recovery.
1461  */
1462 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1463 {
1464     int ret = 0;
1465 
1466     /* Invalid PE ? */
1467     if (!pe)
1468         return -ENODEV;
1469 
1470     if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1471         return -ENOENT;
1472 
1473     switch (option) {
1474     case EEH_RESET_DEACTIVATE:
1475         ret = eeh_ops->reset(pe, option);
1476         eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1477         if (ret)
1478             break;
1479 
1480         ret = eeh_pe_reenable_devices(pe, include_passed);
1481         break;
1482     case EEH_RESET_HOT:
1483     case EEH_RESET_FUNDAMENTAL:
1484         /*
1485          * Proactively freeze the PE to drop all MMIO access
1486          * during reset, which should be banned as it's always
1487          * cause recursive EEH error.
1488          */
1489         eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1490 
1491         eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1492         ret = eeh_ops->reset(pe, option);
1493         break;
1494     default:
1495         pr_debug("%s: Unsupported option %d\n",
1496             __func__, option);
1497         ret = -EINVAL;
1498     }
1499 
1500     return ret;
1501 }
1502 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1503 
1504 /**
1505  * eeh_pe_configure - Configure PCI bridges after PE reset
1506  * @pe: EEH PE
1507  *
1508  * The routine is called to restore the PCI config space for
1509  * those PCI devices, especially PCI bridges affected by PE
1510  * reset issued previously.
1511  */
1512 int eeh_pe_configure(struct eeh_pe *pe)
1513 {
1514     int ret = 0;
1515 
1516     /* Invalid PE ? */
1517     if (!pe)
1518         return -ENODEV;
1519 
1520     return ret;
1521 }
1522 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1523 
1524 /**
1525  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1526  * @pe: the indicated PE
1527  * @type: error type
1528  * @func: error function
1529  * @addr: address
1530  * @mask: address mask
1531  *
1532  * The routine is called to inject the specified PCI error, which
1533  * is determined by @type and @func, to the indicated PE for
1534  * testing purpose.
1535  */
1536 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1537               unsigned long addr, unsigned long mask)
1538 {
1539     /* Invalid PE ? */
1540     if (!pe)
1541         return -ENODEV;
1542 
1543     /* Unsupported operation ? */
1544     if (!eeh_ops || !eeh_ops->err_inject)
1545         return -ENOENT;
1546 
1547     /* Check on PCI error type */
1548     if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1549         return -EINVAL;
1550 
1551     /* Check on PCI error function */
1552     if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1553         return -EINVAL;
1554 
1555     return eeh_ops->err_inject(pe, type, func, addr, mask);
1556 }
1557 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1558 
1559 #ifdef CONFIG_PROC_FS
1560 static int proc_eeh_show(struct seq_file *m, void *v)
1561 {
1562     if (!eeh_enabled()) {
1563         seq_printf(m, "EEH Subsystem is globally disabled\n");
1564         seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1565     } else {
1566         seq_printf(m, "EEH Subsystem is enabled\n");
1567         seq_printf(m,
1568                 "no device=%llu\n"
1569                 "no device node=%llu\n"
1570                 "no config address=%llu\n"
1571                 "check not wanted=%llu\n"
1572                 "eeh_total_mmio_ffs=%llu\n"
1573                 "eeh_false_positives=%llu\n"
1574                 "eeh_slot_resets=%llu\n",
1575                 eeh_stats.no_device,
1576                 eeh_stats.no_dn,
1577                 eeh_stats.no_cfg_addr,
1578                 eeh_stats.ignored_check,
1579                 eeh_stats.total_mmio_ffs,
1580                 eeh_stats.false_positives,
1581                 eeh_stats.slot_resets);
1582     }
1583 
1584     return 0;
1585 }
1586 #endif /* CONFIG_PROC_FS */
1587 
1588 #ifdef CONFIG_DEBUG_FS
1589 
1590 
1591 static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1592                          const char __user *user_buf,
1593                          size_t count, loff_t *ppos)
1594 {
1595     uint32_t domain, bus, dev, fn;
1596     struct pci_dev *pdev;
1597     char buf[20];
1598     int ret;
1599 
1600     memset(buf, 0, sizeof(buf));
1601     ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1602     if (!ret)
1603         return ERR_PTR(-EFAULT);
1604 
1605     ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1606     if (ret != 4) {
1607         pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1608         return ERR_PTR(-EINVAL);
1609     }
1610 
1611     pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1612     if (!pdev)
1613         return ERR_PTR(-ENODEV);
1614 
1615     return pdev;
1616 }
1617 
1618 static int eeh_enable_dbgfs_set(void *data, u64 val)
1619 {
1620     if (val)
1621         eeh_clear_flag(EEH_FORCE_DISABLED);
1622     else
1623         eeh_add_flag(EEH_FORCE_DISABLED);
1624 
1625     return 0;
1626 }
1627 
1628 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1629 {
1630     if (eeh_enabled())
1631         *val = 0x1ul;
1632     else
1633         *val = 0x0ul;
1634     return 0;
1635 }
1636 
1637 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1638              eeh_enable_dbgfs_set, "0x%llx\n");
1639 
1640 static ssize_t eeh_force_recover_write(struct file *filp,
1641                 const char __user *user_buf,
1642                 size_t count, loff_t *ppos)
1643 {
1644     struct pci_controller *hose;
1645     uint32_t phbid, pe_no;
1646     struct eeh_pe *pe;
1647     char buf[20];
1648     int ret;
1649 
1650     ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1651     if (!ret)
1652         return -EFAULT;
1653 
1654     /*
1655      * When PE is NULL the event is a "special" event. Rather than
1656      * recovering a specific PE it forces the EEH core to scan for failed
1657      * PHBs and recovers each. This needs to be done before any device
1658      * recoveries can occur.
1659      */
1660     if (!strncmp(buf, "hwcheck", 7)) {
1661         __eeh_send_failure_event(NULL);
1662         return count;
1663     }
1664 
1665     ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1666     if (ret != 2)
1667         return -EINVAL;
1668 
1669     hose = pci_find_controller_for_domain(phbid);
1670     if (!hose)
1671         return -ENODEV;
1672 
1673     /* Retrieve PE */
1674     pe = eeh_pe_get(hose, pe_no);
1675     if (!pe)
1676         return -ENODEV;
1677 
1678     /*
1679      * We don't do any state checking here since the detection
1680      * process is async to the recovery process. The recovery
1681      * thread *should* not break even if we schedule a recovery
1682      * from an odd state (e.g. PE removed, or recovery of a
1683      * non-isolated PE)
1684      */
1685     __eeh_send_failure_event(pe);
1686 
1687     return ret < 0 ? ret : count;
1688 }
1689 
1690 static const struct file_operations eeh_force_recover_fops = {
1691     .open   = simple_open,
1692     .llseek = no_llseek,
1693     .write  = eeh_force_recover_write,
1694 };
1695 
1696 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1697                 char __user *user_buf,
1698                 size_t count, loff_t *ppos)
1699 {
1700     static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1701 
1702     return simple_read_from_buffer(user_buf, count, ppos,
1703                        usage, sizeof(usage) - 1);
1704 }
1705 
1706 static ssize_t eeh_dev_check_write(struct file *filp,
1707                 const char __user *user_buf,
1708                 size_t count, loff_t *ppos)
1709 {
1710     struct pci_dev *pdev;
1711     struct eeh_dev *edev;
1712     int ret;
1713 
1714     pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1715     if (IS_ERR(pdev))
1716         return PTR_ERR(pdev);
1717 
1718     edev = pci_dev_to_eeh_dev(pdev);
1719     if (!edev) {
1720         pci_err(pdev, "No eeh_dev for this device!\n");
1721         pci_dev_put(pdev);
1722         return -ENODEV;
1723     }
1724 
1725     ret = eeh_dev_check_failure(edev);
1726     pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1727             pci_name(pdev), ret);
1728 
1729     pci_dev_put(pdev);
1730 
1731     return count;
1732 }
1733 
1734 static const struct file_operations eeh_dev_check_fops = {
1735     .open   = simple_open,
1736     .llseek = no_llseek,
1737     .write  = eeh_dev_check_write,
1738     .read   = eeh_debugfs_dev_usage,
1739 };
1740 
1741 static int eeh_debugfs_break_device(struct pci_dev *pdev)
1742 {
1743     struct resource *bar = NULL;
1744     void __iomem *mapped;
1745     u16 old, bit;
1746     int i, pos;
1747 
1748     /* Do we have an MMIO BAR to disable? */
1749     for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1750         struct resource *r = &pdev->resource[i];
1751 
1752         if (!r->flags || !r->start)
1753             continue;
1754         if (r->flags & IORESOURCE_IO)
1755             continue;
1756         if (r->flags & IORESOURCE_UNSET)
1757             continue;
1758 
1759         bar = r;
1760         break;
1761     }
1762 
1763     if (!bar) {
1764         pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1765         return -ENXIO;
1766     }
1767 
1768     pci_err(pdev, "Going to break: %pR\n", bar);
1769 
1770     if (pdev->is_virtfn) {
1771 #ifndef CONFIG_PCI_IOV
1772         return -ENXIO;
1773 #else
1774         /*
1775          * VFs don't have a per-function COMMAND register, so the best
1776          * we can do is clear the Memory Space Enable bit in the PF's
1777          * SRIOV control reg.
1778          *
1779          * Unfortunately, this requires that we have a PF (i.e doesn't
1780          * work for a passed-through VF) and it has the potential side
1781          * effect of also causing an EEH on every other VF under the
1782          * PF. Oh well.
1783          */
1784         pdev = pdev->physfn;
1785         if (!pdev)
1786             return -ENXIO; /* passed through VFs have no PF */
1787 
1788         pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1789         pos += PCI_SRIOV_CTRL;
1790         bit  = PCI_SRIOV_CTRL_MSE;
1791 #endif /* !CONFIG_PCI_IOV */
1792     } else {
1793         bit = PCI_COMMAND_MEMORY;
1794         pos = PCI_COMMAND;
1795     }
1796 
1797     /*
1798      * Process here is:
1799      *
1800      * 1. Disable Memory space.
1801      *
1802      * 2. Perform an MMIO to the device. This should result in an error
1803      *    (CA  / UR) being raised by the device which results in an EEH
1804      *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1805      *    so the freeze hook so the EEH Detection machinery won't be
1806      *    triggered here. This is to match the usual behaviour of EEH
1807      *    where the HW will asynchronously freeze a PE and it's up to
1808      *    the kernel to notice and deal with it.
1809      *
1810      * 3. Turn Memory space back on. This is more important for VFs
1811      *    since recovery will probably fail if we don't. For normal
1812      *    the COMMAND register is reset as a part of re-initialising
1813      *    the device.
1814      *
1815      * Breaking stuff is the point so who cares if it's racy ;)
1816      */
1817     pci_read_config_word(pdev, pos, &old);
1818 
1819     mapped = ioremap(bar->start, PAGE_SIZE);
1820     if (!mapped) {
1821         pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1822         return -ENXIO;
1823     }
1824 
1825     pci_write_config_word(pdev, pos, old & ~bit);
1826     in_8(mapped);
1827     pci_write_config_word(pdev, pos, old);
1828 
1829     iounmap(mapped);
1830 
1831     return 0;
1832 }
1833 
1834 static ssize_t eeh_dev_break_write(struct file *filp,
1835                 const char __user *user_buf,
1836                 size_t count, loff_t *ppos)
1837 {
1838     struct pci_dev *pdev;
1839     int ret;
1840 
1841     pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1842     if (IS_ERR(pdev))
1843         return PTR_ERR(pdev);
1844 
1845     ret = eeh_debugfs_break_device(pdev);
1846     pci_dev_put(pdev);
1847 
1848     if (ret < 0)
1849         return ret;
1850 
1851     return count;
1852 }
1853 
1854 static const struct file_operations eeh_dev_break_fops = {
1855     .open   = simple_open,
1856     .llseek = no_llseek,
1857     .write  = eeh_dev_break_write,
1858     .read   = eeh_debugfs_dev_usage,
1859 };
1860 
1861 static ssize_t eeh_dev_can_recover(struct file *filp,
1862                    const char __user *user_buf,
1863                    size_t count, loff_t *ppos)
1864 {
1865     struct pci_driver *drv;
1866     struct pci_dev *pdev;
1867     size_t ret;
1868 
1869     pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1870     if (IS_ERR(pdev))
1871         return PTR_ERR(pdev);
1872 
1873     /*
1874      * In order for error recovery to work the driver needs to implement
1875      * .error_detected(), so it can quiesce IO to the device, and
1876      * .slot_reset() so it can re-initialise the device after a reset.
1877      *
1878      * Ideally they'd implement .resume() too, but some drivers which
1879      * we need to support (notably IPR) don't so I guess we can tolerate
1880      * that.
1881      *
1882      * .mmio_enabled() is mostly there as a work-around for devices which
1883      * take forever to re-init after a hot reset. Implementing that is
1884      * strictly optional.
1885      */
1886     drv = pci_dev_driver(pdev);
1887     if (drv &&
1888         drv->err_handler &&
1889         drv->err_handler->error_detected &&
1890         drv->err_handler->slot_reset) {
1891         ret = count;
1892     } else {
1893         ret = -EOPNOTSUPP;
1894     }
1895 
1896     pci_dev_put(pdev);
1897 
1898     return ret;
1899 }
1900 
1901 static const struct file_operations eeh_dev_can_recover_fops = {
1902     .open   = simple_open,
1903     .llseek = no_llseek,
1904     .write  = eeh_dev_can_recover,
1905     .read   = eeh_debugfs_dev_usage,
1906 };
1907 
1908 #endif
1909 
1910 static int __init eeh_init_proc(void)
1911 {
1912     if (machine_is(pseries) || machine_is(powernv)) {
1913         proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1914 #ifdef CONFIG_DEBUG_FS
1915         debugfs_create_file_unsafe("eeh_enable", 0600,
1916                        arch_debugfs_dir, NULL,
1917                        &eeh_enable_dbgfs_ops);
1918         debugfs_create_u32("eeh_max_freezes", 0600,
1919                 arch_debugfs_dir, &eeh_max_freezes);
1920         debugfs_create_bool("eeh_disable_recovery", 0600,
1921                 arch_debugfs_dir,
1922                 &eeh_debugfs_no_recover);
1923         debugfs_create_file_unsafe("eeh_dev_check", 0600,
1924                 arch_debugfs_dir, NULL,
1925                 &eeh_dev_check_fops);
1926         debugfs_create_file_unsafe("eeh_dev_break", 0600,
1927                 arch_debugfs_dir, NULL,
1928                 &eeh_dev_break_fops);
1929         debugfs_create_file_unsafe("eeh_force_recover", 0600,
1930                 arch_debugfs_dir, NULL,
1931                 &eeh_force_recover_fops);
1932         debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1933                 arch_debugfs_dir, NULL,
1934                 &eeh_dev_can_recover_fops);
1935         eeh_cache_debugfs_init();
1936 #endif
1937     }
1938 
1939     return 0;
1940 }
1941 __initcall(eeh_init_proc);