Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 #ifndef _ASM_POWERPC_PGTABLE_RADIX_H
0003 #define _ASM_POWERPC_PGTABLE_RADIX_H
0004 
0005 #include <asm/asm-const.h>
0006 
0007 #ifndef __ASSEMBLY__
0008 #include <asm/cmpxchg.h>
0009 #endif
0010 
0011 #ifdef CONFIG_PPC_64K_PAGES
0012 #include <asm/book3s/64/radix-64k.h>
0013 #else
0014 #include <asm/book3s/64/radix-4k.h>
0015 #endif
0016 
0017 #ifndef __ASSEMBLY__
0018 #include <asm/book3s/64/tlbflush-radix.h>
0019 #include <asm/cpu_has_feature.h>
0020 #endif
0021 
0022 /* An empty PTE can still have a R or C writeback */
0023 #define RADIX_PTE_NONE_MASK     (_PAGE_DIRTY | _PAGE_ACCESSED)
0024 
0025 /* Bits to set in a RPMD/RPUD/RPGD */
0026 #define RADIX_PMD_VAL_BITS      (0x8000000000000000UL | RADIX_PTE_INDEX_SIZE)
0027 #define RADIX_PUD_VAL_BITS      (0x8000000000000000UL | RADIX_PMD_INDEX_SIZE)
0028 #define RADIX_PGD_VAL_BITS      (0x8000000000000000UL | RADIX_PUD_INDEX_SIZE)
0029 
0030 /* Don't have anything in the reserved bits and leaf bits */
0031 #define RADIX_PMD_BAD_BITS      0x60000000000000e0UL
0032 #define RADIX_PUD_BAD_BITS      0x60000000000000e0UL
0033 #define RADIX_P4D_BAD_BITS      0x60000000000000e0UL
0034 
0035 #define RADIX_PMD_SHIFT     (PAGE_SHIFT + RADIX_PTE_INDEX_SIZE)
0036 #define RADIX_PUD_SHIFT     (RADIX_PMD_SHIFT + RADIX_PMD_INDEX_SIZE)
0037 #define RADIX_PGD_SHIFT     (RADIX_PUD_SHIFT + RADIX_PUD_INDEX_SIZE)
0038 
0039 #define R_PTRS_PER_PTE      (1 << RADIX_PTE_INDEX_SIZE)
0040 #define R_PTRS_PER_PMD      (1 << RADIX_PMD_INDEX_SIZE)
0041 #define R_PTRS_PER_PUD      (1 << RADIX_PUD_INDEX_SIZE)
0042 
0043 /*
0044  * Size of EA range mapped by our pagetables.
0045  */
0046 #define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE + \
0047                   RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT)
0048 #define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE)
0049 
0050 /*
0051  * We support 52 bit address space, Use top bit for kernel
0052  * virtual mapping. Also make sure kernel fit in the top
0053  * quadrant.
0054  *
0055  *           +------------------+
0056  *           +------------------+  Kernel virtual map (0xc008000000000000)
0057  *           |                  |
0058  *           |                  |
0059  *           |                  |
0060  * 0b11......+------------------+  Kernel linear map (0xc....)
0061  *           |                  |
0062  *           |     2 quadrant   |
0063  *           |                  |
0064  * 0b10......+------------------+
0065  *           |                  |
0066  *           |    1 quadrant    |
0067  *           |                  |
0068  * 0b01......+------------------+
0069  *           |                  |
0070  *           |    0 quadrant    |
0071  *           |                  |
0072  * 0b00......+------------------+
0073  *
0074  *
0075  * 3rd quadrant expanded:
0076  * +------------------------------+  Highest address (0xc010000000000000)
0077  * +------------------------------+  KASAN shadow end (0xc00fc00000000000)
0078  * |                              |
0079  * |                              |
0080  * +------------------------------+  Kernel vmemmap end/shadow start (0xc00e000000000000)
0081  * |                              |
0082  * |           512TB          |
0083  * |                              |
0084  * +------------------------------+  Kernel IO map end/vmemap start
0085  * |                              |
0086  * |           512TB          |
0087  * |                              |
0088  * +------------------------------+  Kernel vmap end/ IO map start
0089  * |                              |
0090  * |           512TB          |
0091  * |                              |
0092  * +------------------------------+  Kernel virt start (0xc008000000000000)
0093  * |                              |
0094  * |                              |
0095  * |                              |
0096  * +------------------------------+  Kernel linear (0xc.....)
0097  */
0098 
0099 /* For the sizes of the shadow area, see kasan.h */
0100 
0101 /*
0102  * If we store section details in page->flags we can't increase the MAX_PHYSMEM_BITS
0103  * if we increase SECTIONS_WIDTH we will not store node details in page->flags and
0104  * page_to_nid does a page->section->node lookup
0105  * Hence only increase for VMEMMAP. Further depending on SPARSEMEM_EXTREME reduce
0106  * memory requirements with large number of sections.
0107  * 51 bits is the max physical real address on POWER9
0108  */
0109 
0110 #if defined(CONFIG_SPARSEMEM_VMEMMAP) && defined(CONFIG_SPARSEMEM_EXTREME)
0111 #define R_MAX_PHYSMEM_BITS  51
0112 #else
0113 #define R_MAX_PHYSMEM_BITS  46
0114 #endif
0115 
0116 #define RADIX_KERN_VIRT_START   ASM_CONST(0xc008000000000000)
0117 /*
0118  * 49 =  MAX_EA_BITS_PER_CONTEXT (hash specific). To make sure we pick
0119  * the same value as hash.
0120  */
0121 #define RADIX_KERN_MAP_SIZE (1UL << 49)
0122 
0123 #define RADIX_VMALLOC_START RADIX_KERN_VIRT_START
0124 #define RADIX_VMALLOC_SIZE  RADIX_KERN_MAP_SIZE
0125 #define RADIX_VMALLOC_END   (RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE)
0126 
0127 #define RADIX_KERN_IO_START RADIX_VMALLOC_END
0128 #define RADIX_KERN_IO_SIZE  RADIX_KERN_MAP_SIZE
0129 #define RADIX_KERN_IO_END   (RADIX_KERN_IO_START + RADIX_KERN_IO_SIZE)
0130 
0131 #define RADIX_VMEMMAP_START RADIX_KERN_IO_END
0132 #define RADIX_VMEMMAP_SIZE  RADIX_KERN_MAP_SIZE
0133 #define RADIX_VMEMMAP_END   (RADIX_VMEMMAP_START + RADIX_VMEMMAP_SIZE)
0134 
0135 #ifndef __ASSEMBLY__
0136 #define RADIX_PTE_TABLE_SIZE    (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE)
0137 #define RADIX_PMD_TABLE_SIZE    (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE)
0138 #define RADIX_PUD_TABLE_SIZE    (sizeof(pud_t) << RADIX_PUD_INDEX_SIZE)
0139 #define RADIX_PGD_TABLE_SIZE    (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
0140 
0141 #ifdef CONFIG_STRICT_KERNEL_RWX
0142 extern void radix__mark_rodata_ro(void);
0143 extern void radix__mark_initmem_nx(void);
0144 #endif
0145 
0146 extern void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
0147                      pte_t entry, unsigned long address,
0148                      int psize);
0149 
0150 extern void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
0151                        unsigned long addr, pte_t *ptep,
0152                        pte_t old_pte, pte_t pte);
0153 
0154 static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr,
0155                            unsigned long set)
0156 {
0157     __be64 old_be, tmp_be;
0158 
0159     __asm__ __volatile__(
0160     "1: ldarx   %0,0,%3     # pte_update\n"
0161     "   andc    %1,%0,%5    \n"
0162     "   or  %1,%1,%4    \n"
0163     "   stdcx.  %1,0,%3     \n"
0164     "   bne-    1b"
0165     : "=&r" (old_be), "=&r" (tmp_be), "=m" (*ptep)
0166     : "r" (ptep), "r" (cpu_to_be64(set)), "r" (cpu_to_be64(clr))
0167     : "cc" );
0168 
0169     return be64_to_cpu(old_be);
0170 }
0171 
0172 static inline unsigned long radix__pte_update(struct mm_struct *mm,
0173                     unsigned long addr,
0174                     pte_t *ptep, unsigned long clr,
0175                     unsigned long set,
0176                     int huge)
0177 {
0178     unsigned long old_pte;
0179 
0180     old_pte = __radix_pte_update(ptep, clr, set);
0181     if (!huge)
0182         assert_pte_locked(mm, addr);
0183 
0184     return old_pte;
0185 }
0186 
0187 static inline pte_t radix__ptep_get_and_clear_full(struct mm_struct *mm,
0188                            unsigned long addr,
0189                            pte_t *ptep, int full)
0190 {
0191     unsigned long old_pte;
0192 
0193     if (full) {
0194         old_pte = pte_val(*ptep);
0195         *ptep = __pte(0);
0196     } else
0197         old_pte = radix__pte_update(mm, addr, ptep, ~0ul, 0, 0);
0198 
0199     return __pte(old_pte);
0200 }
0201 
0202 static inline int radix__pte_same(pte_t pte_a, pte_t pte_b)
0203 {
0204     return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0);
0205 }
0206 
0207 static inline int radix__pte_none(pte_t pte)
0208 {
0209     return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0;
0210 }
0211 
0212 static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr,
0213                  pte_t *ptep, pte_t pte, int percpu)
0214 {
0215     *ptep = pte;
0216 
0217     /*
0218      * The architecture suggests a ptesync after setting the pte, which
0219      * orders the store that updates the pte with subsequent page table
0220      * walk accesses which may load the pte. Without this it may be
0221      * possible for a subsequent access to result in spurious fault.
0222      *
0223      * This is not necessary for correctness, because a spurious fault
0224      * is tolerated by the page fault handler, and this store will
0225      * eventually be seen. In testing, there was no noticable increase
0226      * in user faults on POWER9. Avoiding ptesync here is a significant
0227      * win for things like fork. If a future microarchitecture benefits
0228      * from ptesync, it should probably go into update_mmu_cache, rather
0229      * than set_pte_at (which is used to set ptes unrelated to faults).
0230      *
0231      * Spurious faults from the kernel memory are not tolerated, so there
0232      * is a ptesync in flush_cache_vmap, and __map_kernel_page() follows
0233      * the pte update sequence from ISA Book III 6.10 Translation Table
0234      * Update Synchronization Requirements.
0235      */
0236 }
0237 
0238 static inline int radix__pmd_bad(pmd_t pmd)
0239 {
0240     return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS);
0241 }
0242 
0243 static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
0244 {
0245     return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0);
0246 }
0247 
0248 static inline int radix__pud_bad(pud_t pud)
0249 {
0250     return !!(pud_val(pud) & RADIX_PUD_BAD_BITS);
0251 }
0252 
0253 
0254 static inline int radix__p4d_bad(p4d_t p4d)
0255 {
0256     return !!(p4d_val(p4d) & RADIX_P4D_BAD_BITS);
0257 }
0258 
0259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0260 
0261 static inline int radix__pmd_trans_huge(pmd_t pmd)
0262 {
0263     return (pmd_val(pmd) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE;
0264 }
0265 
0266 static inline pmd_t radix__pmd_mkhuge(pmd_t pmd)
0267 {
0268     return __pmd(pmd_val(pmd) | _PAGE_PTE);
0269 }
0270 
0271 extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
0272                       pmd_t *pmdp, unsigned long clr,
0273                       unsigned long set);
0274 extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma,
0275                   unsigned long address, pmd_t *pmdp);
0276 extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
0277                     pgtable_t pgtable);
0278 extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
0279 extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
0280                       unsigned long addr, pmd_t *pmdp);
0281 static inline int radix__has_transparent_hugepage(void)
0282 {
0283     /* For radix 2M at PMD level means thp */
0284     if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
0285         return 1;
0286     return 0;
0287 }
0288 #endif
0289 
0290 static inline pmd_t radix__pmd_mkdevmap(pmd_t pmd)
0291 {
0292     return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
0293 }
0294 
0295 extern int __meminit radix__vmemmap_create_mapping(unsigned long start,
0296                          unsigned long page_size,
0297                          unsigned long phys);
0298 extern void radix__vmemmap_remove_mapping(unsigned long start,
0299                     unsigned long page_size);
0300 
0301 extern int radix__map_kernel_page(unsigned long ea, unsigned long pa,
0302                  pgprot_t flags, unsigned int psz);
0303 
0304 static inline unsigned long radix__get_tree_size(void)
0305 {
0306     unsigned long rts_field;
0307     /*
0308      * We support 52 bits, hence:
0309      * bits 52 - 31 = 21, 0b10101
0310      * RTS encoding details
0311      * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
0312      * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
0313      */
0314     rts_field = (0x5UL << 5); /* 6 - 8 bits */
0315     rts_field |= (0x2UL << 61);
0316 
0317     return rts_field;
0318 }
0319 
0320 #ifdef CONFIG_MEMORY_HOTPLUG
0321 int radix__create_section_mapping(unsigned long start, unsigned long end,
0322                   int nid, pgprot_t prot);
0323 int radix__remove_section_mapping(unsigned long start, unsigned long end);
0324 #endif /* CONFIG_MEMORY_HOTPLUG */
0325 
0326 void radix__kernel_map_pages(struct page *page, int numpages, int enable);
0327 
0328 #endif /* __ASSEMBLY__ */
0329 #endif