Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
0003 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
0004 
0005 #include <asm-generic/pgtable-nop4d.h>
0006 
0007 #ifndef __ASSEMBLY__
0008 #include <linux/mmdebug.h>
0009 #include <linux/bug.h>
0010 #include <linux/sizes.h>
0011 #endif
0012 
0013 /*
0014  * Common bits between hash and Radix page table
0015  */
0016 
0017 #define _PAGE_EXEC      0x00001 /* execute permission */
0018 #define _PAGE_WRITE     0x00002 /* write access allowed */
0019 #define _PAGE_READ      0x00004 /* read access allowed */
0020 #define _PAGE_RW        (_PAGE_READ | _PAGE_WRITE)
0021 #define _PAGE_RWX       (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
0022 #define _PAGE_PRIVILEGED    0x00008 /* kernel access only */
0023 #define _PAGE_SAO       0x00010 /* Strong access order */
0024 #define _PAGE_NON_IDEMPOTENT    0x00020 /* non idempotent memory */
0025 #define _PAGE_TOLERANT      0x00030 /* tolerant memory, cache inhibited */
0026 #define _PAGE_DIRTY     0x00080 /* C: page changed */
0027 #define _PAGE_ACCESSED      0x00100 /* R: page referenced */
0028 /*
0029  * Software bits
0030  */
0031 #define _RPAGE_SW0      0x2000000000000000UL
0032 #define _RPAGE_SW1      0x00800
0033 #define _RPAGE_SW2      0x00400
0034 #define _RPAGE_SW3      0x00200
0035 #define _RPAGE_RSV1     0x00040UL
0036 
0037 #define _RPAGE_PKEY_BIT4    0x1000000000000000UL
0038 #define _RPAGE_PKEY_BIT3    0x0800000000000000UL
0039 #define _RPAGE_PKEY_BIT2    0x0400000000000000UL
0040 #define _RPAGE_PKEY_BIT1    0x0200000000000000UL
0041 #define _RPAGE_PKEY_BIT0    0x0100000000000000UL
0042 
0043 #define _PAGE_PTE       0x4000000000000000UL    /* distinguishes PTEs from pointers */
0044 #define _PAGE_PRESENT       0x8000000000000000UL    /* pte contains a translation */
0045 /*
0046  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
0047  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
0048  * differentiate between two use a SW field when invalidating.
0049  *
0050  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
0051  *
0052  * This is used only when _PAGE_PRESENT is cleared.
0053  */
0054 #define _PAGE_INVALID       _RPAGE_SW0
0055 
0056 /*
0057  * Top and bottom bits of RPN which can be used by hash
0058  * translation mode, because we expect them to be zero
0059  * otherwise.
0060  */
0061 #define _RPAGE_RPN0     0x01000
0062 #define _RPAGE_RPN1     0x02000
0063 #define _RPAGE_RPN43        0x0080000000000000UL
0064 #define _RPAGE_RPN42        0x0040000000000000UL
0065 #define _RPAGE_RPN41        0x0020000000000000UL
0066 
0067 /* Max physical address bit as per radix table */
0068 #define _RPAGE_PA_MAX       56
0069 
0070 /*
0071  * Max physical address bit we will use for now.
0072  *
0073  * This is mostly a hardware limitation and for now Power9 has
0074  * a 51 bit limit.
0075  *
0076  * This is different from the number of physical bit required to address
0077  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
0078  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
0079  * number of sections we can support (SECTIONS_SHIFT).
0080  *
0081  * This is different from Radix page table limitation above and
0082  * should always be less than that. The limit is done such that
0083  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
0084  * for hash linux page table specific bits.
0085  *
0086  * In order to be compatible with future hardware generations we keep
0087  * some offsets and limit this for now to 53
0088  */
0089 #define _PAGE_PA_MAX        53
0090 
0091 #define _PAGE_SOFT_DIRTY    _RPAGE_SW3 /* software: software dirty tracking */
0092 #define _PAGE_SPECIAL       _RPAGE_SW2 /* software: special page */
0093 #define _PAGE_DEVMAP        _RPAGE_SW1 /* software: ZONE_DEVICE page */
0094 
0095 /*
0096  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
0097  * Instead of fixing all of them, add an alternate define which
0098  * maps CI pte mapping.
0099  */
0100 #define _PAGE_NO_CACHE      _PAGE_TOLERANT
0101 /*
0102  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
0103  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
0104  * and every thing below PAGE_SHIFT;
0105  */
0106 #define PTE_RPN_MASK    (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
0107 /*
0108  * set of bits not changed in pmd_modify. Even though we have hash specific bits
0109  * in here, on radix we expect them to be zero.
0110  */
0111 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
0112              _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
0113              _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
0114 /*
0115  * user access blocked by key
0116  */
0117 #define _PAGE_KERNEL_RW     (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
0118 #define _PAGE_KERNEL_RO      (_PAGE_PRIVILEGED | _PAGE_READ)
0119 #define _PAGE_KERNEL_ROX     (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
0120 #define _PAGE_KERNEL_RWX    (_PAGE_PRIVILEGED | _PAGE_DIRTY |   \
0121                  _PAGE_RW | _PAGE_EXEC)
0122 /*
0123  * _PAGE_CHG_MASK masks of bits that are to be preserved across
0124  * pgprot changes
0125  */
0126 #define _PAGE_CHG_MASK  (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
0127              _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |   \
0128              _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
0129 
0130 /*
0131  * We define 2 sets of base prot bits, one for basic pages (ie,
0132  * cacheable kernel and user pages) and one for non cacheable
0133  * pages. We always set _PAGE_COHERENT when SMP is enabled or
0134  * the processor might need it for DMA coherency.
0135  */
0136 #define _PAGE_BASE_NC   (_PAGE_PRESENT | _PAGE_ACCESSED)
0137 #define _PAGE_BASE  (_PAGE_BASE_NC)
0138 
0139 /* Permission masks used to generate the __P and __S table,
0140  *
0141  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
0142  *
0143  * Write permissions imply read permissions for now (we could make write-only
0144  * pages on BookE but we don't bother for now). Execute permission control is
0145  * possible on platforms that define _PAGE_EXEC
0146  */
0147 #define PAGE_NONE   __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
0148 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
0149 #define PAGE_SHARED_X   __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
0150 #define PAGE_COPY   __pgprot(_PAGE_BASE | _PAGE_READ)
0151 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
0152 #define PAGE_READONLY   __pgprot(_PAGE_BASE | _PAGE_READ)
0153 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
0154 
0155 /* Permission masks used for kernel mappings */
0156 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
0157 #define PAGE_KERNEL_NC  __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
0158                  _PAGE_TOLERANT)
0159 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
0160                  _PAGE_NON_IDEMPOTENT)
0161 #define PAGE_KERNEL_X   __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
0162 #define PAGE_KERNEL_RO  __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
0163 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
0164 
0165 /*
0166  * Protection used for kernel text. We want the debuggers to be able to
0167  * set breakpoints anywhere, so don't write protect the kernel text
0168  * on platforms where such control is possible.
0169  */
0170 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
0171     defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
0172 #define PAGE_KERNEL_TEXT    PAGE_KERNEL_X
0173 #else
0174 #define PAGE_KERNEL_TEXT    PAGE_KERNEL_ROX
0175 #endif
0176 
0177 /* Make modules code happy. We don't set RO yet */
0178 #define PAGE_KERNEL_EXEC    PAGE_KERNEL_X
0179 #define PAGE_AGP        (PAGE_KERNEL_NC)
0180 
0181 #ifndef __ASSEMBLY__
0182 /*
0183  * page table defines
0184  */
0185 extern unsigned long __pte_index_size;
0186 extern unsigned long __pmd_index_size;
0187 extern unsigned long __pud_index_size;
0188 extern unsigned long __pgd_index_size;
0189 extern unsigned long __pud_cache_index;
0190 #define PTE_INDEX_SIZE  __pte_index_size
0191 #define PMD_INDEX_SIZE  __pmd_index_size
0192 #define PUD_INDEX_SIZE  __pud_index_size
0193 #define PGD_INDEX_SIZE  __pgd_index_size
0194 /* pmd table use page table fragments */
0195 #define PMD_CACHE_INDEX  0
0196 #define PUD_CACHE_INDEX __pud_cache_index
0197 /*
0198  * Because of use of pte fragments and THP, size of page table
0199  * are not always derived out of index size above.
0200  */
0201 extern unsigned long __pte_table_size;
0202 extern unsigned long __pmd_table_size;
0203 extern unsigned long __pud_table_size;
0204 extern unsigned long __pgd_table_size;
0205 #define PTE_TABLE_SIZE  __pte_table_size
0206 #define PMD_TABLE_SIZE  __pmd_table_size
0207 #define PUD_TABLE_SIZE  __pud_table_size
0208 #define PGD_TABLE_SIZE  __pgd_table_size
0209 
0210 extern unsigned long __pmd_val_bits;
0211 extern unsigned long __pud_val_bits;
0212 extern unsigned long __pgd_val_bits;
0213 #define PMD_VAL_BITS    __pmd_val_bits
0214 #define PUD_VAL_BITS    __pud_val_bits
0215 #define PGD_VAL_BITS    __pgd_val_bits
0216 
0217 extern unsigned long __pte_frag_nr;
0218 #define PTE_FRAG_NR __pte_frag_nr
0219 extern unsigned long __pte_frag_size_shift;
0220 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
0221 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
0222 
0223 extern unsigned long __pmd_frag_nr;
0224 #define PMD_FRAG_NR __pmd_frag_nr
0225 extern unsigned long __pmd_frag_size_shift;
0226 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
0227 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
0228 
0229 #define PTRS_PER_PTE    (1 << PTE_INDEX_SIZE)
0230 #define PTRS_PER_PMD    (1 << PMD_INDEX_SIZE)
0231 #define PTRS_PER_PUD    (1 << PUD_INDEX_SIZE)
0232 #define PTRS_PER_PGD    (1 << PGD_INDEX_SIZE)
0233 
0234 #define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
0235 #define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
0236 #define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
0237 #define MAX_PTRS_PER_PGD    (1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
0238                        H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
0239 
0240 /* PMD_SHIFT determines what a second-level page table entry can map */
0241 #define PMD_SHIFT   (PAGE_SHIFT + PTE_INDEX_SIZE)
0242 #define PMD_SIZE    (1UL << PMD_SHIFT)
0243 #define PMD_MASK    (~(PMD_SIZE-1))
0244 
0245 /* PUD_SHIFT determines what a third-level page table entry can map */
0246 #define PUD_SHIFT   (PMD_SHIFT + PMD_INDEX_SIZE)
0247 #define PUD_SIZE    (1UL << PUD_SHIFT)
0248 #define PUD_MASK    (~(PUD_SIZE-1))
0249 
0250 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
0251 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
0252 #define PGDIR_SIZE  (1UL << PGDIR_SHIFT)
0253 #define PGDIR_MASK  (~(PGDIR_SIZE-1))
0254 
0255 /* Bits to mask out from a PMD to get to the PTE page */
0256 #define PMD_MASKED_BITS     0xc0000000000000ffUL
0257 /* Bits to mask out from a PUD to get to the PMD page */
0258 #define PUD_MASKED_BITS     0xc0000000000000ffUL
0259 /* Bits to mask out from a PGD to get to the PUD page */
0260 #define P4D_MASKED_BITS     0xc0000000000000ffUL
0261 
0262 /*
0263  * Used as an indicator for rcu callback functions
0264  */
0265 enum pgtable_index {
0266     PTE_INDEX = 0,
0267     PMD_INDEX,
0268     PUD_INDEX,
0269     PGD_INDEX,
0270     /*
0271      * Below are used with 4k page size and hugetlb
0272      */
0273     HTLB_16M_INDEX,
0274     HTLB_16G_INDEX,
0275 };
0276 
0277 extern unsigned long __vmalloc_start;
0278 extern unsigned long __vmalloc_end;
0279 #define VMALLOC_START   __vmalloc_start
0280 #define VMALLOC_END __vmalloc_end
0281 
0282 static inline unsigned int ioremap_max_order(void)
0283 {
0284     if (radix_enabled())
0285         return PUD_SHIFT;
0286     return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
0287 }
0288 #define IOREMAP_MAX_ORDER ioremap_max_order()
0289 
0290 extern unsigned long __kernel_virt_start;
0291 extern unsigned long __kernel_io_start;
0292 extern unsigned long __kernel_io_end;
0293 #define KERN_VIRT_START __kernel_virt_start
0294 #define KERN_IO_START  __kernel_io_start
0295 #define KERN_IO_END __kernel_io_end
0296 
0297 extern struct page *vmemmap;
0298 extern unsigned long pci_io_base;
0299 #endif /* __ASSEMBLY__ */
0300 
0301 #include <asm/book3s/64/hash.h>
0302 #include <asm/book3s/64/radix.h>
0303 
0304 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
0305 #define  MAX_PHYSMEM_BITS   H_MAX_PHYSMEM_BITS
0306 #else
0307 #define  MAX_PHYSMEM_BITS   R_MAX_PHYSMEM_BITS
0308 #endif
0309 
0310 
0311 #ifdef CONFIG_PPC_64K_PAGES
0312 #include <asm/book3s/64/pgtable-64k.h>
0313 #else
0314 #include <asm/book3s/64/pgtable-4k.h>
0315 #endif
0316 
0317 #include <asm/barrier.h>
0318 /*
0319  * IO space itself carved into the PIO region (ISA and PHB IO space) and
0320  * the ioremap space
0321  *
0322  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
0323  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
0324  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
0325  */
0326 #define FULL_IO_SIZE    0x80000000ul
0327 #define  ISA_IO_BASE    (KERN_IO_START)
0328 #define  ISA_IO_END (KERN_IO_START + 0x10000ul)
0329 #define  PHB_IO_BASE    (ISA_IO_END)
0330 #define  PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
0331 #define IOREMAP_BASE    (PHB_IO_END)
0332 #define IOREMAP_START   (ioremap_bot)
0333 #define IOREMAP_END (KERN_IO_END - FIXADDR_SIZE)
0334 #define FIXADDR_SIZE    SZ_32M
0335 
0336 /* Advertise special mapping type for AGP */
0337 #define HAVE_PAGE_AGP
0338 
0339 #ifndef __ASSEMBLY__
0340 
0341 /*
0342  * This is the default implementation of various PTE accessors, it's
0343  * used in all cases except Book3S with 64K pages where we have a
0344  * concept of sub-pages
0345  */
0346 #ifndef __real_pte
0347 
0348 #define __real_pte(e, p, o)     ((real_pte_t){(e)})
0349 #define __rpte_to_pte(r)    ((r).pte)
0350 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
0351 
0352 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
0353     do {                                     \
0354         index = 0;                           \
0355         shift = mmu_psize_defs[psize].shift;                 \
0356 
0357 #define pte_iterate_hashed_end() } while(0)
0358 
0359 /*
0360  * We expect this to be called only for user addresses or kernel virtual
0361  * addresses other than the linear mapping.
0362  */
0363 #define pte_pagesize_index(mm, addr, pte)   MMU_PAGE_4K
0364 
0365 #endif /* __real_pte */
0366 
0367 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
0368                        pte_t *ptep, unsigned long clr,
0369                        unsigned long set, int huge)
0370 {
0371     if (radix_enabled())
0372         return radix__pte_update(mm, addr, ptep, clr, set, huge);
0373     return hash__pte_update(mm, addr, ptep, clr, set, huge);
0374 }
0375 /*
0376  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
0377  * We currently remove entries from the hashtable regardless of whether
0378  * the entry was young or dirty.
0379  *
0380  * We should be more intelligent about this but for the moment we override
0381  * these functions and force a tlb flush unconditionally
0382  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
0383  * function for both hash and radix.
0384  */
0385 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
0386                           unsigned long addr, pte_t *ptep)
0387 {
0388     unsigned long old;
0389 
0390     if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
0391         return 0;
0392     old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
0393     return (old & _PAGE_ACCESSED) != 0;
0394 }
0395 
0396 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
0397 #define ptep_test_and_clear_young(__vma, __addr, __ptep)    \
0398 ({                              \
0399     __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
0400 })
0401 
0402 /*
0403  * On Book3S CPUs, clearing the accessed bit without a TLB flush
0404  * doesn't cause data corruption. [ It could cause incorrect
0405  * page aging and the (mistaken) reclaim of hot pages, but the
0406  * chance of that should be relatively low. ]
0407  *
0408  * So as a performance optimization don't flush the TLB when
0409  * clearing the accessed bit, it will eventually be flushed by
0410  * a context switch or a VM operation anyway. [ In the rare
0411  * event of it not getting flushed for a long time the delay
0412  * shouldn't really matter because there's no real memory
0413  * pressure for swapout to react to. ]
0414  */
0415 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
0416 #define ptep_clear_flush_young ptep_test_and_clear_young
0417 
0418 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
0419 #define pmdp_clear_flush_young pmdp_test_and_clear_young
0420 
0421 static inline int __pte_write(pte_t pte)
0422 {
0423     return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
0424 }
0425 
0426 #ifdef CONFIG_NUMA_BALANCING
0427 #define pte_savedwrite pte_savedwrite
0428 static inline bool pte_savedwrite(pte_t pte)
0429 {
0430     /*
0431      * Saved write ptes are prot none ptes that doesn't have
0432      * privileged bit sit. We mark prot none as one which has
0433      * present and pviliged bit set and RWX cleared. To mark
0434      * protnone which used to have _PAGE_WRITE set we clear
0435      * the privileged bit.
0436      */
0437     return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
0438 }
0439 #else
0440 #define pte_savedwrite pte_savedwrite
0441 static inline bool pte_savedwrite(pte_t pte)
0442 {
0443     return false;
0444 }
0445 #endif
0446 
0447 static inline int pte_write(pte_t pte)
0448 {
0449     return __pte_write(pte) || pte_savedwrite(pte);
0450 }
0451 
0452 static inline int pte_read(pte_t pte)
0453 {
0454     return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
0455 }
0456 
0457 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
0458 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
0459                       pte_t *ptep)
0460 {
0461     if (__pte_write(*ptep))
0462         pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
0463     else if (unlikely(pte_savedwrite(*ptep)))
0464         pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
0465 }
0466 
0467 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
0468 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
0469                        unsigned long addr, pte_t *ptep)
0470 {
0471     /*
0472      * We should not find protnone for hugetlb, but this complete the
0473      * interface.
0474      */
0475     if (__pte_write(*ptep))
0476         pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
0477     else if (unlikely(pte_savedwrite(*ptep)))
0478         pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
0479 }
0480 
0481 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
0482 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
0483                        unsigned long addr, pte_t *ptep)
0484 {
0485     unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
0486     return __pte(old);
0487 }
0488 
0489 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
0490 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
0491                         unsigned long addr,
0492                         pte_t *ptep, int full)
0493 {
0494     if (full && radix_enabled()) {
0495         /*
0496          * We know that this is a full mm pte clear and
0497          * hence can be sure there is no parallel set_pte.
0498          */
0499         return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
0500     }
0501     return ptep_get_and_clear(mm, addr, ptep);
0502 }
0503 
0504 
0505 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
0506                  pte_t * ptep)
0507 {
0508     pte_update(mm, addr, ptep, ~0UL, 0, 0);
0509 }
0510 
0511 static inline int pte_dirty(pte_t pte)
0512 {
0513     return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
0514 }
0515 
0516 static inline int pte_young(pte_t pte)
0517 {
0518     return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
0519 }
0520 
0521 static inline int pte_special(pte_t pte)
0522 {
0523     return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
0524 }
0525 
0526 static inline bool pte_exec(pte_t pte)
0527 {
0528     return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
0529 }
0530 
0531 
0532 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
0533 static inline bool pte_soft_dirty(pte_t pte)
0534 {
0535     return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
0536 }
0537 
0538 static inline pte_t pte_mksoft_dirty(pte_t pte)
0539 {
0540     return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
0541 }
0542 
0543 static inline pte_t pte_clear_soft_dirty(pte_t pte)
0544 {
0545     return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
0546 }
0547 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
0548 
0549 #ifdef CONFIG_NUMA_BALANCING
0550 static inline int pte_protnone(pte_t pte)
0551 {
0552     return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
0553         cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
0554 }
0555 
0556 #define pte_mk_savedwrite pte_mk_savedwrite
0557 static inline pte_t pte_mk_savedwrite(pte_t pte)
0558 {
0559     /*
0560      * Used by Autonuma subsystem to preserve the write bit
0561      * while marking the pte PROT_NONE. Only allow this
0562      * on PROT_NONE pte
0563      */
0564     VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
0565           cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
0566     return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
0567 }
0568 
0569 #define pte_clear_savedwrite pte_clear_savedwrite
0570 static inline pte_t pte_clear_savedwrite(pte_t pte)
0571 {
0572     /*
0573      * Used by KSM subsystem to make a protnone pte readonly.
0574      */
0575     VM_BUG_ON(!pte_protnone(pte));
0576     return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
0577 }
0578 #else
0579 #define pte_clear_savedwrite pte_clear_savedwrite
0580 static inline pte_t pte_clear_savedwrite(pte_t pte)
0581 {
0582     VM_WARN_ON(1);
0583     return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
0584 }
0585 #endif /* CONFIG_NUMA_BALANCING */
0586 
0587 static inline bool pte_hw_valid(pte_t pte)
0588 {
0589     return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
0590         cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
0591 }
0592 
0593 static inline int pte_present(pte_t pte)
0594 {
0595     /*
0596      * A pte is considerent present if _PAGE_PRESENT is set.
0597      * We also need to consider the pte present which is marked
0598      * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
0599      * if we find _PAGE_PRESENT cleared.
0600      */
0601 
0602     if (pte_hw_valid(pte))
0603         return true;
0604     return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
0605         cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
0606 }
0607 
0608 #ifdef CONFIG_PPC_MEM_KEYS
0609 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
0610 #else
0611 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
0612 {
0613     return true;
0614 }
0615 #endif /* CONFIG_PPC_MEM_KEYS */
0616 
0617 static inline bool pte_user(pte_t pte)
0618 {
0619     return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
0620 }
0621 
0622 #define pte_access_permitted pte_access_permitted
0623 static inline bool pte_access_permitted(pte_t pte, bool write)
0624 {
0625     /*
0626      * _PAGE_READ is needed for any access and will be
0627      * cleared for PROT_NONE
0628      */
0629     if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
0630         return false;
0631 
0632     if (write && !pte_write(pte))
0633         return false;
0634 
0635     return arch_pte_access_permitted(pte_val(pte), write, 0);
0636 }
0637 
0638 /*
0639  * Conversion functions: convert a page and protection to a page entry,
0640  * and a page entry and page directory to the page they refer to.
0641  *
0642  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
0643  * long for now.
0644  */
0645 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
0646 {
0647     VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
0648     VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
0649 
0650     return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
0651 }
0652 
0653 static inline unsigned long pte_pfn(pte_t pte)
0654 {
0655     return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
0656 }
0657 
0658 /* Generic modifiers for PTE bits */
0659 static inline pte_t pte_wrprotect(pte_t pte)
0660 {
0661     if (unlikely(pte_savedwrite(pte)))
0662         return pte_clear_savedwrite(pte);
0663     return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
0664 }
0665 
0666 static inline pte_t pte_exprotect(pte_t pte)
0667 {
0668     return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
0669 }
0670 
0671 static inline pte_t pte_mkclean(pte_t pte)
0672 {
0673     return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
0674 }
0675 
0676 static inline pte_t pte_mkold(pte_t pte)
0677 {
0678     return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
0679 }
0680 
0681 static inline pte_t pte_mkexec(pte_t pte)
0682 {
0683     return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
0684 }
0685 
0686 static inline pte_t pte_mkwrite(pte_t pte)
0687 {
0688     /*
0689      * write implies read, hence set both
0690      */
0691     return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
0692 }
0693 
0694 static inline pte_t pte_mkdirty(pte_t pte)
0695 {
0696     return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
0697 }
0698 
0699 static inline pte_t pte_mkyoung(pte_t pte)
0700 {
0701     return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
0702 }
0703 
0704 static inline pte_t pte_mkspecial(pte_t pte)
0705 {
0706     return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
0707 }
0708 
0709 static inline pte_t pte_mkhuge(pte_t pte)
0710 {
0711     return pte;
0712 }
0713 
0714 static inline pte_t pte_mkdevmap(pte_t pte)
0715 {
0716     return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
0717 }
0718 
0719 static inline pte_t pte_mkprivileged(pte_t pte)
0720 {
0721     return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
0722 }
0723 
0724 static inline pte_t pte_mkuser(pte_t pte)
0725 {
0726     return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
0727 }
0728 
0729 /*
0730  * This is potentially called with a pmd as the argument, in which case it's not
0731  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
0732  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
0733  * use in page directory entries (ie. non-ptes).
0734  */
0735 static inline int pte_devmap(pte_t pte)
0736 {
0737     u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
0738 
0739     return (pte_raw(pte) & mask) == mask;
0740 }
0741 
0742 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
0743 {
0744     /* FIXME!! check whether this need to be a conditional */
0745     return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
0746              cpu_to_be64(pgprot_val(newprot)));
0747 }
0748 
0749 /* Encode and de-code a swap entry */
0750 #define MAX_SWAPFILES_CHECK() do { \
0751     BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
0752     /*                          \
0753      * Don't have overlapping bits with _PAGE_HPTEFLAGS \
0754      * We filter HPTEFLAGS on set_pte.          \
0755      */                         \
0756     BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
0757     BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);   \
0758     BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE);    \
0759     } while (0)
0760 
0761 #define SWP_TYPE_BITS 5
0762 #define SWP_TYPE_MASK       ((1UL << SWP_TYPE_BITS) - 1)
0763 #define __swp_type(x)       ((x).val & SWP_TYPE_MASK)
0764 #define __swp_offset(x)     (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
0765 #define __swp_entry(type, offset)   ((swp_entry_t) { \
0766                 (type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
0767 /*
0768  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
0769  * swap type and offset we get from swap and convert that to pte to find a
0770  * matching pte in linux page table.
0771  * Clear bits not found in swap entries here.
0772  */
0773 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
0774 #define __swp_entry_to_pte(x)   __pte((x).val | _PAGE_PTE)
0775 #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd)))
0776 #define __swp_entry_to_pmd(x)   (pte_pmd(__swp_entry_to_pte(x)))
0777 
0778 #ifdef CONFIG_MEM_SOFT_DIRTY
0779 #define _PAGE_SWP_SOFT_DIRTY    _PAGE_SOFT_DIRTY
0780 #else
0781 #define _PAGE_SWP_SOFT_DIRTY    0UL
0782 #endif /* CONFIG_MEM_SOFT_DIRTY */
0783 
0784 #define _PAGE_SWP_EXCLUSIVE _PAGE_NON_IDEMPOTENT
0785 
0786 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
0787 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
0788 {
0789     return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
0790 }
0791 
0792 static inline bool pte_swp_soft_dirty(pte_t pte)
0793 {
0794     return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
0795 }
0796 
0797 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
0798 {
0799     return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
0800 }
0801 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
0802 
0803 #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
0804 static inline pte_t pte_swp_mkexclusive(pte_t pte)
0805 {
0806     return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
0807 }
0808 
0809 static inline int pte_swp_exclusive(pte_t pte)
0810 {
0811     return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
0812 }
0813 
0814 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
0815 {
0816     return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
0817 }
0818 
0819 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
0820 {
0821     /*
0822      * This check for _PAGE_RWX and _PAGE_PRESENT bits
0823      */
0824     if (access & ~ptev)
0825         return false;
0826     /*
0827      * This check for access to privilege space
0828      */
0829     if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
0830         return false;
0831 
0832     return true;
0833 }
0834 /*
0835  * Generic functions with hash/radix callbacks
0836  */
0837 
0838 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
0839                        pte_t *ptep, pte_t entry,
0840                        unsigned long address,
0841                        int psize)
0842 {
0843     if (radix_enabled())
0844         return radix__ptep_set_access_flags(vma, ptep, entry,
0845                             address, psize);
0846     return hash__ptep_set_access_flags(ptep, entry);
0847 }
0848 
0849 #define __HAVE_ARCH_PTE_SAME
0850 static inline int pte_same(pte_t pte_a, pte_t pte_b)
0851 {
0852     if (radix_enabled())
0853         return radix__pte_same(pte_a, pte_b);
0854     return hash__pte_same(pte_a, pte_b);
0855 }
0856 
0857 static inline int pte_none(pte_t pte)
0858 {
0859     if (radix_enabled())
0860         return radix__pte_none(pte);
0861     return hash__pte_none(pte);
0862 }
0863 
0864 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
0865                 pte_t *ptep, pte_t pte, int percpu)
0866 {
0867 
0868     VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
0869     /*
0870      * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
0871      * in all the callers.
0872      */
0873     pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
0874 
0875     if (radix_enabled())
0876         return radix__set_pte_at(mm, addr, ptep, pte, percpu);
0877     return hash__set_pte_at(mm, addr, ptep, pte, percpu);
0878 }
0879 
0880 #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
0881 
0882 #define pgprot_noncached pgprot_noncached
0883 static inline pgprot_t pgprot_noncached(pgprot_t prot)
0884 {
0885     return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
0886             _PAGE_NON_IDEMPOTENT);
0887 }
0888 
0889 #define pgprot_noncached_wc pgprot_noncached_wc
0890 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
0891 {
0892     return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
0893             _PAGE_TOLERANT);
0894 }
0895 
0896 #define pgprot_cached pgprot_cached
0897 static inline pgprot_t pgprot_cached(pgprot_t prot)
0898 {
0899     return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
0900 }
0901 
0902 #define pgprot_writecombine pgprot_writecombine
0903 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
0904 {
0905     return pgprot_noncached_wc(prot);
0906 }
0907 /*
0908  * check a pte mapping have cache inhibited property
0909  */
0910 static inline bool pte_ci(pte_t pte)
0911 {
0912     __be64 pte_v = pte_raw(pte);
0913 
0914     if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
0915         ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
0916         return true;
0917     return false;
0918 }
0919 
0920 static inline void pmd_clear(pmd_t *pmdp)
0921 {
0922     if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
0923         /*
0924          * Don't use this if we can possibly have a hash page table
0925          * entry mapping this.
0926          */
0927         WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
0928     }
0929     *pmdp = __pmd(0);
0930 }
0931 
0932 static inline int pmd_none(pmd_t pmd)
0933 {
0934     return !pmd_raw(pmd);
0935 }
0936 
0937 static inline int pmd_present(pmd_t pmd)
0938 {
0939     /*
0940      * A pmd is considerent present if _PAGE_PRESENT is set.
0941      * We also need to consider the pmd present which is marked
0942      * invalid during a split. Hence we look for _PAGE_INVALID
0943      * if we find _PAGE_PRESENT cleared.
0944      */
0945     if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
0946         return true;
0947 
0948     return false;
0949 }
0950 
0951 static inline int pmd_is_serializing(pmd_t pmd)
0952 {
0953     /*
0954      * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
0955      * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
0956      *
0957      * This condition may also occur when flushing a pmd while flushing
0958      * it (see ptep_modify_prot_start), so callers must ensure this
0959      * case is fine as well.
0960      */
0961     if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
0962                         cpu_to_be64(_PAGE_INVALID))
0963         return true;
0964 
0965     return false;
0966 }
0967 
0968 static inline int pmd_bad(pmd_t pmd)
0969 {
0970     if (radix_enabled())
0971         return radix__pmd_bad(pmd);
0972     return hash__pmd_bad(pmd);
0973 }
0974 
0975 static inline void pud_clear(pud_t *pudp)
0976 {
0977     if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
0978         /*
0979          * Don't use this if we can possibly have a hash page table
0980          * entry mapping this.
0981          */
0982         WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
0983     }
0984     *pudp = __pud(0);
0985 }
0986 
0987 static inline int pud_none(pud_t pud)
0988 {
0989     return !pud_raw(pud);
0990 }
0991 
0992 static inline int pud_present(pud_t pud)
0993 {
0994     return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
0995 }
0996 
0997 extern struct page *pud_page(pud_t pud);
0998 extern struct page *pmd_page(pmd_t pmd);
0999 static inline pte_t pud_pte(pud_t pud)
1000 {
1001     return __pte_raw(pud_raw(pud));
1002 }
1003 
1004 static inline pud_t pte_pud(pte_t pte)
1005 {
1006     return __pud_raw(pte_raw(pte));
1007 }
1008 #define pud_write(pud)      pte_write(pud_pte(pud))
1009 
1010 static inline int pud_bad(pud_t pud)
1011 {
1012     if (radix_enabled())
1013         return radix__pud_bad(pud);
1014     return hash__pud_bad(pud);
1015 }
1016 
1017 #define pud_access_permitted pud_access_permitted
1018 static inline bool pud_access_permitted(pud_t pud, bool write)
1019 {
1020     return pte_access_permitted(pud_pte(pud), write);
1021 }
1022 
1023 #define __p4d_raw(x)    ((p4d_t) { __pgd_raw(x) })
1024 static inline __be64 p4d_raw(p4d_t x)
1025 {
1026     return pgd_raw(x.pgd);
1027 }
1028 
1029 #define p4d_write(p4d)      pte_write(p4d_pte(p4d))
1030 
1031 static inline void p4d_clear(p4d_t *p4dp)
1032 {
1033     *p4dp = __p4d(0);
1034 }
1035 
1036 static inline int p4d_none(p4d_t p4d)
1037 {
1038     return !p4d_raw(p4d);
1039 }
1040 
1041 static inline int p4d_present(p4d_t p4d)
1042 {
1043     return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
1044 }
1045 
1046 static inline pte_t p4d_pte(p4d_t p4d)
1047 {
1048     return __pte_raw(p4d_raw(p4d));
1049 }
1050 
1051 static inline p4d_t pte_p4d(pte_t pte)
1052 {
1053     return __p4d_raw(pte_raw(pte));
1054 }
1055 
1056 static inline int p4d_bad(p4d_t p4d)
1057 {
1058     if (radix_enabled())
1059         return radix__p4d_bad(p4d);
1060     return hash__p4d_bad(p4d);
1061 }
1062 
1063 #define p4d_access_permitted p4d_access_permitted
1064 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1065 {
1066     return pte_access_permitted(p4d_pte(p4d), write);
1067 }
1068 
1069 extern struct page *p4d_page(p4d_t p4d);
1070 
1071 /* Pointers in the page table tree are physical addresses */
1072 #define __pgtable_ptr_val(ptr)  __pa(ptr)
1073 
1074 static inline pud_t *p4d_pgtable(p4d_t p4d)
1075 {
1076     return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
1077 }
1078 
1079 static inline pmd_t *pud_pgtable(pud_t pud)
1080 {
1081     return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
1082 }
1083 
1084 #define pte_ERROR(e) \
1085     pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1086 #define pmd_ERROR(e) \
1087     pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1088 #define pud_ERROR(e) \
1089     pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1090 #define pgd_ERROR(e) \
1091     pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1092 
1093 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1094 {
1095     if (radix_enabled()) {
1096 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1097         unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1098         WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1099 #endif
1100         return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1101     }
1102     return hash__map_kernel_page(ea, pa, prot);
1103 }
1104 
1105 void unmap_kernel_page(unsigned long va);
1106 
1107 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1108                            unsigned long page_size,
1109                            unsigned long phys)
1110 {
1111     if (radix_enabled())
1112         return radix__vmemmap_create_mapping(start, page_size, phys);
1113     return hash__vmemmap_create_mapping(start, page_size, phys);
1114 }
1115 
1116 #ifdef CONFIG_MEMORY_HOTPLUG
1117 static inline void vmemmap_remove_mapping(unsigned long start,
1118                       unsigned long page_size)
1119 {
1120     if (radix_enabled())
1121         return radix__vmemmap_remove_mapping(start, page_size);
1122     return hash__vmemmap_remove_mapping(start, page_size);
1123 }
1124 #endif
1125 
1126 #ifdef CONFIG_DEBUG_PAGEALLOC
1127 static inline void __kernel_map_pages(struct page *page, int numpages, int enable)
1128 {
1129     if (radix_enabled())
1130         radix__kernel_map_pages(page, numpages, enable);
1131     else
1132         hash__kernel_map_pages(page, numpages, enable);
1133 }
1134 #endif
1135 
1136 static inline pte_t pmd_pte(pmd_t pmd)
1137 {
1138     return __pte_raw(pmd_raw(pmd));
1139 }
1140 
1141 static inline pmd_t pte_pmd(pte_t pte)
1142 {
1143     return __pmd_raw(pte_raw(pte));
1144 }
1145 
1146 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1147 {
1148     return (pte_t *)pmd;
1149 }
1150 #define pmd_pfn(pmd)        pte_pfn(pmd_pte(pmd))
1151 #define pmd_dirty(pmd)      pte_dirty(pmd_pte(pmd))
1152 #define pmd_young(pmd)      pte_young(pmd_pte(pmd))
1153 #define pmd_mkold(pmd)      pte_pmd(pte_mkold(pmd_pte(pmd)))
1154 #define pmd_wrprotect(pmd)  pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1155 #define pmd_mkdirty(pmd)    pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1156 #define pmd_mkclean(pmd)    pte_pmd(pte_mkclean(pmd_pte(pmd)))
1157 #define pmd_mkyoung(pmd)    pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1158 #define pmd_mkwrite(pmd)    pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1159 #define pmd_mk_savedwrite(pmd)  pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1160 #define pmd_clear_savedwrite(pmd)   pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1161 
1162 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1163 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1164 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1165 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1166 
1167 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1168 #define pmd_swp_mksoft_dirty(pmd)   pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1169 #define pmd_swp_soft_dirty(pmd)     pte_swp_soft_dirty(pmd_pte(pmd))
1170 #define pmd_swp_clear_soft_dirty(pmd)   pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1171 #endif
1172 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1173 
1174 #ifdef CONFIG_NUMA_BALANCING
1175 static inline int pmd_protnone(pmd_t pmd)
1176 {
1177     return pte_protnone(pmd_pte(pmd));
1178 }
1179 #endif /* CONFIG_NUMA_BALANCING */
1180 
1181 #define pmd_write(pmd)      pte_write(pmd_pte(pmd))
1182 #define __pmd_write(pmd)    __pte_write(pmd_pte(pmd))
1183 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
1184 
1185 #define pmd_access_permitted pmd_access_permitted
1186 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1187 {
1188     /*
1189      * pmdp_invalidate sets this combination (which is not caught by
1190      * !pte_present() check in pte_access_permitted), to prevent
1191      * lock-free lookups, as part of the serialize_against_pte_lookup()
1192      * synchronisation.
1193      *
1194      * This also catches the case where the PTE's hardware PRESENT bit is
1195      * cleared while TLB is flushed, which is suboptimal but should not
1196      * be frequent.
1197      */
1198     if (pmd_is_serializing(pmd))
1199         return false;
1200 
1201     return pte_access_permitted(pmd_pte(pmd), write);
1202 }
1203 
1204 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1205 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1206 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1207 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1208 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1209                pmd_t *pmdp, pmd_t pmd);
1210 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1211                     unsigned long addr, pmd_t *pmd)
1212 {
1213 }
1214 
1215 extern int hash__has_transparent_hugepage(void);
1216 static inline int has_transparent_hugepage(void)
1217 {
1218     if (radix_enabled())
1219         return radix__has_transparent_hugepage();
1220     return hash__has_transparent_hugepage();
1221 }
1222 #define has_transparent_hugepage has_transparent_hugepage
1223 
1224 static inline unsigned long
1225 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1226             unsigned long clr, unsigned long set)
1227 {
1228     if (radix_enabled())
1229         return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1230     return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1231 }
1232 
1233 /*
1234  * returns true for pmd migration entries, THP, devmap, hugetlb
1235  * But compile time dependent on THP config
1236  */
1237 static inline int pmd_large(pmd_t pmd)
1238 {
1239     return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1240 }
1241 
1242 /*
1243  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1244  * the below will work for radix too
1245  */
1246 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1247                           unsigned long addr, pmd_t *pmdp)
1248 {
1249     unsigned long old;
1250 
1251     if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1252         return 0;
1253     old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1254     return ((old & _PAGE_ACCESSED) != 0);
1255 }
1256 
1257 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1258 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1259                       pmd_t *pmdp)
1260 {
1261     if (__pmd_write((*pmdp)))
1262         pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1263     else if (unlikely(pmd_savedwrite(*pmdp)))
1264         pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1265 }
1266 
1267 /*
1268  * Only returns true for a THP. False for pmd migration entry.
1269  * We also need to return true when we come across a pte that
1270  * in between a thp split. While splitting THP, we mark the pmd
1271  * invalid (pmdp_invalidate()) before we set it with pte page
1272  * address. A pmd_trans_huge() check against a pmd entry during that time
1273  * should return true.
1274  * We should not call this on a hugetlb entry. We should check for HugeTLB
1275  * entry using vma->vm_flags
1276  * The page table walk rule is explained in Documentation/mm/transhuge.rst
1277  */
1278 static inline int pmd_trans_huge(pmd_t pmd)
1279 {
1280     if (!pmd_present(pmd))
1281         return false;
1282 
1283     if (radix_enabled())
1284         return radix__pmd_trans_huge(pmd);
1285     return hash__pmd_trans_huge(pmd);
1286 }
1287 
1288 #define __HAVE_ARCH_PMD_SAME
1289 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1290 {
1291     if (radix_enabled())
1292         return radix__pmd_same(pmd_a, pmd_b);
1293     return hash__pmd_same(pmd_a, pmd_b);
1294 }
1295 
1296 static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1297 {
1298     if (radix_enabled())
1299         return radix__pmd_mkhuge(pmd);
1300     return hash__pmd_mkhuge(pmd);
1301 }
1302 
1303 /*
1304  * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1305  */
1306 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1307 {
1308 #ifdef CONFIG_DEBUG_VM
1309     if (radix_enabled())
1310         WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1311     else
1312         WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1313             cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1314 #endif
1315     return pmd;
1316 }
1317 
1318 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1319 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1320                  unsigned long address, pmd_t *pmdp,
1321                  pmd_t entry, int dirty);
1322 
1323 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1324 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1325                      unsigned long address, pmd_t *pmdp);
1326 
1327 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1328 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1329                         unsigned long addr, pmd_t *pmdp)
1330 {
1331     if (radix_enabled())
1332         return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1333     return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1334 }
1335 
1336 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1337                     unsigned long address, pmd_t *pmdp)
1338 {
1339     if (radix_enabled())
1340         return radix__pmdp_collapse_flush(vma, address, pmdp);
1341     return hash__pmdp_collapse_flush(vma, address, pmdp);
1342 }
1343 #define pmdp_collapse_flush pmdp_collapse_flush
1344 
1345 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1346 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1347                    unsigned long addr,
1348                    pmd_t *pmdp, int full);
1349 
1350 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1351 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1352                           pmd_t *pmdp, pgtable_t pgtable)
1353 {
1354     if (radix_enabled())
1355         return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1356     return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1357 }
1358 
1359 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1360 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1361                             pmd_t *pmdp)
1362 {
1363     if (radix_enabled())
1364         return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1365     return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1366 }
1367 
1368 #define __HAVE_ARCH_PMDP_INVALIDATE
1369 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1370                  pmd_t *pmdp);
1371 
1372 #define pmd_move_must_withdraw pmd_move_must_withdraw
1373 struct spinlock;
1374 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1375                   struct spinlock *old_pmd_ptl,
1376                   struct vm_area_struct *vma);
1377 /*
1378  * Hash translation mode use the deposited table to store hash pte
1379  * slot information.
1380  */
1381 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1382 static inline bool arch_needs_pgtable_deposit(void)
1383 {
1384     if (radix_enabled())
1385         return false;
1386     return true;
1387 }
1388 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1389 
1390 
1391 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1392 {
1393     if (radix_enabled())
1394         return radix__pmd_mkdevmap(pmd);
1395     return hash__pmd_mkdevmap(pmd);
1396 }
1397 
1398 static inline int pmd_devmap(pmd_t pmd)
1399 {
1400     return pte_devmap(pmd_pte(pmd));
1401 }
1402 
1403 static inline int pud_devmap(pud_t pud)
1404 {
1405     return 0;
1406 }
1407 
1408 static inline int pgd_devmap(pgd_t pgd)
1409 {
1410     return 0;
1411 }
1412 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1413 
1414 static inline int pud_pfn(pud_t pud)
1415 {
1416     /*
1417      * Currently all calls to pud_pfn() are gated around a pud_devmap()
1418      * check so this should never be used. If it grows another user we
1419      * want to know about it.
1420      */
1421     BUILD_BUG();
1422     return 0;
1423 }
1424 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1425 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1426 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1427                  pte_t *, pte_t, pte_t);
1428 
1429 /*
1430  * Returns true for a R -> RW upgrade of pte
1431  */
1432 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1433 {
1434     if (!(old_val & _PAGE_READ))
1435         return false;
1436 
1437     if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1438         return true;
1439 
1440     return false;
1441 }
1442 
1443 /*
1444  * Like pmd_huge() and pmd_large(), but works regardless of config options
1445  */
1446 #define pmd_is_leaf pmd_is_leaf
1447 #define pmd_leaf pmd_is_leaf
1448 static inline bool pmd_is_leaf(pmd_t pmd)
1449 {
1450     return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1451 }
1452 
1453 #define pud_is_leaf pud_is_leaf
1454 #define pud_leaf pud_is_leaf
1455 static inline bool pud_is_leaf(pud_t pud)
1456 {
1457     return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1458 }
1459 
1460 #define p4d_is_leaf p4d_is_leaf
1461 #define p4d_leaf p4d_is_leaf
1462 static inline bool p4d_is_leaf(p4d_t p4d)
1463 {
1464     return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1465 }
1466 
1467 #endif /* __ASSEMBLY__ */
1468 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */