Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0-or-later */
0002 #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
0003 #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
0004 /*
0005  * PowerPC64 memory management structures
0006  *
0007  * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
0008  *   PPC64 rework.
0009  */
0010 
0011 #include <asm/page.h>
0012 #include <asm/bug.h>
0013 #include <asm/asm-const.h>
0014 
0015 /*
0016  * This is necessary to get the definition of PGTABLE_RANGE which we
0017  * need for various slices related matters. Note that this isn't the
0018  * complete pgtable.h but only a portion of it.
0019  */
0020 #include <asm/book3s/64/pgtable.h>
0021 #include <asm/book3s/64/slice.h>
0022 #include <asm/task_size_64.h>
0023 #include <asm/cpu_has_feature.h>
0024 
0025 /*
0026  * SLB
0027  */
0028 
0029 #define SLB_NUM_BOLTED      2
0030 #define SLB_CACHE_ENTRIES   8
0031 #define SLB_MIN_SIZE        32
0032 
0033 /* Bits in the SLB ESID word */
0034 #define SLB_ESID_V      ASM_CONST(0x0000000008000000) /* valid */
0035 
0036 /* Bits in the SLB VSID word */
0037 #define SLB_VSID_SHIFT      12
0038 #define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT
0039 #define SLB_VSID_SHIFT_1T   24
0040 #define SLB_VSID_SSIZE_SHIFT    62
0041 #define SLB_VSID_B      ASM_CONST(0xc000000000000000)
0042 #define SLB_VSID_B_256M     ASM_CONST(0x0000000000000000)
0043 #define SLB_VSID_B_1T       ASM_CONST(0x4000000000000000)
0044 #define SLB_VSID_KS     ASM_CONST(0x0000000000000800)
0045 #define SLB_VSID_KP     ASM_CONST(0x0000000000000400)
0046 #define SLB_VSID_N      ASM_CONST(0x0000000000000200) /* no-execute */
0047 #define SLB_VSID_L      ASM_CONST(0x0000000000000100)
0048 #define SLB_VSID_C      ASM_CONST(0x0000000000000080) /* class */
0049 #define SLB_VSID_LP     ASM_CONST(0x0000000000000030)
0050 #define SLB_VSID_LP_00      ASM_CONST(0x0000000000000000)
0051 #define SLB_VSID_LP_01      ASM_CONST(0x0000000000000010)
0052 #define SLB_VSID_LP_10      ASM_CONST(0x0000000000000020)
0053 #define SLB_VSID_LP_11      ASM_CONST(0x0000000000000030)
0054 #define SLB_VSID_LLP        (SLB_VSID_L|SLB_VSID_LP)
0055 
0056 #define SLB_VSID_KERNEL     (SLB_VSID_KP)
0057 #define SLB_VSID_USER       (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
0058 
0059 #define SLBIE_C         (0x08000000)
0060 #define SLBIE_SSIZE_SHIFT   25
0061 
0062 /*
0063  * Hash table
0064  */
0065 
0066 #define HPTES_PER_GROUP 8
0067 
0068 #define HPTE_V_SSIZE_SHIFT  62
0069 #define HPTE_V_AVPN_SHIFT   7
0070 #define HPTE_V_COMMON_BITS  ASM_CONST(0x000fffffffffffff)
0071 #define HPTE_V_AVPN     ASM_CONST(0x3fffffffffffff80)
0072 #define HPTE_V_AVPN_3_0     ASM_CONST(0x000fffffffffff80)
0073 #define HPTE_V_AVPN_VAL(x)  (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
0074 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
0075 #define HPTE_V_BOLTED       ASM_CONST(0x0000000000000010)
0076 #define HPTE_V_LOCK     ASM_CONST(0x0000000000000008)
0077 #define HPTE_V_LARGE        ASM_CONST(0x0000000000000004)
0078 #define HPTE_V_SECONDARY    ASM_CONST(0x0000000000000002)
0079 #define HPTE_V_VALID        ASM_CONST(0x0000000000000001)
0080 
0081 /*
0082  * ISA 3.0 has a different HPTE format.
0083  */
0084 #define HPTE_R_3_0_SSIZE_SHIFT  58
0085 #define HPTE_R_3_0_SSIZE_MASK   (3ull << HPTE_R_3_0_SSIZE_SHIFT)
0086 #define HPTE_R_PP0      ASM_CONST(0x8000000000000000)
0087 #define HPTE_R_TS       ASM_CONST(0x4000000000000000)
0088 #define HPTE_R_KEY_HI       ASM_CONST(0x3000000000000000)
0089 #define HPTE_R_KEY_BIT4     ASM_CONST(0x2000000000000000)
0090 #define HPTE_R_KEY_BIT3     ASM_CONST(0x1000000000000000)
0091 #define HPTE_R_RPN_SHIFT    12
0092 #define HPTE_R_RPN      ASM_CONST(0x0ffffffffffff000)
0093 #define HPTE_R_RPN_3_0      ASM_CONST(0x01fffffffffff000)
0094 #define HPTE_R_PP       ASM_CONST(0x0000000000000003)
0095 #define HPTE_R_PPP      ASM_CONST(0x8000000000000003)
0096 #define HPTE_R_N        ASM_CONST(0x0000000000000004)
0097 #define HPTE_R_G        ASM_CONST(0x0000000000000008)
0098 #define HPTE_R_M        ASM_CONST(0x0000000000000010)
0099 #define HPTE_R_I        ASM_CONST(0x0000000000000020)
0100 #define HPTE_R_W        ASM_CONST(0x0000000000000040)
0101 #define HPTE_R_WIMG     ASM_CONST(0x0000000000000078)
0102 #define HPTE_R_C        ASM_CONST(0x0000000000000080)
0103 #define HPTE_R_R        ASM_CONST(0x0000000000000100)
0104 #define HPTE_R_KEY_LO       ASM_CONST(0x0000000000000e00)
0105 #define HPTE_R_KEY_BIT2     ASM_CONST(0x0000000000000800)
0106 #define HPTE_R_KEY_BIT1     ASM_CONST(0x0000000000000400)
0107 #define HPTE_R_KEY_BIT0     ASM_CONST(0x0000000000000200)
0108 #define HPTE_R_KEY      (HPTE_R_KEY_LO | HPTE_R_KEY_HI)
0109 
0110 #define HPTE_V_1TB_SEG      ASM_CONST(0x4000000000000000)
0111 #define HPTE_V_VRMA_MASK    ASM_CONST(0x4001ffffff000000)
0112 
0113 /* Values for PP (assumes Ks=0, Kp=1) */
0114 #define PP_RWXX 0   /* Supervisor read/write, User none */
0115 #define PP_RWRX 1   /* Supervisor read/write, User read */
0116 #define PP_RWRW 2   /* Supervisor read/write, User read/write */
0117 #define PP_RXRX 3   /* Supervisor read,       User read */
0118 #define PP_RXXX (HPTE_R_PP0 | 2)    /* Supervisor read, user none */
0119 
0120 /* Fields for tlbiel instruction in architecture 2.06 */
0121 #define TLBIEL_INVAL_SEL_MASK   0xc00   /* invalidation selector */
0122 #define  TLBIEL_INVAL_PAGE  0x000   /* invalidate a single page */
0123 #define  TLBIEL_INVAL_SET_LPID  0x800   /* invalidate a set for current LPID */
0124 #define  TLBIEL_INVAL_SET   0xc00   /* invalidate a set for all LPIDs */
0125 #define TLBIEL_INVAL_SET_MASK   0xfff000    /* set number to inval. */
0126 #define TLBIEL_INVAL_SET_SHIFT  12
0127 
0128 #define POWER7_TLB_SETS     128 /* # sets in POWER7 TLB */
0129 #define POWER8_TLB_SETS     512 /* # sets in POWER8 TLB */
0130 #define POWER9_TLB_SETS_HASH    256 /* # sets in POWER9 TLB Hash mode */
0131 #define POWER9_TLB_SETS_RADIX   128 /* # sets in POWER9 TLB Radix mode */
0132 
0133 #ifndef __ASSEMBLY__
0134 
0135 struct mmu_hash_ops {
0136     void            (*hpte_invalidate)(unsigned long slot,
0137                        unsigned long vpn,
0138                        int bpsize, int apsize,
0139                        int ssize, int local);
0140     long        (*hpte_updatepp)(unsigned long slot,
0141                      unsigned long newpp,
0142                      unsigned long vpn,
0143                      int bpsize, int apsize,
0144                      int ssize, unsigned long flags);
0145     void            (*hpte_updateboltedpp)(unsigned long newpp,
0146                            unsigned long ea,
0147                            int psize, int ssize);
0148     long        (*hpte_insert)(unsigned long hpte_group,
0149                        unsigned long vpn,
0150                        unsigned long prpn,
0151                        unsigned long rflags,
0152                        unsigned long vflags,
0153                        int psize, int apsize,
0154                        int ssize);
0155     long        (*hpte_remove)(unsigned long hpte_group);
0156     int             (*hpte_removebolted)(unsigned long ea,
0157                          int psize, int ssize);
0158     void        (*flush_hash_range)(unsigned long number, int local);
0159     void        (*hugepage_invalidate)(unsigned long vsid,
0160                            unsigned long addr,
0161                            unsigned char *hpte_slot_array,
0162                            int psize, int ssize, int local);
0163     int     (*resize_hpt)(unsigned long shift);
0164     /*
0165      * Special for kexec.
0166      * To be called in real mode with interrupts disabled. No locks are
0167      * taken as such, concurrent access on pre POWER5 hardware could result
0168      * in a deadlock.
0169      * The linear mapping is destroyed as well.
0170      */
0171     void        (*hpte_clear_all)(void);
0172 };
0173 extern struct mmu_hash_ops mmu_hash_ops;
0174 
0175 struct hash_pte {
0176     __be64 v;
0177     __be64 r;
0178 };
0179 
0180 extern struct hash_pte *htab_address;
0181 extern unsigned long htab_size_bytes;
0182 extern unsigned long htab_hash_mask;
0183 
0184 
0185 static inline int shift_to_mmu_psize(unsigned int shift)
0186 {
0187     int psize;
0188 
0189     for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
0190         if (mmu_psize_defs[psize].shift == shift)
0191             return psize;
0192     return -1;
0193 }
0194 
0195 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
0196 {
0197     if (mmu_psize_defs[mmu_psize].shift)
0198         return mmu_psize_defs[mmu_psize].shift;
0199     BUG();
0200 }
0201 
0202 static inline unsigned int ap_to_shift(unsigned long ap)
0203 {
0204     int psize;
0205 
0206     for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
0207         if (mmu_psize_defs[psize].ap == ap)
0208             return mmu_psize_defs[psize].shift;
0209     }
0210 
0211     return -1;
0212 }
0213 
0214 static inline unsigned long get_sllp_encoding(int psize)
0215 {
0216     unsigned long sllp;
0217 
0218     sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
0219         ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
0220     return sllp;
0221 }
0222 
0223 #endif /* __ASSEMBLY__ */
0224 
0225 /*
0226  * Segment sizes.
0227  * These are the values used by hardware in the B field of
0228  * SLB entries and the first dword of MMU hashtable entries.
0229  * The B field is 2 bits; the values 2 and 3 are unused and reserved.
0230  */
0231 #define MMU_SEGSIZE_256M    0
0232 #define MMU_SEGSIZE_1T      1
0233 
0234 /*
0235  * encode page number shift.
0236  * in order to fit the 78 bit va in a 64 bit variable we shift the va by
0237  * 12 bits. This enable us to address upto 76 bit va.
0238  * For hpt hash from a va we can ignore the page size bits of va and for
0239  * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
0240  * we work in all cases including 4k page size.
0241  */
0242 #define VPN_SHIFT   12
0243 
0244 /*
0245  * HPTE Large Page (LP) details
0246  */
0247 #define LP_SHIFT    12
0248 #define LP_BITS     8
0249 #define LP_MASK(i)  ((0xFF >> (i)) << LP_SHIFT)
0250 
0251 #ifndef __ASSEMBLY__
0252 
0253 static inline int slb_vsid_shift(int ssize)
0254 {
0255     if (ssize == MMU_SEGSIZE_256M)
0256         return SLB_VSID_SHIFT;
0257     return SLB_VSID_SHIFT_1T;
0258 }
0259 
0260 static inline int segment_shift(int ssize)
0261 {
0262     if (ssize == MMU_SEGSIZE_256M)
0263         return SID_SHIFT;
0264     return SID_SHIFT_1T;
0265 }
0266 
0267 /*
0268  * This array is indexed by the LP field of the HPTE second dword.
0269  * Since this field may contain some RPN bits, some entries are
0270  * replicated so that we get the same value irrespective of RPN.
0271  * The top 4 bits are the page size index (MMU_PAGE_*) for the
0272  * actual page size, the bottom 4 bits are the base page size.
0273  */
0274 extern u8 hpte_page_sizes[1 << LP_BITS];
0275 
0276 static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
0277                          bool is_base_size)
0278 {
0279     unsigned int i, lp;
0280 
0281     if (!(h & HPTE_V_LARGE))
0282         return 1ul << 12;
0283 
0284     /* Look at the 8 bit LP value */
0285     lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
0286     i = hpte_page_sizes[lp];
0287     if (!i)
0288         return 0;
0289     if (!is_base_size)
0290         i >>= 4;
0291     return 1ul << mmu_psize_defs[i & 0xf].shift;
0292 }
0293 
0294 static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
0295 {
0296     return __hpte_page_size(h, l, 0);
0297 }
0298 
0299 static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
0300 {
0301     return __hpte_page_size(h, l, 1);
0302 }
0303 
0304 /*
0305  * The current system page and segment sizes
0306  */
0307 extern int mmu_kernel_ssize;
0308 extern int mmu_highuser_ssize;
0309 extern u16 mmu_slb_size;
0310 extern unsigned long tce_alloc_start, tce_alloc_end;
0311 
0312 /*
0313  * If the processor supports 64k normal pages but not 64k cache
0314  * inhibited pages, we have to be prepared to switch processes
0315  * to use 4k pages when they create cache-inhibited mappings.
0316  * If this is the case, mmu_ci_restrictions will be set to 1.
0317  */
0318 extern int mmu_ci_restrictions;
0319 
0320 /*
0321  * This computes the AVPN and B fields of the first dword of a HPTE,
0322  * for use when we want to match an existing PTE.  The bottom 7 bits
0323  * of the returned value are zero.
0324  */
0325 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
0326                          int ssize)
0327 {
0328     unsigned long v;
0329     /*
0330      * The AVA field omits the low-order 23 bits of the 78 bits VA.
0331      * These bits are not needed in the PTE, because the
0332      * low-order b of these bits are part of the byte offset
0333      * into the virtual page and, if b < 23, the high-order
0334      * 23-b of these bits are always used in selecting the
0335      * PTEGs to be searched
0336      */
0337     v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
0338     v <<= HPTE_V_AVPN_SHIFT;
0339     v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
0340     return v;
0341 }
0342 
0343 /*
0344  * ISA v3.0 defines a new HPTE format, which differs from the old
0345  * format in having smaller AVPN and ARPN fields, and the B field
0346  * in the second dword instead of the first.
0347  */
0348 static inline unsigned long hpte_old_to_new_v(unsigned long v)
0349 {
0350     /* trim AVPN, drop B */
0351     return v & HPTE_V_COMMON_BITS;
0352 }
0353 
0354 static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
0355 {
0356     /* move B field from 1st to 2nd dword, trim ARPN */
0357     return (r & ~HPTE_R_3_0_SSIZE_MASK) |
0358         (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
0359 }
0360 
0361 static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
0362 {
0363     /* insert B field */
0364     return (v & HPTE_V_COMMON_BITS) |
0365         ((r & HPTE_R_3_0_SSIZE_MASK) <<
0366          (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
0367 }
0368 
0369 static inline unsigned long hpte_new_to_old_r(unsigned long r)
0370 {
0371     /* clear out B field */
0372     return r & ~HPTE_R_3_0_SSIZE_MASK;
0373 }
0374 
0375 static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)
0376 {
0377     unsigned long hpte_v;
0378 
0379     hpte_v = be64_to_cpu(hptep->v);
0380     if (cpu_has_feature(CPU_FTR_ARCH_300))
0381         hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
0382     return hpte_v;
0383 }
0384 
0385 /*
0386  * This function sets the AVPN and L fields of the HPTE  appropriately
0387  * using the base page size and actual page size.
0388  */
0389 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
0390                       int actual_psize, int ssize)
0391 {
0392     unsigned long v;
0393     v = hpte_encode_avpn(vpn, base_psize, ssize);
0394     if (actual_psize != MMU_PAGE_4K)
0395         v |= HPTE_V_LARGE;
0396     return v;
0397 }
0398 
0399 /*
0400  * This function sets the ARPN, and LP fields of the HPTE appropriately
0401  * for the page size. We assume the pa is already "clean" that is properly
0402  * aligned for the requested page size
0403  */
0404 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
0405                       int actual_psize)
0406 {
0407     /* A 4K page needs no special encoding */
0408     if (actual_psize == MMU_PAGE_4K)
0409         return pa & HPTE_R_RPN;
0410     else {
0411         unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
0412         unsigned int shift = mmu_psize_defs[actual_psize].shift;
0413         return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
0414     }
0415 }
0416 
0417 /*
0418  * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
0419  */
0420 static inline unsigned long hpt_vpn(unsigned long ea,
0421                     unsigned long vsid, int ssize)
0422 {
0423     unsigned long mask;
0424     int s_shift = segment_shift(ssize);
0425 
0426     mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
0427     return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
0428 }
0429 
0430 /*
0431  * This hashes a virtual address
0432  */
0433 static inline unsigned long hpt_hash(unsigned long vpn,
0434                      unsigned int shift, int ssize)
0435 {
0436     unsigned long mask;
0437     unsigned long hash, vsid;
0438 
0439     /* VPN_SHIFT can be atmost 12 */
0440     if (ssize == MMU_SEGSIZE_256M) {
0441         mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
0442         hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
0443             ((vpn & mask) >> (shift - VPN_SHIFT));
0444     } else {
0445         mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
0446         vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
0447         hash = vsid ^ (vsid << 25) ^
0448             ((vpn & mask) >> (shift - VPN_SHIFT)) ;
0449     }
0450     return hash & 0x7fffffffffUL;
0451 }
0452 
0453 #define HPTE_LOCAL_UPDATE   0x1
0454 #define HPTE_NOHPTE_UPDATE  0x2
0455 #define HPTE_USE_KERNEL_KEY 0x4
0456 
0457 long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa,
0458                unsigned long rlags, unsigned long vflags, int psize, int ssize);
0459 extern int __hash_page_4K(unsigned long ea, unsigned long access,
0460               unsigned long vsid, pte_t *ptep, unsigned long trap,
0461               unsigned long flags, int ssize, int subpage_prot);
0462 extern int __hash_page_64K(unsigned long ea, unsigned long access,
0463                unsigned long vsid, pte_t *ptep, unsigned long trap,
0464                unsigned long flags, int ssize);
0465 struct mm_struct;
0466 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
0467 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
0468             unsigned long access, unsigned long trap,
0469             unsigned long flags);
0470 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
0471              unsigned long dsisr);
0472 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc);
0473 int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr, unsigned long msr);
0474 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
0475              pte_t *ptep, unsigned long trap, unsigned long flags,
0476              int ssize, unsigned int shift, unsigned int mmu_psize);
0477 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0478 extern int __hash_page_thp(unsigned long ea, unsigned long access,
0479                unsigned long vsid, pmd_t *pmdp, unsigned long trap,
0480                unsigned long flags, int ssize, unsigned int psize);
0481 #else
0482 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
0483                   unsigned long vsid, pmd_t *pmdp,
0484                   unsigned long trap, unsigned long flags,
0485                   int ssize, unsigned int psize)
0486 {
0487     BUG();
0488     return -1;
0489 }
0490 #endif
0491 extern void hash_failure_debug(unsigned long ea, unsigned long access,
0492                    unsigned long vsid, unsigned long trap,
0493                    int ssize, int psize, int lpsize,
0494                    unsigned long pte);
0495 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
0496                  unsigned long pstart, unsigned long prot,
0497                  int psize, int ssize);
0498 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
0499             int psize, int ssize);
0500 extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
0501 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
0502 
0503 extern void hash__setup_new_exec(void);
0504 
0505 #ifdef CONFIG_PPC_PSERIES
0506 void hpte_init_pseries(void);
0507 #else
0508 static inline void hpte_init_pseries(void) { }
0509 #endif
0510 
0511 extern void hpte_init_native(void);
0512 
0513 struct slb_entry {
0514     u64 esid;
0515     u64 vsid;
0516 };
0517 
0518 extern void slb_initialize(void);
0519 void slb_flush_and_restore_bolted(void);
0520 void slb_flush_all_realmode(void);
0521 void __slb_restore_bolted_realmode(void);
0522 void slb_restore_bolted_realmode(void);
0523 void slb_save_contents(struct slb_entry *slb_ptr);
0524 void slb_dump_contents(struct slb_entry *slb_ptr);
0525 
0526 extern void slb_vmalloc_update(void);
0527 void preload_new_slb_context(unsigned long start, unsigned long sp);
0528 
0529 #ifdef CONFIG_PPC_64S_HASH_MMU
0530 void slb_set_size(u16 size);
0531 #else
0532 static inline void slb_set_size(u16 size) { }
0533 #endif
0534 
0535 #endif /* __ASSEMBLY__ */
0536 
0537 /*
0538  * VSID allocation (256MB segment)
0539  *
0540  * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
0541  * from mmu context id and effective segment id of the address.
0542  *
0543  * For user processes max context id is limited to MAX_USER_CONTEXT.
0544  * more details in get_user_context
0545  *
0546  * For kernel space get_kernel_context
0547  *
0548  * The proto-VSIDs are then scrambled into real VSIDs with the
0549  * multiplicative hash:
0550  *
0551  *  VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
0552  *
0553  * VSID_MULTIPLIER is prime, so in particular it is
0554  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
0555  * Because the modulus is 2^n-1 we can compute it efficiently without
0556  * a divide or extra multiply (see below). The scramble function gives
0557  * robust scattering in the hash table (at least based on some initial
0558  * results).
0559  *
0560  * We use VSID 0 to indicate an invalid VSID. The means we can't use context id
0561  * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
0562  * will produce a VSID of 0.
0563  *
0564  * We also need to avoid the last segment of the last context, because that
0565  * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
0566  * because of the modulo operation in vsid scramble.
0567  */
0568 
0569 /*
0570  * Max Va bits we support as of now is 68 bits. We want 19 bit
0571  * context ID.
0572  * Restrictions:
0573  * GPU has restrictions of not able to access beyond 128TB
0574  * (47 bit effective address). We also cannot do more than 20bit PID.
0575  * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
0576  * to 16 bits (ie, we can only have 2^16 pids at the same time).
0577  */
0578 #define VA_BITS         68
0579 #define CONTEXT_BITS        19
0580 #define ESID_BITS       (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
0581 #define ESID_BITS_1T        (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
0582 
0583 #define ESID_BITS_MASK      ((1 << ESID_BITS) - 1)
0584 #define ESID_BITS_1T_MASK   ((1 << ESID_BITS_1T) - 1)
0585 
0586 /*
0587  * Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need
0588  * to use more than one context for linear mapping the kernel.
0589  * For vmalloc and memmap, we use just one context with 512TB. With 64 byte
0590  * struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)).
0591  */
0592 #if (H_MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT)
0593 #define MAX_KERNEL_CTX_CNT  (1UL << (H_MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT))
0594 #else
0595 #define MAX_KERNEL_CTX_CNT  1
0596 #endif
0597 
0598 #define MAX_VMALLOC_CTX_CNT 1
0599 #define MAX_IO_CTX_CNT      1
0600 #define MAX_VMEMMAP_CTX_CNT 1
0601 
0602 /*
0603  * 256MB segment
0604  * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
0605  * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
0606  * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
0607  * context maps 2^49 bytes (512TB).
0608  *
0609  * We also need to avoid the last segment of the last context, because that
0610  * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
0611  * because of the modulo operation in vsid scramble.
0612  *
0613  */
0614 #define MAX_USER_CONTEXT    ((ASM_CONST(1) << CONTEXT_BITS) - 2)
0615 
0616 // The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel
0617 #define MIN_USER_CONTEXT    (MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \
0618                  MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2)
0619 
0620 /*
0621  * For platforms that support on 65bit VA we limit the context bits
0622  */
0623 #define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
0624 
0625 /*
0626  * This should be computed such that protovosid * vsid_mulitplier
0627  * doesn't overflow 64 bits. The vsid_mutliplier should also be
0628  * co-prime to vsid_modulus. We also need to make sure that number
0629  * of bits in multiplied result (dividend) is less than twice the number of
0630  * protovsid bits for our modulus optmization to work.
0631  *
0632  * The below table shows the current values used.
0633  * |-------+------------+----------------------+------------+-------------------|
0634  * |       | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
0635  * |-------+------------+----------------------+------------+-------------------|
0636  * | 1T    |         24 |                   25 |         49 |                50 |
0637  * |-------+------------+----------------------+------------+-------------------|
0638  * | 256MB |         24 |                   37 |         61 |                74 |
0639  * |-------+------------+----------------------+------------+-------------------|
0640  *
0641  * |-------+------------+----------------------+------------+--------------------|
0642  * |       | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
0643  * |-------+------------+----------------------+------------+--------------------|
0644  * | 1T    |         24 |                   28 |         52 |                 56 |
0645  * |-------+------------+----------------------+------------+--------------------|
0646  * | 256MB |         24 |                   40 |         64 |                 80 |
0647  * |-------+------------+----------------------+------------+--------------------|
0648  *
0649  */
0650 #define VSID_MULTIPLIER_256M    ASM_CONST(12538073) /* 24-bit prime */
0651 #define VSID_BITS_256M      (VA_BITS - SID_SHIFT)
0652 #define VSID_BITS_65_256M   (65 - SID_SHIFT)
0653 /*
0654  * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
0655  */
0656 #define VSID_MULINV_256M    ASM_CONST(665548017062)
0657 
0658 #define VSID_MULTIPLIER_1T  ASM_CONST(12538073) /* 24-bit prime */
0659 #define VSID_BITS_1T        (VA_BITS - SID_SHIFT_1T)
0660 #define VSID_BITS_65_1T     (65 - SID_SHIFT_1T)
0661 #define VSID_MULINV_1T      ASM_CONST(209034062)
0662 
0663 /* 1TB VSID reserved for VRMA */
0664 #define VRMA_VSID   0x1ffffffUL
0665 #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
0666 
0667 /* 4 bits per slice and we have one slice per 1TB */
0668 #define SLICE_ARRAY_SIZE    (H_PGTABLE_RANGE >> 41)
0669 #define LOW_SLICE_ARRAY_SZ  (BITS_PER_LONG / BITS_PER_BYTE)
0670 #define TASK_SLICE_ARRAY_SZ(x)  ((x)->hash_context->slb_addr_limit >> 41)
0671 #ifndef __ASSEMBLY__
0672 
0673 #ifdef CONFIG_PPC_SUBPAGE_PROT
0674 /*
0675  * For the sub-page protection option, we extend the PGD with one of
0676  * these.  Basically we have a 3-level tree, with the top level being
0677  * the protptrs array.  To optimize speed and memory consumption when
0678  * only addresses < 4GB are being protected, pointers to the first
0679  * four pages of sub-page protection words are stored in the low_prot
0680  * array.
0681  * Each page of sub-page protection words protects 1GB (4 bytes
0682  * protects 64k).  For the 3-level tree, each page of pointers then
0683  * protects 8TB.
0684  */
0685 struct subpage_prot_table {
0686     unsigned long maxaddr;  /* only addresses < this are protected */
0687     unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
0688     unsigned int *low_prot[4];
0689 };
0690 
0691 #define SBP_L1_BITS     (PAGE_SHIFT - 2)
0692 #define SBP_L2_BITS     (PAGE_SHIFT - 3)
0693 #define SBP_L1_COUNT        (1 << SBP_L1_BITS)
0694 #define SBP_L2_COUNT        (1 << SBP_L2_BITS)
0695 #define SBP_L2_SHIFT        (PAGE_SHIFT + SBP_L1_BITS)
0696 #define SBP_L3_SHIFT        (SBP_L2_SHIFT + SBP_L2_BITS)
0697 
0698 extern void subpage_prot_free(struct mm_struct *mm);
0699 #else
0700 static inline void subpage_prot_free(struct mm_struct *mm) {}
0701 #endif /* CONFIG_PPC_SUBPAGE_PROT */
0702 
0703 /*
0704  * One bit per slice. We have lower slices which cover 256MB segments
0705  * upto 4G range. That gets us 16 low slices. For the rest we track slices
0706  * in 1TB size.
0707  */
0708 struct slice_mask {
0709     u64 low_slices;
0710     DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);
0711 };
0712 
0713 struct hash_mm_context {
0714     u16 user_psize; /* page size index */
0715 
0716     /* SLB page size encodings*/
0717     unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ];
0718     unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
0719     unsigned long slb_addr_limit;
0720 #ifdef CONFIG_PPC_64K_PAGES
0721     struct slice_mask mask_64k;
0722 #endif
0723     struct slice_mask mask_4k;
0724 #ifdef CONFIG_HUGETLB_PAGE
0725     struct slice_mask mask_16m;
0726     struct slice_mask mask_16g;
0727 #endif
0728 
0729 #ifdef CONFIG_PPC_SUBPAGE_PROT
0730     struct subpage_prot_table *spt;
0731 #endif /* CONFIG_PPC_SUBPAGE_PROT */
0732 };
0733 
0734 #if 0
0735 /*
0736  * The code below is equivalent to this function for arguments
0737  * < 2^VSID_BITS, which is all this should ever be called
0738  * with.  However gcc is not clever enough to compute the
0739  * modulus (2^n-1) without a second multiply.
0740  */
0741 #define vsid_scramble(protovsid, size) \
0742     ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
0743 
0744 /* simplified form avoiding mod operation */
0745 #define vsid_scramble(protovsid, size) \
0746     ({                               \
0747         unsigned long x;                     \
0748         x = (protovsid) * VSID_MULTIPLIER_##size;        \
0749         x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
0750         (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
0751     })
0752 
0753 #else /* 1 */
0754 static inline unsigned long vsid_scramble(unsigned long protovsid,
0755                   unsigned long vsid_multiplier, int vsid_bits)
0756 {
0757     unsigned long vsid;
0758     unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
0759     /*
0760      * We have same multipler for both 256 and 1T segements now
0761      */
0762     vsid = protovsid * vsid_multiplier;
0763     vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
0764     return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
0765 }
0766 
0767 #endif /* 1 */
0768 
0769 /* Returns the segment size indicator for a user address */
0770 static inline int user_segment_size(unsigned long addr)
0771 {
0772     /* Use 1T segments if possible for addresses >= 1T */
0773     if (addr >= (1UL << SID_SHIFT_1T))
0774         return mmu_highuser_ssize;
0775     return MMU_SEGSIZE_256M;
0776 }
0777 
0778 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
0779                      int ssize)
0780 {
0781     unsigned long va_bits = VA_BITS;
0782     unsigned long vsid_bits;
0783     unsigned long protovsid;
0784 
0785     /*
0786      * Bad address. We return VSID 0 for that
0787      */
0788     if ((ea & EA_MASK)  >= H_PGTABLE_RANGE)
0789         return 0;
0790 
0791     if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
0792         va_bits = 65;
0793 
0794     if (ssize == MMU_SEGSIZE_256M) {
0795         vsid_bits = va_bits - SID_SHIFT;
0796         protovsid = (context << ESID_BITS) |
0797             ((ea >> SID_SHIFT) & ESID_BITS_MASK);
0798         return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
0799     }
0800     /* 1T segment */
0801     vsid_bits = va_bits - SID_SHIFT_1T;
0802     protovsid = (context << ESID_BITS_1T) |
0803         ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
0804     return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
0805 }
0806 
0807 /*
0808  * For kernel space, we use context ids as
0809  * below. Range is 512TB per context.
0810  *
0811  * 0x00001 -  [ 0xc000000000000000 - 0xc001ffffffffffff]
0812  * 0x00002 -  [ 0xc002000000000000 - 0xc003ffffffffffff]
0813  * 0x00003 -  [ 0xc004000000000000 - 0xc005ffffffffffff]
0814  * 0x00004 -  [ 0xc006000000000000 - 0xc007ffffffffffff]
0815  *
0816  * vmap, IO, vmemap
0817  *
0818  * 0x00005 -  [ 0xc008000000000000 - 0xc009ffffffffffff]
0819  * 0x00006 -  [ 0xc00a000000000000 - 0xc00bffffffffffff]
0820  * 0x00007 -  [ 0xc00c000000000000 - 0xc00dffffffffffff]
0821  *
0822  */
0823 static inline unsigned long get_kernel_context(unsigned long ea)
0824 {
0825     unsigned long region_id = get_region_id(ea);
0826     unsigned long ctx;
0827     /*
0828      * Depending on Kernel config, kernel region can have one context
0829      * or more.
0830      */
0831     if (region_id == LINEAR_MAP_REGION_ID) {
0832         /*
0833          * We already verified ea to be not beyond the addr limit.
0834          */
0835         ctx =  1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT);
0836     } else
0837         ctx = region_id + MAX_KERNEL_CTX_CNT - 1;
0838     return ctx;
0839 }
0840 
0841 /*
0842  * This is only valid for addresses >= PAGE_OFFSET
0843  */
0844 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
0845 {
0846     unsigned long context;
0847 
0848     if (!is_kernel_addr(ea))
0849         return 0;
0850 
0851     context = get_kernel_context(ea);
0852     return get_vsid(context, ea, ssize);
0853 }
0854 
0855 unsigned htab_shift_for_mem_size(unsigned long mem_size);
0856 
0857 enum slb_index {
0858     LINEAR_INDEX    = 0, /* Kernel linear map  (0xc000000000000000) */
0859     KSTACK_INDEX    = 1, /* Kernel stack map */
0860 };
0861 
0862 #define slb_esid_mask(ssize)    \
0863     (((ssize) == MMU_SEGSIZE_256M) ? ESID_MASK : ESID_MASK_1T)
0864 
0865 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
0866                      enum slb_index index)
0867 {
0868     return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
0869 }
0870 
0871 static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
0872                        unsigned long flags)
0873 {
0874     return (vsid << slb_vsid_shift(ssize)) | flags |
0875         ((unsigned long)ssize << SLB_VSID_SSIZE_SHIFT);
0876 }
0877 
0878 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
0879                      unsigned long flags)
0880 {
0881     return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
0882 }
0883 
0884 #endif /* __ASSEMBLY__ */
0885 #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */