Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0-or-later */
0002 /*
0003  * Calculate a CRC T10DIF  with vpmsum acceleration
0004  *
0005  * Constants generated by crc32-vpmsum, available at
0006  * https://github.com/antonblanchard/crc32-vpmsum
0007  *
0008  * crc32-vpmsum is
0009  * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
0010  */
0011     .section    .rodata
0012 .balign 16
0013 
0014 .byteswap_constant:
0015     /* byte reverse permute constant */
0016     .octa 0x0F0E0D0C0B0A09080706050403020100
0017 
0018 .constants:
0019 
0020     /* Reduce 262144 kbits to 1024 bits */
0021     /* x^261184 mod p(x), x^261120 mod p(x) */
0022     .octa 0x0000000056d300000000000052550000
0023 
0024     /* x^260160 mod p(x), x^260096 mod p(x) */
0025     .octa 0x00000000ee67000000000000a1e40000
0026 
0027     /* x^259136 mod p(x), x^259072 mod p(x) */
0028     .octa 0x0000000060830000000000004ad10000
0029 
0030     /* x^258112 mod p(x), x^258048 mod p(x) */
0031     .octa 0x000000008cfe0000000000009ab40000
0032 
0033     /* x^257088 mod p(x), x^257024 mod p(x) */
0034     .octa 0x000000003e93000000000000fdb50000
0035 
0036     /* x^256064 mod p(x), x^256000 mod p(x) */
0037     .octa 0x000000003c2000000000000045480000
0038 
0039     /* x^255040 mod p(x), x^254976 mod p(x) */
0040     .octa 0x00000000b1fc0000000000008d690000
0041 
0042     /* x^254016 mod p(x), x^253952 mod p(x) */
0043     .octa 0x00000000f82b00000000000024ad0000
0044 
0045     /* x^252992 mod p(x), x^252928 mod p(x) */
0046     .octa 0x0000000044420000000000009f1a0000
0047 
0048     /* x^251968 mod p(x), x^251904 mod p(x) */
0049     .octa 0x00000000e88c00000000000066ec0000
0050 
0051     /* x^250944 mod p(x), x^250880 mod p(x) */
0052     .octa 0x00000000385c000000000000c87d0000
0053 
0054     /* x^249920 mod p(x), x^249856 mod p(x) */
0055     .octa 0x000000003227000000000000c8ff0000
0056 
0057     /* x^248896 mod p(x), x^248832 mod p(x) */
0058     .octa 0x00000000a9a900000000000033440000
0059 
0060     /* x^247872 mod p(x), x^247808 mod p(x) */
0061     .octa 0x00000000abaa00000000000066eb0000
0062 
0063     /* x^246848 mod p(x), x^246784 mod p(x) */
0064     .octa 0x000000001ac3000000000000c4ef0000
0065 
0066     /* x^245824 mod p(x), x^245760 mod p(x) */
0067     .octa 0x0000000063f000000000000056f30000
0068 
0069     /* x^244800 mod p(x), x^244736 mod p(x) */
0070     .octa 0x0000000032cc00000000000002050000
0071 
0072     /* x^243776 mod p(x), x^243712 mod p(x) */
0073     .octa 0x00000000f8b5000000000000568e0000
0074 
0075     /* x^242752 mod p(x), x^242688 mod p(x) */
0076     .octa 0x000000008db100000000000064290000
0077 
0078     /* x^241728 mod p(x), x^241664 mod p(x) */
0079     .octa 0x0000000059ca0000000000006b660000
0080 
0081     /* x^240704 mod p(x), x^240640 mod p(x) */
0082     .octa 0x000000005f5c00000000000018f80000
0083 
0084     /* x^239680 mod p(x), x^239616 mod p(x) */
0085     .octa 0x0000000061af000000000000b6090000
0086 
0087     /* x^238656 mod p(x), x^238592 mod p(x) */
0088     .octa 0x00000000e29e000000000000099a0000
0089 
0090     /* x^237632 mod p(x), x^237568 mod p(x) */
0091     .octa 0x000000000975000000000000a8360000
0092 
0093     /* x^236608 mod p(x), x^236544 mod p(x) */
0094     .octa 0x0000000043900000000000004f570000
0095 
0096     /* x^235584 mod p(x), x^235520 mod p(x) */
0097     .octa 0x00000000f9cd000000000000134c0000
0098 
0099     /* x^234560 mod p(x), x^234496 mod p(x) */
0100     .octa 0x000000007c29000000000000ec380000
0101 
0102     /* x^233536 mod p(x), x^233472 mod p(x) */
0103     .octa 0x000000004c6a000000000000b0d10000
0104 
0105     /* x^232512 mod p(x), x^232448 mod p(x) */
0106     .octa 0x00000000e7290000000000007d3e0000
0107 
0108     /* x^231488 mod p(x), x^231424 mod p(x) */
0109     .octa 0x00000000f1ab000000000000f0b20000
0110 
0111     /* x^230464 mod p(x), x^230400 mod p(x) */
0112     .octa 0x0000000039db0000000000009c270000
0113 
0114     /* x^229440 mod p(x), x^229376 mod p(x) */
0115     .octa 0x000000005e2800000000000092890000
0116 
0117     /* x^228416 mod p(x), x^228352 mod p(x) */
0118     .octa 0x00000000d44e000000000000d5ee0000
0119 
0120     /* x^227392 mod p(x), x^227328 mod p(x) */
0121     .octa 0x00000000cd0a00000000000041f50000
0122 
0123     /* x^226368 mod p(x), x^226304 mod p(x) */
0124     .octa 0x00000000c5b400000000000010520000
0125 
0126     /* x^225344 mod p(x), x^225280 mod p(x) */
0127     .octa 0x00000000fd2100000000000042170000
0128 
0129     /* x^224320 mod p(x), x^224256 mod p(x) */
0130     .octa 0x000000002f2500000000000095c20000
0131 
0132     /* x^223296 mod p(x), x^223232 mod p(x) */
0133     .octa 0x000000001b0100000000000001ce0000
0134 
0135     /* x^222272 mod p(x), x^222208 mod p(x) */
0136     .octa 0x000000000d430000000000002aca0000
0137 
0138     /* x^221248 mod p(x), x^221184 mod p(x) */
0139     .octa 0x0000000030a6000000000000385e0000
0140 
0141     /* x^220224 mod p(x), x^220160 mod p(x) */
0142     .octa 0x00000000e37b0000000000006f7a0000
0143 
0144     /* x^219200 mod p(x), x^219136 mod p(x) */
0145     .octa 0x00000000873600000000000024320000
0146 
0147     /* x^218176 mod p(x), x^218112 mod p(x) */
0148     .octa 0x00000000e9fb000000000000bd9c0000
0149 
0150     /* x^217152 mod p(x), x^217088 mod p(x) */
0151     .octa 0x000000003b9500000000000054bc0000
0152 
0153     /* x^216128 mod p(x), x^216064 mod p(x) */
0154     .octa 0x00000000133e000000000000a4660000
0155 
0156     /* x^215104 mod p(x), x^215040 mod p(x) */
0157     .octa 0x00000000784500000000000079930000
0158 
0159     /* x^214080 mod p(x), x^214016 mod p(x) */
0160     .octa 0x00000000b9800000000000001bb80000
0161 
0162     /* x^213056 mod p(x), x^212992 mod p(x) */
0163     .octa 0x00000000687600000000000024400000
0164 
0165     /* x^212032 mod p(x), x^211968 mod p(x) */
0166     .octa 0x00000000aff300000000000029e10000
0167 
0168     /* x^211008 mod p(x), x^210944 mod p(x) */
0169     .octa 0x0000000024b50000000000005ded0000
0170 
0171     /* x^209984 mod p(x), x^209920 mod p(x) */
0172     .octa 0x0000000017e8000000000000b12e0000
0173 
0174     /* x^208960 mod p(x), x^208896 mod p(x) */
0175     .octa 0x00000000128400000000000026d20000
0176 
0177     /* x^207936 mod p(x), x^207872 mod p(x) */
0178     .octa 0x000000002115000000000000a32a0000
0179 
0180     /* x^206912 mod p(x), x^206848 mod p(x) */
0181     .octa 0x000000009595000000000000a1210000
0182 
0183     /* x^205888 mod p(x), x^205824 mod p(x) */
0184     .octa 0x00000000281e000000000000ee8b0000
0185 
0186     /* x^204864 mod p(x), x^204800 mod p(x) */
0187     .octa 0x0000000006010000000000003d0d0000
0188 
0189     /* x^203840 mod p(x), x^203776 mod p(x) */
0190     .octa 0x00000000e2b600000000000034e90000
0191 
0192     /* x^202816 mod p(x), x^202752 mod p(x) */
0193     .octa 0x000000001bd40000000000004cdb0000
0194 
0195     /* x^201792 mod p(x), x^201728 mod p(x) */
0196     .octa 0x00000000df2800000000000030e90000
0197 
0198     /* x^200768 mod p(x), x^200704 mod p(x) */
0199     .octa 0x0000000049c200000000000042590000
0200 
0201     /* x^199744 mod p(x), x^199680 mod p(x) */
0202     .octa 0x000000009b97000000000000df950000
0203 
0204     /* x^198720 mod p(x), x^198656 mod p(x) */
0205     .octa 0x000000006184000000000000da7b0000
0206 
0207     /* x^197696 mod p(x), x^197632 mod p(x) */
0208     .octa 0x00000000461700000000000012510000
0209 
0210     /* x^196672 mod p(x), x^196608 mod p(x) */
0211     .octa 0x000000009b40000000000000f37e0000
0212 
0213     /* x^195648 mod p(x), x^195584 mod p(x) */
0214     .octa 0x00000000eeb2000000000000ecf10000
0215 
0216     /* x^194624 mod p(x), x^194560 mod p(x) */
0217     .octa 0x00000000b2e800000000000050f20000
0218 
0219     /* x^193600 mod p(x), x^193536 mod p(x) */
0220     .octa 0x00000000f59a000000000000e0b30000
0221 
0222     /* x^192576 mod p(x), x^192512 mod p(x) */
0223     .octa 0x00000000467f0000000000004d5a0000
0224 
0225     /* x^191552 mod p(x), x^191488 mod p(x) */
0226     .octa 0x00000000da92000000000000bb010000
0227 
0228     /* x^190528 mod p(x), x^190464 mod p(x) */
0229     .octa 0x000000001e1000000000000022a40000
0230 
0231     /* x^189504 mod p(x), x^189440 mod p(x) */
0232     .octa 0x0000000058fe000000000000836f0000
0233 
0234     /* x^188480 mod p(x), x^188416 mod p(x) */
0235     .octa 0x00000000b9ce000000000000d78d0000
0236 
0237     /* x^187456 mod p(x), x^187392 mod p(x) */
0238     .octa 0x0000000022210000000000004f8d0000
0239 
0240     /* x^186432 mod p(x), x^186368 mod p(x) */
0241     .octa 0x00000000744600000000000033760000
0242 
0243     /* x^185408 mod p(x), x^185344 mod p(x) */
0244     .octa 0x000000001c2e000000000000a1e50000
0245 
0246     /* x^184384 mod p(x), x^184320 mod p(x) */
0247     .octa 0x00000000dcc8000000000000a1a40000
0248 
0249     /* x^183360 mod p(x), x^183296 mod p(x) */
0250     .octa 0x00000000910f00000000000019a20000
0251 
0252     /* x^182336 mod p(x), x^182272 mod p(x) */
0253     .octa 0x0000000055d5000000000000f6ae0000
0254 
0255     /* x^181312 mod p(x), x^181248 mod p(x) */
0256     .octa 0x00000000c8ba000000000000a7ac0000
0257 
0258     /* x^180288 mod p(x), x^180224 mod p(x) */
0259     .octa 0x0000000031f8000000000000eea20000
0260 
0261     /* x^179264 mod p(x), x^179200 mod p(x) */
0262     .octa 0x000000001966000000000000c4d90000
0263 
0264     /* x^178240 mod p(x), x^178176 mod p(x) */
0265     .octa 0x00000000b9810000000000002b470000
0266 
0267     /* x^177216 mod p(x), x^177152 mod p(x) */
0268     .octa 0x000000008303000000000000f7cf0000
0269 
0270     /* x^176192 mod p(x), x^176128 mod p(x) */
0271     .octa 0x000000002ce500000000000035b30000
0272 
0273     /* x^175168 mod p(x), x^175104 mod p(x) */
0274     .octa 0x000000002fae0000000000000c7c0000
0275 
0276     /* x^174144 mod p(x), x^174080 mod p(x) */
0277     .octa 0x00000000f50c0000000000009edf0000
0278 
0279     /* x^173120 mod p(x), x^173056 mod p(x) */
0280     .octa 0x00000000714f00000000000004cd0000
0281 
0282     /* x^172096 mod p(x), x^172032 mod p(x) */
0283     .octa 0x00000000c161000000000000541b0000
0284 
0285     /* x^171072 mod p(x), x^171008 mod p(x) */
0286     .octa 0x0000000021c8000000000000e2700000
0287 
0288     /* x^170048 mod p(x), x^169984 mod p(x) */
0289     .octa 0x00000000b93d00000000000009a60000
0290 
0291     /* x^169024 mod p(x), x^168960 mod p(x) */
0292     .octa 0x00000000fbcf000000000000761c0000
0293 
0294     /* x^168000 mod p(x), x^167936 mod p(x) */
0295     .octa 0x0000000026350000000000009db30000
0296 
0297     /* x^166976 mod p(x), x^166912 mod p(x) */
0298     .octa 0x00000000b64f0000000000003e9f0000
0299 
0300     /* x^165952 mod p(x), x^165888 mod p(x) */
0301     .octa 0x00000000bd0e00000000000078590000
0302 
0303     /* x^164928 mod p(x), x^164864 mod p(x) */
0304     .octa 0x00000000d9360000000000008bc80000
0305 
0306     /* x^163904 mod p(x), x^163840 mod p(x) */
0307     .octa 0x000000002f140000000000008c9f0000
0308 
0309     /* x^162880 mod p(x), x^162816 mod p(x) */
0310     .octa 0x000000006a270000000000006af70000
0311 
0312     /* x^161856 mod p(x), x^161792 mod p(x) */
0313     .octa 0x000000006685000000000000e5210000
0314 
0315     /* x^160832 mod p(x), x^160768 mod p(x) */
0316     .octa 0x0000000062da00000000000008290000
0317 
0318     /* x^159808 mod p(x), x^159744 mod p(x) */
0319     .octa 0x00000000bb4b000000000000e4d00000
0320 
0321     /* x^158784 mod p(x), x^158720 mod p(x) */
0322     .octa 0x00000000d2490000000000004ae10000
0323 
0324     /* x^157760 mod p(x), x^157696 mod p(x) */
0325     .octa 0x00000000c85b00000000000000e70000
0326 
0327     /* x^156736 mod p(x), x^156672 mod p(x) */
0328     .octa 0x00000000c37a00000000000015650000
0329 
0330     /* x^155712 mod p(x), x^155648 mod p(x) */
0331     .octa 0x0000000018530000000000001c2f0000
0332 
0333     /* x^154688 mod p(x), x^154624 mod p(x) */
0334     .octa 0x00000000b46600000000000037bd0000
0335 
0336     /* x^153664 mod p(x), x^153600 mod p(x) */
0337     .octa 0x00000000439b00000000000012190000
0338 
0339     /* x^152640 mod p(x), x^152576 mod p(x) */
0340     .octa 0x00000000b1260000000000005ece0000
0341 
0342     /* x^151616 mod p(x), x^151552 mod p(x) */
0343     .octa 0x00000000d8110000000000002a5e0000
0344 
0345     /* x^150592 mod p(x), x^150528 mod p(x) */
0346     .octa 0x00000000099f00000000000052330000
0347 
0348     /* x^149568 mod p(x), x^149504 mod p(x) */
0349     .octa 0x00000000f9f9000000000000f9120000
0350 
0351     /* x^148544 mod p(x), x^148480 mod p(x) */
0352     .octa 0x000000005cc00000000000000ddc0000
0353 
0354     /* x^147520 mod p(x), x^147456 mod p(x) */
0355     .octa 0x00000000343b00000000000012200000
0356 
0357     /* x^146496 mod p(x), x^146432 mod p(x) */
0358     .octa 0x000000009222000000000000d12b0000
0359 
0360     /* x^145472 mod p(x), x^145408 mod p(x) */
0361     .octa 0x00000000d781000000000000eb2d0000
0362 
0363     /* x^144448 mod p(x), x^144384 mod p(x) */
0364     .octa 0x000000000bf400000000000058970000
0365 
0366     /* x^143424 mod p(x), x^143360 mod p(x) */
0367     .octa 0x00000000094200000000000013690000
0368 
0369     /* x^142400 mod p(x), x^142336 mod p(x) */
0370     .octa 0x00000000d55100000000000051950000
0371 
0372     /* x^141376 mod p(x), x^141312 mod p(x) */
0373     .octa 0x000000008f11000000000000954b0000
0374 
0375     /* x^140352 mod p(x), x^140288 mod p(x) */
0376     .octa 0x00000000140f000000000000b29e0000
0377 
0378     /* x^139328 mod p(x), x^139264 mod p(x) */
0379     .octa 0x00000000c6db000000000000db5d0000
0380 
0381     /* x^138304 mod p(x), x^138240 mod p(x) */
0382     .octa 0x00000000715b000000000000dfaf0000
0383 
0384     /* x^137280 mod p(x), x^137216 mod p(x) */
0385     .octa 0x000000000dea000000000000e3b60000
0386 
0387     /* x^136256 mod p(x), x^136192 mod p(x) */
0388     .octa 0x000000006f94000000000000ddaf0000
0389 
0390     /* x^135232 mod p(x), x^135168 mod p(x) */
0391     .octa 0x0000000024e1000000000000e4f70000
0392 
0393     /* x^134208 mod p(x), x^134144 mod p(x) */
0394     .octa 0x000000008810000000000000aa110000
0395 
0396     /* x^133184 mod p(x), x^133120 mod p(x) */
0397     .octa 0x0000000030c2000000000000a8e60000
0398 
0399     /* x^132160 mod p(x), x^132096 mod p(x) */
0400     .octa 0x00000000e6d0000000000000ccf30000
0401 
0402     /* x^131136 mod p(x), x^131072 mod p(x) */
0403     .octa 0x000000004da000000000000079bf0000
0404 
0405     /* x^130112 mod p(x), x^130048 mod p(x) */
0406     .octa 0x000000007759000000000000b3a30000
0407 
0408     /* x^129088 mod p(x), x^129024 mod p(x) */
0409     .octa 0x00000000597400000000000028790000
0410 
0411     /* x^128064 mod p(x), x^128000 mod p(x) */
0412     .octa 0x000000007acd000000000000b5820000
0413 
0414     /* x^127040 mod p(x), x^126976 mod p(x) */
0415     .octa 0x00000000e6e400000000000026ad0000
0416 
0417     /* x^126016 mod p(x), x^125952 mod p(x) */
0418     .octa 0x000000006d49000000000000985b0000
0419 
0420     /* x^124992 mod p(x), x^124928 mod p(x) */
0421     .octa 0x000000000f0800000000000011520000
0422 
0423     /* x^123968 mod p(x), x^123904 mod p(x) */
0424     .octa 0x000000002c7f000000000000846c0000
0425 
0426     /* x^122944 mod p(x), x^122880 mod p(x) */
0427     .octa 0x000000005ce7000000000000ae1d0000
0428 
0429     /* x^121920 mod p(x), x^121856 mod p(x) */
0430     .octa 0x00000000d4cb000000000000e21d0000
0431 
0432     /* x^120896 mod p(x), x^120832 mod p(x) */
0433     .octa 0x000000003a2300000000000019bb0000
0434 
0435     /* x^119872 mod p(x), x^119808 mod p(x) */
0436     .octa 0x000000000e1700000000000095290000
0437 
0438     /* x^118848 mod p(x), x^118784 mod p(x) */
0439     .octa 0x000000006e6400000000000050d20000
0440 
0441     /* x^117824 mod p(x), x^117760 mod p(x) */
0442     .octa 0x000000008d5c0000000000000cd10000
0443 
0444     /* x^116800 mod p(x), x^116736 mod p(x) */
0445     .octa 0x00000000ef310000000000007b570000
0446 
0447     /* x^115776 mod p(x), x^115712 mod p(x) */
0448     .octa 0x00000000645d00000000000053d60000
0449 
0450     /* x^114752 mod p(x), x^114688 mod p(x) */
0451     .octa 0x0000000018fc00000000000077510000
0452 
0453     /* x^113728 mod p(x), x^113664 mod p(x) */
0454     .octa 0x000000000cb3000000000000a7b70000
0455 
0456     /* x^112704 mod p(x), x^112640 mod p(x) */
0457     .octa 0x00000000991b000000000000d0780000
0458 
0459     /* x^111680 mod p(x), x^111616 mod p(x) */
0460     .octa 0x00000000845a000000000000be3c0000
0461 
0462     /* x^110656 mod p(x), x^110592 mod p(x) */
0463     .octa 0x00000000d3a9000000000000df020000
0464 
0465     /* x^109632 mod p(x), x^109568 mod p(x) */
0466     .octa 0x0000000017d7000000000000063e0000
0467 
0468     /* x^108608 mod p(x), x^108544 mod p(x) */
0469     .octa 0x000000007a860000000000008ab40000
0470 
0471     /* x^107584 mod p(x), x^107520 mod p(x) */
0472     .octa 0x00000000fd7c000000000000c7bd0000
0473 
0474     /* x^106560 mod p(x), x^106496 mod p(x) */
0475     .octa 0x00000000a56b000000000000efd60000
0476 
0477     /* x^105536 mod p(x), x^105472 mod p(x) */
0478     .octa 0x0000000010e400000000000071380000
0479 
0480     /* x^104512 mod p(x), x^104448 mod p(x) */
0481     .octa 0x00000000994500000000000004d30000
0482 
0483     /* x^103488 mod p(x), x^103424 mod p(x) */
0484     .octa 0x00000000b83c0000000000003b0e0000
0485 
0486     /* x^102464 mod p(x), x^102400 mod p(x) */
0487     .octa 0x00000000d6c10000000000008b020000
0488 
0489     /* x^101440 mod p(x), x^101376 mod p(x) */
0490     .octa 0x000000009efc000000000000da940000
0491 
0492     /* x^100416 mod p(x), x^100352 mod p(x) */
0493     .octa 0x000000005e87000000000000f9f70000
0494 
0495     /* x^99392 mod p(x), x^99328 mod p(x) */
0496     .octa 0x000000006c9b00000000000045e40000
0497 
0498     /* x^98368 mod p(x), x^98304 mod p(x) */
0499     .octa 0x00000000178a00000000000083940000
0500 
0501     /* x^97344 mod p(x), x^97280 mod p(x) */
0502     .octa 0x00000000f0c8000000000000f0a00000
0503 
0504     /* x^96320 mod p(x), x^96256 mod p(x) */
0505     .octa 0x00000000f699000000000000b74b0000
0506 
0507     /* x^95296 mod p(x), x^95232 mod p(x) */
0508     .octa 0x00000000316d000000000000c1cf0000
0509 
0510     /* x^94272 mod p(x), x^94208 mod p(x) */
0511     .octa 0x00000000987e00000000000072680000
0512 
0513     /* x^93248 mod p(x), x^93184 mod p(x) */
0514     .octa 0x00000000acff000000000000e0ab0000
0515 
0516     /* x^92224 mod p(x), x^92160 mod p(x) */
0517     .octa 0x00000000a1f6000000000000c5a80000
0518 
0519     /* x^91200 mod p(x), x^91136 mod p(x) */
0520     .octa 0x0000000061bd000000000000cf690000
0521 
0522     /* x^90176 mod p(x), x^90112 mod p(x) */
0523     .octa 0x00000000c9f2000000000000cbcc0000
0524 
0525     /* x^89152 mod p(x), x^89088 mod p(x) */
0526     .octa 0x000000005a33000000000000de050000
0527 
0528     /* x^88128 mod p(x), x^88064 mod p(x) */
0529     .octa 0x00000000e416000000000000ccd70000
0530 
0531     /* x^87104 mod p(x), x^87040 mod p(x) */
0532     .octa 0x0000000058930000000000002f670000
0533 
0534     /* x^86080 mod p(x), x^86016 mod p(x) */
0535     .octa 0x00000000a9d3000000000000152f0000
0536 
0537     /* x^85056 mod p(x), x^84992 mod p(x) */
0538     .octa 0x00000000c114000000000000ecc20000
0539 
0540     /* x^84032 mod p(x), x^83968 mod p(x) */
0541     .octa 0x00000000b9270000000000007c890000
0542 
0543     /* x^83008 mod p(x), x^82944 mod p(x) */
0544     .octa 0x000000002e6000000000000006ee0000
0545 
0546     /* x^81984 mod p(x), x^81920 mod p(x) */
0547     .octa 0x00000000dfc600000000000009100000
0548 
0549     /* x^80960 mod p(x), x^80896 mod p(x) */
0550     .octa 0x000000004911000000000000ad4e0000
0551 
0552     /* x^79936 mod p(x), x^79872 mod p(x) */
0553     .octa 0x00000000ae1b000000000000b04d0000
0554 
0555     /* x^78912 mod p(x), x^78848 mod p(x) */
0556     .octa 0x0000000005fa000000000000e9900000
0557 
0558     /* x^77888 mod p(x), x^77824 mod p(x) */
0559     .octa 0x0000000004a1000000000000cc6f0000
0560 
0561     /* x^76864 mod p(x), x^76800 mod p(x) */
0562     .octa 0x00000000af73000000000000ed110000
0563 
0564     /* x^75840 mod p(x), x^75776 mod p(x) */
0565     .octa 0x0000000082530000000000008f7e0000
0566 
0567     /* x^74816 mod p(x), x^74752 mod p(x) */
0568     .octa 0x00000000cfdc000000000000594f0000
0569 
0570     /* x^73792 mod p(x), x^73728 mod p(x) */
0571     .octa 0x00000000a6b6000000000000a8750000
0572 
0573     /* x^72768 mod p(x), x^72704 mod p(x) */
0574     .octa 0x00000000fd76000000000000aa0c0000
0575 
0576     /* x^71744 mod p(x), x^71680 mod p(x) */
0577     .octa 0x0000000006f500000000000071db0000
0578 
0579     /* x^70720 mod p(x), x^70656 mod p(x) */
0580     .octa 0x0000000037ca000000000000ab0c0000
0581 
0582     /* x^69696 mod p(x), x^69632 mod p(x) */
0583     .octa 0x00000000d7ab000000000000b7a00000
0584 
0585     /* x^68672 mod p(x), x^68608 mod p(x) */
0586     .octa 0x00000000440800000000000090d30000
0587 
0588     /* x^67648 mod p(x), x^67584 mod p(x) */
0589     .octa 0x00000000186100000000000054730000
0590 
0591     /* x^66624 mod p(x), x^66560 mod p(x) */
0592     .octa 0x000000007368000000000000a3a20000
0593 
0594     /* x^65600 mod p(x), x^65536 mod p(x) */
0595     .octa 0x0000000026d0000000000000f9040000
0596 
0597     /* x^64576 mod p(x), x^64512 mod p(x) */
0598     .octa 0x00000000fe770000000000009c0a0000
0599 
0600     /* x^63552 mod p(x), x^63488 mod p(x) */
0601     .octa 0x000000002cba000000000000d1e70000
0602 
0603     /* x^62528 mod p(x), x^62464 mod p(x) */
0604     .octa 0x00000000f8bd0000000000005ac10000
0605 
0606     /* x^61504 mod p(x), x^61440 mod p(x) */
0607     .octa 0x000000007372000000000000d68d0000
0608 
0609     /* x^60480 mod p(x), x^60416 mod p(x) */
0610     .octa 0x00000000f37f00000000000089f60000
0611 
0612     /* x^59456 mod p(x), x^59392 mod p(x) */
0613     .octa 0x00000000078400000000000008a90000
0614 
0615     /* x^58432 mod p(x), x^58368 mod p(x) */
0616     .octa 0x00000000d3e400000000000042360000
0617 
0618     /* x^57408 mod p(x), x^57344 mod p(x) */
0619     .octa 0x00000000eba800000000000092d50000
0620 
0621     /* x^56384 mod p(x), x^56320 mod p(x) */
0622     .octa 0x00000000afbe000000000000b4d50000
0623 
0624     /* x^55360 mod p(x), x^55296 mod p(x) */
0625     .octa 0x00000000d8ca000000000000c9060000
0626 
0627     /* x^54336 mod p(x), x^54272 mod p(x) */
0628     .octa 0x00000000c2d00000000000008f4f0000
0629 
0630     /* x^53312 mod p(x), x^53248 mod p(x) */
0631     .octa 0x00000000373200000000000028690000
0632 
0633     /* x^52288 mod p(x), x^52224 mod p(x) */
0634     .octa 0x0000000046ae000000000000c3b30000
0635 
0636     /* x^51264 mod p(x), x^51200 mod p(x) */
0637     .octa 0x00000000b243000000000000f8700000
0638 
0639     /* x^50240 mod p(x), x^50176 mod p(x) */
0640     .octa 0x00000000f7f500000000000029eb0000
0641 
0642     /* x^49216 mod p(x), x^49152 mod p(x) */
0643     .octa 0x000000000c7e000000000000fe730000
0644 
0645     /* x^48192 mod p(x), x^48128 mod p(x) */
0646     .octa 0x00000000c38200000000000096000000
0647 
0648     /* x^47168 mod p(x), x^47104 mod p(x) */
0649     .octa 0x000000008956000000000000683c0000
0650 
0651     /* x^46144 mod p(x), x^46080 mod p(x) */
0652     .octa 0x00000000422d0000000000005f1e0000
0653 
0654     /* x^45120 mod p(x), x^45056 mod p(x) */
0655     .octa 0x00000000ac0f0000000000006f810000
0656 
0657     /* x^44096 mod p(x), x^44032 mod p(x) */
0658     .octa 0x00000000ce30000000000000031f0000
0659 
0660     /* x^43072 mod p(x), x^43008 mod p(x) */
0661     .octa 0x000000003d43000000000000455a0000
0662 
0663     /* x^42048 mod p(x), x^41984 mod p(x) */
0664     .octa 0x000000007ebe000000000000a6050000
0665 
0666     /* x^41024 mod p(x), x^40960 mod p(x) */
0667     .octa 0x00000000976e00000000000077eb0000
0668 
0669     /* x^40000 mod p(x), x^39936 mod p(x) */
0670     .octa 0x000000000872000000000000389c0000
0671 
0672     /* x^38976 mod p(x), x^38912 mod p(x) */
0673     .octa 0x000000008979000000000000c7b20000
0674 
0675     /* x^37952 mod p(x), x^37888 mod p(x) */
0676     .octa 0x000000005c1e0000000000001d870000
0677 
0678     /* x^36928 mod p(x), x^36864 mod p(x) */
0679     .octa 0x00000000aebb00000000000045810000
0680 
0681     /* x^35904 mod p(x), x^35840 mod p(x) */
0682     .octa 0x000000004f7e0000000000006d4a0000
0683 
0684     /* x^34880 mod p(x), x^34816 mod p(x) */
0685     .octa 0x00000000ea98000000000000b9200000
0686 
0687     /* x^33856 mod p(x), x^33792 mod p(x) */
0688     .octa 0x00000000f39600000000000022f20000
0689 
0690     /* x^32832 mod p(x), x^32768 mod p(x) */
0691     .octa 0x000000000bc500000000000041ca0000
0692 
0693     /* x^31808 mod p(x), x^31744 mod p(x) */
0694     .octa 0x00000000786400000000000078500000
0695 
0696     /* x^30784 mod p(x), x^30720 mod p(x) */
0697     .octa 0x00000000be970000000000009e7e0000
0698 
0699     /* x^29760 mod p(x), x^29696 mod p(x) */
0700     .octa 0x00000000dd6d000000000000a53c0000
0701 
0702     /* x^28736 mod p(x), x^28672 mod p(x) */
0703     .octa 0x000000004c3f00000000000039340000
0704 
0705     /* x^27712 mod p(x), x^27648 mod p(x) */
0706     .octa 0x0000000093a4000000000000b58e0000
0707 
0708     /* x^26688 mod p(x), x^26624 mod p(x) */
0709     .octa 0x0000000050fb00000000000062d40000
0710 
0711     /* x^25664 mod p(x), x^25600 mod p(x) */
0712     .octa 0x00000000f505000000000000a26f0000
0713 
0714     /* x^24640 mod p(x), x^24576 mod p(x) */
0715     .octa 0x0000000064f900000000000065e60000
0716 
0717     /* x^23616 mod p(x), x^23552 mod p(x) */
0718     .octa 0x00000000e8c2000000000000aad90000
0719 
0720     /* x^22592 mod p(x), x^22528 mod p(x) */
0721     .octa 0x00000000720b000000000000a3b00000
0722 
0723     /* x^21568 mod p(x), x^21504 mod p(x) */
0724     .octa 0x00000000e992000000000000d2680000
0725 
0726     /* x^20544 mod p(x), x^20480 mod p(x) */
0727     .octa 0x000000009132000000000000cf4c0000
0728 
0729     /* x^19520 mod p(x), x^19456 mod p(x) */
0730     .octa 0x00000000608a00000000000076610000
0731 
0732     /* x^18496 mod p(x), x^18432 mod p(x) */
0733     .octa 0x000000009948000000000000fb9f0000
0734 
0735     /* x^17472 mod p(x), x^17408 mod p(x) */
0736     .octa 0x00000000173000000000000003770000
0737 
0738     /* x^16448 mod p(x), x^16384 mod p(x) */
0739     .octa 0x000000006fe300000000000004880000
0740 
0741     /* x^15424 mod p(x), x^15360 mod p(x) */
0742     .octa 0x00000000e15300000000000056a70000
0743 
0744     /* x^14400 mod p(x), x^14336 mod p(x) */
0745     .octa 0x0000000092d60000000000009dfd0000
0746 
0747     /* x^13376 mod p(x), x^13312 mod p(x) */
0748     .octa 0x0000000002fd00000000000074c80000
0749 
0750     /* x^12352 mod p(x), x^12288 mod p(x) */
0751     .octa 0x00000000c78b000000000000a3ec0000
0752 
0753     /* x^11328 mod p(x), x^11264 mod p(x) */
0754     .octa 0x000000009262000000000000b3530000
0755 
0756     /* x^10304 mod p(x), x^10240 mod p(x) */
0757     .octa 0x0000000084f200000000000047bf0000
0758 
0759     /* x^9280 mod p(x), x^9216 mod p(x) */
0760     .octa 0x0000000067ee000000000000e97c0000
0761 
0762     /* x^8256 mod p(x), x^8192 mod p(x) */
0763     .octa 0x00000000535b00000000000091e10000
0764 
0765     /* x^7232 mod p(x), x^7168 mod p(x) */
0766     .octa 0x000000007ebb00000000000055060000
0767 
0768     /* x^6208 mod p(x), x^6144 mod p(x) */
0769     .octa 0x00000000c6a1000000000000fd360000
0770 
0771     /* x^5184 mod p(x), x^5120 mod p(x) */
0772     .octa 0x000000001be500000000000055860000
0773 
0774     /* x^4160 mod p(x), x^4096 mod p(x) */
0775     .octa 0x00000000ae0e0000000000005bd00000
0776 
0777     /* x^3136 mod p(x), x^3072 mod p(x) */
0778     .octa 0x0000000022040000000000008db20000
0779 
0780     /* x^2112 mod p(x), x^2048 mod p(x) */
0781     .octa 0x00000000c9eb000000000000efe20000
0782 
0783     /* x^1088 mod p(x), x^1024 mod p(x) */
0784     .octa 0x0000000039b400000000000051d10000
0785 
0786 .short_constants:
0787 
0788     /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
0789     /* x^2048 mod p(x), x^2016 mod p(x), x^1984 mod p(x), x^1952 mod p(x) */
0790     .octa 0xefe20000dccf00009440000033590000
0791 
0792     /* x^1920 mod p(x), x^1888 mod p(x), x^1856 mod p(x), x^1824 mod p(x) */
0793     .octa 0xee6300002f3f000062180000e0ed0000
0794 
0795     /* x^1792 mod p(x), x^1760 mod p(x), x^1728 mod p(x), x^1696 mod p(x) */
0796     .octa 0xcf5f000017ef0000ccbe000023d30000
0797 
0798     /* x^1664 mod p(x), x^1632 mod p(x), x^1600 mod p(x), x^1568 mod p(x) */
0799     .octa 0x6d0c0000a30e00000920000042630000
0800 
0801     /* x^1536 mod p(x), x^1504 mod p(x), x^1472 mod p(x), x^1440 mod p(x) */
0802     .octa 0x21d30000932b0000a7a00000efcc0000
0803 
0804     /* x^1408 mod p(x), x^1376 mod p(x), x^1344 mod p(x), x^1312 mod p(x) */
0805     .octa 0x10be00000b310000666f00000d1c0000
0806 
0807     /* x^1280 mod p(x), x^1248 mod p(x), x^1216 mod p(x), x^1184 mod p(x) */
0808     .octa 0x1f240000ce9e0000caad0000589e0000
0809 
0810     /* x^1152 mod p(x), x^1120 mod p(x), x^1088 mod p(x), x^1056 mod p(x) */
0811     .octa 0x29610000d02b000039b400007cf50000
0812 
0813     /* x^1024 mod p(x), x^992 mod p(x), x^960 mod p(x), x^928 mod p(x) */
0814     .octa 0x51d100009d9d00003c0e0000bfd60000
0815 
0816     /* x^896 mod p(x), x^864 mod p(x), x^832 mod p(x), x^800 mod p(x) */
0817     .octa 0xda390000ceae000013830000713c0000
0818 
0819     /* x^768 mod p(x), x^736 mod p(x), x^704 mod p(x), x^672 mod p(x) */
0820     .octa 0xb67800001e16000085c0000080a60000
0821 
0822     /* x^640 mod p(x), x^608 mod p(x), x^576 mod p(x), x^544 mod p(x) */
0823     .octa 0x0db40000f7f90000371d0000e6580000
0824 
0825     /* x^512 mod p(x), x^480 mod p(x), x^448 mod p(x), x^416 mod p(x) */
0826     .octa 0x87e70000044c0000aadb0000a4970000
0827 
0828     /* x^384 mod p(x), x^352 mod p(x), x^320 mod p(x), x^288 mod p(x) */
0829     .octa 0x1f990000ad180000d8b30000e7b50000
0830 
0831     /* x^256 mod p(x), x^224 mod p(x), x^192 mod p(x), x^160 mod p(x) */
0832     .octa 0xbe6c00006ee300004c1a000006df0000
0833 
0834     /* x^128 mod p(x), x^96 mod p(x), x^64 mod p(x), x^32 mod p(x) */
0835     .octa 0xfb0b00002d560000136800008bb70000
0836 
0837 
0838 .barrett_constants:
0839     /* Barrett constant m - (4^32)/n */
0840     .octa 0x000000000000000000000001f65a57f8    /* x^64 div p(x) */
0841     /* Barrett constant n */
0842     .octa 0x0000000000000000000000018bb70000
0843 
0844 #define CRC_FUNCTION_NAME __crct10dif_vpmsum
0845 #include "crc32-vpmsum_core.S"