0001
0002 #include <linux/types.h>
0003 #include <linux/i8253.h>
0004 #include <linux/interrupt.h>
0005 #include <linux/irq.h>
0006 #include <linux/smp.h>
0007 #include <linux/time.h>
0008 #include <linux/clockchips.h>
0009
0010 #include <asm/sni.h>
0011 #include <asm/time.h>
0012
0013 #define SNI_CLOCK_TICK_RATE 3686400
0014 #define SNI_COUNTER2_DIV 64
0015 #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
0016
0017 static int a20r_set_periodic(struct clock_event_device *evt)
0018 {
0019 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
0020 wmb();
0021 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV & 0xff;
0022 wmb();
0023 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
0024 wmb();
0025
0026 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
0027 wmb();
0028 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV & 0xff;
0029 wmb();
0030 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
0031 wmb();
0032 return 0;
0033 }
0034
0035 static struct clock_event_device a20r_clockevent_device = {
0036 .name = "a20r-timer",
0037 .features = CLOCK_EVT_FEAT_PERIODIC,
0038
0039
0040
0041 .rating = 300,
0042 .irq = SNI_A20R_IRQ_TIMER,
0043 .set_state_periodic = a20r_set_periodic,
0044 };
0045
0046 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
0047 {
0048 struct clock_event_device *cd = dev_id;
0049
0050 *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
0051 wmb();
0052
0053 cd->event_handler(cd);
0054
0055 return IRQ_HANDLED;
0056 }
0057
0058
0059
0060
0061
0062 static void __init sni_a20r_timer_setup(void)
0063 {
0064 struct clock_event_device *cd = &a20r_clockevent_device;
0065 unsigned int cpu = smp_processor_id();
0066
0067 cd->cpumask = cpumask_of(cpu);
0068 clockevents_register_device(cd);
0069 if (request_irq(SNI_A20R_IRQ_TIMER, a20r_interrupt,
0070 IRQF_PERCPU | IRQF_TIMER, "a20r-timer", cd))
0071 pr_err("Failed to register a20r-timer interrupt\n");
0072 }
0073
0074 #define SNI_8254_TICK_RATE 1193182UL
0075
0076 #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
0077
0078 static __init unsigned long dosample(void)
0079 {
0080 u32 ct0, ct1;
0081 volatile u8 msb;
0082
0083
0084 outb_p(0x34, 0x43);
0085 outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
0086 outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
0087
0088
0089 ct0 = read_c0_count();
0090
0091
0092 do {
0093 outb(0x00, 0x43);
0094 (void) inb(0x40);
0095 msb = inb(0x40);
0096 ct1 = read_c0_count();
0097 } while (msb);
0098
0099
0100 outb(0x38, 0x43);
0101
0102
0103
0104
0105
0106
0107 return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
0108 }
0109
0110
0111
0112
0113 void __init plat_time_init(void)
0114 {
0115 unsigned long r4k_ticks[3];
0116 unsigned long r4k_tick;
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127 printk(KERN_INFO "Calibrating system timer... ");
0128 dosample();
0129 dosample();
0130
0131 do {
0132 r4k_ticks[0] = dosample();
0133 } while (!r4k_ticks[0]);
0134 do {
0135 r4k_ticks[1] = dosample();
0136 } while (!r4k_ticks[1]);
0137
0138 if (r4k_ticks[0] != r4k_ticks[1]) {
0139 printk("warning: timer counts differ, retrying... ");
0140 r4k_ticks[2] = dosample();
0141 if (r4k_ticks[2] == r4k_ticks[0]
0142 || r4k_ticks[2] == r4k_ticks[1])
0143 r4k_tick = r4k_ticks[2];
0144 else {
0145 printk("disagreement, using average... ");
0146 r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
0147 + r4k_ticks[2]) / 3;
0148 }
0149 } else
0150 r4k_tick = r4k_ticks[0];
0151
0152 printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
0153 (int) (r4k_tick / (500000 / HZ)),
0154 (int) (r4k_tick % (500000 / HZ)));
0155
0156 mips_hpt_frequency = r4k_tick * HZ;
0157
0158 switch (sni_brd_type) {
0159 case SNI_BRD_10:
0160 case SNI_BRD_10NEW:
0161 case SNI_BRD_TOWER_OASIC:
0162 case SNI_BRD_MINITOWER:
0163 sni_a20r_timer_setup();
0164 break;
0165 }
0166 setup_pit_timer();
0167 }