Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * This file is subject to the terms and conditions of the GNU General Public
0003  * License.  See the file "COPYING" in the main directory of this archive
0004  * for more details.
0005  *
0006  * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
0007  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
0008  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
0009  */
0010 #include <linux/cpu_pm.h>
0011 #include <linux/hardirq.h>
0012 #include <linux/init.h>
0013 #include <linux/highmem.h>
0014 #include <linux/kernel.h>
0015 #include <linux/linkage.h>
0016 #include <linux/preempt.h>
0017 #include <linux/sched.h>
0018 #include <linux/smp.h>
0019 #include <linux/mm.h>
0020 #include <linux/export.h>
0021 #include <linux/bitops.h>
0022 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
0023 
0024 #include <asm/bcache.h>
0025 #include <asm/bootinfo.h>
0026 #include <asm/cache.h>
0027 #include <asm/cacheops.h>
0028 #include <asm/cpu.h>
0029 #include <asm/cpu-features.h>
0030 #include <asm/cpu-type.h>
0031 #include <asm/io.h>
0032 #include <asm/page.h>
0033 #include <asm/r4kcache.h>
0034 #include <asm/sections.h>
0035 #include <asm/mmu_context.h>
0036 #include <asm/cacheflush.h> /* for run_uncached() */
0037 #include <asm/traps.h>
0038 #include <asm/mips-cps.h>
0039 
0040 /*
0041  * Bits describing what cache ops an SMP callback function may perform.
0042  *
0043  * R4K_HIT   -  Virtual user or kernel address based cache operations. The
0044  *      active_mm must be checked before using user addresses, falling
0045  *      back to kmap.
0046  * R4K_INDEX -  Index based cache operations.
0047  */
0048 
0049 #define R4K_HIT     BIT(0)
0050 #define R4K_INDEX   BIT(1)
0051 
0052 /**
0053  * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
0054  * @type:   Type of cache operations (R4K_HIT or R4K_INDEX).
0055  *
0056  * Decides whether a cache op needs to be performed on every core in the system.
0057  * This may change depending on the @type of cache operation, as well as the set
0058  * of online CPUs, so preemption should be disabled by the caller to prevent CPU
0059  * hotplug from changing the result.
0060  *
0061  * Returns: 1 if the cache operation @type should be done on every core in
0062  *      the system.
0063  *      0 if the cache operation @type is globalized and only needs to
0064  *      be performed on a simple CPU.
0065  */
0066 static inline bool r4k_op_needs_ipi(unsigned int type)
0067 {
0068     /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
0069     if (type == R4K_HIT && mips_cm_present())
0070         return false;
0071 
0072     /*
0073      * Hardware doesn't globalize the required cache ops, so SMP calls may
0074      * be needed, but only if there are foreign CPUs (non-siblings with
0075      * separate caches).
0076      */
0077     /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
0078 #ifdef CONFIG_SMP
0079     return !cpumask_empty(&cpu_foreign_map[0]);
0080 #else
0081     return false;
0082 #endif
0083 }
0084 
0085 /*
0086  * Special Variant of smp_call_function for use by cache functions:
0087  *
0088  *  o No return value
0089  *  o collapses to normal function call on UP kernels
0090  *  o collapses to normal function call on systems with a single shared
0091  *    primary cache.
0092  *  o doesn't disable interrupts on the local CPU
0093  */
0094 static inline void r4k_on_each_cpu(unsigned int type,
0095                    void (*func)(void *info), void *info)
0096 {
0097     preempt_disable();
0098     if (r4k_op_needs_ipi(type))
0099         smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
0100                        func, info, 1);
0101     func(info);
0102     preempt_enable();
0103 }
0104 
0105 /*
0106  * Must die.
0107  */
0108 static unsigned long icache_size __read_mostly;
0109 static unsigned long dcache_size __read_mostly;
0110 static unsigned long vcache_size __read_mostly;
0111 static unsigned long scache_size __read_mostly;
0112 
0113 /*
0114  * Dummy cache handling routines for machines without boardcaches
0115  */
0116 static void cache_noop(void) {}
0117 
0118 static struct bcache_ops no_sc_ops = {
0119     .bc_enable = (void *)cache_noop,
0120     .bc_disable = (void *)cache_noop,
0121     .bc_wback_inv = (void *)cache_noop,
0122     .bc_inv = (void *)cache_noop
0123 };
0124 
0125 struct bcache_ops *bcops = &no_sc_ops;
0126 
0127 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
0128 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
0129 
0130 #define R4600_HIT_CACHEOP_WAR_IMPL                  \
0131 do {                                    \
0132     if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) &&      \
0133         cpu_is_r4600_v2_x())                    \
0134         *(volatile unsigned long *)CKSEG1;          \
0135     if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP))                    \
0136         __asm__ __volatile__("nop;nop;nop;nop");        \
0137 } while (0)
0138 
0139 static void (*r4k_blast_dcache_page)(unsigned long addr);
0140 
0141 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
0142 {
0143     R4600_HIT_CACHEOP_WAR_IMPL;
0144     blast_dcache32_page(addr);
0145 }
0146 
0147 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
0148 {
0149     blast_dcache64_page(addr);
0150 }
0151 
0152 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
0153 {
0154     blast_dcache128_page(addr);
0155 }
0156 
0157 static void r4k_blast_dcache_page_setup(void)
0158 {
0159     unsigned long  dc_lsize = cpu_dcache_line_size();
0160 
0161     switch (dc_lsize) {
0162     case 0:
0163         r4k_blast_dcache_page = (void *)cache_noop;
0164         break;
0165     case 16:
0166         r4k_blast_dcache_page = blast_dcache16_page;
0167         break;
0168     case 32:
0169         r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
0170         break;
0171     case 64:
0172         r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
0173         break;
0174     case 128:
0175         r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
0176         break;
0177     default:
0178         break;
0179     }
0180 }
0181 
0182 #ifndef CONFIG_EVA
0183 #define r4k_blast_dcache_user_page  r4k_blast_dcache_page
0184 #else
0185 
0186 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
0187 
0188 static void r4k_blast_dcache_user_page_setup(void)
0189 {
0190     unsigned long  dc_lsize = cpu_dcache_line_size();
0191 
0192     if (dc_lsize == 0)
0193         r4k_blast_dcache_user_page = (void *)cache_noop;
0194     else if (dc_lsize == 16)
0195         r4k_blast_dcache_user_page = blast_dcache16_user_page;
0196     else if (dc_lsize == 32)
0197         r4k_blast_dcache_user_page = blast_dcache32_user_page;
0198     else if (dc_lsize == 64)
0199         r4k_blast_dcache_user_page = blast_dcache64_user_page;
0200 }
0201 
0202 #endif
0203 
0204 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
0205 
0206 static void r4k_blast_dcache_page_indexed_setup(void)
0207 {
0208     unsigned long dc_lsize = cpu_dcache_line_size();
0209 
0210     if (dc_lsize == 0)
0211         r4k_blast_dcache_page_indexed = (void *)cache_noop;
0212     else if (dc_lsize == 16)
0213         r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
0214     else if (dc_lsize == 32)
0215         r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
0216     else if (dc_lsize == 64)
0217         r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
0218     else if (dc_lsize == 128)
0219         r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
0220 }
0221 
0222 void (* r4k_blast_dcache)(void);
0223 EXPORT_SYMBOL(r4k_blast_dcache);
0224 
0225 static void r4k_blast_dcache_setup(void)
0226 {
0227     unsigned long dc_lsize = cpu_dcache_line_size();
0228 
0229     if (dc_lsize == 0)
0230         r4k_blast_dcache = (void *)cache_noop;
0231     else if (dc_lsize == 16)
0232         r4k_blast_dcache = blast_dcache16;
0233     else if (dc_lsize == 32)
0234         r4k_blast_dcache = blast_dcache32;
0235     else if (dc_lsize == 64)
0236         r4k_blast_dcache = blast_dcache64;
0237     else if (dc_lsize == 128)
0238         r4k_blast_dcache = blast_dcache128;
0239 }
0240 
0241 /* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
0242 #define JUMP_TO_ALIGN(order) \
0243     __asm__ __volatile__( \
0244         "b\t1f\n\t" \
0245         ".align\t" #order "\n\t" \
0246         "1:\n\t" \
0247         )
0248 #define CACHE32_UNROLL32_ALIGN  JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
0249 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
0250 
0251 static inline void blast_r4600_v1_icache32(void)
0252 {
0253     unsigned long flags;
0254 
0255     local_irq_save(flags);
0256     blast_icache32();
0257     local_irq_restore(flags);
0258 }
0259 
0260 static inline void tx49_blast_icache32(void)
0261 {
0262     unsigned long start = INDEX_BASE;
0263     unsigned long end = start + current_cpu_data.icache.waysize;
0264     unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
0265     unsigned long ws_end = current_cpu_data.icache.ways <<
0266                    current_cpu_data.icache.waybit;
0267     unsigned long ws, addr;
0268 
0269     CACHE32_UNROLL32_ALIGN2;
0270     /* I'm in even chunk.  blast odd chunks */
0271     for (ws = 0; ws < ws_end; ws += ws_inc)
0272         for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
0273             cache_unroll(32, kernel_cache, Index_Invalidate_I,
0274                      addr | ws, 32);
0275     CACHE32_UNROLL32_ALIGN;
0276     /* I'm in odd chunk.  blast even chunks */
0277     for (ws = 0; ws < ws_end; ws += ws_inc)
0278         for (addr = start; addr < end; addr += 0x400 * 2)
0279             cache_unroll(32, kernel_cache, Index_Invalidate_I,
0280                      addr | ws, 32);
0281 }
0282 
0283 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
0284 {
0285     unsigned long flags;
0286 
0287     local_irq_save(flags);
0288     blast_icache32_page_indexed(page);
0289     local_irq_restore(flags);
0290 }
0291 
0292 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
0293 {
0294     unsigned long indexmask = current_cpu_data.icache.waysize - 1;
0295     unsigned long start = INDEX_BASE + (page & indexmask);
0296     unsigned long end = start + PAGE_SIZE;
0297     unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
0298     unsigned long ws_end = current_cpu_data.icache.ways <<
0299                    current_cpu_data.icache.waybit;
0300     unsigned long ws, addr;
0301 
0302     CACHE32_UNROLL32_ALIGN2;
0303     /* I'm in even chunk.  blast odd chunks */
0304     for (ws = 0; ws < ws_end; ws += ws_inc)
0305         for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
0306             cache_unroll(32, kernel_cache, Index_Invalidate_I,
0307                      addr | ws, 32);
0308     CACHE32_UNROLL32_ALIGN;
0309     /* I'm in odd chunk.  blast even chunks */
0310     for (ws = 0; ws < ws_end; ws += ws_inc)
0311         for (addr = start; addr < end; addr += 0x400 * 2)
0312             cache_unroll(32, kernel_cache, Index_Invalidate_I,
0313                      addr | ws, 32);
0314 }
0315 
0316 static void (* r4k_blast_icache_page)(unsigned long addr);
0317 
0318 static void r4k_blast_icache_page_setup(void)
0319 {
0320     unsigned long ic_lsize = cpu_icache_line_size();
0321 
0322     if (ic_lsize == 0)
0323         r4k_blast_icache_page = (void *)cache_noop;
0324     else if (ic_lsize == 16)
0325         r4k_blast_icache_page = blast_icache16_page;
0326     else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
0327         r4k_blast_icache_page = loongson2_blast_icache32_page;
0328     else if (ic_lsize == 32)
0329         r4k_blast_icache_page = blast_icache32_page;
0330     else if (ic_lsize == 64)
0331         r4k_blast_icache_page = blast_icache64_page;
0332     else if (ic_lsize == 128)
0333         r4k_blast_icache_page = blast_icache128_page;
0334 }
0335 
0336 #ifndef CONFIG_EVA
0337 #define r4k_blast_icache_user_page  r4k_blast_icache_page
0338 #else
0339 
0340 static void (*r4k_blast_icache_user_page)(unsigned long addr);
0341 
0342 static void r4k_blast_icache_user_page_setup(void)
0343 {
0344     unsigned long ic_lsize = cpu_icache_line_size();
0345 
0346     if (ic_lsize == 0)
0347         r4k_blast_icache_user_page = (void *)cache_noop;
0348     else if (ic_lsize == 16)
0349         r4k_blast_icache_user_page = blast_icache16_user_page;
0350     else if (ic_lsize == 32)
0351         r4k_blast_icache_user_page = blast_icache32_user_page;
0352     else if (ic_lsize == 64)
0353         r4k_blast_icache_user_page = blast_icache64_user_page;
0354 }
0355 
0356 #endif
0357 
0358 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
0359 
0360 static void r4k_blast_icache_page_indexed_setup(void)
0361 {
0362     unsigned long ic_lsize = cpu_icache_line_size();
0363 
0364     if (ic_lsize == 0)
0365         r4k_blast_icache_page_indexed = (void *)cache_noop;
0366     else if (ic_lsize == 16)
0367         r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
0368     else if (ic_lsize == 32) {
0369         if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
0370             cpu_is_r4600_v1_x())
0371             r4k_blast_icache_page_indexed =
0372                 blast_icache32_r4600_v1_page_indexed;
0373         else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
0374             r4k_blast_icache_page_indexed =
0375                 tx49_blast_icache32_page_indexed;
0376         else if (current_cpu_type() == CPU_LOONGSON2EF)
0377             r4k_blast_icache_page_indexed =
0378                 loongson2_blast_icache32_page_indexed;
0379         else
0380             r4k_blast_icache_page_indexed =
0381                 blast_icache32_page_indexed;
0382     } else if (ic_lsize == 64)
0383         r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
0384 }
0385 
0386 void (* r4k_blast_icache)(void);
0387 EXPORT_SYMBOL(r4k_blast_icache);
0388 
0389 static void r4k_blast_icache_setup(void)
0390 {
0391     unsigned long ic_lsize = cpu_icache_line_size();
0392 
0393     if (ic_lsize == 0)
0394         r4k_blast_icache = (void *)cache_noop;
0395     else if (ic_lsize == 16)
0396         r4k_blast_icache = blast_icache16;
0397     else if (ic_lsize == 32) {
0398         if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
0399             cpu_is_r4600_v1_x())
0400             r4k_blast_icache = blast_r4600_v1_icache32;
0401         else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
0402             r4k_blast_icache = tx49_blast_icache32;
0403         else if (current_cpu_type() == CPU_LOONGSON2EF)
0404             r4k_blast_icache = loongson2_blast_icache32;
0405         else
0406             r4k_blast_icache = blast_icache32;
0407     } else if (ic_lsize == 64)
0408         r4k_blast_icache = blast_icache64;
0409     else if (ic_lsize == 128)
0410         r4k_blast_icache = blast_icache128;
0411 }
0412 
0413 static void (* r4k_blast_scache_page)(unsigned long addr);
0414 
0415 static void r4k_blast_scache_page_setup(void)
0416 {
0417     unsigned long sc_lsize = cpu_scache_line_size();
0418 
0419     if (scache_size == 0)
0420         r4k_blast_scache_page = (void *)cache_noop;
0421     else if (sc_lsize == 16)
0422         r4k_blast_scache_page = blast_scache16_page;
0423     else if (sc_lsize == 32)
0424         r4k_blast_scache_page = blast_scache32_page;
0425     else if (sc_lsize == 64)
0426         r4k_blast_scache_page = blast_scache64_page;
0427     else if (sc_lsize == 128)
0428         r4k_blast_scache_page = blast_scache128_page;
0429 }
0430 
0431 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
0432 
0433 static void r4k_blast_scache_page_indexed_setup(void)
0434 {
0435     unsigned long sc_lsize = cpu_scache_line_size();
0436 
0437     if (scache_size == 0)
0438         r4k_blast_scache_page_indexed = (void *)cache_noop;
0439     else if (sc_lsize == 16)
0440         r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
0441     else if (sc_lsize == 32)
0442         r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
0443     else if (sc_lsize == 64)
0444         r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
0445     else if (sc_lsize == 128)
0446         r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
0447 }
0448 
0449 static void (* r4k_blast_scache)(void);
0450 
0451 static void r4k_blast_scache_setup(void)
0452 {
0453     unsigned long sc_lsize = cpu_scache_line_size();
0454 
0455     if (scache_size == 0)
0456         r4k_blast_scache = (void *)cache_noop;
0457     else if (sc_lsize == 16)
0458         r4k_blast_scache = blast_scache16;
0459     else if (sc_lsize == 32)
0460         r4k_blast_scache = blast_scache32;
0461     else if (sc_lsize == 64)
0462         r4k_blast_scache = blast_scache64;
0463     else if (sc_lsize == 128)
0464         r4k_blast_scache = blast_scache128;
0465 }
0466 
0467 static void (*r4k_blast_scache_node)(long node);
0468 
0469 static void r4k_blast_scache_node_setup(void)
0470 {
0471     unsigned long sc_lsize = cpu_scache_line_size();
0472 
0473     if (current_cpu_type() != CPU_LOONGSON64)
0474         r4k_blast_scache_node = (void *)cache_noop;
0475     else if (sc_lsize == 16)
0476         r4k_blast_scache_node = blast_scache16_node;
0477     else if (sc_lsize == 32)
0478         r4k_blast_scache_node = blast_scache32_node;
0479     else if (sc_lsize == 64)
0480         r4k_blast_scache_node = blast_scache64_node;
0481     else if (sc_lsize == 128)
0482         r4k_blast_scache_node = blast_scache128_node;
0483 }
0484 
0485 static inline void local_r4k___flush_cache_all(void * args)
0486 {
0487     switch (current_cpu_type()) {
0488     case CPU_LOONGSON2EF:
0489     case CPU_R4000SC:
0490     case CPU_R4000MC:
0491     case CPU_R4400SC:
0492     case CPU_R4400MC:
0493     case CPU_R10000:
0494     case CPU_R12000:
0495     case CPU_R14000:
0496     case CPU_R16000:
0497         /*
0498          * These caches are inclusive caches, that is, if something
0499          * is not cached in the S-cache, we know it also won't be
0500          * in one of the primary caches.
0501          */
0502         r4k_blast_scache();
0503         break;
0504 
0505     case CPU_LOONGSON64:
0506         /* Use get_ebase_cpunum() for both NUMA=y/n */
0507         r4k_blast_scache_node(get_ebase_cpunum() >> 2);
0508         break;
0509 
0510     case CPU_BMIPS5000:
0511         r4k_blast_scache();
0512         __sync();
0513         break;
0514 
0515     default:
0516         r4k_blast_dcache();
0517         r4k_blast_icache();
0518         break;
0519     }
0520 }
0521 
0522 static void r4k___flush_cache_all(void)
0523 {
0524     r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
0525 }
0526 
0527 /**
0528  * has_valid_asid() - Determine if an mm already has an ASID.
0529  * @mm:     Memory map.
0530  * @type:   R4K_HIT or R4K_INDEX, type of cache op.
0531  *
0532  * Determines whether @mm already has an ASID on any of the CPUs which cache ops
0533  * of type @type within an r4k_on_each_cpu() call will affect. If
0534  * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
0535  * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
0536  * will need to be checked.
0537  *
0538  * Must be called in non-preemptive context.
0539  *
0540  * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
0541  *      0 otherwise.
0542  */
0543 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
0544 {
0545     unsigned int i;
0546     const cpumask_t *mask = cpu_present_mask;
0547 
0548     if (cpu_has_mmid)
0549         return cpu_context(0, mm) != 0;
0550 
0551     /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
0552 #ifdef CONFIG_SMP
0553     /*
0554      * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
0555      * each foreign core, so we only need to worry about siblings.
0556      * Otherwise we need to worry about all present CPUs.
0557      */
0558     if (r4k_op_needs_ipi(type))
0559         mask = &cpu_sibling_map[smp_processor_id()];
0560 #endif
0561     for_each_cpu(i, mask)
0562         if (cpu_context(i, mm))
0563             return 1;
0564     return 0;
0565 }
0566 
0567 static void r4k__flush_cache_vmap(void)
0568 {
0569     r4k_blast_dcache();
0570 }
0571 
0572 static void r4k__flush_cache_vunmap(void)
0573 {
0574     r4k_blast_dcache();
0575 }
0576 
0577 /*
0578  * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
0579  * whole caches when vma is executable.
0580  */
0581 static inline void local_r4k_flush_cache_range(void * args)
0582 {
0583     struct vm_area_struct *vma = args;
0584     int exec = vma->vm_flags & VM_EXEC;
0585 
0586     if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
0587         return;
0588 
0589     /*
0590      * If dcache can alias, we must blast it since mapping is changing.
0591      * If executable, we must ensure any dirty lines are written back far
0592      * enough to be visible to icache.
0593      */
0594     if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
0595         r4k_blast_dcache();
0596     /* If executable, blast stale lines from icache */
0597     if (exec)
0598         r4k_blast_icache();
0599 }
0600 
0601 static void r4k_flush_cache_range(struct vm_area_struct *vma,
0602     unsigned long start, unsigned long end)
0603 {
0604     int exec = vma->vm_flags & VM_EXEC;
0605 
0606     if (cpu_has_dc_aliases || exec)
0607         r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
0608 }
0609 
0610 static inline void local_r4k_flush_cache_mm(void * args)
0611 {
0612     struct mm_struct *mm = args;
0613 
0614     if (!has_valid_asid(mm, R4K_INDEX))
0615         return;
0616 
0617     /*
0618      * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
0619      * only flush the primary caches but R1x000 behave sane ...
0620      * R4000SC and R4400SC indexed S-cache ops also invalidate primary
0621      * caches, so we can bail out early.
0622      */
0623     if (current_cpu_type() == CPU_R4000SC ||
0624         current_cpu_type() == CPU_R4000MC ||
0625         current_cpu_type() == CPU_R4400SC ||
0626         current_cpu_type() == CPU_R4400MC) {
0627         r4k_blast_scache();
0628         return;
0629     }
0630 
0631     r4k_blast_dcache();
0632 }
0633 
0634 static void r4k_flush_cache_mm(struct mm_struct *mm)
0635 {
0636     if (!cpu_has_dc_aliases)
0637         return;
0638 
0639     r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
0640 }
0641 
0642 struct flush_cache_page_args {
0643     struct vm_area_struct *vma;
0644     unsigned long addr;
0645     unsigned long pfn;
0646 };
0647 
0648 static inline void local_r4k_flush_cache_page(void *args)
0649 {
0650     struct flush_cache_page_args *fcp_args = args;
0651     struct vm_area_struct *vma = fcp_args->vma;
0652     unsigned long addr = fcp_args->addr;
0653     struct page *page = pfn_to_page(fcp_args->pfn);
0654     int exec = vma->vm_flags & VM_EXEC;
0655     struct mm_struct *mm = vma->vm_mm;
0656     int map_coherent = 0;
0657     pmd_t *pmdp;
0658     pte_t *ptep;
0659     void *vaddr;
0660 
0661     /*
0662      * If owns no valid ASID yet, cannot possibly have gotten
0663      * this page into the cache.
0664      */
0665     if (!has_valid_asid(mm, R4K_HIT))
0666         return;
0667 
0668     addr &= PAGE_MASK;
0669     pmdp = pmd_off(mm, addr);
0670     ptep = pte_offset_kernel(pmdp, addr);
0671 
0672     /*
0673      * If the page isn't marked valid, the page cannot possibly be
0674      * in the cache.
0675      */
0676     if (!(pte_present(*ptep)))
0677         return;
0678 
0679     if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
0680         vaddr = NULL;
0681     else {
0682         /*
0683          * Use kmap_coherent or kmap_atomic to do flushes for
0684          * another ASID than the current one.
0685          */
0686         map_coherent = (cpu_has_dc_aliases &&
0687                 page_mapcount(page) &&
0688                 !Page_dcache_dirty(page));
0689         if (map_coherent)
0690             vaddr = kmap_coherent(page, addr);
0691         else
0692             vaddr = kmap_atomic(page);
0693         addr = (unsigned long)vaddr;
0694     }
0695 
0696     if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
0697         vaddr ? r4k_blast_dcache_page(addr) :
0698             r4k_blast_dcache_user_page(addr);
0699         if (exec && !cpu_icache_snoops_remote_store)
0700             r4k_blast_scache_page(addr);
0701     }
0702     if (exec) {
0703         if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
0704             drop_mmu_context(mm);
0705         } else
0706             vaddr ? r4k_blast_icache_page(addr) :
0707                 r4k_blast_icache_user_page(addr);
0708     }
0709 
0710     if (vaddr) {
0711         if (map_coherent)
0712             kunmap_coherent();
0713         else
0714             kunmap_atomic(vaddr);
0715     }
0716 }
0717 
0718 static void r4k_flush_cache_page(struct vm_area_struct *vma,
0719     unsigned long addr, unsigned long pfn)
0720 {
0721     struct flush_cache_page_args args;
0722 
0723     args.vma = vma;
0724     args.addr = addr;
0725     args.pfn = pfn;
0726 
0727     r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
0728 }
0729 
0730 static inline void local_r4k_flush_data_cache_page(void * addr)
0731 {
0732     r4k_blast_dcache_page((unsigned long) addr);
0733 }
0734 
0735 static void r4k_flush_data_cache_page(unsigned long addr)
0736 {
0737     if (in_atomic())
0738         local_r4k_flush_data_cache_page((void *)addr);
0739     else
0740         r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
0741                 (void *) addr);
0742 }
0743 
0744 struct flush_icache_range_args {
0745     unsigned long start;
0746     unsigned long end;
0747     unsigned int type;
0748     bool user;
0749 };
0750 
0751 static inline void __local_r4k_flush_icache_range(unsigned long start,
0752                           unsigned long end,
0753                           unsigned int type,
0754                           bool user)
0755 {
0756     if (!cpu_has_ic_fills_f_dc) {
0757         if (type == R4K_INDEX ||
0758             (type & R4K_INDEX && end - start >= dcache_size)) {
0759             r4k_blast_dcache();
0760         } else {
0761             R4600_HIT_CACHEOP_WAR_IMPL;
0762             if (user)
0763                 protected_blast_dcache_range(start, end);
0764             else
0765                 blast_dcache_range(start, end);
0766         }
0767     }
0768 
0769     if (type == R4K_INDEX ||
0770         (type & R4K_INDEX && end - start > icache_size))
0771         r4k_blast_icache();
0772     else {
0773         switch (boot_cpu_type()) {
0774         case CPU_LOONGSON2EF:
0775             protected_loongson2_blast_icache_range(start, end);
0776             break;
0777 
0778         default:
0779             if (user)
0780                 protected_blast_icache_range(start, end);
0781             else
0782                 blast_icache_range(start, end);
0783             break;
0784         }
0785     }
0786 }
0787 
0788 static inline void local_r4k_flush_icache_range(unsigned long start,
0789                         unsigned long end)
0790 {
0791     __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
0792 }
0793 
0794 static inline void local_r4k_flush_icache_user_range(unsigned long start,
0795                              unsigned long end)
0796 {
0797     __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
0798 }
0799 
0800 static inline void local_r4k_flush_icache_range_ipi(void *args)
0801 {
0802     struct flush_icache_range_args *fir_args = args;
0803     unsigned long start = fir_args->start;
0804     unsigned long end = fir_args->end;
0805     unsigned int type = fir_args->type;
0806     bool user = fir_args->user;
0807 
0808     __local_r4k_flush_icache_range(start, end, type, user);
0809 }
0810 
0811 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
0812                      bool user)
0813 {
0814     struct flush_icache_range_args args;
0815     unsigned long size, cache_size;
0816 
0817     args.start = start;
0818     args.end = end;
0819     args.type = R4K_HIT | R4K_INDEX;
0820     args.user = user;
0821 
0822     /*
0823      * Indexed cache ops require an SMP call.
0824      * Consider if that can or should be avoided.
0825      */
0826     preempt_disable();
0827     if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
0828         /*
0829          * If address-based cache ops don't require an SMP call, then
0830          * use them exclusively for small flushes.
0831          */
0832         size = end - start;
0833         cache_size = icache_size;
0834         if (!cpu_has_ic_fills_f_dc) {
0835             size *= 2;
0836             cache_size += dcache_size;
0837         }
0838         if (size <= cache_size)
0839             args.type &= ~R4K_INDEX;
0840     }
0841     r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
0842     preempt_enable();
0843     instruction_hazard();
0844 }
0845 
0846 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
0847 {
0848     return __r4k_flush_icache_range(start, end, false);
0849 }
0850 
0851 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
0852 {
0853     return __r4k_flush_icache_range(start, end, true);
0854 }
0855 
0856 #ifdef CONFIG_DMA_NONCOHERENT
0857 
0858 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
0859 {
0860     /* Catch bad driver code */
0861     if (WARN_ON(size == 0))
0862         return;
0863 
0864     preempt_disable();
0865     if (cpu_has_inclusive_pcaches) {
0866         if (size >= scache_size) {
0867             if (current_cpu_type() != CPU_LOONGSON64)
0868                 r4k_blast_scache();
0869             else
0870                 r4k_blast_scache_node(pa_to_nid(addr));
0871         } else {
0872             blast_scache_range(addr, addr + size);
0873         }
0874         preempt_enable();
0875         __sync();
0876         return;
0877     }
0878 
0879     /*
0880      * Either no secondary cache or the available caches don't have the
0881      * subset property so we have to flush the primary caches
0882      * explicitly.
0883      * If we would need IPI to perform an INDEX-type operation, then
0884      * we have to use the HIT-type alternative as IPI cannot be used
0885      * here due to interrupts possibly being disabled.
0886      */
0887     if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
0888         r4k_blast_dcache();
0889     } else {
0890         R4600_HIT_CACHEOP_WAR_IMPL;
0891         blast_dcache_range(addr, addr + size);
0892     }
0893     preempt_enable();
0894 
0895     bc_wback_inv(addr, size);
0896     __sync();
0897 }
0898 
0899 static void prefetch_cache_inv(unsigned long addr, unsigned long size)
0900 {
0901     unsigned int linesz = cpu_scache_line_size();
0902     unsigned long addr0 = addr, addr1;
0903 
0904     addr0 &= ~(linesz - 1);
0905     addr1 = (addr0 + size - 1) & ~(linesz - 1);
0906 
0907     protected_writeback_scache_line(addr0);
0908     if (likely(addr1 != addr0))
0909         protected_writeback_scache_line(addr1);
0910     else
0911         return;
0912 
0913     addr0 += linesz;
0914     if (likely(addr1 != addr0))
0915         protected_writeback_scache_line(addr0);
0916     else
0917         return;
0918 
0919     addr1 -= linesz;
0920     if (likely(addr1 > addr0))
0921         protected_writeback_scache_line(addr0);
0922 }
0923 
0924 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
0925 {
0926     /* Catch bad driver code */
0927     if (WARN_ON(size == 0))
0928         return;
0929 
0930     preempt_disable();
0931 
0932     if (current_cpu_type() == CPU_BMIPS5000)
0933         prefetch_cache_inv(addr, size);
0934 
0935     if (cpu_has_inclusive_pcaches) {
0936         if (size >= scache_size) {
0937             if (current_cpu_type() != CPU_LOONGSON64)
0938                 r4k_blast_scache();
0939             else
0940                 r4k_blast_scache_node(pa_to_nid(addr));
0941         } else {
0942             /*
0943              * There is no clearly documented alignment requirement
0944              * for the cache instruction on MIPS processors and
0945              * some processors, among them the RM5200 and RM7000
0946              * QED processors will throw an address error for cache
0947              * hit ops with insufficient alignment.  Solved by
0948              * aligning the address to cache line size.
0949              */
0950             blast_inv_scache_range(addr, addr + size);
0951         }
0952         preempt_enable();
0953         __sync();
0954         return;
0955     }
0956 
0957     if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
0958         r4k_blast_dcache();
0959     } else {
0960         R4600_HIT_CACHEOP_WAR_IMPL;
0961         blast_inv_dcache_range(addr, addr + size);
0962     }
0963     preempt_enable();
0964 
0965     bc_inv(addr, size);
0966     __sync();
0967 }
0968 #endif /* CONFIG_DMA_NONCOHERENT */
0969 
0970 static void r4k_flush_icache_all(void)
0971 {
0972     if (cpu_has_vtag_icache)
0973         r4k_blast_icache();
0974 }
0975 
0976 struct flush_kernel_vmap_range_args {
0977     unsigned long   vaddr;
0978     int     size;
0979 };
0980 
0981 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
0982 {
0983     /*
0984      * Aliases only affect the primary caches so don't bother with
0985      * S-caches or T-caches.
0986      */
0987     r4k_blast_dcache();
0988 }
0989 
0990 static inline void local_r4k_flush_kernel_vmap_range(void *args)
0991 {
0992     struct flush_kernel_vmap_range_args *vmra = args;
0993     unsigned long vaddr = vmra->vaddr;
0994     int size = vmra->size;
0995 
0996     /*
0997      * Aliases only affect the primary caches so don't bother with
0998      * S-caches or T-caches.
0999      */
1000     R4600_HIT_CACHEOP_WAR_IMPL;
1001     blast_dcache_range(vaddr, vaddr + size);
1002 }
1003 
1004 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1005 {
1006     struct flush_kernel_vmap_range_args args;
1007 
1008     args.vaddr = (unsigned long) vaddr;
1009     args.size = size;
1010 
1011     if (size >= dcache_size)
1012         r4k_on_each_cpu(R4K_INDEX,
1013                 local_r4k_flush_kernel_vmap_range_index, NULL);
1014     else
1015         r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1016                 &args);
1017 }
1018 
1019 static inline void rm7k_erratum31(void)
1020 {
1021     const unsigned long ic_lsize = 32;
1022     unsigned long addr;
1023 
1024     /* RM7000 erratum #31. The icache is screwed at startup. */
1025     write_c0_taglo(0);
1026     write_c0_taghi(0);
1027 
1028     for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1029         __asm__ __volatile__ (
1030             ".set push\n\t"
1031             ".set noreorder\n\t"
1032             ".set mips3\n\t"
1033             "cache\t%1, 0(%0)\n\t"
1034             "cache\t%1, 0x1000(%0)\n\t"
1035             "cache\t%1, 0x2000(%0)\n\t"
1036             "cache\t%1, 0x3000(%0)\n\t"
1037             "cache\t%2, 0(%0)\n\t"
1038             "cache\t%2, 0x1000(%0)\n\t"
1039             "cache\t%2, 0x2000(%0)\n\t"
1040             "cache\t%2, 0x3000(%0)\n\t"
1041             "cache\t%1, 0(%0)\n\t"
1042             "cache\t%1, 0x1000(%0)\n\t"
1043             "cache\t%1, 0x2000(%0)\n\t"
1044             "cache\t%1, 0x3000(%0)\n\t"
1045             ".set pop\n"
1046             :
1047             : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
1048     }
1049 }
1050 
1051 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1052 {
1053     unsigned int imp = c->processor_id & PRID_IMP_MASK;
1054     unsigned int rev = c->processor_id & PRID_REV_MASK;
1055     int present = 0;
1056 
1057     /*
1058      * Early versions of the 74K do not update the cache tags on a
1059      * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1060      * aliases.  In this case it is better to treat the cache as always
1061      * having aliases.  Also disable the synonym tag update feature
1062      * where available.  In this case no opportunistic tag update will
1063      * happen where a load causes a virtual address miss but a physical
1064      * address hit during a D-cache look-up.
1065      */
1066     switch (imp) {
1067     case PRID_IMP_74K:
1068         if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1069             present = 1;
1070         if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1071             write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1072         break;
1073     case PRID_IMP_1074K:
1074         if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1075             present = 1;
1076             write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1077         }
1078         break;
1079     default:
1080         BUG();
1081     }
1082 
1083     return present;
1084 }
1085 
1086 static void b5k_instruction_hazard(void)
1087 {
1088     __sync();
1089     __sync();
1090     __asm__ __volatile__(
1091     "       nop; nop; nop; nop; nop; nop; nop; nop\n"
1092     "       nop; nop; nop; nop; nop; nop; nop; nop\n"
1093     "       nop; nop; nop; nop; nop; nop; nop; nop\n"
1094     "       nop; nop; nop; nop; nop; nop; nop; nop\n"
1095     : : : "memory");
1096 }
1097 
1098 static char *way_string[] = { NULL, "direct mapped", "2-way",
1099     "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1100     "9-way", "10-way", "11-way", "12-way",
1101     "13-way", "14-way", "15-way", "16-way",
1102 };
1103 
1104 static void probe_pcache(void)
1105 {
1106     struct cpuinfo_mips *c = &current_cpu_data;
1107     unsigned int config = read_c0_config();
1108     unsigned int prid = read_c0_prid();
1109     int has_74k_erratum = 0;
1110     unsigned long config1;
1111     unsigned int lsize;
1112 
1113     switch (current_cpu_type()) {
1114     case CPU_R4600:         /* QED style two way caches? */
1115     case CPU_R4700:
1116     case CPU_R5000:
1117     case CPU_NEVADA:
1118         icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1119         c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1120         c->icache.ways = 2;
1121         c->icache.waybit = __ffs(icache_size/2);
1122 
1123         dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1124         c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1125         c->dcache.ways = 2;
1126         c->dcache.waybit= __ffs(dcache_size/2);
1127 
1128         c->options |= MIPS_CPU_CACHE_CDEX_P;
1129         break;
1130 
1131     case CPU_R5500:
1132         icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1133         c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1134         c->icache.ways = 2;
1135         c->icache.waybit= 0;
1136 
1137         dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1138         c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1139         c->dcache.ways = 2;
1140         c->dcache.waybit = 0;
1141 
1142         c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1143         break;
1144 
1145     case CPU_TX49XX:
1146         icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1147         c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1148         c->icache.ways = 4;
1149         c->icache.waybit= 0;
1150 
1151         dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1152         c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1153         c->dcache.ways = 4;
1154         c->dcache.waybit = 0;
1155 
1156         c->options |= MIPS_CPU_CACHE_CDEX_P;
1157         c->options |= MIPS_CPU_PREFETCH;
1158         break;
1159 
1160     case CPU_R4000PC:
1161     case CPU_R4000SC:
1162     case CPU_R4000MC:
1163     case CPU_R4400PC:
1164     case CPU_R4400SC:
1165     case CPU_R4400MC:
1166     case CPU_R4300:
1167         icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1168         c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1169         c->icache.ways = 1;
1170         c->icache.waybit = 0;   /* doesn't matter */
1171 
1172         dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1173         c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1174         c->dcache.ways = 1;
1175         c->dcache.waybit = 0;   /* does not matter */
1176 
1177         c->options |= MIPS_CPU_CACHE_CDEX_P;
1178         break;
1179 
1180     case CPU_R10000:
1181     case CPU_R12000:
1182     case CPU_R14000:
1183     case CPU_R16000:
1184         icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1185         c->icache.linesz = 64;
1186         c->icache.ways = 2;
1187         c->icache.waybit = 0;
1188 
1189         dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1190         c->dcache.linesz = 32;
1191         c->dcache.ways = 2;
1192         c->dcache.waybit = 0;
1193 
1194         c->options |= MIPS_CPU_PREFETCH;
1195         break;
1196 
1197     case CPU_RM7000:
1198         rm7k_erratum31();
1199 
1200         icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1201         c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1202         c->icache.ways = 4;
1203         c->icache.waybit = __ffs(icache_size / c->icache.ways);
1204 
1205         dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1206         c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1207         c->dcache.ways = 4;
1208         c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1209 
1210         c->options |= MIPS_CPU_CACHE_CDEX_P;
1211         c->options |= MIPS_CPU_PREFETCH;
1212         break;
1213 
1214     case CPU_LOONGSON2EF:
1215         icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1216         c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1217         if (prid & 0x3)
1218             c->icache.ways = 4;
1219         else
1220             c->icache.ways = 2;
1221         c->icache.waybit = 0;
1222 
1223         dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1224         c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1225         if (prid & 0x3)
1226             c->dcache.ways = 4;
1227         else
1228             c->dcache.ways = 2;
1229         c->dcache.waybit = 0;
1230         break;
1231 
1232     case CPU_LOONGSON64:
1233         config1 = read_c0_config1();
1234         lsize = (config1 >> 19) & 7;
1235         if (lsize)
1236             c->icache.linesz = 2 << lsize;
1237         else
1238             c->icache.linesz = 0;
1239         c->icache.sets = 64 << ((config1 >> 22) & 7);
1240         c->icache.ways = 1 + ((config1 >> 16) & 7);
1241         icache_size = c->icache.sets *
1242                       c->icache.ways *
1243                       c->icache.linesz;
1244         c->icache.waybit = 0;
1245 
1246         lsize = (config1 >> 10) & 7;
1247         if (lsize)
1248             c->dcache.linesz = 2 << lsize;
1249         else
1250             c->dcache.linesz = 0;
1251         c->dcache.sets = 64 << ((config1 >> 13) & 7);
1252         c->dcache.ways = 1 + ((config1 >> 7) & 7);
1253         dcache_size = c->dcache.sets *
1254                       c->dcache.ways *
1255                       c->dcache.linesz;
1256         c->dcache.waybit = 0;
1257         if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1258                 (PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1259                 (c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1260             c->options |= MIPS_CPU_PREFETCH;
1261         break;
1262 
1263     case CPU_CAVIUM_OCTEON3:
1264         /* For now lie about the number of ways. */
1265         c->icache.linesz = 128;
1266         c->icache.sets = 16;
1267         c->icache.ways = 8;
1268         c->icache.flags |= MIPS_CACHE_VTAG;
1269         icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1270 
1271         c->dcache.linesz = 128;
1272         c->dcache.ways = 8;
1273         c->dcache.sets = 8;
1274         dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1275         c->options |= MIPS_CPU_PREFETCH;
1276         break;
1277 
1278     default:
1279         if (!(config & MIPS_CONF_M))
1280             panic("Don't know how to probe P-caches on this cpu.");
1281 
1282         /*
1283          * So we seem to be a MIPS32 or MIPS64 CPU
1284          * So let's probe the I-cache ...
1285          */
1286         config1 = read_c0_config1();
1287 
1288         lsize = (config1 >> 19) & 7;
1289 
1290         /* IL == 7 is reserved */
1291         if (lsize == 7)
1292             panic("Invalid icache line size");
1293 
1294         c->icache.linesz = lsize ? 2 << lsize : 0;
1295 
1296         c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1297         c->icache.ways = 1 + ((config1 >> 16) & 7);
1298 
1299         icache_size = c->icache.sets *
1300                   c->icache.ways *
1301                   c->icache.linesz;
1302         c->icache.waybit = __ffs(icache_size/c->icache.ways);
1303 
1304         if (config & MIPS_CONF_VI)
1305             c->icache.flags |= MIPS_CACHE_VTAG;
1306 
1307         /*
1308          * Now probe the MIPS32 / MIPS64 data cache.
1309          */
1310         c->dcache.flags = 0;
1311 
1312         lsize = (config1 >> 10) & 7;
1313 
1314         /* DL == 7 is reserved */
1315         if (lsize == 7)
1316             panic("Invalid dcache line size");
1317 
1318         c->dcache.linesz = lsize ? 2 << lsize : 0;
1319 
1320         c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1321         c->dcache.ways = 1 + ((config1 >> 7) & 7);
1322 
1323         dcache_size = c->dcache.sets *
1324                   c->dcache.ways *
1325                   c->dcache.linesz;
1326         c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1327 
1328         c->options |= MIPS_CPU_PREFETCH;
1329         break;
1330     }
1331 
1332     /*
1333      * Processor configuration sanity check for the R4000SC erratum
1334      * #5.  With page sizes larger than 32kB there is no possibility
1335      * to get a VCE exception anymore so we don't care about this
1336      * misconfiguration.  The case is rather theoretical anyway;
1337      * presumably no vendor is shipping his hardware in the "bad"
1338      * configuration.
1339      */
1340     if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1341         (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1342         !(config & CONF_SC) && c->icache.linesz != 16 &&
1343         PAGE_SIZE <= 0x8000)
1344         panic("Improper R4000SC processor configuration detected");
1345 
1346     /* compute a couple of other cache variables */
1347     c->icache.waysize = icache_size / c->icache.ways;
1348     c->dcache.waysize = dcache_size / c->dcache.ways;
1349 
1350     c->icache.sets = c->icache.linesz ?
1351         icache_size / (c->icache.linesz * c->icache.ways) : 0;
1352     c->dcache.sets = c->dcache.linesz ?
1353         dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1354 
1355     /*
1356      * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1357      * virtually indexed so normally would suffer from aliases.  So
1358      * normally they'd suffer from aliases but magic in the hardware deals
1359      * with that for us so we don't need to take care ourselves.
1360      */
1361     switch (current_cpu_type()) {
1362     case CPU_20KC:
1363     case CPU_25KF:
1364     case CPU_I6400:
1365     case CPU_I6500:
1366     case CPU_SB1:
1367     case CPU_SB1A:
1368         c->dcache.flags |= MIPS_CACHE_PINDEX;
1369         break;
1370 
1371     case CPU_R10000:
1372     case CPU_R12000:
1373     case CPU_R14000:
1374     case CPU_R16000:
1375         break;
1376 
1377     case CPU_74K:
1378     case CPU_1074K:
1379         has_74k_erratum = alias_74k_erratum(c);
1380         fallthrough;
1381     case CPU_M14KC:
1382     case CPU_M14KEC:
1383     case CPU_24K:
1384     case CPU_34K:
1385     case CPU_1004K:
1386     case CPU_INTERAPTIV:
1387     case CPU_P5600:
1388     case CPU_PROAPTIV:
1389     case CPU_M5150:
1390     case CPU_QEMU_GENERIC:
1391     case CPU_P6600:
1392     case CPU_M6250:
1393         if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1394             (c->icache.waysize > PAGE_SIZE))
1395             c->icache.flags |= MIPS_CACHE_ALIASES;
1396         if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1397             /*
1398              * Effectively physically indexed dcache,
1399              * thus no virtual aliases.
1400             */
1401             c->dcache.flags |= MIPS_CACHE_PINDEX;
1402             break;
1403         }
1404         fallthrough;
1405     default:
1406         if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1407             c->dcache.flags |= MIPS_CACHE_ALIASES;
1408     }
1409 
1410     /* Physically indexed caches don't suffer from virtual aliasing */
1411     if (c->dcache.flags & MIPS_CACHE_PINDEX)
1412         c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1413 
1414     /*
1415      * In systems with CM the icache fills from L2 or closer caches, and
1416      * thus sees remote stores without needing to write them back any
1417      * further than that.
1418      */
1419     if (mips_cm_present())
1420         c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1421 
1422     switch (current_cpu_type()) {
1423     case CPU_20KC:
1424         /*
1425          * Some older 20Kc chips doesn't have the 'VI' bit in
1426          * the config register.
1427          */
1428         c->icache.flags |= MIPS_CACHE_VTAG;
1429         break;
1430 
1431     case CPU_ALCHEMY:
1432     case CPU_I6400:
1433     case CPU_I6500:
1434         c->icache.flags |= MIPS_CACHE_IC_F_DC;
1435         break;
1436 
1437     case CPU_BMIPS5000:
1438         c->icache.flags |= MIPS_CACHE_IC_F_DC;
1439         /* Cache aliases are handled in hardware; allow HIGHMEM */
1440         c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1441         break;
1442 
1443     case CPU_LOONGSON2EF:
1444         /*
1445          * LOONGSON2 has 4 way icache, but when using indexed cache op,
1446          * one op will act on all 4 ways
1447          */
1448         c->icache.ways = 1;
1449     }
1450 
1451     pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1452         icache_size >> 10,
1453         c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1454         way_string[c->icache.ways], c->icache.linesz);
1455 
1456     pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1457         dcache_size >> 10, way_string[c->dcache.ways],
1458         (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1459         (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1460             "cache aliases" : "no aliases",
1461         c->dcache.linesz);
1462 }
1463 
1464 static void probe_vcache(void)
1465 {
1466     struct cpuinfo_mips *c = &current_cpu_data;
1467     unsigned int config2, lsize;
1468 
1469     if (current_cpu_type() != CPU_LOONGSON64)
1470         return;
1471 
1472     config2 = read_c0_config2();
1473     if ((lsize = ((config2 >> 20) & 15)))
1474         c->vcache.linesz = 2 << lsize;
1475     else
1476         c->vcache.linesz = lsize;
1477 
1478     c->vcache.sets = 64 << ((config2 >> 24) & 15);
1479     c->vcache.ways = 1 + ((config2 >> 16) & 15);
1480 
1481     vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1482 
1483     c->vcache.waybit = 0;
1484     c->vcache.waysize = vcache_size / c->vcache.ways;
1485 
1486     pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1487         vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1488 }
1489 
1490 /*
1491  * If you even _breathe_ on this function, look at the gcc output and make sure
1492  * it does not pop things on and off the stack for the cache sizing loop that
1493  * executes in KSEG1 space or else you will crash and burn badly.  You have
1494  * been warned.
1495  */
1496 static int probe_scache(void)
1497 {
1498     unsigned long flags, addr, begin, end, pow2;
1499     unsigned int config = read_c0_config();
1500     struct cpuinfo_mips *c = &current_cpu_data;
1501 
1502     if (config & CONF_SC)
1503         return 0;
1504 
1505     begin = (unsigned long) &_stext;
1506     begin &= ~((4 * 1024 * 1024) - 1);
1507     end = begin + (4 * 1024 * 1024);
1508 
1509     /*
1510      * This is such a bitch, you'd think they would make it easy to do
1511      * this.  Away you daemons of stupidity!
1512      */
1513     local_irq_save(flags);
1514 
1515     /* Fill each size-multiple cache line with a valid tag. */
1516     pow2 = (64 * 1024);
1517     for (addr = begin; addr < end; addr = (begin + pow2)) {
1518         unsigned long *p = (unsigned long *) addr;
1519         __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1520         pow2 <<= 1;
1521     }
1522 
1523     /* Load first line with zero (therefore invalid) tag. */
1524     write_c0_taglo(0);
1525     write_c0_taghi(0);
1526     __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1527     cache_op(Index_Store_Tag_I, begin);
1528     cache_op(Index_Store_Tag_D, begin);
1529     cache_op(Index_Store_Tag_SD, begin);
1530 
1531     /* Now search for the wrap around point. */
1532     pow2 = (128 * 1024);
1533     for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1534         cache_op(Index_Load_Tag_SD, addr);
1535         __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1536         if (!read_c0_taglo())
1537             break;
1538         pow2 <<= 1;
1539     }
1540     local_irq_restore(flags);
1541     addr -= begin;
1542 
1543     scache_size = addr;
1544     c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1545     c->scache.ways = 1;
1546     c->scache.waybit = 0;       /* does not matter */
1547 
1548     return 1;
1549 }
1550 
1551 static void loongson2_sc_init(void)
1552 {
1553     struct cpuinfo_mips *c = &current_cpu_data;
1554 
1555     scache_size = 512*1024;
1556     c->scache.linesz = 32;
1557     c->scache.ways = 4;
1558     c->scache.waybit = 0;
1559     c->scache.waysize = scache_size / (c->scache.ways);
1560     c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1561     pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1562            scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1563 
1564     c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1565 }
1566 
1567 static void loongson3_sc_init(void)
1568 {
1569     struct cpuinfo_mips *c = &current_cpu_data;
1570     unsigned int config2, lsize;
1571 
1572     config2 = read_c0_config2();
1573     lsize = (config2 >> 4) & 15;
1574     if (lsize)
1575         c->scache.linesz = 2 << lsize;
1576     else
1577         c->scache.linesz = 0;
1578     c->scache.sets = 64 << ((config2 >> 8) & 15);
1579     c->scache.ways = 1 + (config2 & 15);
1580 
1581     /* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1582     if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1583         c->scache.sets *= 2;
1584     else
1585         c->scache.sets *= 4;
1586 
1587     scache_size = c->scache.sets * c->scache.ways * c->scache.linesz;
1588 
1589     c->scache.waybit = 0;
1590     c->scache.waysize = scache_size / c->scache.ways;
1591     pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1592            scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1593     if (scache_size)
1594         c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1595     return;
1596 }
1597 
1598 extern int r5k_sc_init(void);
1599 extern int rm7k_sc_init(void);
1600 extern int mips_sc_init(void);
1601 
1602 static void setup_scache(void)
1603 {
1604     struct cpuinfo_mips *c = &current_cpu_data;
1605     unsigned int config = read_c0_config();
1606     int sc_present = 0;
1607 
1608     /*
1609      * Do the probing thing on R4000SC and R4400SC processors.  Other
1610      * processors don't have a S-cache that would be relevant to the
1611      * Linux memory management.
1612      */
1613     switch (current_cpu_type()) {
1614     case CPU_R4000SC:
1615     case CPU_R4000MC:
1616     case CPU_R4400SC:
1617     case CPU_R4400MC:
1618         sc_present = run_uncached(probe_scache);
1619         if (sc_present)
1620             c->options |= MIPS_CPU_CACHE_CDEX_S;
1621         break;
1622 
1623     case CPU_R10000:
1624     case CPU_R12000:
1625     case CPU_R14000:
1626     case CPU_R16000:
1627         scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1628         c->scache.linesz = 64 << ((config >> 13) & 1);
1629         c->scache.ways = 2;
1630         c->scache.waybit= 0;
1631         sc_present = 1;
1632         break;
1633 
1634     case CPU_R5000:
1635     case CPU_NEVADA:
1636 #ifdef CONFIG_R5000_CPU_SCACHE
1637         r5k_sc_init();
1638 #endif
1639         return;
1640 
1641     case CPU_RM7000:
1642 #ifdef CONFIG_RM7000_CPU_SCACHE
1643         rm7k_sc_init();
1644 #endif
1645         return;
1646 
1647     case CPU_LOONGSON2EF:
1648         loongson2_sc_init();
1649         return;
1650 
1651     case CPU_LOONGSON64:
1652         loongson3_sc_init();
1653         return;
1654 
1655     case CPU_CAVIUM_OCTEON3:
1656         /* don't need to worry about L2, fully coherent */
1657         return;
1658 
1659     default:
1660         if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1661                     MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1662                     MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1663                     MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1664 #ifdef CONFIG_MIPS_CPU_SCACHE
1665             if (mips_sc_init ()) {
1666                 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1667                 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1668                        scache_size >> 10,
1669                        way_string[c->scache.ways], c->scache.linesz);
1670 
1671                 if (current_cpu_type() == CPU_BMIPS5000)
1672                     c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1673             }
1674 
1675 #else
1676             if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1677                 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1678 #endif
1679             return;
1680         }
1681         sc_present = 0;
1682     }
1683 
1684     if (!sc_present)
1685         return;
1686 
1687     /* compute a couple of other cache variables */
1688     c->scache.waysize = scache_size / c->scache.ways;
1689 
1690     c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1691 
1692     printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1693            scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1694 
1695     c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1696 }
1697 
1698 void au1x00_fixup_config_od(void)
1699 {
1700     /*
1701      * c0_config.od (bit 19) was write only (and read as 0)
1702      * on the early revisions of Alchemy SOCs.  It disables the bus
1703      * transaction overlapping and needs to be set to fix various errata.
1704      */
1705     switch (read_c0_prid()) {
1706     case 0x00030100: /* Au1000 DA */
1707     case 0x00030201: /* Au1000 HA */
1708     case 0x00030202: /* Au1000 HB */
1709     case 0x01030200: /* Au1500 AB */
1710     /*
1711      * Au1100 errata actually keeps silence about this bit, so we set it
1712      * just in case for those revisions that require it to be set according
1713      * to the (now gone) cpu table.
1714      */
1715     case 0x02030200: /* Au1100 AB */
1716     case 0x02030201: /* Au1100 BA */
1717     case 0x02030202: /* Au1100 BC */
1718         set_c0_config(1 << 19);
1719         break;
1720     }
1721 }
1722 
1723 /* CP0 hazard avoidance. */
1724 #define NXP_BARRIER()                           \
1725      __asm__ __volatile__(                      \
1726     ".set noreorder\n\t"                        \
1727     "nop; nop; nop; nop; nop; nop;\n\t"             \
1728     ".set reorder\n\t")
1729 
1730 static void nxp_pr4450_fixup_config(void)
1731 {
1732     unsigned long config0;
1733 
1734     config0 = read_c0_config();
1735 
1736     /* clear all three cache coherency fields */
1737     config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1738     config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1739             ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1740             ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1741     write_c0_config(config0);
1742     NXP_BARRIER();
1743 }
1744 
1745 static int cca = -1;
1746 
1747 static int __init cca_setup(char *str)
1748 {
1749     get_option(&str, &cca);
1750 
1751     return 0;
1752 }
1753 
1754 early_param("cca", cca_setup);
1755 
1756 static void coherency_setup(void)
1757 {
1758     if (cca < 0 || cca > 7)
1759         cca = read_c0_config() & CONF_CM_CMASK;
1760     _page_cachable_default = cca << _CACHE_SHIFT;
1761 
1762     pr_debug("Using cache attribute %d\n", cca);
1763     change_c0_config(CONF_CM_CMASK, cca);
1764 
1765     /*
1766      * c0_status.cu=0 specifies that updates by the sc instruction use
1767      * the coherency mode specified by the TLB; 1 means cachable
1768      * coherent update on write will be used.  Not all processors have
1769      * this bit and; some wire it to zero, others like Toshiba had the
1770      * silly idea of putting something else there ...
1771      */
1772     switch (current_cpu_type()) {
1773     case CPU_R4000PC:
1774     case CPU_R4000SC:
1775     case CPU_R4000MC:
1776     case CPU_R4400PC:
1777     case CPU_R4400SC:
1778     case CPU_R4400MC:
1779         clear_c0_config(CONF_CU);
1780         break;
1781     /*
1782      * We need to catch the early Alchemy SOCs with
1783      * the write-only co_config.od bit and set it back to one on:
1784      * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1785      */
1786     case CPU_ALCHEMY:
1787         au1x00_fixup_config_od();
1788         break;
1789 
1790     case PRID_IMP_PR4450:
1791         nxp_pr4450_fixup_config();
1792         break;
1793     }
1794 }
1795 
1796 static void r4k_cache_error_setup(void)
1797 {
1798     extern char __weak except_vec2_generic;
1799     extern char __weak except_vec2_sb1;
1800 
1801     switch (current_cpu_type()) {
1802     case CPU_SB1:
1803     case CPU_SB1A:
1804         set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1805         break;
1806 
1807     default:
1808         set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1809         break;
1810     }
1811 }
1812 
1813 void r4k_cache_init(void)
1814 {
1815     extern void build_clear_page(void);
1816     extern void build_copy_page(void);
1817     struct cpuinfo_mips *c = &current_cpu_data;
1818 
1819     probe_pcache();
1820     probe_vcache();
1821     setup_scache();
1822 
1823     r4k_blast_dcache_page_setup();
1824     r4k_blast_dcache_page_indexed_setup();
1825     r4k_blast_dcache_setup();
1826     r4k_blast_icache_page_setup();
1827     r4k_blast_icache_page_indexed_setup();
1828     r4k_blast_icache_setup();
1829     r4k_blast_scache_page_setup();
1830     r4k_blast_scache_page_indexed_setup();
1831     r4k_blast_scache_setup();
1832     r4k_blast_scache_node_setup();
1833 #ifdef CONFIG_EVA
1834     r4k_blast_dcache_user_page_setup();
1835     r4k_blast_icache_user_page_setup();
1836 #endif
1837 
1838     /*
1839      * Some MIPS32 and MIPS64 processors have physically indexed caches.
1840      * This code supports virtually indexed processors and will be
1841      * unnecessarily inefficient on physically indexed processors.
1842      */
1843     if (c->dcache.linesz && cpu_has_dc_aliases)
1844         shm_align_mask = max_t( unsigned long,
1845                     c->dcache.sets * c->dcache.linesz - 1,
1846                     PAGE_SIZE - 1);
1847     else
1848         shm_align_mask = PAGE_SIZE-1;
1849 
1850     __flush_cache_vmap  = r4k__flush_cache_vmap;
1851     __flush_cache_vunmap    = r4k__flush_cache_vunmap;
1852 
1853     flush_cache_all     = cache_noop;
1854     __flush_cache_all   = r4k___flush_cache_all;
1855     flush_cache_mm      = r4k_flush_cache_mm;
1856     flush_cache_page    = r4k_flush_cache_page;
1857     flush_cache_range   = r4k_flush_cache_range;
1858 
1859     __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1860 
1861     flush_icache_all    = r4k_flush_icache_all;
1862     local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1863     flush_data_cache_page   = r4k_flush_data_cache_page;
1864     flush_icache_range  = r4k_flush_icache_range;
1865     local_flush_icache_range    = local_r4k_flush_icache_range;
1866     __flush_icache_user_range   = r4k_flush_icache_user_range;
1867     __local_flush_icache_user_range = local_r4k_flush_icache_user_range;
1868 
1869 #ifdef CONFIG_DMA_NONCOHERENT
1870     if (dma_default_coherent) {
1871         _dma_cache_wback_inv    = (void *)cache_noop;
1872         _dma_cache_wback    = (void *)cache_noop;
1873         _dma_cache_inv      = (void *)cache_noop;
1874     } else {
1875         _dma_cache_wback_inv    = r4k_dma_cache_wback_inv;
1876         _dma_cache_wback    = r4k_dma_cache_wback_inv;
1877         _dma_cache_inv      = r4k_dma_cache_inv;
1878     }
1879 #endif /* CONFIG_DMA_NONCOHERENT */
1880 
1881     build_clear_page();
1882     build_copy_page();
1883 
1884     /*
1885      * We want to run CMP kernels on core with and without coherent
1886      * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1887      * or not to flush caches.
1888      */
1889     local_r4k___flush_cache_all(NULL);
1890 
1891     coherency_setup();
1892     board_cache_error_setup = r4k_cache_error_setup;
1893 
1894     /*
1895      * Per-CPU overrides
1896      */
1897     switch (current_cpu_type()) {
1898     case CPU_BMIPS4350:
1899     case CPU_BMIPS4380:
1900         /* No IPI is needed because all CPUs share the same D$ */
1901         flush_data_cache_page = r4k_blast_dcache_page;
1902         break;
1903     case CPU_BMIPS5000:
1904         /* We lose our superpowers if L2 is disabled */
1905         if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1906             break;
1907 
1908         /* I$ fills from D$ just by emptying the write buffers */
1909         flush_cache_page = (void *)b5k_instruction_hazard;
1910         flush_cache_range = (void *)b5k_instruction_hazard;
1911         local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1912         flush_data_cache_page = (void *)b5k_instruction_hazard;
1913         flush_icache_range = (void *)b5k_instruction_hazard;
1914         local_flush_icache_range = (void *)b5k_instruction_hazard;
1915 
1916 
1917         /* Optimization: an L2 flush implicitly flushes the L1 */
1918         current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1919         break;
1920     case CPU_LOONGSON64:
1921         /* Loongson-3 maintains cache coherency by hardware */
1922         __flush_cache_all   = cache_noop;
1923         __flush_cache_vmap  = cache_noop;
1924         __flush_cache_vunmap    = cache_noop;
1925         __flush_kernel_vmap_range = (void *)cache_noop;
1926         flush_cache_mm      = (void *)cache_noop;
1927         flush_cache_page    = (void *)cache_noop;
1928         flush_cache_range   = (void *)cache_noop;
1929         flush_icache_all    = (void *)cache_noop;
1930         flush_data_cache_page   = (void *)cache_noop;
1931         local_flush_data_cache_page = (void *)cache_noop;
1932         break;
1933     }
1934 }
1935 
1936 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1937                    void *v)
1938 {
1939     switch (cmd) {
1940     case CPU_PM_ENTER_FAILED:
1941     case CPU_PM_EXIT:
1942         coherency_setup();
1943         break;
1944     }
1945 
1946     return NOTIFY_OK;
1947 }
1948 
1949 static struct notifier_block r4k_cache_pm_notifier_block = {
1950     .notifier_call = r4k_cache_pm_notifier,
1951 };
1952 
1953 int __init r4k_cache_init_pm(void)
1954 {
1955     return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1956 }
1957 arch_initcall(r4k_cache_init_pm);