Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * This file is subject to the terms and conditions of the GNU General Public
0003  * License.  See the file "COPYING" in the main directory of this archive
0004  * for more details.
0005  *
0006  * KVM/MIPS: MIPS specific KVM APIs
0007  *
0008  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
0009  * Authors: Sanjay Lal <sanjayl@kymasys.com>
0010  */
0011 
0012 #include <linux/bitops.h>
0013 #include <linux/errno.h>
0014 #include <linux/err.h>
0015 #include <linux/kdebug.h>
0016 #include <linux/module.h>
0017 #include <linux/uaccess.h>
0018 #include <linux/vmalloc.h>
0019 #include <linux/sched/signal.h>
0020 #include <linux/fs.h>
0021 #include <linux/memblock.h>
0022 #include <linux/pgtable.h>
0023 
0024 #include <asm/fpu.h>
0025 #include <asm/page.h>
0026 #include <asm/cacheflush.h>
0027 #include <asm/mmu_context.h>
0028 #include <asm/pgalloc.h>
0029 
0030 #include <linux/kvm_host.h>
0031 
0032 #include "interrupt.h"
0033 
0034 #define CREATE_TRACE_POINTS
0035 #include "trace.h"
0036 
0037 #ifndef VECTORSPACING
0038 #define VECTORSPACING 0x100 /* for EI/VI mode */
0039 #endif
0040 
0041 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
0042     KVM_GENERIC_VM_STATS()
0043 };
0044 
0045 const struct kvm_stats_header kvm_vm_stats_header = {
0046     .name_size = KVM_STATS_NAME_SIZE,
0047     .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
0048     .id_offset = sizeof(struct kvm_stats_header),
0049     .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
0050     .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
0051                sizeof(kvm_vm_stats_desc),
0052 };
0053 
0054 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
0055     KVM_GENERIC_VCPU_STATS(),
0056     STATS_DESC_COUNTER(VCPU, wait_exits),
0057     STATS_DESC_COUNTER(VCPU, cache_exits),
0058     STATS_DESC_COUNTER(VCPU, signal_exits),
0059     STATS_DESC_COUNTER(VCPU, int_exits),
0060     STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
0061     STATS_DESC_COUNTER(VCPU, tlbmod_exits),
0062     STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
0063     STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
0064     STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
0065     STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
0066     STATS_DESC_COUNTER(VCPU, syscall_exits),
0067     STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
0068     STATS_DESC_COUNTER(VCPU, break_inst_exits),
0069     STATS_DESC_COUNTER(VCPU, trap_inst_exits),
0070     STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
0071     STATS_DESC_COUNTER(VCPU, fpe_exits),
0072     STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
0073     STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
0074     STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
0075     STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
0076     STATS_DESC_COUNTER(VCPU, vz_hc_exits),
0077     STATS_DESC_COUNTER(VCPU, vz_grr_exits),
0078     STATS_DESC_COUNTER(VCPU, vz_gva_exits),
0079     STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
0080     STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
0081     STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
0082 #ifdef CONFIG_CPU_LOONGSON64
0083     STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
0084 #endif
0085 };
0086 
0087 const struct kvm_stats_header kvm_vcpu_stats_header = {
0088     .name_size = KVM_STATS_NAME_SIZE,
0089     .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
0090     .id_offset = sizeof(struct kvm_stats_header),
0091     .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
0092     .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
0093                sizeof(kvm_vcpu_stats_desc),
0094 };
0095 
0096 bool kvm_trace_guest_mode_change;
0097 
0098 int kvm_guest_mode_change_trace_reg(void)
0099 {
0100     kvm_trace_guest_mode_change = true;
0101     return 0;
0102 }
0103 
0104 void kvm_guest_mode_change_trace_unreg(void)
0105 {
0106     kvm_trace_guest_mode_change = false;
0107 }
0108 
0109 /*
0110  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
0111  * Config7, so we are "runnable" if interrupts are pending
0112  */
0113 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
0114 {
0115     return !!(vcpu->arch.pending_exceptions);
0116 }
0117 
0118 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
0119 {
0120     return false;
0121 }
0122 
0123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
0124 {
0125     return 1;
0126 }
0127 
0128 int kvm_arch_hardware_enable(void)
0129 {
0130     return kvm_mips_callbacks->hardware_enable();
0131 }
0132 
0133 void kvm_arch_hardware_disable(void)
0134 {
0135     kvm_mips_callbacks->hardware_disable();
0136 }
0137 
0138 int kvm_arch_hardware_setup(void *opaque)
0139 {
0140     return 0;
0141 }
0142 
0143 int kvm_arch_check_processor_compat(void *opaque)
0144 {
0145     return 0;
0146 }
0147 
0148 extern void kvm_init_loongson_ipi(struct kvm *kvm);
0149 
0150 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
0151 {
0152     switch (type) {
0153     case KVM_VM_MIPS_AUTO:
0154         break;
0155     case KVM_VM_MIPS_VZ:
0156         break;
0157     default:
0158         /* Unsupported KVM type */
0159         return -EINVAL;
0160     }
0161 
0162     /* Allocate page table to map GPA -> RPA */
0163     kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
0164     if (!kvm->arch.gpa_mm.pgd)
0165         return -ENOMEM;
0166 
0167 #ifdef CONFIG_CPU_LOONGSON64
0168     kvm_init_loongson_ipi(kvm);
0169 #endif
0170 
0171     return 0;
0172 }
0173 
0174 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
0175 {
0176     /* It should always be safe to remove after flushing the whole range */
0177     WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
0178     pgd_free(NULL, kvm->arch.gpa_mm.pgd);
0179 }
0180 
0181 void kvm_arch_destroy_vm(struct kvm *kvm)
0182 {
0183     kvm_destroy_vcpus(kvm);
0184     kvm_mips_free_gpa_pt(kvm);
0185 }
0186 
0187 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
0188             unsigned long arg)
0189 {
0190     return -ENOIOCTLCMD;
0191 }
0192 
0193 void kvm_arch_flush_shadow_all(struct kvm *kvm)
0194 {
0195     /* Flush whole GPA */
0196     kvm_mips_flush_gpa_pt(kvm, 0, ~0);
0197     kvm_flush_remote_tlbs(kvm);
0198 }
0199 
0200 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
0201                    struct kvm_memory_slot *slot)
0202 {
0203     /*
0204      * The slot has been made invalid (ready for moving or deletion), so we
0205      * need to ensure that it can no longer be accessed by any guest VCPUs.
0206      */
0207 
0208     spin_lock(&kvm->mmu_lock);
0209     /* Flush slot from GPA */
0210     kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
0211                   slot->base_gfn + slot->npages - 1);
0212     kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
0213     spin_unlock(&kvm->mmu_lock);
0214 }
0215 
0216 int kvm_arch_prepare_memory_region(struct kvm *kvm,
0217                    const struct kvm_memory_slot *old,
0218                    struct kvm_memory_slot *new,
0219                    enum kvm_mr_change change)
0220 {
0221     return 0;
0222 }
0223 
0224 void kvm_arch_commit_memory_region(struct kvm *kvm,
0225                    struct kvm_memory_slot *old,
0226                    const struct kvm_memory_slot *new,
0227                    enum kvm_mr_change change)
0228 {
0229     int needs_flush;
0230 
0231     /*
0232      * If dirty page logging is enabled, write protect all pages in the slot
0233      * ready for dirty logging.
0234      *
0235      * There is no need to do this in any of the following cases:
0236      * CREATE:  No dirty mappings will already exist.
0237      * MOVE/DELETE: The old mappings will already have been cleaned up by
0238      *      kvm_arch_flush_shadow_memslot()
0239      */
0240     if (change == KVM_MR_FLAGS_ONLY &&
0241         (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
0242          new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
0243         spin_lock(&kvm->mmu_lock);
0244         /* Write protect GPA page table entries */
0245         needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
0246                     new->base_gfn + new->npages - 1);
0247         if (needs_flush)
0248             kvm_arch_flush_remote_tlbs_memslot(kvm, new);
0249         spin_unlock(&kvm->mmu_lock);
0250     }
0251 }
0252 
0253 static inline void dump_handler(const char *symbol, void *start, void *end)
0254 {
0255     u32 *p;
0256 
0257     pr_debug("LEAF(%s)\n", symbol);
0258 
0259     pr_debug("\t.set push\n");
0260     pr_debug("\t.set noreorder\n");
0261 
0262     for (p = start; p < (u32 *)end; ++p)
0263         pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
0264 
0265     pr_debug("\t.set\tpop\n");
0266 
0267     pr_debug("\tEND(%s)\n", symbol);
0268 }
0269 
0270 /* low level hrtimer wake routine */
0271 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
0272 {
0273     struct kvm_vcpu *vcpu;
0274 
0275     vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
0276 
0277     kvm_mips_callbacks->queue_timer_int(vcpu);
0278 
0279     vcpu->arch.wait = 0;
0280     rcuwait_wake_up(&vcpu->wait);
0281 
0282     return kvm_mips_count_timeout(vcpu);
0283 }
0284 
0285 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
0286 {
0287     return 0;
0288 }
0289 
0290 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
0291 {
0292     int err, size;
0293     void *gebase, *p, *handler, *refill_start, *refill_end;
0294     int i;
0295 
0296     kvm_debug("kvm @ %p: create cpu %d at %p\n",
0297           vcpu->kvm, vcpu->vcpu_id, vcpu);
0298 
0299     err = kvm_mips_callbacks->vcpu_init(vcpu);
0300     if (err)
0301         return err;
0302 
0303     hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
0304              HRTIMER_MODE_REL);
0305     vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
0306 
0307     /*
0308      * Allocate space for host mode exception handlers that handle
0309      * guest mode exits
0310      */
0311     if (cpu_has_veic || cpu_has_vint)
0312         size = 0x200 + VECTORSPACING * 64;
0313     else
0314         size = 0x4000;
0315 
0316     gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
0317 
0318     if (!gebase) {
0319         err = -ENOMEM;
0320         goto out_uninit_vcpu;
0321     }
0322     kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
0323           ALIGN(size, PAGE_SIZE), gebase);
0324 
0325     /*
0326      * Check new ebase actually fits in CP0_EBase. The lack of a write gate
0327      * limits us to the low 512MB of physical address space. If the memory
0328      * we allocate is out of range, just give up now.
0329      */
0330     if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
0331         kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
0332             gebase);
0333         err = -ENOMEM;
0334         goto out_free_gebase;
0335     }
0336 
0337     /* Save new ebase */
0338     vcpu->arch.guest_ebase = gebase;
0339 
0340     /* Build guest exception vectors dynamically in unmapped memory */
0341     handler = gebase + 0x2000;
0342 
0343     /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
0344     refill_start = gebase;
0345     if (IS_ENABLED(CONFIG_64BIT))
0346         refill_start += 0x080;
0347     refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
0348 
0349     /* General Exception Entry point */
0350     kvm_mips_build_exception(gebase + 0x180, handler);
0351 
0352     /* For vectored interrupts poke the exception code @ all offsets 0-7 */
0353     for (i = 0; i < 8; i++) {
0354         kvm_debug("L1 Vectored handler @ %p\n",
0355               gebase + 0x200 + (i * VECTORSPACING));
0356         kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
0357                      handler);
0358     }
0359 
0360     /* General exit handler */
0361     p = handler;
0362     p = kvm_mips_build_exit(p);
0363 
0364     /* Guest entry routine */
0365     vcpu->arch.vcpu_run = p;
0366     p = kvm_mips_build_vcpu_run(p);
0367 
0368     /* Dump the generated code */
0369     pr_debug("#include <asm/asm.h>\n");
0370     pr_debug("#include <asm/regdef.h>\n");
0371     pr_debug("\n");
0372     dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
0373     dump_handler("kvm_tlb_refill", refill_start, refill_end);
0374     dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
0375     dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
0376 
0377     /* Invalidate the icache for these ranges */
0378     flush_icache_range((unsigned long)gebase,
0379                (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
0380 
0381     /* Init */
0382     vcpu->arch.last_sched_cpu = -1;
0383     vcpu->arch.last_exec_cpu = -1;
0384 
0385     /* Initial guest state */
0386     err = kvm_mips_callbacks->vcpu_setup(vcpu);
0387     if (err)
0388         goto out_free_gebase;
0389 
0390     return 0;
0391 
0392 out_free_gebase:
0393     kfree(gebase);
0394 out_uninit_vcpu:
0395     kvm_mips_callbacks->vcpu_uninit(vcpu);
0396     return err;
0397 }
0398 
0399 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
0400 {
0401     hrtimer_cancel(&vcpu->arch.comparecount_timer);
0402 
0403     kvm_mips_dump_stats(vcpu);
0404 
0405     kvm_mmu_free_memory_caches(vcpu);
0406     kfree(vcpu->arch.guest_ebase);
0407 
0408     kvm_mips_callbacks->vcpu_uninit(vcpu);
0409 }
0410 
0411 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
0412                     struct kvm_guest_debug *dbg)
0413 {
0414     return -ENOIOCTLCMD;
0415 }
0416 
0417 /*
0418  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
0419  * the vCPU is running.
0420  *
0421  * This must be noinstr as instrumentation may make use of RCU, and this is not
0422  * safe during the EQS.
0423  */
0424 static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
0425 {
0426     int ret;
0427 
0428     guest_state_enter_irqoff();
0429     ret = kvm_mips_callbacks->vcpu_run(vcpu);
0430     guest_state_exit_irqoff();
0431 
0432     return ret;
0433 }
0434 
0435 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
0436 {
0437     int r = -EINTR;
0438 
0439     vcpu_load(vcpu);
0440 
0441     kvm_sigset_activate(vcpu);
0442 
0443     if (vcpu->mmio_needed) {
0444         if (!vcpu->mmio_is_write)
0445             kvm_mips_complete_mmio_load(vcpu);
0446         vcpu->mmio_needed = 0;
0447     }
0448 
0449     if (vcpu->run->immediate_exit)
0450         goto out;
0451 
0452     lose_fpu(1);
0453 
0454     local_irq_disable();
0455     guest_timing_enter_irqoff();
0456     trace_kvm_enter(vcpu);
0457 
0458     /*
0459      * Make sure the read of VCPU requests in vcpu_run() callback is not
0460      * reordered ahead of the write to vcpu->mode, or we could miss a TLB
0461      * flush request while the requester sees the VCPU as outside of guest
0462      * mode and not needing an IPI.
0463      */
0464     smp_store_mb(vcpu->mode, IN_GUEST_MODE);
0465 
0466     r = kvm_mips_vcpu_enter_exit(vcpu);
0467 
0468     /*
0469      * We must ensure that any pending interrupts are taken before
0470      * we exit guest timing so that timer ticks are accounted as
0471      * guest time. Transiently unmask interrupts so that any
0472      * pending interrupts are taken.
0473      *
0474      * TODO: is there a barrier which ensures that pending interrupts are
0475      * recognised? Currently this just hopes that the CPU takes any pending
0476      * interrupts between the enable and disable.
0477      */
0478     local_irq_enable();
0479     local_irq_disable();
0480 
0481     trace_kvm_out(vcpu);
0482     guest_timing_exit_irqoff();
0483     local_irq_enable();
0484 
0485 out:
0486     kvm_sigset_deactivate(vcpu);
0487 
0488     vcpu_put(vcpu);
0489     return r;
0490 }
0491 
0492 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
0493                  struct kvm_mips_interrupt *irq)
0494 {
0495     int intr = (int)irq->irq;
0496     struct kvm_vcpu *dvcpu = NULL;
0497 
0498     if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
0499         intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
0500         intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
0501         intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
0502         kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
0503               (int)intr);
0504 
0505     if (irq->cpu == -1)
0506         dvcpu = vcpu;
0507     else
0508         dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
0509 
0510     if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
0511         kvm_mips_callbacks->queue_io_int(dvcpu, irq);
0512 
0513     } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
0514         kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
0515     } else {
0516         kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
0517             irq->cpu, irq->irq);
0518         return -EINVAL;
0519     }
0520 
0521     dvcpu->arch.wait = 0;
0522 
0523     rcuwait_wake_up(&dvcpu->wait);
0524 
0525     return 0;
0526 }
0527 
0528 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
0529                     struct kvm_mp_state *mp_state)
0530 {
0531     return -ENOIOCTLCMD;
0532 }
0533 
0534 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
0535                     struct kvm_mp_state *mp_state)
0536 {
0537     return -ENOIOCTLCMD;
0538 }
0539 
0540 static u64 kvm_mips_get_one_regs[] = {
0541     KVM_REG_MIPS_R0,
0542     KVM_REG_MIPS_R1,
0543     KVM_REG_MIPS_R2,
0544     KVM_REG_MIPS_R3,
0545     KVM_REG_MIPS_R4,
0546     KVM_REG_MIPS_R5,
0547     KVM_REG_MIPS_R6,
0548     KVM_REG_MIPS_R7,
0549     KVM_REG_MIPS_R8,
0550     KVM_REG_MIPS_R9,
0551     KVM_REG_MIPS_R10,
0552     KVM_REG_MIPS_R11,
0553     KVM_REG_MIPS_R12,
0554     KVM_REG_MIPS_R13,
0555     KVM_REG_MIPS_R14,
0556     KVM_REG_MIPS_R15,
0557     KVM_REG_MIPS_R16,
0558     KVM_REG_MIPS_R17,
0559     KVM_REG_MIPS_R18,
0560     KVM_REG_MIPS_R19,
0561     KVM_REG_MIPS_R20,
0562     KVM_REG_MIPS_R21,
0563     KVM_REG_MIPS_R22,
0564     KVM_REG_MIPS_R23,
0565     KVM_REG_MIPS_R24,
0566     KVM_REG_MIPS_R25,
0567     KVM_REG_MIPS_R26,
0568     KVM_REG_MIPS_R27,
0569     KVM_REG_MIPS_R28,
0570     KVM_REG_MIPS_R29,
0571     KVM_REG_MIPS_R30,
0572     KVM_REG_MIPS_R31,
0573 
0574 #ifndef CONFIG_CPU_MIPSR6
0575     KVM_REG_MIPS_HI,
0576     KVM_REG_MIPS_LO,
0577 #endif
0578     KVM_REG_MIPS_PC,
0579 };
0580 
0581 static u64 kvm_mips_get_one_regs_fpu[] = {
0582     KVM_REG_MIPS_FCR_IR,
0583     KVM_REG_MIPS_FCR_CSR,
0584 };
0585 
0586 static u64 kvm_mips_get_one_regs_msa[] = {
0587     KVM_REG_MIPS_MSA_IR,
0588     KVM_REG_MIPS_MSA_CSR,
0589 };
0590 
0591 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
0592 {
0593     unsigned long ret;
0594 
0595     ret = ARRAY_SIZE(kvm_mips_get_one_regs);
0596     if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
0597         ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
0598         /* odd doubles */
0599         if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
0600             ret += 16;
0601     }
0602     if (kvm_mips_guest_can_have_msa(&vcpu->arch))
0603         ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
0604     ret += kvm_mips_callbacks->num_regs(vcpu);
0605 
0606     return ret;
0607 }
0608 
0609 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
0610 {
0611     u64 index;
0612     unsigned int i;
0613 
0614     if (copy_to_user(indices, kvm_mips_get_one_regs,
0615              sizeof(kvm_mips_get_one_regs)))
0616         return -EFAULT;
0617     indices += ARRAY_SIZE(kvm_mips_get_one_regs);
0618 
0619     if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
0620         if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
0621                  sizeof(kvm_mips_get_one_regs_fpu)))
0622             return -EFAULT;
0623         indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
0624 
0625         for (i = 0; i < 32; ++i) {
0626             index = KVM_REG_MIPS_FPR_32(i);
0627             if (copy_to_user(indices, &index, sizeof(index)))
0628                 return -EFAULT;
0629             ++indices;
0630 
0631             /* skip odd doubles if no F64 */
0632             if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
0633                 continue;
0634 
0635             index = KVM_REG_MIPS_FPR_64(i);
0636             if (copy_to_user(indices, &index, sizeof(index)))
0637                 return -EFAULT;
0638             ++indices;
0639         }
0640     }
0641 
0642     if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
0643         if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
0644                  sizeof(kvm_mips_get_one_regs_msa)))
0645             return -EFAULT;
0646         indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
0647 
0648         for (i = 0; i < 32; ++i) {
0649             index = KVM_REG_MIPS_VEC_128(i);
0650             if (copy_to_user(indices, &index, sizeof(index)))
0651                 return -EFAULT;
0652             ++indices;
0653         }
0654     }
0655 
0656     return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
0657 }
0658 
0659 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
0660                 const struct kvm_one_reg *reg)
0661 {
0662     struct mips_coproc *cop0 = vcpu->arch.cop0;
0663     struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
0664     int ret;
0665     s64 v;
0666     s64 vs[2];
0667     unsigned int idx;
0668 
0669     switch (reg->id) {
0670     /* General purpose registers */
0671     case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
0672         v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
0673         break;
0674 #ifndef CONFIG_CPU_MIPSR6
0675     case KVM_REG_MIPS_HI:
0676         v = (long)vcpu->arch.hi;
0677         break;
0678     case KVM_REG_MIPS_LO:
0679         v = (long)vcpu->arch.lo;
0680         break;
0681 #endif
0682     case KVM_REG_MIPS_PC:
0683         v = (long)vcpu->arch.pc;
0684         break;
0685 
0686     /* Floating point registers */
0687     case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
0688         if (!kvm_mips_guest_has_fpu(&vcpu->arch))
0689             return -EINVAL;
0690         idx = reg->id - KVM_REG_MIPS_FPR_32(0);
0691         /* Odd singles in top of even double when FR=0 */
0692         if (kvm_read_c0_guest_status(cop0) & ST0_FR)
0693             v = get_fpr32(&fpu->fpr[idx], 0);
0694         else
0695             v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
0696         break;
0697     case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
0698         if (!kvm_mips_guest_has_fpu(&vcpu->arch))
0699             return -EINVAL;
0700         idx = reg->id - KVM_REG_MIPS_FPR_64(0);
0701         /* Can't access odd doubles in FR=0 mode */
0702         if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
0703             return -EINVAL;
0704         v = get_fpr64(&fpu->fpr[idx], 0);
0705         break;
0706     case KVM_REG_MIPS_FCR_IR:
0707         if (!kvm_mips_guest_has_fpu(&vcpu->arch))
0708             return -EINVAL;
0709         v = boot_cpu_data.fpu_id;
0710         break;
0711     case KVM_REG_MIPS_FCR_CSR:
0712         if (!kvm_mips_guest_has_fpu(&vcpu->arch))
0713             return -EINVAL;
0714         v = fpu->fcr31;
0715         break;
0716 
0717     /* MIPS SIMD Architecture (MSA) registers */
0718     case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
0719         if (!kvm_mips_guest_has_msa(&vcpu->arch))
0720             return -EINVAL;
0721         /* Can't access MSA registers in FR=0 mode */
0722         if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
0723             return -EINVAL;
0724         idx = reg->id - KVM_REG_MIPS_VEC_128(0);
0725 #ifdef CONFIG_CPU_LITTLE_ENDIAN
0726         /* least significant byte first */
0727         vs[0] = get_fpr64(&fpu->fpr[idx], 0);
0728         vs[1] = get_fpr64(&fpu->fpr[idx], 1);
0729 #else
0730         /* most significant byte first */
0731         vs[0] = get_fpr64(&fpu->fpr[idx], 1);
0732         vs[1] = get_fpr64(&fpu->fpr[idx], 0);
0733 #endif
0734         break;
0735     case KVM_REG_MIPS_MSA_IR:
0736         if (!kvm_mips_guest_has_msa(&vcpu->arch))
0737             return -EINVAL;
0738         v = boot_cpu_data.msa_id;
0739         break;
0740     case KVM_REG_MIPS_MSA_CSR:
0741         if (!kvm_mips_guest_has_msa(&vcpu->arch))
0742             return -EINVAL;
0743         v = fpu->msacsr;
0744         break;
0745 
0746     /* registers to be handled specially */
0747     default:
0748         ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
0749         if (ret)
0750             return ret;
0751         break;
0752     }
0753     if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
0754         u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
0755 
0756         return put_user(v, uaddr64);
0757     } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
0758         u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
0759         u32 v32 = (u32)v;
0760 
0761         return put_user(v32, uaddr32);
0762     } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
0763         void __user *uaddr = (void __user *)(long)reg->addr;
0764 
0765         return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
0766     } else {
0767         return -EINVAL;
0768     }
0769 }
0770 
0771 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
0772                 const struct kvm_one_reg *reg)
0773 {
0774     struct mips_coproc *cop0 = vcpu->arch.cop0;
0775     struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
0776     s64 v;
0777     s64 vs[2];
0778     unsigned int idx;
0779 
0780     if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
0781         u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
0782 
0783         if (get_user(v, uaddr64) != 0)
0784             return -EFAULT;
0785     } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
0786         u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
0787         s32 v32;
0788 
0789         if (get_user(v32, uaddr32) != 0)
0790             return -EFAULT;
0791         v = (s64)v32;
0792     } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
0793         void __user *uaddr = (void __user *)(long)reg->addr;
0794 
0795         return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
0796     } else {
0797         return -EINVAL;
0798     }
0799 
0800     switch (reg->id) {
0801     /* General purpose registers */
0802     case KVM_REG_MIPS_R0:
0803         /* Silently ignore requests to set $0 */
0804         break;
0805     case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
0806         vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
0807         break;
0808 #ifndef CONFIG_CPU_MIPSR6
0809     case KVM_REG_MIPS_HI:
0810         vcpu->arch.hi = v;
0811         break;
0812     case KVM_REG_MIPS_LO:
0813         vcpu->arch.lo = v;
0814         break;
0815 #endif
0816     case KVM_REG_MIPS_PC:
0817         vcpu->arch.pc = v;
0818         break;
0819 
0820     /* Floating point registers */
0821     case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
0822         if (!kvm_mips_guest_has_fpu(&vcpu->arch))
0823             return -EINVAL;
0824         idx = reg->id - KVM_REG_MIPS_FPR_32(0);
0825         /* Odd singles in top of even double when FR=0 */
0826         if (kvm_read_c0_guest_status(cop0) & ST0_FR)
0827             set_fpr32(&fpu->fpr[idx], 0, v);
0828         else
0829             set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
0830         break;
0831     case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
0832         if (!kvm_mips_guest_has_fpu(&vcpu->arch))
0833             return -EINVAL;
0834         idx = reg->id - KVM_REG_MIPS_FPR_64(0);
0835         /* Can't access odd doubles in FR=0 mode */
0836         if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
0837             return -EINVAL;
0838         set_fpr64(&fpu->fpr[idx], 0, v);
0839         break;
0840     case KVM_REG_MIPS_FCR_IR:
0841         if (!kvm_mips_guest_has_fpu(&vcpu->arch))
0842             return -EINVAL;
0843         /* Read-only */
0844         break;
0845     case KVM_REG_MIPS_FCR_CSR:
0846         if (!kvm_mips_guest_has_fpu(&vcpu->arch))
0847             return -EINVAL;
0848         fpu->fcr31 = v;
0849         break;
0850 
0851     /* MIPS SIMD Architecture (MSA) registers */
0852     case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
0853         if (!kvm_mips_guest_has_msa(&vcpu->arch))
0854             return -EINVAL;
0855         idx = reg->id - KVM_REG_MIPS_VEC_128(0);
0856 #ifdef CONFIG_CPU_LITTLE_ENDIAN
0857         /* least significant byte first */
0858         set_fpr64(&fpu->fpr[idx], 0, vs[0]);
0859         set_fpr64(&fpu->fpr[idx], 1, vs[1]);
0860 #else
0861         /* most significant byte first */
0862         set_fpr64(&fpu->fpr[idx], 1, vs[0]);
0863         set_fpr64(&fpu->fpr[idx], 0, vs[1]);
0864 #endif
0865         break;
0866     case KVM_REG_MIPS_MSA_IR:
0867         if (!kvm_mips_guest_has_msa(&vcpu->arch))
0868             return -EINVAL;
0869         /* Read-only */
0870         break;
0871     case KVM_REG_MIPS_MSA_CSR:
0872         if (!kvm_mips_guest_has_msa(&vcpu->arch))
0873             return -EINVAL;
0874         fpu->msacsr = v;
0875         break;
0876 
0877     /* registers to be handled specially */
0878     default:
0879         return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
0880     }
0881     return 0;
0882 }
0883 
0884 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
0885                      struct kvm_enable_cap *cap)
0886 {
0887     int r = 0;
0888 
0889     if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
0890         return -EINVAL;
0891     if (cap->flags)
0892         return -EINVAL;
0893     if (cap->args[0])
0894         return -EINVAL;
0895 
0896     switch (cap->cap) {
0897     case KVM_CAP_MIPS_FPU:
0898         vcpu->arch.fpu_enabled = true;
0899         break;
0900     case KVM_CAP_MIPS_MSA:
0901         vcpu->arch.msa_enabled = true;
0902         break;
0903     default:
0904         r = -EINVAL;
0905         break;
0906     }
0907 
0908     return r;
0909 }
0910 
0911 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
0912                    unsigned long arg)
0913 {
0914     struct kvm_vcpu *vcpu = filp->private_data;
0915     void __user *argp = (void __user *)arg;
0916 
0917     if (ioctl == KVM_INTERRUPT) {
0918         struct kvm_mips_interrupt irq;
0919 
0920         if (copy_from_user(&irq, argp, sizeof(irq)))
0921             return -EFAULT;
0922         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
0923               irq.irq);
0924 
0925         return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
0926     }
0927 
0928     return -ENOIOCTLCMD;
0929 }
0930 
0931 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
0932              unsigned long arg)
0933 {
0934     struct kvm_vcpu *vcpu = filp->private_data;
0935     void __user *argp = (void __user *)arg;
0936     long r;
0937 
0938     vcpu_load(vcpu);
0939 
0940     switch (ioctl) {
0941     case KVM_SET_ONE_REG:
0942     case KVM_GET_ONE_REG: {
0943         struct kvm_one_reg reg;
0944 
0945         r = -EFAULT;
0946         if (copy_from_user(&reg, argp, sizeof(reg)))
0947             break;
0948         if (ioctl == KVM_SET_ONE_REG)
0949             r = kvm_mips_set_reg(vcpu, &reg);
0950         else
0951             r = kvm_mips_get_reg(vcpu, &reg);
0952         break;
0953     }
0954     case KVM_GET_REG_LIST: {
0955         struct kvm_reg_list __user *user_list = argp;
0956         struct kvm_reg_list reg_list;
0957         unsigned n;
0958 
0959         r = -EFAULT;
0960         if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
0961             break;
0962         n = reg_list.n;
0963         reg_list.n = kvm_mips_num_regs(vcpu);
0964         if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
0965             break;
0966         r = -E2BIG;
0967         if (n < reg_list.n)
0968             break;
0969         r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
0970         break;
0971     }
0972     case KVM_ENABLE_CAP: {
0973         struct kvm_enable_cap cap;
0974 
0975         r = -EFAULT;
0976         if (copy_from_user(&cap, argp, sizeof(cap)))
0977             break;
0978         r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
0979         break;
0980     }
0981     default:
0982         r = -ENOIOCTLCMD;
0983     }
0984 
0985     vcpu_put(vcpu);
0986     return r;
0987 }
0988 
0989 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
0990 {
0991 
0992 }
0993 
0994 int kvm_arch_flush_remote_tlb(struct kvm *kvm)
0995 {
0996     kvm_mips_callbacks->prepare_flush_shadow(kvm);
0997     return 1;
0998 }
0999 
1000 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1001                     const struct kvm_memory_slot *memslot)
1002 {
1003     kvm_flush_remote_tlbs(kvm);
1004 }
1005 
1006 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1007 {
1008     long r;
1009 
1010     switch (ioctl) {
1011     default:
1012         r = -ENOIOCTLCMD;
1013     }
1014 
1015     return r;
1016 }
1017 
1018 int kvm_arch_init(void *opaque)
1019 {
1020     if (kvm_mips_callbacks) {
1021         kvm_err("kvm: module already exists\n");
1022         return -EEXIST;
1023     }
1024 
1025     return kvm_mips_emulation_init(&kvm_mips_callbacks);
1026 }
1027 
1028 void kvm_arch_exit(void)
1029 {
1030     kvm_mips_callbacks = NULL;
1031 }
1032 
1033 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1034                   struct kvm_sregs *sregs)
1035 {
1036     return -ENOIOCTLCMD;
1037 }
1038 
1039 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1040                   struct kvm_sregs *sregs)
1041 {
1042     return -ENOIOCTLCMD;
1043 }
1044 
1045 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1046 {
1047 }
1048 
1049 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1050 {
1051     return -ENOIOCTLCMD;
1052 }
1053 
1054 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1055 {
1056     return -ENOIOCTLCMD;
1057 }
1058 
1059 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1060 {
1061     return VM_FAULT_SIGBUS;
1062 }
1063 
1064 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1065 {
1066     int r;
1067 
1068     switch (ext) {
1069     case KVM_CAP_ONE_REG:
1070     case KVM_CAP_ENABLE_CAP:
1071     case KVM_CAP_READONLY_MEM:
1072     case KVM_CAP_SYNC_MMU:
1073     case KVM_CAP_IMMEDIATE_EXIT:
1074         r = 1;
1075         break;
1076     case KVM_CAP_NR_VCPUS:
1077         r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1078         break;
1079     case KVM_CAP_MAX_VCPUS:
1080         r = KVM_MAX_VCPUS;
1081         break;
1082     case KVM_CAP_MAX_VCPU_ID:
1083         r = KVM_MAX_VCPU_IDS;
1084         break;
1085     case KVM_CAP_MIPS_FPU:
1086         /* We don't handle systems with inconsistent cpu_has_fpu */
1087         r = !!raw_cpu_has_fpu;
1088         break;
1089     case KVM_CAP_MIPS_MSA:
1090         /*
1091          * We don't support MSA vector partitioning yet:
1092          * 1) It would require explicit support which can't be tested
1093          *    yet due to lack of support in current hardware.
1094          * 2) It extends the state that would need to be saved/restored
1095          *    by e.g. QEMU for migration.
1096          *
1097          * When vector partitioning hardware becomes available, support
1098          * could be added by requiring a flag when enabling
1099          * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1100          * to save/restore the appropriate extra state.
1101          */
1102         r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1103         break;
1104     default:
1105         r = kvm_mips_callbacks->check_extension(kvm, ext);
1106         break;
1107     }
1108     return r;
1109 }
1110 
1111 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1112 {
1113     return kvm_mips_pending_timer(vcpu) ||
1114         kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1115 }
1116 
1117 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1118 {
1119     int i;
1120     struct mips_coproc *cop0;
1121 
1122     if (!vcpu)
1123         return -1;
1124 
1125     kvm_debug("VCPU Register Dump:\n");
1126     kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1127     kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1128 
1129     for (i = 0; i < 32; i += 4) {
1130         kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1131                vcpu->arch.gprs[i],
1132                vcpu->arch.gprs[i + 1],
1133                vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1134     }
1135     kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1136     kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1137 
1138     cop0 = vcpu->arch.cop0;
1139     kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1140           kvm_read_c0_guest_status(cop0),
1141           kvm_read_c0_guest_cause(cop0));
1142 
1143     kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1144 
1145     return 0;
1146 }
1147 
1148 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1149 {
1150     int i;
1151 
1152     vcpu_load(vcpu);
1153 
1154     for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1155         vcpu->arch.gprs[i] = regs->gpr[i];
1156     vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1157     vcpu->arch.hi = regs->hi;
1158     vcpu->arch.lo = regs->lo;
1159     vcpu->arch.pc = regs->pc;
1160 
1161     vcpu_put(vcpu);
1162     return 0;
1163 }
1164 
1165 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1166 {
1167     int i;
1168 
1169     vcpu_load(vcpu);
1170 
1171     for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172         regs->gpr[i] = vcpu->arch.gprs[i];
1173 
1174     regs->hi = vcpu->arch.hi;
1175     regs->lo = vcpu->arch.lo;
1176     regs->pc = vcpu->arch.pc;
1177 
1178     vcpu_put(vcpu);
1179     return 0;
1180 }
1181 
1182 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1183                   struct kvm_translation *tr)
1184 {
1185     return 0;
1186 }
1187 
1188 static void kvm_mips_set_c0_status(void)
1189 {
1190     u32 status = read_c0_status();
1191 
1192     if (cpu_has_dsp)
1193         status |= (ST0_MX);
1194 
1195     write_c0_status(status);
1196     ehb();
1197 }
1198 
1199 /*
1200  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1201  */
1202 static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1203 {
1204     struct kvm_run *run = vcpu->run;
1205     u32 cause = vcpu->arch.host_cp0_cause;
1206     u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1207     u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1208     unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1209     enum emulation_result er = EMULATE_DONE;
1210     u32 inst;
1211     int ret = RESUME_GUEST;
1212 
1213     vcpu->mode = OUTSIDE_GUEST_MODE;
1214 
1215     /* Set a default exit reason */
1216     run->exit_reason = KVM_EXIT_UNKNOWN;
1217     run->ready_for_interrupt_injection = 1;
1218 
1219     /*
1220      * Set the appropriate status bits based on host CPU features,
1221      * before we hit the scheduler
1222      */
1223     kvm_mips_set_c0_status();
1224 
1225     local_irq_enable();
1226 
1227     kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1228             cause, opc, run, vcpu);
1229     trace_kvm_exit(vcpu, exccode);
1230 
1231     switch (exccode) {
1232     case EXCCODE_INT:
1233         kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1234 
1235         ++vcpu->stat.int_exits;
1236 
1237         if (need_resched())
1238             cond_resched();
1239 
1240         ret = RESUME_GUEST;
1241         break;
1242 
1243     case EXCCODE_CPU:
1244         kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1245 
1246         ++vcpu->stat.cop_unusable_exits;
1247         ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1248         /* XXXKYMA: Might need to return to user space */
1249         if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1250             ret = RESUME_HOST;
1251         break;
1252 
1253     case EXCCODE_MOD:
1254         ++vcpu->stat.tlbmod_exits;
1255         ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1256         break;
1257 
1258     case EXCCODE_TLBS:
1259         kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1260               cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1261               badvaddr);
1262 
1263         ++vcpu->stat.tlbmiss_st_exits;
1264         ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1265         break;
1266 
1267     case EXCCODE_TLBL:
1268         kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1269               cause, opc, badvaddr);
1270 
1271         ++vcpu->stat.tlbmiss_ld_exits;
1272         ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1273         break;
1274 
1275     case EXCCODE_ADES:
1276         ++vcpu->stat.addrerr_st_exits;
1277         ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1278         break;
1279 
1280     case EXCCODE_ADEL:
1281         ++vcpu->stat.addrerr_ld_exits;
1282         ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1283         break;
1284 
1285     case EXCCODE_SYS:
1286         ++vcpu->stat.syscall_exits;
1287         ret = kvm_mips_callbacks->handle_syscall(vcpu);
1288         break;
1289 
1290     case EXCCODE_RI:
1291         ++vcpu->stat.resvd_inst_exits;
1292         ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1293         break;
1294 
1295     case EXCCODE_BP:
1296         ++vcpu->stat.break_inst_exits;
1297         ret = kvm_mips_callbacks->handle_break(vcpu);
1298         break;
1299 
1300     case EXCCODE_TR:
1301         ++vcpu->stat.trap_inst_exits;
1302         ret = kvm_mips_callbacks->handle_trap(vcpu);
1303         break;
1304 
1305     case EXCCODE_MSAFPE:
1306         ++vcpu->stat.msa_fpe_exits;
1307         ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1308         break;
1309 
1310     case EXCCODE_FPE:
1311         ++vcpu->stat.fpe_exits;
1312         ret = kvm_mips_callbacks->handle_fpe(vcpu);
1313         break;
1314 
1315     case EXCCODE_MSADIS:
1316         ++vcpu->stat.msa_disabled_exits;
1317         ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1318         break;
1319 
1320     case EXCCODE_GE:
1321         /* defer exit accounting to handler */
1322         ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1323         break;
1324 
1325     default:
1326         if (cause & CAUSEF_BD)
1327             opc += 1;
1328         inst = 0;
1329         kvm_get_badinstr(opc, vcpu, &inst);
1330         kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1331             exccode, opc, inst, badvaddr,
1332             kvm_read_c0_guest_status(vcpu->arch.cop0));
1333         kvm_arch_vcpu_dump_regs(vcpu);
1334         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1335         ret = RESUME_HOST;
1336         break;
1337 
1338     }
1339 
1340     local_irq_disable();
1341 
1342     if (ret == RESUME_GUEST)
1343         kvm_vz_acquire_htimer(vcpu);
1344 
1345     if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1346         kvm_mips_deliver_interrupts(vcpu, cause);
1347 
1348     if (!(ret & RESUME_HOST)) {
1349         /* Only check for signals if not already exiting to userspace */
1350         if (signal_pending(current)) {
1351             run->exit_reason = KVM_EXIT_INTR;
1352             ret = (-EINTR << 2) | RESUME_HOST;
1353             ++vcpu->stat.signal_exits;
1354             trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1355         }
1356     }
1357 
1358     if (ret == RESUME_GUEST) {
1359         trace_kvm_reenter(vcpu);
1360 
1361         /*
1362          * Make sure the read of VCPU requests in vcpu_reenter()
1363          * callback is not reordered ahead of the write to vcpu->mode,
1364          * or we could miss a TLB flush request while the requester sees
1365          * the VCPU as outside of guest mode and not needing an IPI.
1366          */
1367         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1368 
1369         kvm_mips_callbacks->vcpu_reenter(vcpu);
1370 
1371         /*
1372          * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1373          * is live), restore FCR31 / MSACSR.
1374          *
1375          * This should be before returning to the guest exception
1376          * vector, as it may well cause an [MSA] FP exception if there
1377          * are pending exception bits unmasked. (see
1378          * kvm_mips_csr_die_notifier() for how that is handled).
1379          */
1380         if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1381             read_c0_status() & ST0_CU1)
1382             __kvm_restore_fcsr(&vcpu->arch);
1383 
1384         if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1385             read_c0_config5() & MIPS_CONF5_MSAEN)
1386             __kvm_restore_msacsr(&vcpu->arch);
1387     }
1388     return ret;
1389 }
1390 
1391 int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1392 {
1393     int ret;
1394 
1395     guest_state_exit_irqoff();
1396     ret = __kvm_mips_handle_exit(vcpu);
1397     guest_state_enter_irqoff();
1398 
1399     return ret;
1400 }
1401 
1402 /* Enable FPU for guest and restore context */
1403 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1404 {
1405     struct mips_coproc *cop0 = vcpu->arch.cop0;
1406     unsigned int sr, cfg5;
1407 
1408     preempt_disable();
1409 
1410     sr = kvm_read_c0_guest_status(cop0);
1411 
1412     /*
1413      * If MSA state is already live, it is undefined how it interacts with
1414      * FR=0 FPU state, and we don't want to hit reserved instruction
1415      * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1416      * play it safe and save it first.
1417      */
1418     if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1419         vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1420         kvm_lose_fpu(vcpu);
1421 
1422     /*
1423      * Enable FPU for guest
1424      * We set FR and FRE according to guest context
1425      */
1426     change_c0_status(ST0_CU1 | ST0_FR, sr);
1427     if (cpu_has_fre) {
1428         cfg5 = kvm_read_c0_guest_config5(cop0);
1429         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1430     }
1431     enable_fpu_hazard();
1432 
1433     /* If guest FPU state not active, restore it now */
1434     if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1435         __kvm_restore_fpu(&vcpu->arch);
1436         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1437         trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1438     } else {
1439         trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1440     }
1441 
1442     preempt_enable();
1443 }
1444 
1445 #ifdef CONFIG_CPU_HAS_MSA
1446 /* Enable MSA for guest and restore context */
1447 void kvm_own_msa(struct kvm_vcpu *vcpu)
1448 {
1449     struct mips_coproc *cop0 = vcpu->arch.cop0;
1450     unsigned int sr, cfg5;
1451 
1452     preempt_disable();
1453 
1454     /*
1455      * Enable FPU if enabled in guest, since we're restoring FPU context
1456      * anyway. We set FR and FRE according to guest context.
1457      */
1458     if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1459         sr = kvm_read_c0_guest_status(cop0);
1460 
1461         /*
1462          * If FR=0 FPU state is already live, it is undefined how it
1463          * interacts with MSA state, so play it safe and save it first.
1464          */
1465         if (!(sr & ST0_FR) &&
1466             (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1467                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1468             kvm_lose_fpu(vcpu);
1469 
1470         change_c0_status(ST0_CU1 | ST0_FR, sr);
1471         if (sr & ST0_CU1 && cpu_has_fre) {
1472             cfg5 = kvm_read_c0_guest_config5(cop0);
1473             change_c0_config5(MIPS_CONF5_FRE, cfg5);
1474         }
1475     }
1476 
1477     /* Enable MSA for guest */
1478     set_c0_config5(MIPS_CONF5_MSAEN);
1479     enable_fpu_hazard();
1480 
1481     switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1482     case KVM_MIPS_AUX_FPU:
1483         /*
1484          * Guest FPU state already loaded, only restore upper MSA state
1485          */
1486         __kvm_restore_msa_upper(&vcpu->arch);
1487         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1488         trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1489         break;
1490     case 0:
1491         /* Neither FPU or MSA already active, restore full MSA state */
1492         __kvm_restore_msa(&vcpu->arch);
1493         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1494         if (kvm_mips_guest_has_fpu(&vcpu->arch))
1495             vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1496         trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1497                   KVM_TRACE_AUX_FPU_MSA);
1498         break;
1499     default:
1500         trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1501         break;
1502     }
1503 
1504     preempt_enable();
1505 }
1506 #endif
1507 
1508 /* Drop FPU & MSA without saving it */
1509 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1510 {
1511     preempt_disable();
1512     if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1513         disable_msa();
1514         trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1515         vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1516     }
1517     if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1518         clear_c0_status(ST0_CU1 | ST0_FR);
1519         trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1520         vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1521     }
1522     preempt_enable();
1523 }
1524 
1525 /* Save and disable FPU & MSA */
1526 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1527 {
1528     /*
1529      * With T&E, FPU & MSA get disabled in root context (hardware) when it
1530      * is disabled in guest context (software), but the register state in
1531      * the hardware may still be in use.
1532      * This is why we explicitly re-enable the hardware before saving.
1533      */
1534 
1535     preempt_disable();
1536     if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1537         __kvm_save_msa(&vcpu->arch);
1538         trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1539 
1540         /* Disable MSA & FPU */
1541         disable_msa();
1542         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1543             clear_c0_status(ST0_CU1 | ST0_FR);
1544             disable_fpu_hazard();
1545         }
1546         vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1547     } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1548         __kvm_save_fpu(&vcpu->arch);
1549         vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1550         trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1551 
1552         /* Disable FPU */
1553         clear_c0_status(ST0_CU1 | ST0_FR);
1554         disable_fpu_hazard();
1555     }
1556     preempt_enable();
1557 }
1558 
1559 /*
1560  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1561  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1562  * exception if cause bits are set in the value being written.
1563  */
1564 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1565                    unsigned long cmd, void *ptr)
1566 {
1567     struct die_args *args = (struct die_args *)ptr;
1568     struct pt_regs *regs = args->regs;
1569     unsigned long pc;
1570 
1571     /* Only interested in FPE and MSAFPE */
1572     if (cmd != DIE_FP && cmd != DIE_MSAFP)
1573         return NOTIFY_DONE;
1574 
1575     /* Return immediately if guest context isn't active */
1576     if (!(current->flags & PF_VCPU))
1577         return NOTIFY_DONE;
1578 
1579     /* Should never get here from user mode */
1580     BUG_ON(user_mode(regs));
1581 
1582     pc = instruction_pointer(regs);
1583     switch (cmd) {
1584     case DIE_FP:
1585         /* match 2nd instruction in __kvm_restore_fcsr */
1586         if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1587             return NOTIFY_DONE;
1588         break;
1589     case DIE_MSAFP:
1590         /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1591         if (!cpu_has_msa ||
1592             pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1593             pc > (unsigned long)&__kvm_restore_msacsr + 8)
1594             return NOTIFY_DONE;
1595         break;
1596     }
1597 
1598     /* Move PC forward a little and continue executing */
1599     instruction_pointer(regs) += 4;
1600 
1601     return NOTIFY_STOP;
1602 }
1603 
1604 static struct notifier_block kvm_mips_csr_die_notifier = {
1605     .notifier_call = kvm_mips_csr_die_notify,
1606 };
1607 
1608 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1609     [MIPS_EXC_INT_TIMER] = C_IRQ5,
1610     [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1611     [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1612     [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1613 };
1614 
1615 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1616     [MIPS_EXC_INT_TIMER] = C_IRQ5,
1617     [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1618     [MIPS_EXC_INT_IO_2]  = C_IRQ1,
1619     [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1620 };
1621 
1622 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1623 
1624 u32 kvm_irq_to_priority(u32 irq)
1625 {
1626     int i;
1627 
1628     for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1629         if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1630             return i;
1631     }
1632 
1633     return MIPS_EXC_MAX;
1634 }
1635 
1636 static int __init kvm_mips_init(void)
1637 {
1638     int ret;
1639 
1640     if (cpu_has_mmid) {
1641         pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1642         return -EOPNOTSUPP;
1643     }
1644 
1645     ret = kvm_mips_entry_setup();
1646     if (ret)
1647         return ret;
1648 
1649     ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1650 
1651     if (ret)
1652         return ret;
1653 
1654     if (boot_cpu_type() == CPU_LOONGSON64)
1655         kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1656 
1657     register_die_notifier(&kvm_mips_csr_die_notifier);
1658 
1659     return 0;
1660 }
1661 
1662 static void __exit kvm_mips_exit(void)
1663 {
1664     kvm_exit();
1665 
1666     unregister_die_notifier(&kvm_mips_csr_die_notifier);
1667 }
1668 
1669 module_init(kvm_mips_init);
1670 module_exit(kvm_mips_exit);
1671 
1672 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);